
LEHRSTUHL F ÜR REALZE I T -COMPUTERSYSTEME

TECHNISCHE UNIVERS IT ÄT MÜNCHEN

UNIV.-PROF. DR. SC. S. CHAKRABORTY

Pedestrian Indoor Localization and
Tracking using a Particle Filter combined

with a learning Accessibility Map

Julian Straub

Bachelor Thesis

Pedestrian Indoor Localization and Tracking using
a Particle Filter combined with a learning

Accessibility Map

Bachelor Thesis

Executed at the Institute for Real-Time Computer Systems
Technische Universität München
Prof. Dr. sc. Samarjit Chakraborty

Advisor: Dipl.–Ing. Martin Schäfer

Author: Julian Straub
Otte-von-Stetzlingen Str. 24
86316 Friedberg

Submitted in August 2010

Acknowledgements

At first I want to thank Professor Chakraborty who enabled this thesis at the Institute
for Real-Time Computer Systems (RCS) and all members of the RCS staff, who always
were very supportive especially during the evaluation part. In particular my thank goes to
my advisor Martin Schäfer. His good advice and the interesting discussions helped me very
much to develop the Particle Filter and my ideas concerning the Accessibility Map. His fast
responses to my questions and the fast proofreading of the thesis showed his understanding
of my difficult time-constrained situation, which I am very grateful for.

Further more I want to thank my friends who always had a open ear when I needed to
talk to someone during the stressful last period of the work. Especially I want to mention
Stephan Herrmann, whom I could always discuss with about my ideas and who helped me
to correct the English of this thesis. Last but not least I am very grateful for the help of
Konrad Leibrandt with the design of the presentation.

Munich in July 2010

Table of Contents

List of Figures vii

List of Algorithms ix

List of Symbols xi

1 Indoor Navigation 1

2 The PiNav-System 3
2.1 Hardware . 3

2.1.1 The Pocket Inertial Sensing Device 4
2.2 Software . 5

2.2.1 The Data-Collection Thread . 6
2.2.2 The Filtering Thread . 6
2.2.3 The Graphical User Interface Thread 7

3 Theoretical Fundamentals of the Particle Filter 9
3.1 Bayesian Inference with Predictive Filters . 9
3.2 The Sampling Importance Resampling Particle Filter 12

3.2.1 Efficient Resampling . 14
3.2.2 The SIR Algorithm . 16

3.3 Kullback-Leibler Divergence Sampling . 16
3.3.1 KLD-Sampling Particle Filter Algorithm 18

4 Pedestrian Localization with a Particle Filter 19
4.1 The System Model of a Pedestrian . 19
4.2 The Observation Model . 21

4.2.1 A Map as a Geometric Observation Model 21
4.2.2 Representation of the Map . 22

4.3 Implementation of the Observation Model . 26
4.3.1 getRoom Algorithm . 26
4.3.2 usedDoor Algorithm . 28

4.4 Preparations for KLD-Sampling . 30
4.5 A KLD-Sampling Particle Filter Algorithm 32
4.6 Position Estimation . 33
4.7 Practical Aspects . 35

4.7.1 Prior Distribution . 35

v

Table of Contents

4.7.2 Integration in the PiNav-Software . 36

5 Improving the Observation Model 37
5.1 The Accessibility Function . 37

5.1.1 Pedestrian Behavior in Indoor Environments 37
5.1.2 The Accessibility Map . 38
5.1.3 Incorporating Human Walking Behavior 39
5.1.4 A Particle Filter using the Accessibility Map 43

5.2 Learning Accessibility . 44
5.2.1 The Accessibility Map as a Radial Basis Function Network 45
5.2.2 The Learning Accessibility Map . 47
5.2.3 A Particle Filter using the learning Accessibility Map 51

6 Evaluation 53
6.1 General System Setup . 53
6.2 Computational Performance . 54
6.3 Localization Behavior . 56

6.3.1 Experimental Setup . 56
6.3.2 Results . 58
6.3.3 Interpretation . 60

6.4 Tracking Performance . 61
6.4.1 Experimental Setup . 61
6.4.2 Results . 62
6.4.3 Interpretation . 66

6.5 Using a trained Accessibility Map . 67
6.5.1 Experimental Setup . 67
6.5.2 Results and Interpretation . 68

7 Conclusion 71

8 Outlook 73

Bibliography 75

vi

List of Figures

2.1 The PiNav-System . 3
2.2 The Pocket Inertial Measuring Unit without Housing 4
2.3 Scheme of the Hardware Configuration of the Pocket IMU 5
2.4 The Software Architecture of the PiNav-System. 6
2.5 Filtering Structure of the PiNav-System . 7

3.1 One Iteration of a Predictive Filter . 10
3.2 Three Ways of Representing a Probability Density Function 12
3.3 Illustration of one complete Cycle of the Particle Filter 13
3.4 Lattice of Bins for KLD-Sampling . 17

4.1 State of a Pedestrian on a 2D Plane . 19
4.2 The System Model of a Pedestrian walking on a 2D Plane 20
4.3 Composition Diagram of the Map . 22
4.4 The Representation of a Room . 23
4.5 The Floor plan of the RCS Storey from a CAD File 24
4.6 Dynamic Floor Building . 24
4.7 The converted Floor plan of the RCS Storey 25
4.8 Principle of the inRoom Algorithm . 26
4.9 The Geometric Problem of the usedDoor Algorithm. 28
4.10 3-Dimensional Discretization of the State Space for KLD-Sampling 30
4.11 Multi- and Unimodal PDF describing the State of a Person 33
4.12 Two Examples of a Prior Distribution . 35
4.13 Integration of the Particle Filter into the PiNav-Software 36

5.1 Accessing the Elements of the Accessibility Map 38
5.2 Accessibility in Proximity of Walls . 40
5.3 Coarse Accessibility Map . 40
5.4 Gaussian Kernel Plot . 41
5.5 Accessibility Map describing Pedestrian walking Behavior 42
5.6 Walking Pattern of a Person . 44
5.7 The Accessibility Map interpreted as a Radial Basis Function Network 45
5.8 Activation Function of the Hidden Layer Neurons of the Radial Basis Function

Network . 46
5.9 Interpolation of the Standard Deviation between two Positions of the Pedestrian 49
5.10 Trained Accessibility Map . 50

vii

List of Figures

6.1 PiNav-System as used in the Evaluation . 54
6.2 Normalized execution Time and Number of Particles 55
6.3 Equally distributed initial Particle Set for Localization Performance Measurement 56
6.4 Trajectory for Localization and Tracking Performance Measurement 57
6.5 Localization Phase Trajectories with and without AM 58
6.6 Localization Phase Standard Deviation of Position Estimates 58
6.7 Localization Phase Deviation from Real Track 59
6.8 Ambiguity between Server Room and Corridor 59
6.9 Main Results of the Evaluation of the Localization Phase 60
6.10 Initial Particle Distribution for the Tracking Phase 61
6.11 Tracking Phase Trajectories with and without AM 62
6.12 Tracking Phase Standard Deviation of the Particle Sets with and without AM . 63
6.13 Tracking Phase Deviation from Real Track . 64
6.14 Trained Accessibility Map of the Corridor . 65
6.15 Main Results of the Evaluation of the Tracking Phase 66
6.16 Initial Particle Distribution for the Evaluation of the Learning Accessibility Map 67
6.17 Trained Accessibility Map of the Server Room 68
6.18 Estimated Trajectories for the Evaluation of the Learning AM 69
6.19 Standard Deviation of the Particle Sets during the Walk through the Server Room 70

viii

List of Algorithms

3.1 O(N log(N)) Resampling Algorithm using Sorting 14
3.2 O(N) Resampling Algorithm . 15
3.3 Sampling Importance Resampling Particle Filter 16
3.4 KLD-Sampling Particle Filter . 18

4.1 The inRoom Algorithm . 27
4.2 The getRoom Algorithm . 27
4.3 The usedDoor Algorithm . 29
4.4 The updateBin Algorithm . 31
4.5 KLD-Sampling Particle Filter for Pedestrian Localization 32

5.1 KLD-Sampling Particle Filter using an Accessibility Map 43
5.2 The learnAccessibility Algorithm . 49
5.3 KLD-Sampling Particle Filter using a learning Accessibility Map 51

ix

List of Algorithms

x

List of Symbols

RCS Institute for Real-Time Computer Systems
KLD Kullback-Leibler Divergence
DOF Degree Of Freedom
PDF Probability Density Function
SIR Sampling Importance Resampling
AM Accessibility Map
SLAM Self Localization and Map Building
ZUPT Zero velocity Update

xi

List of Symbols

xii

Abstract

As mobile phones are starting to get equipped with inertial sensors, indoor navigation
for pedestrians becomes an increasingly interesting topic in research. This work aims to
develop and evaluate the use of a Particle Filter to deal with noisy sensor measurements
of an Inertial Measurement Unit (IMU) providing localization and tracking of a pedestrian in
indoor environments. Designed at the Institute for Real-Time Computer Systems (RCS), the
so called PiNav-System was used, which can extract the motion of a person from inertial
sensor measurements. On this basis a Particle Filter was implemented, which uses Dead
Reckoning in combination with a geometric floor plan to localize and track a person wearing
the PiNav-System in a building. In addition the concept of the Accessibility Map (AM) is
proposed which reflects human walking preferences in the degree of accessibility of space
in a floor and which makes it possible to exploit this information in the Particle Filter. Rein-
terpreting the AM as a Radial Basis Function Network, a special type of Neural Network,
a method for learning accessibility of space in a floor is derived. Measurements show that
the additional use of the AM in the Particle Filter yields an improvement in the localization
accuracy of up to 32%, resulting in an average accuracy of 1.1m. Deploying the AM and the
learning AM, also a more robust tracking is observed. Hence, besides the ability to moni-
tor the walking patterns of a pedestrian in a building with a Particle Filter, the localization
accuracy and the tracing robustness could be enhanced by the proposed AM.

Nachdem inertiale Sensoren zunehmend in Handys eingebaut werden, wird Navigati-
on in Gebäuden zu einem immer interessanteren Forschungsgebiet. Diese Arbeit befasst
sich mit der Entwicklung eines Partikel Filters zur Fußgänger-Lokalisierung in Gebäuden.
Das am RCS entwickelte PiNav-System extrahiert die Bewegungen seines Trägers aus den
Messdaten der eingebauten inertialen Sensoren. Diese Daten über Schrittlänge und Schrit-
trichtung verwendet der Partikel Filter in Verbindung mit einer Stockwerkskarte um die Posi-
tion der Person zu schätzen. Außerdem wird die so genannte Accessibility Map (AM) vorge-
stellt, welche das durchschnittliche Fußgängerverhalten durch den Grad der Zugänglichkeit
in einem Raum darstellt und für den Partikel Filter nutzbar macht. Eine Lernregel für die
Zugänglichkeit von Raumbereichen wird durch die Uminterpretation der AM als ein Radi-
al Basis Function Network (RBFN) hergeleitet. In der Lokalisierungsgenauigkeit war eine
Verbesserung um bis zu 32% auf 1.1m messbar, wenn die AM zusätzlich zu dem Stock-
werksgrundriss verwendet wurde. Es zeigt sich außerdem, dass der Einsatz der AM oder
der lernenden AM eine robustere Positionsschätzung zur Folge hat. Insgesamt konnte, ne-
ben der Möglichkeit die Laufmuster von Personen aufzuzeichnen, mit dem entwickelten
System aus Partikel Filter und lernender AM die Lokalisierungsgenauigkeit verbessert und
die Pfadschätzung robuster gemacht werden.

xiii

xiv

1 Indoor Navigation

Today outdoor navigation can be thought of as solved by the General Positioning System(GPS).
A GPS receiver can determine its position evaluating the timestamps and the position send by
at least four satellites [26]. Most of us make use of this technology in their everyday lives. For
example GPS receivers installed in nearly every car provide easy navigation. Even in sports GPS
is used to track position and speed of athletes providing feedback on the sportive performance.
Public transportation via airplanes or ships almost exclusively relies on the Global Positioning
System to find safe trajectories to their destination. The main downside of this system is that
localization fails in buildings, since it is impossible to receive the satellites’ signals due to severe
attenuation by walls. This is especially a problem when thinking of large indoor areas like
airports or art museums, where similar to outdoor environments, navigation might be necessary
to find a target position.

Due to the lack of inexpensive and reliable sensors, indoor localization remains unsolved and
interesting for research. Basically there are two different approaches which are able to provide
indoor localization and are in the focus of the developers: Infrastructure dependent positioning
systems and systems which do not depend on an infrastructure.

Examples for infrastructure dependent positioning systems are systems that can find their
posture using WLAN trilateration or WLAN strength measurements [15]. The infrastructure
used here are WLAN spots, which have to be installed at known positions. In principle a por-
table sensing unit estimates its position by evaluating the distances to different WLAN stations
which serve as beacons. The main downside of localization using a stationary system is that this
imposes the need of actually deploying the infrastructure, which can get expensive for larger
buildings and restricts the localization to that limited area.

To minimize cost for indoor positioning, systems which do not depend on a preinstalled
system in the building are examined. Thinking of robotics, where localization is solved using
sensors like laser range-finders, cameras and motor encoders, it is obvious that for pedestrian
tracking smaller and lighter sensors are necessary, like inertial measurement units (IMUs). Re-
cently the rapid development of micro-electro-mechanical systems (MEMS) provided smaller
and cheaper IMUs, which on the downside are more susceptible to noise. Installed in portable
devices such IMUs can be used to track the position of pedestrians relative to a starting position.
As pointed out in [7] there are two ways of localizing a person: Inertial Navigation and Dead
Reckoning.

The first approach uses acceleration sensors and gyrometers in combination with the fun-
damental differential equation ~̈r = ~a, where ~r =

(
x y z

)
is the vector traveled and ~a =(

ax ay az

)
is the acceleration applied to the sensor. Since a double integration of the acce-

1

1 Indoor Navigation

leration is necessary to achieve relative localization, the noise induced by the sensors generates
a large drift in the position. The main problem are the perturbated sensor readings from the gy-
rometers, which are used to zero out the gravity from the accelerometer measurements. Small
errors in the orientation of the gravity result in unwanted acceleration which is integrated twice
producing a large position drift. This problem can be tackled using moments of non-movement
to perform zero velocity updates (ZUPT) of the gyrometer rotation velocities, which have to be
zero, and of the orientation of gravity [16]. ZUPT is usually used in systems with foot-mounted
IMUs, where zero velocities occur every time the foot of the IMU stands on the ground. By this
approach the errors of standard inertial navigation, which increase proportional to the square of
the running time of the system, can be confined to an error linear in the number of steps.

Dead reckoning localization uses information about the walking behavior to keep track of the
position of the pedestrian. Features like heading, stride length and step frequency describe the
walking behavior of a person. Such information can be extracted from combination of different
sensor types, like accelerometers, gyrometers and compass sensors [4] [16] using techniques
like ZUPT. The big advantage is that such systems can be used universally in different buildings
without further expenses. The map of the buildings can be obtained by digitalizing available
building plans. Recently there are also attempts to generate the map of the building while loca-
lizing the person [20]. This so called Self Localization and Map building (SLAM) problem is
regarded as solved for robotic applications [5] where precise sensors like laser range finders are
available to extract features from the surrounding environment. In the pedestrian case no such
additional measurements are available and the systems rely on techniques like using similarities
between trajectories to extract features of the building outline. Since this is computationally
demanding the solution proposed in [20] can only be processed off-line. On the downside a
system which does not need an infrastructure, can only provide relative positioning based on
noisy sensor measurements. Without advanced algorithms, small errors introduced by the sen-
sors increase the localization error with every measurement as shown in [25]. Methods to deal
with these errors are researched by various teams all over the world. The key idea behind those
techniques is to estimate the true position of a person from noisy measurements obtained from
a IMU using Bayesian filters.

This thesis describes a robust system for pedestrian indoor localization and tracking using
dead reckoning in combination with a Bayesian filter namely a particle filter to compensate the
noisy sensor measurements. In the first chapter an overview over the PiNav-System is given. The
PiNav-System is an inertial measurement system developed to provide the stride and orientation
data of a person wearing it. In contrast to [28] , [20] or [25] a hip-mounted IMU is used. Next
a general introduction to predictive or Bayesian filters, which are used to estimate the state of
a dynamic system, is given. Subsequent sections (3.2) and (3.3) elude the concept of particle
filters as a special predictive filter. How online indoor pedestrian localization can be tackled with
a particle filter in practice is detailed out in chapter (4). Special emphasis is put on the map as an
observation device, as this leads to an improved map representation describing the accessibility
of space called the Accessibility Map (AM), which enables it to incorporate human behavior in
indoor environments. Finally a different way of interpreting the AM as a Radial Basis Function
Network (RBFN) is proposed which leads to a novel concept for learning accessibility of space
from the walking patterns of a pedestrian.

2

2 The PiNav-System

The PiNav-System is an inertial measurement system, which was developed at the Institute
for Real-Time Computer Systems (RCS) at the Technical University of Munich (TUM). PiNav
stands for pedestrian inertial navigation which clearly states the goal of the system: It aims to
provide inertial navigation for pedestrians implying that the working area of the system is not
constraint. Although navigation in indoor and outdoor environments is the goal, the focus of
this thesis lies on the indoor localization of a person wearing the PiNav-System.

In the following a brief overview of the system will be given. An in depth description of
the system would go beyond the scope of this thesis and is not required to fully understand the
techniques for pedestrian localization, which will be presented.

2.1 Hardware

The PiNav-System consists of four main hardware parts: The pocket sensing unit, the foot-
mounted sensor, a GPS receiver and the handheld computing device. The central device is the
computing device which is connected with the three sensor units via Bluetooth, as depicted in
Figure 2.1. On the computing device a linux system is installed, which enables the deployment
of graphical user interfaces using the QT framework.

Figure 2.1: The PiNav-System consisting of pocket unit, foot-mounted sensor and computing
device.

3

2 The PiNav-System

The pocket unit and the foot-mounted sensor were developed from scratch at the RCS. They
are equipped with 3+3 degree of freedom(DOF) inertial sensing units. This means there is a
3-DOF accelerometer and a 3-DOF gyrometer on each of them. In addition the pocket unit has
a 3-DOF magnetic field sensor and a pressure sensor for height estimation. GPS positioning in
outdoor areas is provided by an additional standard GPS receiver.

At the time when this thesis was written the foot-mounted sensor has not yet been integrated
into the system. Therefore this work will be constrained to the input data gathered from the
pocket sensing device. Since the pocket device can provide all relevant data like stride length
and orientation, this poses no restrictions to the overall functionality of the localization system
proposed in this thesis. Adding the foot-mounted unit would only enhance the measurement
results.

2.1.1 The Pocket Inertial Sensing Device

Figure 2.2: Picture of the pocket IMU without housing.

The electronics of the pocket inertial sensing unit are protected by a small black box sur-
rounding them. The device can be put into ones pocket while walking around. The power is
supplied by a single Li-Ion-accumulator cell which can be charged through a USB connection.
A BlueNiceCom4 Bluetooth class 2 module from Amber-Wireless is used to provide wireless
connection to any computing device. The whole circuit is built up around a MSP430 micropro-
cessor as depicted in Figure 2.3. The software on that device handles both the readout of the
sensors and the transmission of the data to the computing unit via Bluetooth.

4

2.2 Software

Figure 2.3: Schematic build up of hardware of the pocket IMU confined to the microprocessor,
the sensors and the bluetooth module.

The main purpose of sensing the motions of a person is achieved by a three-degree-of-
freedom(3-DOF) accelerometer, a 3-DOF gyrometer and a 3-DOF magnetic field sensor, which
is used to measure the magnetic field of the earth. Besides these components there is a pres-
sure sensor for height estimation, which can be used to detect the elevation during a transition
between two floors.

For an in-depth description of the hardware unit and the involved sensors the reader is refer-
red to [7].

2.2 Software

The whole PiNav-software is written in C++ using the QT-framework to display measurement-
results in an easy way. The QT/C++ project can be cross compiled for the linux-system on the
computing device.

The software consists of three threads: the first thread collects the data from the sensor-box
and writes it into several ring buffers. The second thread filters the data in the ring buffers and
evaluates the Particle Filter. Then the results are also stored in ring buffers. The third thread
displays the data from the sensor and the information which is extracted by the second task, in
a QT-window.

The start of a measurement sequence can be issued in the graphical user interface(GUI).
After the synchronization of the clocks, measurements are received via bluetooth and stored in
the input buffers from which they are processed by the filters. The results of the filter algorithms
are then stored in the output buffers. Both the content of the input and the output buffers can be
displayed in the GUI as depicted in Figure 2.4.

5

2 The PiNav-System

Figure 2.4: The software architecture of the PiNav-System.

2.2.1 The Data-Collection Thread

The whole communication between the pocket-sensor-box and the computing unit is secured
with timestamps and check-sums. This makes the communication robust against transmission
errors and provides a shared time-basis for the filtering algorithms. To establish this timebase
the clocks of the microcontroller and the laptop, are synchronized at system start-up.

2.2.2 The Filtering Thread

In the second thread the filtering algorithms are applied to the data in the input ring buffers. The
relevant filters for the Particle Filter are the orientation filter and the step detection algorithm. As
depicted in Figure 2.5, those provide the input for the Particle Filter described in section (4.5),
which estimates the position of the person carrying the pocket sensing device.

The orientation of the person is estimated using a Kalman filter, which fuses the orientation
data of the gyrometers and the preprocessed data of the compass sensor. The raw output of the
compass sensor needs to be corrected according to the local inclination and deinclination of the
magnetic field of the earth [7].

The step-detection algorithm extracts the moments of foot contact with the ground. The
frequency of these step-events is used to calculate the length of a step via the v-f-relation [1] as
described in [7].

The pressure sensor is intended for the purpose of elevation detection, which indicates the
transition between two floors. Although this functionality is not yet implemented in the PiNav-
software, the localization system was designed to be easily upgradeable to manage transitions
between floors. A floor selector chooses the correct floor with regard to the detected elevation
and forwards it to the Particle Filter. Lacking the altitude estimation, the floor plan is at this
stage of the software hardcoded in the PiNav-system.

A complete description of the orientation filter and the step detection algorithm will not be

6

2.2 Software

Figure 2.5: The main filters of the PiNav-System are the Kalman filter for heading estimation
and the step detection algorithm. The altitude estimation was not yet implemented, but could be
used to detect transitions between floors.

given here since this would go beyond the scope of this thesis. It is sufficient to have a general
understanding of these methods to gather full insight into the Particle Filter, which is the topic
of this work.

2.2.3 The Graphical User Interface Thread

The third thread runs the qt-window, which is used to control the whole system and to display
the measured data as well as the output of the filters in real-time. Using specific keys to switch
through the different curves, the user can track the content of the ringbuffers in which the sensor
measurements and filter outputs are stored.

Besides starting a normal measurement cycle, a replay of an recorded sequence of mea-
surements can be issued. Using this simulation mode it is possible to evaluate different filter
configurations on the same data basis, which can be compared against each other afterwards.

7

2 The PiNav-System

8

3 Theoretical Fundamentals of the
Particle Filter

3.1 Bayesian Inference with Predictive Filters

Bayesian or predictive filters infer the development of the probability density function (pdf) of a
dynamic system’s true state from noisy observations over time. Based on [8] and [19] a general
description of the Bayesian inference process will be given. The description of the systems
evolution will be confined to discrete times tk = tk−1 + Tk−1, where Tk denotes the interval
between two observations of the systems true state. Note that these events do not have to be
periodic, as Tk may vary over time.

At first let ~xk ∈ R
n be the n-dimensional random variable describing the system’s state at the

discrete time tk. Given the process noise ~vk and the transition model ~fk
(
~xk,~vk

)
, the state of the

system at time k + 1 can be expressed as

~xk+1 = ~fk(~xk,~vk). (3.1)

The random sequence ~vk models unexpected disturbances of the system’s transition model ~fk.

Now every discrete time tk observations ~yk ∈ R
m of the state of the underlying system are

obtained. These measurements relate to the state of the system according to the observation
equation

~yk = ~hk(~xk, ~wk) (3.2)

where ~h is the known observation model of the system and ~wk is a multivariate random variable
describing the noise of the measurement at time tk.

The state of the system ~xk depends on all previous observations Yk , {~y1 . . . ~yk}, which leads
to the description of the belief of the system’s state by the pdf p(~xk|Yk). Knowing the initial
distribution p(~x1|Y0) , p(~x1) a predictive filter can approximate p(~xk|Yk) from p(~xk−1|Yk−1) and
~yk. This means an estimate of the system’s state at time tk based on all preceding measurements
can be obtained recursively.

This recursion can be divided into two steps: prediction and update. As depicted in Fi-
gure 3.1, at first the next system state p(~xk|Yk−1) is predicted using the prior distribution
p(~xk−1|Yk−1) and the transition model of the system ~fk−1. Second, the proposal distribution
p(~xk|Yk−1) is updated using all new measurements ~yk yielding p(~xk|Yk).

9

3 Theoretical Fundamentals of the Particle Filter

Figure 3.1: One iteration of a predictive filter. The grey areas depict equal probabilities greater
than zero. From left to right, at first the transition model of the system is applied retrieving
the proposal pdf p(~xk|Yk−1). Second the observation model p(~yk|~xk) is incorporated yielding the
updated belief of the system’s state p(~xk|Yk).

Assuming the prior distribution of the system’s state p(~xk−1|Yk−1) at time tk−1 to be known,
the predicted pdf p(~xk|Yk−1) can be obtained by the Chapman-Kolmogorov equation [17]:

p(~xk|Yk−1) =

∫
p(~xk|~xk−1)p(~xk−1|Yk−1)d~xk−1. (3.3)

The probabilistic evolution of the system’s state p(~xk|~xk−1) is defined by the transition model of
the system described in Equation (3.1) and the known process noise ~vk.

Incorporating the observation ~yk the belief of the system’s state p(~xk|Yk) can be expressed as

p(~xk|Yk) = p(~xk|~yk,Yk−1) =
p(~yk|~xk)p(~xk|Yk−1)

p(~yk|Yk−1)
, (3.4)

using the Bayes’ rule [2].

As in (3.3) applying the Chapman-Kolmogorov rule, the denominator p(~yk|Yk−1) can be de-
duced as

p(~yk|Yk−1) =

∫
p(~yk|~xk)p(~xk|Yk−1)d~xk (3.5)

where the observation model p(~yk|~xk) is defined by Equation (3.2) and the known statistics of
~wk.

Combining Equations (3.4) and (3.5), the desired formula for the posterior state pdf p(~xk|Yk)
of the system at time tk can be given as

p(~xk|Yk) =
p(~yk|~xk)p(~xk|Yk−1)∫

p(~yk|~xk)p(~xk|Yk−1)d~xk
. (3.6)

The recursive Equations (3.3) and (3.6) form the basis of any predictive filter. In general these
two equations can not be handled, as it is necessary to have a complete description of the
involved pdfs, which would require vectors of infinite dimension. Therefore only restricted
cases, where the densities are characterized by a finite number of properties, can be tackled in
an optimal way. Which means it is possible to get the best estimation of the system’s true state.

10

3.1 Bayesian Inference with Predictive Filters

This class of optimal predictive filters consists of the so called Kalman filter [12], which relies
on a linear system and Gaussian densities, and grid based filters [19], where the state space
consists of discrete values and is finite.

In other cases no optimal predictive filter can be derived. Depending on the system diffe-
rent approaches lead to suboptimal predictive filters approximating the evolution of the system.
In the non-linear Gaussian case analytical approximations such as the extended Kalman fil-
ter (EKF) [8] are deployed. The most general cases, where no assumptions on the shape of the
underlying pdfs or the linearity of the system are made, are tackled using grid-based numerical
approximations of the Equations (3.3) and (3.6) [19] or filters like the unscented Kalman fil-
ter (UKF) [23], Gaussian sum filters [21] or Particle Filters [9]. Since a complete description of
all filters mentioned above would go beyond the scope of this thesis, the reader is referred to [19]
for a in depth description.

This work elaborates on the Particle Filter, which has some special properties making him
the most suitable choice for pedestrian dead reckoning localization. Those characteristics will
be pointed out in chapter (4), where, basing on the theory of this chapter, a Particle Filter for
pedestrian localization is derived.

11

3 Theoretical Fundamentals of the Particle Filter

3.2 The Sampling Importance Resampling Particle Filter

Since the seminal paper [9] on Particle Filters by Gordon, Salmond and Smith in 1993 on a new
way of estimating the state of a nonlinear and non-Gaussian system, there is a lot of interest in
this filters for various tracking applications including localization of pedestrians.

Particle filters perform sequential Monte Carlo estimation [19] of a system’s state ~xk repre-
senting the pdf p(~xk|Yk) by a set S k of so called particles si

k, where

S k =
{〈

si
k; wi

k

〉
; i = 1 . . .Nk

}
, {si

k; wi
k}. (3.7)

Drawn from the system’s pdf p(~xk|Yk), a particle si
k describes a possible state ~xk of the system.

It is weighted with the mass wi
k which is proportional to the degree of the particle’s contribution

to the pdf p(~xk|Yk).

Figure 3.2: Three ways of representing a probability density function - The left pdf is represen-
ted by a closed function p(~xk|Yk). To the right two variants of a particle representation of the
pdf of the left are given. In the middle the particles have equal weights and the pdf is descri-
bed by the density of the particles. The rightmost figure represents the pdf by particles, which
are weighted according to their importance for the representation of p(~xk|Yk). Notice that the
weights of the particles are depicted by their radius. A larger radius describes a heavier weight.

Let S 1 be the initial set of particles describing the known prior probability density of the
system’s state p(~x1|Y0) = p(~x1). Starting from this, after every new observation yk, the recursive
algorithm of the Particle Filter is evaluated. Proposed by Gordon, Salmond and Smith [9], the
Sampling Importance Resampling (SIR) filter, also called Bayesian bootstrap filter, is conside-
red the basic model of a Particle Filter. As introduced in section (3.1) for predictive filters, the
SIR filter is also divided into the two steps prediction and update, realizing the central Equati-
ons (3.3) and (3.6).

Prediction (Particle Propagation) By applying the system transition model fk−1 to each in-
dividual equally weighted particle of S k−1, an intermediate set S̃ k of particles is generated.

S k−1 =

{
si

k−1;
1

Nk−1

}
fk−1
−−→ S̃ k =

{
s̃i

k;
1

Nk−1

}
(3.8)

12

3.2 The Sampling Importance Resampling Particle Filter

Consistent with the theory of predictive filters, S̃ k represents the pdf p(~xk|Yk−1), since
Equation (3.8) realizes Equation (3.3).

Update (Particle Weighting) According to the observation density p(~yk|~xk) every particle
s̃i

k ∈ S̃ k is assigned a weight
w̃i

k ∼ p(~yk|s̃i
k). (3.9)

The updated scattering of weighted particles S̃ k describes the estimation of the state of
the system p(~xk|Yk) at time tk under the new observation ~yk. The weight w̃i

k displays the
importance of the particle s̃i

k for the distribution S̃ k describing p(xk|Yk). Since the SIR
algorithm takes a set of particles with equal mass as input, it is necessary to sample the
final distribution S k from S̃ k such that wi

k = 1
Nk

.

S̃ k =
{
s̃i

k; w̃i
k

} Resample using w̃i
k

−−−−−−−−−−−−→ S k =

{
si

k;
1
Nk

}
(3.10)

Essentially the resampling generates an amount of particles si
k ∈ S k from every particle

s̃i
k ∈ S̃ k proportional to the specific weight w̃i

k of this particle. This means heavy weigh-
ted particles s̃i

k will generate several particles si
k whereas a lightweight particle might be

deleted in this step.

To enable better understanding of the updating process of the particle distribution given an
observation yk Figure 3.3 is given. The example in the illustration is confined to one dimension
x to ensure a straightforward overview. The general principle does not change in a higher di-
mensional state space. As can be seen at first the particles of {si

k−1; 1
Nk−1
} are propagated shifting

Figure 3.3: Illustration of one complete cycle of the Particle Filter.

them to slightly different x values according to the transition model p(xk|xk−1) providing the
set {si

k;
1

Nk−1
}. Now the observation yk is used to change the weights from the former 1

Nk−1
to a

wi
k ∼ p(yk|xk), which is depicted using circles with radius proportional to p(yk|xk). In the final

13

3 Theoretical Fundamentals of the Particle Filter

resampling step equally weighted particles are generated from the weighted ones. The number
of particles generated from a weighted particle s̃i

k is proportional to its weight w̃i
k.

3.2.1 Efficient Resampling

The purpose of the resampling step is to randomly select particles of the intermediate distribu-
tion S̃ k and to add them to the posterior distribution S k. In order to preserve the distribution S̃ k

which represents p(~xk|Yk), the chance of picking a particle s̃i
k ∈ S̃ k has to be proportional to the

weight w̃i
k of this particle.

This can be achieved by drawing Nk standard uniform values u j ∈ [0, 1] and counting the
number nl of those u j, which fall into the range Ql−1 < u j < Ql, where Ql =

∑l
i=1 w̃i

k ; Q0 = 0
is the cumulative sum of the weights w̃i

k of the particles s̃i
k. The number nl gives the amount of

particles si
k which have to be generated from the particle s̃l

k. This basic method of resampling is
performed by Algorithm 3.1 which was proposed for example in [18].

Algorithm 3.1 O(N log(N)) basic resampling algorithm for the SIR Particle Filter

method resampleONlogN
(
S̃ k =

{
s̃i

k; w̃i
k

})
Q0 = 0
for i = 1 to Nk do

Qi = Qi−1 + wi
k

Sample ui ∈ [0, 1] from uniform distribution
end for
Sort

(
u j

)
// sort in ascending order using any fast sorting algorithm

j = 1
l = 1
while j < (Nk + 1) do

if Ql−1 < u j < Ql then
j + +

sl
k = s̃l

k

S k = S k ∪
〈
sl

k;
1

Nk

〉
else

l + +

end if
end while

return S k = {si
k;

1
Nk−1
}

Since the implementation of this intuitive approach involves the use of a sorting algorithm the
best achievable time complexity is O(N log(N)) using for example a merge-sort or a heap-sort
sorting-algorithm.

14

3.2 The Sampling Importance Resampling Particle Filter

In [3] Carpenter, Clifford and Fearnhead utilized a more efficient algorithm, which resamp-
les S k from S̃ k in O(N) time. This method generates exponentially distributed random values
t0 . . . tNk by t j = − log10(u j), calculates the running total T j =

∑ j
i=0 ti and merges T j and the Ql

as follows:

Algorithm 3.2 O(N) resampling algorithm for the SIR Particle Filter

method resampleON
(
S̃ k =

{
s̃i

k; w̃i
k

})
Sample u0 ∈ [0, 1] from uniform distribution
T0 = −log10(u0)
Q0 = 0
for i = 1 to Nk do

Sample ui ∈ [0, 1] from uniform distribution
Ti = Ti−1 − log10(ui)
Qi = Qi−1 + wi

k
end for
j = 0
l = 1
while j < Nk do

if Ql · TNk > T j then
j + +

S k = S k ∪
〈
s̃l

k;
1

Nk

〉
else

l + +

end if
end while

return S k =
{
si

k;
1

Nk−1

}

Algorithm 3.2 uses the special features [14] of the running total of exponentially distributed
random values making explicit sorting superficial.

15

3 Theoretical Fundamentals of the Particle Filter

3.2.2 The SIR Algorithm

Using the theory on Sampling Importance Resampling Particle Filters derived at the beginning
of this section (3.2) and the O(N) resampling Algorithm 3.2, the SIR filter is given. It has to be
noted that Algorithm 3.3 is a recursive formulation, which refreshes the belief of the system’s
state under a new observation ~yk. Given the initial density p(~x1|Y0) described by S 1 and a series
of observations Yk the state of the system at time tk can be estimated.

Algorithm 3.3 The SIR Particle Filter algorithm performs an update of the particle distribution
of time tk−1 to time tk.
method updateBeliefSIR

(
S k−1 =

{
si

k−1; wi
k−1

}
, ~yk

)
wS UM = 0
for i = 1 to Nk−1 do

Propagate particle s̃i
k = fk−1(si

k−1)
Evaluate particle weight w̃i

k ∼ p(yk|s̃i
k)

S̃ k = S̃ k ∪
〈
s̃i

k; w̃i
k

〉
wS UM = wS UM + w̃i

k
end for
for i = 1 to Nk do

Normalize weights wi
k =

w̃i
k

wS UM

end for
S k = resampleON

(
S̃ k

)
// using Algorithm 3.2

return S k =
{
si

k; wi
k

}

Note that all wi
k−1 have to be equal. This is secured by the resampling step at the end of the

algorithm.

3.3 Kullback-Leibler Divergence Sampling

The standard SIR filter propagates a constant amount of particles to estimate the state of the
system. Usually to get a good estimate of the system’s state a large number of particles has
to be used as depicted in [6]. In addition there is no straight-forward way of determining the
necessary quantity of particles sufficient to accurately describe the true pdf of the state of the
system.

A solution to that problem is to adapt the number of particles dynamically using the
Kullback-Leibler divergence (KLD) as proposed in [6] and adopted to pedestrian localizati-
on in [28]. The Kullback-Leibler divergence quantifies the difference between two probability
densities, one of which may remain unknown. Thus the difference between the estimated pdf,
expressed by the particle distribution S k, and the unknown true pdf of the system’s state p(~xk|Yk)
can be measured, providing a criterion for the accuracy of S k describing p(~xk|Yk).

16

3.3 Kullback-Leibler Divergence Sampling

The idea of the KLD-sampling algorithm is to increase the number of particles until the
Kullback-Leibler distance between the particle distribution and the true pdf can be guarantied
with probability (1−δ) to be less than a predefined threshold ε. As derived in [6] the number N of
samples needed for an accurate description of the underlying pdf is then given by the inequality

N ≥
1
2ε
χ2

q−1,1−δ, (3.11)

where χ2
q−1,1−δ denotes a chi-square-distribution of q− 1 degrees of freedom. In order to be able

to estimate the KL distance it is necessary to discretize the state space, maintaining a list of
subspaces, which will be referred to as bins. As depicted in Figure 3.4, the particles are then
projected onto the grid of bins. A particle is assigned to the specific bin which describes the
subspace in which the state of the particle falls.

Figure 3.4: Two dimensional lattice of bins projected onto the state space. A set of particles is
shown which is scattered over the state space. The relation of a particle and its bin becomes ob-
vious. Supported bins, which are colored gray in the figure, can be counted, yielding a measure
for the spread of the particle distribution.

Counting the number of bins occupied by particles the spread of the particle distribution
can be measured. Using this information, the χ2

q−1,1−δ distribution can be approximated by the
Wilson-Hilferty transformation [27] as proposed in [6]:

N ≥
1
2ε
χ2

q−1,1−δ =
q − 1

2ε

1 − 2
9(q − 1)

+

√
2

9(q − 1)
z1−δ

3

, (3.12)

where z1−δ is the upper 1 − δ quantile of the standard normal distribution N(0, 1) and q is
the number of bins which contain particles. From Equation (3.12) can be concluded, that it
is sufficient to count the number q of bins with support to get an estimate for the necessary
amount N of particles to represent the underlying probability density in enough detail.

17

3 Theoretical Fundamentals of the Particle Filter

3.3.1 KLD-Sampling Particle Filter Algorithm

Since it is necessary to evaluate Inequation (3.12) after propagation and weighting of each
particle, a sequential procession of the particles is necessary. After the intermediate distribution
S̃ k has been created, the weights w̃i

k are normalized and S k is resampled from S̃ k in order to
generate equally weighted particles for the next cycle.

Algorithm 3.4 The KLD-sampling Particle Filter algorithm performs an update of the particle
distribution of time tk−1 to time tk using the KLD-sampling technique to adjust the number of
particles describing the pdf.

method updateBeliefKLD
(
S k−1 = {si

k−1; wi
k−1}, ~yk

)
Empty all bins b // set all bins of state space to empty
q = 0; j = 0; wS UM = 0
while j ≤ 1

2εχ
2
q−1,1−δ do

Randomly take si
k−1 from S k−1

Propagate particle s̃ j
k = ~fk−1(si

k−1, ~vk−1)
Evaluate particle weight w̃ j

k ∼ p(yk|s̃
j
k)

wS UM = wS UM + w̃ j
k

S̃ k = S̃ k ∪
〈
s̃ j

k; w̃ j
k

〉
j + +

if bin bl containing s̃i
k is empty then

q + +

bl = not empty
end if

end while
for i = 1 to Nk do

Normalize weights: w̃i
k =

w̃i
k

wS UM

end for
S k = resampleON

(
S̃ k

)
// using Algorithm 3.2

return S k =
{
si

k; wi
k

}
Note that the formulation of Algorithm 3.4 is recursive like the SIR Particle Filter (Algo-

rithm 3.3).

18

4 Pedestrian Localization with a Particle
Filter

4.1 The System Model of a Pedestrian

From the theory of the predictive filters it is clear that the first thing necessary for the imple-
mentation of a Particle Filter is a mathematical description of the system, which is a moving
pedestrian in an indoor environment.

A walking human’s state at time tk is defined by its position (xk, yk, zk) in the world and its ori-
entation θk with respect to the global coordinate system. As will be pointed out in section (4.2.2)
it suffices to evaluated the Particle Filter in 2D space making the zk coordinate superfluous for
it. Consequently the state vector ~xk at time tk of a pedestrian on a particular floor can be given
as

~xk =

xk

yk

θk

 ⇐⇒ si
k =

xi
k

yi
k
θi

k

 . (4.1)

This means also that each particle si
k ∈ S k stores the two coordinates xi

k and yi
k as well as

its orientation θi
k. As pointed out in section (3.2) each particle is associated with a weight wi

k
which specifies the extent of the particle contribution to the underlying probability density of
the pedestrian’s state p(~xk|Yk).

Figure 4.1: The state of a pedestrian in 2D space is described by his position (xk, yk) and his
orientation θk. The person is depicted as two ellipses.

Gathered from the behavior of the pedestrian, the PiNav-System monitors every step and
the heading of the person in the middle of a step. The measured orientation and the heading
of the person do only correspond if the hip is parallel to the body of the person, which is the
case directly in the middle of a step when both legs are parallel. The calibrated step detection
algorithm computes the distance traveled using the v-f-relation as described in [7].

19

4 Pedestrian Localization with a Particle Filter

Since the pedestrian’s orientation is filtered by a Kalman filter [12] the orientation change δθk

can be assumed to be normal distributed according to δθk ∼ N(µδθk , σ
2
δθk

), where µδθk and σ2
δθk

can be obtained directly from the Kalman filter. The stride length lk is thought of as Gaussian
random variable distributed according to lk ∼ N(µlk , σ

2
lk
), where µlk and σ2

lk
are given by the step

detection algorithm.

In summary the motion of a human in 2D-space is described by a series of turns and conse-
cutive steps, as shown in Figure 4.2.

Figure 4.2: The system model of a pedestrian walking in 2D space. The arrows depict a series
of three consecutive steps, which are abstracted to a vector with length lk and orientation θk.

This implies that the system transition model p(~xk|~xk−1) can be described by the function ~f
according to which the particles are propagated:

~xk = ~f (~xk−1, δθk, lk) =

xk−1 + lk · cos(θk−1 + δθk)
yk−1 + lk · sin(θk−1 + δθk)

θk−1 + δθk

 (4.2)

where δθk needs to be sampled from N(µδθk , σ
2
δθk

) and lk from N(µlk , σ
2
lk
). Also notice that the

motion model itself is constant in time, which is expressed through the absence of an index tk

compared to Equation (3.1).

20

4.2 The Observation Model

4.2 The Observation Model

In the following it will be pointed out how the map can be interpreted as an geometric obser-
vation model for the system’s state. On a global scale a map can be divided into outdoor and
indoor space. In this work the focus lies on the localization in indoor areas like buildings. Secti-
on (4.2.2) describes how the map of a building is represented within the program in a hierarchic
structure. Finally the implementation of two methods is given which realize the observation of
the system.

4.2.1 A Map as a Geometric Observation Model

One of the central parts of the Particle Filter for the localization of a person is the map of the
building. It constrains the viable space of the pedestrian and thus the state space of the system.
Exploiting this feature the localization of the pedestrian can be improved, since particles with
impossible states can be sorted out by the filter.

In a first step it can be perceived that there are two classes of states ~xk: Those describing
positions within the boundaries of the floors of the building and those which do not. Thus the
map can be interpreted as an observation device for the state of the system as

y′k = h(~xk) =

◦ if ~xk is within the map
• if ~xk is out of the map

,

where ◦ and • denote the two possible observations given a state ~xk without any weighting. In
reverse the map can be interpreted as the setM = {~xk|h(~xk) = ◦}.

As it is impossible for a person to be out of the map, since this would require to break
through the walls of the building, the observation y′k = • can not be true for a possible state of
the pedestrian. For all valid states of the person y′k has to be ◦. In other words the pedestrian can
only be inside a room of the building. In terms of probabilities this first part of the observation
model p(y′k|~xk) can therefore be expressed as

p(y′k|~xk) =

1 if y′k = ◦

0 otherwise
. (4.3)

Furthermore a door has to be used if a person changes from one room to another. Modeling
this observation, which is referred to as y′′k , in a mathematical way the inclusion of the state ~xk−1

is required. Using the state of time k − 1 and k the trajectory of the person during the transition
can be determined. In case the room of the person changed from time k−1 to time k, the state ~xk

can only be valid if the transition lead trough a door. The fact, that performing this observation
makes only sense if the person is in the map, is expressed by the conditional dependence of the
two observations y′′k and y′k. All in all, the idea is expressed by the following distinction of cases:

p(y′′k |y
′
k, ~xk−1, ~xk) =

1 if passage from ~xk−1 to ~xk is valid
0 otherwise

(4.4)

21

4 Pedestrian Localization with a Particle Filter

It is clear that p(y′k|~xk) in Equation (4.3) is equal to p(y′k|~xk, ~xk−1), since a person can only
be in a room at time tk if he has been in a room in the previous timestep. Therefore Equati-
on (4.3) and (4.4) can now be combined using the standard rule of conditional probability:

p(y′k ∩ y′′k |~xk−1, ~xk) = p(y′k|~xk, ~xk−1) · p(y′′k |y
′
k, ~xk−1, ~xk) B p(yk|~xk−1, ~xk). (4.5)

Equation (4.5) describes the probability of both, the observation that the person is in the map and
the observation that the trajectory from ~xk−1 to ~xk is valid. This yields the geometric observation
model for a pedestrian walking around in a building.

4.2.2 Representation of the Map

Like the rest of the software the map and its functionality has been implemented in C++ ex-
ploiting the object orientation of this programming language.

The map is organized in a hierarchic structure as can be seen in Figure 4.3 detailing out
how the map is composed of different C++ classes. Note that in the following Building, Floor,
Room, S tairs and Door are used to refer to these classes in the algorithms.

Figure 4.3: Composition diagram of the map.

The topmost class is the building class, which consists of a list of floor objects. The objective
of this class is to give access to the different floors of a building. It is not practicable to have
all floors of a building in the memory all the time, since only one floor is used in the Particle
Filter at a time. The building class handles changes between floors by loading the consecutive
floor from a known position on the flash or hard drive. The previous floor is deleted freeing its
memory.

As already mentioned the Particle Filter operates on a single floor, which is represented by
the floor class. Composing stairs and room objects, the floor class describes the outline of a
floor and regions which enable the transition to other floors, like stairs or elevators.

Finally the room class represents a room by storing the contour of its walls as a polygon,
which is described by a list of edge positions. Access to a room is only possible via one of its

22

4.2 The Observation Model

doors. These are represented by the door class describing a door by the coordinates of its two
posts.

Figure 4.4: A room is represented by a polygon which stores the outline of the walls. In the
picture the crosses and the squares denote the positions which are stored in the polygon. The
door is depicted as a dotted line with the squares as the positions of its posts.

Representing the outline of a room as a polygon was chosen for two reasons. First, with a
polygon any shape of room can be realized and therefore any floor outline is possible. Second,
storing a list of positions consumes only few storage in comparison to for example a grid based
approach.

All coordinates are stored in 3D-space to enable 2.5D localization as proposed in [28]. This
approach propagates particles in 2D-space only, while the transitions in height are done in dis-
crete steps, namely the different floors. Thus although the particles are associated with xk and
yk coordinates only, the height zk is implicitly stored in the information about the floor in which
the particles are propagated at time k. As mentioned in section (2.2.2), height changes are mo-
nitored separately from the Particle Filter using the pressure sensor. If a significant elevation is
detected in a stair-region all particles in such areas are propagated to the determined consecuti-
ve floor. Thus there is no full 3D operation but transitions to upper or lower floors are possible,
which is described by the additional half dimension.

23

4 Pedestrian Localization with a Particle Filter

In Germany for most of the public buildings floor plans for each storey exist either on paper
or even in digital form as Computer Aided Design (CAD) drawings. For the evaluation the
storey of the RCS institute at the TUM was chosen. A CAD drawing of the floor outline could
be obtained and is depicted in Figure 4.5.

Figure 4.5: This is the CAD floor plan of the RCS institute as it could be obtained from TU
Munich administration.

From this original the representation of the floor for the Particle Filter can be built up se-
quentially as depicted in Figure 4.6.

Figure 4.6: During build up of a floor, the different rooms are at first created and then shifted in
place to generate the desired floor outline in the world coordinate system.

24

4.2 The Observation Model

At first all room and door objects of a floor are created. This involves measuring the dimen-
sions of every room and retrieving the coordinates of the doors of it. This can be done either
manually from a floor plan as depicted in Figure 4.5, as it was done for the RCS map or com-
puter aided, which was not in the scope of this work. In the second step the floor object itself is
instanced and initialized with a starting room of known world coordinates. Now gradually the
other rooms are connected to the first room by specifying connecting doors between the rooms.
The knowledge that a particular door in room A (given in world coordinates) matches a door in
room B suffices to compute a shifting vector for room B which translates room B into the world
coordinate system.

Following this approach the map of the RCS was converted to a floor plan for the Particle
Filter with a resolution of 0.01m, as depicted in Figure 4.7.

−5 0 5 10 15 20 25 30 35
−6

−4

−2

0

2

4

6

8

10

12

Figure 4.7: This is the floor plan of the RCS institute after the conversion to the format, which
can be used for the Particle Filter. Note that doors are not drawn into the map. Therefore lines
are not discontinued in the drawing, although this information is available for the algorithms.

25

4 Pedestrian Localization with a Particle Filter

4.3 Implementation of the Observation Model

As can be seen from the observation model Equation 4.5, it is necessary to generate two pro-
babilities, which are combined with a logical AND. At first the Particle Filter needs a way to
determine whether a specific position lies in the map or not. The getRoom algorithm described
in the next section addresses that issue in an efficient way realizing p(y′k|~xk). The second pro-
blem which has to be solved is to decide whether the transition from one room to an adjacent
room is possible. Such a passage can only be valid if it leads through a door connecting both
rooms, as expressed by p(y′′k |y

′
k, ~xk−1, ~xk), which is implemented in the usedDoor algorithm. Sin-

ce the rooms are described by polygons the two methods rely on general geometry to compute
the desired probabilities.

4.3.1 getRoom Algorithm

The observation model, proposed in section (4.2.1), requires to check whether a specific particle
position lies within the map or not. Additionally transitions between rooms have to be recogni-
zed, to realize p(y′′k |~xk−1, ~xk). Since the Particle Filter is always executed on a single floor (see
section (4.2.2)) it is sufficient to check for the validity of the position in the current floor instead
of the whole map. As a floor is an aggregation of rooms the getRoom algorithm needs to find
out in which room of the floor the particle is located or if it lies out of the map. Therefore at first
the inRoom method is proposed which is able to find out whether a particle lies within a room
or not.

As the walls of a room are modeled by a polygon, it was necessary to find an algorithm to
test whether a position ~r = (x, y)T lies within a polygon described by {

(
Polyx[i], Polyy[i]

)T
; i =

0 . . . n} or not. A efficient method for this task was suggested in [22]. As shown in Figure 4.8, in
principle the inRoom Algorithm 4.1 draws a line starting at the probing position and extending
to infinity. The number of intersections of this line with the polygon is then counted. If the
intersection-count is an odd number the point must lie inside the polygon. An even number of
intersections will be observed if the point is out of the polygon.

Figure 4.8: Principle of the inRoom algorithm.

26

4.3 Implementation of the Observation Model

Following this principle the inRoom algorithm is given as:

Algorithm 4.1 The inRoom algorithm tests whether a position ~r lies within a given room Room
or not.

method inRoom
(
~r =

(
x y

)T
,Room

)
Polygon = Room.getPolygon = {

(
Polyx[i] Polyy[i]

)T
; i = 0 . . . n}

inRoom =true
j = n
for i = 0 to n do

if (Polyy[i] ≤ y and Polyy[j] ≥ y) or (Polyy[j] ≤ y and Polyy[i] ≥ y) then
if Polyx[i] + (y − Polyy[i])/(Polyy[j] − Polyy[i]) ∗ (Polyx[j] − Polyx[i]) ≤ x then

inRoom = not inRoom
end if

end if
j = i

end for
return inRoom

As pointed out before the getRoom Algorithm 4.2 needs to find the room in which the particle
position is located. If no such room exists the particle is assumed to lie outside the floor.

Algorithm 4.2 The getRoom algorithm finds the room of a position ~r in case the position is
within the outline of the given floor Floor. If not null is returned indicating that the position is
outside Floor.
method getRoom

(
~r, Floor

)
for each Room in Floor do

if inRoom(~r,Room) = true then
return Room

end if
end for

return null

27

4 Pedestrian Localization with a Particle Filter

4.3.2 usedDoor Algorithm

There are cases when the states of the system at time tk−1 and time tk indicate that a particle
changed the room. This can be observed by monitoring the room of the particles using the
getRoom Algorithm 4.2 described beforehand. As depicted in section (4.2.1), this leads to the
question of the validity of this transition, which is described by Equation (4.4) of the observation
model.

This problem can be transformed into the calculation of the intersection point of two lines
in 2D space. One line connects both posts of the door and the other line passes through the
position of a particle in this time-step and in the one before. If both lines intersect between the
posts of the given door it can be assumed that the particle moved through the door.

Figure 4.9: The geometric problem of the usedDoor algorithm.

Let ~p1/2 =
(
p1/2x p1/2y

)T
be the position of the two post and let ~rk−1 =

(
xk−1 yk−1

)T
and

~rk =
(
xk yk

)T
be the position of a particle in two consecutive time-steps. This provides two

linear equations which describe the two lines q and p, where q is the trajectory of the person
from time tk−1 to tk and p is the line connecting the posts of the door.

q : ~r = ~rk−1 +
(
~rk − ~rk−1

)
· λ1 = ~rk−1 + ∆~r · λ1 (4.6)

p : ~p = ~p1 +
(
~p2 − ~p1

)
· λ2 = ~p1 + ∆~p · λ2 (4.7)

The intersection point can now be derived by setting ~r = ~p. This yields the following linear
system of equations:

~p1 − ~rk−1 =

(
∆~r − ∆~p

) (
λ1

λ2

)
⇒

(
λ1

λ2

)
=

(
∆~r − ∆~p

)−1 (
~p1 − ~rk−1

)
(4.8)

From Equation (4.7) it is clear that if 0 < λ2 < 1 holds, the intersection point is between the
posts of the door. In this case the trajectory of the particle is seen as valid.

The usedDoor Algorithm 4.3 given below uses Equation (4.8) to determine whether the pas-
sage from ~xk−1 in Room A to ~xk in Room B leads through a door connecting these Rooms or
not. Depending on the validity of the trajectory TRUE or FALSE is returned.

28

4.3 Implementation of the Observation Model

Algorithm 4.3 The usedDoor algorithm tests whether a trajectory defined by the two positions
~rk−1 and ~rk leads through a door or not.

method usedDoor
(
~rk−1 =

(
xk−1 yk−1

)T
,~rk =

(
xk yk

)T
, Floor

)
RoomA = getRoom(~xk−1, Floor)
RoomB = getRoom(~xk, Floor)
∆~r = ~rk − ~rk−1

for each Door connecting RoomA and RoomB do
Get posts ~p1/2 =

(
~p1/2x ~p1/2y

)T
of Door

∆~p = ~p2 − ~p1

λ2 =

(
(xk − xk−1)

(
p1y − yk−1

)
− (yk − yk−1) (p1x − xk−1)

)
det

(
∆~r −∆~p

)
if 0 ≤ λ2 ≤ 1 then

return true
end if

end for
return false

Notice that this computationally expensive intersection calculation is only done for those
doors connecting the two rooms. This functionality is easily realized using the list of doors
stored within a room object.

29

4 Pedestrian Localization with a Particle Filter

4.4 Preparations for KLD-Sampling

As described in section (3.3), the KLD-sampling algorithm needs an estimate of the particle’s
spread in the state-space. This estimate can be obtained by dividing the state space into bins
with a discrete extent in all three dimensions x, y and θ as depicted in Figure 4.10 and then
counting the bins which contain particles. A bin occupies a space ∆x × ∆y × ∆θ, where ∆x, ∆y
and ∆θ are the discretization intervals, chosen small enough to describe the state space in an
accurate but not too detailed way. Too much precision would not provide better results while
boosting the storage usage.

Figure 4.10: The state space is discretized in all three dimensions using bins of the size ∆x ×
∆y × ∆θ.

Since the KLD algorithm only needs the number of bins with support of at least one particle,
it is sufficient to store a 0 or a 1 for every bin, where 0 means no particle fell into that bin and 1
designates supported bins. This way of storing the bins requires only a 32bit 2D array b with the
dimensions [xmax−xmin

∆x] × [ymax−ymin
∆y] increasing the memory efficiency. The θ-dimension is stored

in the single bits of the 32bit integer value. This imposes the restriction ∆θ ≥ 360◦
32 = 11.25◦ for

the resolution of the heading of a pedestrian, which proved to be sufficient. The area occupied
by a person can approximately be described by an ellipse with the major diameter being the
shoulder length and the minor diameter being the depth of the human body. In average the
shoulder length is given as 0.45m according to [24]. Since the orientation is not taken into
consideration the person has to be modeled as the circumscribed circle of the ellipse. The major
diameter of the ellipse gives the diameter of the circle: 0.45m. Therefore it is convenient to
chose ∆x and ∆y equal to 0.45m.

The probability 1 − δ describing the likelihood, that the KL divergence between the true and
the approximated pdf of the system’s state will stay below the threshold ε, was chosen to be

30

4.4 Preparations for KLD-Sampling

99%. Therefore z0.99 in Equation (3.12) equals 2.3263 [10]. The threshold ε = 0.17 was chosen
by trial and error starting from 0.25 as proposed in [6].

A method for handling the state of a bin which is associated with the state ~x is given in
Algorithm 4.4. If the bin did not have support before the update, the algorithm marks the bin
as occupied by setting the bit to 1 and returns TRUE to indicate that a new bin has support
now. This can be used to increase the number of supported bins q in accordance with the KLD-
sampling method as given in section (3.3).

Algorithm 4.4 The updateBin algorithm returns whether the bin to which ~x belongs is occupied
or not. In case the bin has been empty it is set to occupied.

method updateBin
(
~x = (x, y, θ)T

)
// bin array b[xmax−xmin

∆x] × [ymax−ymin
∆y] is kept at global scale

ix = f loor(x−xmin
∆x)

iy = f loor(y−ymin
∆y)

iθ = f loor(θ−θmin
∆θ

)
if bit iθ of b[ix, iy] == 0 then

set bit iθ of b[ix, iy] = 1
return true

end if
return false

Notice that the bin matrix b is assumed to be stored at a global level, which eliminates the
need to pass it every time the function is executed, for clarity reasons. The f loor function
performs a conversion of a floating point to an integer value by rounding it off.

31

4 Pedestrian Localization with a Particle Filter

4.5 A KLD-Sampling Particle Filter Algorithm

The transfer function (4.2) of a pedestrian’s system model has been given, the observation func-
tion and its implementation has been derived and and a helping method for the measurement of
the KL distance has been shown. Now the KLD-sampling Particle Filter for pedestrian indoor
localization can be given in Algorithm 4.5, which performs one update cycle of the estimate
of the system’s state under a new observation of the stride length and the orientation of the
pedestrian obtained from the PiNav-software.

Algorithm 4.5 This KLD-sampling Particle Filter updates the particle distribution, describing
the position and orientation of a pedestrian, from time tk−1 to time tk.

method updateBeliefKLD
(
S k−1 = {si

k−1; i = 0 . . .Nk−1}, Floor, µδθk , σ
2
δθk
, µlk , σ

2
lk

)
q = 0, j = 0
Set all elements of bin matrix b to 0
while j ≤ 1

2εχ
2
q−1,1−δ do

Randomly take si
k−1 from S k−1

Sample δθk ∼ N(µδθk , σ
2
δθk

)
Sample lk ∼ N(µlk , σ

2
lk
)

Propagate particle s j
k = ~f (si

k−1, δθk, lk) using Equation (4.2)
Roomk−1 = getRoom(si

k−1, Floor)
Roomk = getRoom(s j

k, Floor)
if Roomk , null and
(Roomk−1 == Roomk or (Roomk−1 , Roomk and usedDoor(si

k−1, s
j
k, Floor))) then

S k = S k ∪
〈
s j

k; 1
〉
weight is set to 1 since it is not used anyway

if updateBin(s j
k) then

q + +

end if
j + +

else
delete s j

k
end if

end while
return S k =

{
si

k; wi
k

}
Notice, that the if-clause at the end of the while-loop realizes the observation model as de-

rived in section (4.2.1), keeping the particles, if they are within the map and if the trajectory
is valid, or deleting them. This is equal to assigning weights w j

k of 1 in the former case and 0
in the latter. Since the weights are assigned indirectly and the surviving particles have all the
same weights no resampling stage is needed to eliminate lightweight particles. The absence of
a resampling stage also makes the intermediate particle distribution S̃ k obsolete.

32

4.6 Position Estimation

4.6 Position Estimation

A particle distribution is assumed to be localized if the particle distribution consists only
of a single cluster of particles describing a unimodal state pdf in the dimensions x and y.
Such a distribution exhibits no ambiguity in contrast to a multimodal pdf as depicted in Figu-
res 4.11a and 4.11b.

(a) Unimodal particle distribution (b) Multimodal particle distribution

Figure 4.11: The left figure depicts a unimodal belief of the position of the tracked person,
whereas on the right side a multimodal distribution of particles is shown. In case of a distribution
like the right one it can not clearly be decided in which room the person really is at that time.

It would be possible to determine the number of clusters in the particle distribution using
sophisticated algorithms. But since this would be computationally demanding, the spread of
the particle distribution is taken as a measure for the number of clusters. Clearly if only a
single cluster exists the spread will be lower than in the case of multiple clusters. The standard
deviation can be used as a measure for the spread of a random sample. On the one hand it is
not prone to few outliers and on the other hand in the case of a multimodal distribution like
in Figure 4.11b it will grow significantly in contrast to a unimodal distribution. The standard
deviation of the particle distribution in the dimensions x and y is given as

σx =

√
E

[
x2] − E [x]2 =

√√√√√√√√√√√√ Nk∑
i=1

(
xi

k

)2
· wi

k

Nk∑
i=1

wi
k

−

Nk∑
i=1

xi
k · w

i
k

Nk∑
i=1

wi
k

2

(4.9)

σy =

√
E

[
y2] − E

[
y
]2

=

√√√√√√√√√√√√ Nk∑
i=1

(
yi

k

)2
· wi

k

Nk∑
i=1

wi
k

−

Nk∑
i=1

yi
k · w

i
k

Nk∑
i=1

wi
k

2

, (4.10)

where
(
xi

k, y
i
k

)
is the position of the particle si

k.

33

4 Pedestrian Localization with a Particle Filter

If both the standard deviation in the x dimension σx and in the y dimension σy fall below
predefined thresholds σloc

x and σloc
y the distribution is assumed to be unimodal and therefore

localized. The thresholds were calibrated manually by evaluating several recorded paths. It was
observed that with the threshold σloc

x = σloc
y = 0.85m localized particle sets could robustly be

distinguished from ambiguous particle distributions.

An estimator for the position (X̄k, Ȳk) of the person at time tk is the mean of the positions of
the particles in the set S k. These can be computed via the weighted sum as follows

X̄k = E
[
xi

k

]
=

Nk∑
i=1

xi
k · w

i
k

Nk∑
i=1

wi
k

(4.11)

Ȳk = E
[
yi

k

]
=

Nk∑
i=1

yi
k · w

i
k

Nk∑
i=1

wi
k

(4.12)

Note that the estimation can only be trusted in case of a localized particle distribution.

34

4.7 Practical Aspects

4.7 Practical Aspects

4.7.1 Prior Distribution

Algorithm 4.5 performs one cycle of the Particle Filter. Recursing from the prior particle distri-
bution S 1 this method keeps track of the estimated evolution of a walking pedestrian’s position
on a specific storey. As S 1 describes p(~x1|Y0), it represents the knowledge about the belief of the
position of the pedestrian at the start-up of the Particle Filter. Without any further knowledge
about the starting situation, S 1 would be an equal distribution of particles spread out over all
floors of all buildings facing all possible directions. Since this is computationally intractable, a
closer look has to be taken at how the prior distribution can be restricted.

(a) Equally distributed particle set (b) Around a position normally distributed particle set

Figure 4.12: Two examples for possible prior distribution are shown. On the left side no fur-
ther information on the position of the person is available. Therefore the particles are equally
distributed over the whole floor. On the right side the particle set is distributed around a known
starting position at the entrance of the floor.

At first the prior S 1 is confined to the storey behind the door through which the person entered
the building. Since the speed of the person is limited and the time of the entry can be estimated
using the outdoor-path and the time of GPS reception loss occurring immediately after the entry,
only a restricted area within the floor is part of the prior distribution S 1.

Second the orientation on entry into the building is limited to at least a range of 180◦. Using
the compass sensor to get an absolute measurement of the heading of the pedestrian, the orien-
tation could be narrowed down even more.

35

4 Pedestrian Localization with a Particle Filter

4.7.2 Integration in the PiNav-Software

Now that the algorithm for one iteration of the Particle Filter has been derived, it has to be
integrated into the PiNav-software, which delivers the necessary input parameters like stride
length and orientation. As can be seen in Figure 4.13 the PiNav-Software does the step detection
and the orientation filtering. As soon as a step is detected the inputs are passed to the Particle
Filter, which performs one update of the believe of the system’s state. After that the system
starts over again.

Figure 4.13: Flowchart of the integration of the Particle Filter into the system of the PiNav-
software.

36

5 Improving the Observation Model

As already mentioned in section (4.2.1) it is important for the Particle Filter to have a detailed
knowledge of the probability of a observation in a certain state, denoted by p(yk|~xk), to be able
to weight the particles according to their importance in representing the pdf of the system’s
state p(~xk|Yk). So far the observation model described by Equation (4.5) delivered only the
importance of 0% or 100%: Either the observation that a particle is in viable space was possible
or it was impossible - and nothing in between. Naturally the question arises: Can the observation
model get more accurate and if so how can this be done in the case of pedestrian localization?

5.1 The Accessibility Function

Accessibility will be referred to as a property of a certain state of a system which describes the
likelihood of this state to be adopted by the system. In the case of a pedestrian, accessibility is
a local quality of a space combined with the person’s orientation in that area. It describes the
possibility that a specific space is entered by a pedestrian with a specific heading during his
walk.

The idea of the accessibility function fAccess(~x) is to store the accessibility of every state ~x
in a floor. This is of interest because the accessibility of a person’s state ~x can be written as
p(y|~x), where y is the observation that a state is accessible. Thus p(y|~x) describes the degree
of accessibility of a certain state ~x. For example the space near a corner of a room has a low
accessibility since a person would rarely walk into that area. Provided the whole accessibility
function can be obtained this yields an observation model for the state of the system, which has
the potential to describe p(y|~x) in much more detail than the model obtained by the geometric
floor plan as introduced in section (4.2.1) resulting in a more precise way to weight the particles.

5.1.1 Pedestrian Behavior in Indoor Environments

An approximation of the accessibility function can be obtained by modeling the average human
walking behavior in indoor environments. In literature [24] no general statement on the heading
of a pedestrian in indoor environments is made, therefore it is assumed that the orientation
of a walking person follows no preferences in specific situations and may be ignored when
modeling pedestrian behavior. According to [24] the main factor that has been proven to affect
human walking behavior is the proximity to walls or other obstacles.

37

5 Improving the Observation Model

In other words, the possibility that a person will walk into a specific area of a room is only
determined by the position of this area in the room respectively its proximity to the walls of the
room or to other obstacles. This means the accessibility of a state ~x is only dependent on the
position of the area, described by the two coordinates x and y.

The values Weidmann gives in [24] are: In average a person walking in a corridor keeps a mi-
nimal distance of 0.25m to a wall made of concrete and 0.20m to a wall made of metal. Obstacles
in a general environment are avoided with a gap of at least 0.10m between the pedestrian and
the obstruction.

5.1.2 The Accessibility Map

Since the behavior of a pedestrian in indoor environments depends mainly on the position, as
described in the previous section, the accessibility function can be confined to the two dimensi-
ons x and y yielding

fAccess(x, y) = Λ ∈ [0, 1] (5.1)

where Λ is the degree of accessibility, from 0 denoting occupied positions to 1 meaning the
space is fully accessible.

Since fAccess can not be obtained in an analytical form in general, the function has to be
approximated. This is done by discretizing the x-y-plane in squares of ∆X × ∆Y . For every
square one value is stored, which describes fAccess(Xi,Yi), where (Xi,Yi) denotes the position of
the center of the square as depicted in Figure 5.1.

Figure 5.1: The position of the elements of the AM is located in the middle of a grid-cell. In the
figure these are the intersection points of the dotted lines.

This grid based representation of fAccess will be referred to as accessibility map (AM). The
value fAccess(Xi,Yi) which is stored in the AM is denoted AM(Xi,Yi) = Λi.

38

5.1 The Accessibility Function

All positions in the ith square are now associated with the stored value fAccess(Xi,Yi) =

AM(Xi,Yi) as illustrated in Figure 5.1. This means the position (Xi,Yi), where the accessibi-
lity Λi is known, corresponding to a position (x, y) can be found by

Xi = ∆X
2 +

⌊
x

∆X

⌋
(5.2)

Yi = ∆Y
2 +

⌊
y

∆Y

⌋
(5.3)

where the expression bxc rounds the value x to the lower integer value. Note that the index i of
the grid elements is used to refer to a special element and does not imply any relations between
different elements. In the following the formulation AM(x, y) implies the use of Equation (5.2)
to find (Xi,Yi), which is then used to retrieve AM(Xi,Yi) = fAccess(Xi,Yi). In short this means
AM(x, y) provides an approximation of the accessibility function fAccess(x, y).

In the implementation a two-dimensional matrix of floating point values suffices to describe
the AM. The elements of the matrix store the accessibility Λi of the positions (Xi,Yi). The
number of rows and columns of the matrix can be calculated as

columns =
⌈

Xmax−Xmin
∆X

⌉
(5.4)

rows =
⌈

Ymax−Ymin
∆Y

⌉
, (5.5)

where dxe rounds the floating point value x up. The positions (Xmin,Ymin) and (Xmax,Ymax) denote
the minimum and maximum x and y values of all positions describing the outline of the floor as-
sociated with the AM. Since pedestrians avoid proximity of less than 0.2m to walls, as described
in section (5.1.1), it is practical to discretize the floor plan in squares of ∆X×∆Y = 0.2m×0.2m.
For example a floor extending over 10m × 100m = 1000m2 would result in a memory footprint
of 1000 × 4byte = 4kB.

The Array element [ix, iy] which corresponds to a position (x, y) can be found using

ix =
⌊

x−Xmin
∆X

⌋
(5.6)

iy =
⌊

y−Ymin
∆Y

⌋
. (5.7)

The expression AM[ix, iy] implies the use of the AM in its matrix representation as stored in the
computer.

5.1.3 Incorporating Human Walking Behavior

The AM can be initialized from a given floor-plan according to the rules of human walking
behavior as described in section (5.1.1). On the outside of the map and in the area occupied
by walls the accessibility has to be zero whereas in distances larger than 0.4m to walls the
accessibility function is set to 0.5. Only 50% accessibility is assumed and not 100%, since these
areas could also be occupied by furniture or other obstacles. The 50% accessibility account for
this uncertainty. The transition from 50% accessibility in the inner areas of the floor to zero
accessible space outside the floor plan should be smooth reflecting the decreasing accessibility

39

5 Improving the Observation Model

Figure 5.2: The accessibility decreases in the proximity of a wall and drops to zero within 0.2m
distance to the wall.

of the areas in proximity to walls. A one dimensional example of how such an accessibility
function could look like, is shown in Figure 5.2.

Creating an AM, which reflects pedestrian behavior, is done using the floor plan. At first the
whole AM is set to an accessibility of 0.5. Second every grid element which is partly out of the
floor outline is set to zero. This generates a coarse AM as depicted in Figure 5.3, which simply
reflects the shape of the floor.

Figure 5.3: This coarse accessibility map reflects the underlying floor plan but does not add
information yet. The grid consists of squares with an area of ∆x × ∆y = 0.2m × 0.2m.

In the next step the fully accessible parts of the AM are eroded setting the outermost acces-
sible grid elements to zero. This is necessary for convolution of the accessibility grid with a
Gaussian kernel matrix in two dimensions, which yields the smooth transitions between acces-
sible and occupied space.

40

5.1 The Accessibility Function

Let h[ik, il] be the approximation of a 2D Gaussian kernel as depicted in Figure 5.4 with the
dimensions 9 × 9, a mean of 5 and a variance of 2.25:

h[ik, il] = 10−3 ·

0.058 0.275 0.834 1.625 2.028 1.625 0.834 0.275 0.058
0.275 1.301 3.953 7.700 9.616 7.700 3.953 1.301 0.275
0.834 3.953 12.009 23.391 29.211 23.391 12.009 3.953 0.834
1.625 7.700 23.391 45.559 56.896 45.559 23.391 7.700 1.625
2.030 9.616 29.211 56.896 71.054 56.896 29.211 9.616 2.030
1.625 7.700 23.391 45.559 56.896 45.559 23.391 7.700 1.625
0.834 3.953 12.009 23.391 29.211 23.391 12.009 3.953 0.834
0.275 1.301 3.953 7.700 9.616 7.700 3.953 1.301 0.275
0.058 0.275 0.834 1.625 2.030 1.625 0.834 0.275 0.058

Note that their elements are chosen to add up to 1, which leaves the height of the AM in inner
areas of the rooms unchanged at 0.5.

Figure 5.4: Plot of the Gaussian kernel for the convolution.

The discrete two-dimensional convolution of the AM matrix with the Gaussian kernel is
expressed by

AM[ix, iy] =

iy+4∑
l=iy−4

ix+4∑
k=ix−4

AM[k, l] · h[ix + 4 − k, iy + 4 − l]. (5.8)

Applying the convolution yields an AM with smooth transitions from zero accessibility be-
hind walls to 0.5 accessibility in the inner areas, as depicted in Figure 5.5. Without the erosion
step the convolution would generate grid elements with an accessibility unequal to zero outside
the outline of the floor, which is not wanted, since these areas are not accessible at all.

41

5 Improving the Observation Model

Figure 5.5: The smoothed accessibility map now reflects the human walking behavior near
walls, in that the accessibility drops in proximity of walls.

In practice every time a floor is changed in the Particle Filter, the corresponding AM has to
be loaded as well. Since the AM of a specific floor does not change, the AM can be created in
advance. The generation of the AMs for the floors is only necessary once and can be processed
offline on a high speed PC. Therefore standard algorithms for the erosion and the convolution
have been implemented.

42

5.1 The Accessibility Function

5.1.4 A Particle Filter using the Accessibility Map

Since it is possible to enrich the geometric observation model with the accessibility map, a
modified KLD-sampling SIR Particle Filter is given with Algorithm 5.1, which weights the
particles according to the accessibility of their positions. The accessibility map is created in
advance to reflect pedestrian walking behavior as described in section (5.1.3) To provide equally
weighted particles for the next cycle of the algorithm, resampling of the weighted particles
becomes inevitable in contrast to Algorithm 4.5, which uses only the geometric observation
model.

Algorithm 5.1 This KLD-sampling Particle Filter uses an Accessibility Map reflecting human
walking behavior to weight the particles which are propagated from time tk−1 to tk.

method updateBeliefKLDAM
(
S k−1 = {si

k−1; i = 0 . . .Nk−1}, Floor, µδθk , σ
2
δθk
, µlk , σ

2
lk

)
q = 0, j = 0
Empty all bins b
wS UM = 0
while j ≤ 1

2εχ
2
q−1,1−δ do

Randomly take si
k−1 from S k−1

Sample δθk ∼ N(µδθk , σ
2
δθk

)
Sample lk ∼ N(µlk , σ

2
lk
)

Propagate particle s̃ j
k = ~f (si

k−1, δθk, lk) // using Equation (4.2)
Roomk−1 = getRoom(si

k−1, Floor)
Roomk = getRoom(s̃ j

k, Floor)
if Roomk , NULL and
(Roomk−1 == Roomk or (Roomk−1 , Roomk and usedDoor(si

k−1, s̃
j
k, Floor))) then

Evaluate particle weight w̃ j
k ∼ AMk(s̃ j

k)
S̃ k = S̃ k ∪

〈
s̃ j

k; w̃ j
k

〉
if updateBin(s j

k) then
q + +

end if
j + +

wS UM = wS UM + w̃ j
k

else
delete s j

k
end if

end while
for i = 1 : Nk do

Normalize weights: w̃i
k =

w̃i
k

wS UM

end for
S k = resampleON

(
S̃ k

)
// using Algorithm 3.2

return S k =
{
si

k; wi
k

}

43

5 Improving the Observation Model

5.2 Learning Accessibility

When looking at the way the map is represented it is obvious, that much detail is left out. On-
ly walls are taken into consideration as obstacles ignoring any pieces of furniture like desks,
lockers and bookcases. This general representation is sufficient for coarse localization in buil-
dings. But adding more details to the depiction of a floor would enable higher accuracy in the
localization. Besides the fact that it would need significant effort to add such details to the map
in advance, these obstacles are more or less movable, which makes it impractical to fix them to
an area in the environment. Therefore the question arises how more details can be added to the
observation model from the data obtained by the Particle Filter.

The key idea behind the solution proposed in the following is that human moving patterns
in a room will reflect the accessibility of the different areas, since a person would for example
not climb across a desk if it were possible to walk around it. A possible walking pattern of a
pedestrian in a room is depicted in Figure 5.6.

Figure 5.6: The walking pattern of the person reflects the accessibility of space in the room,
since areas under and next to the desk are avoided.

Given several such patterns for the same room it would become obvious that the area of the
desk is not accessed by the pedestrians. Using this observation the AM could be updated to have
a higher accessibility in the free area than in the region of the desk, which would increase the
weights added to particles in the free areas.

This problem is similar to the question of SLAM, since in parallel to the localization of the
pedestrian it should be recorded, which places were accessible and which were not. The dif-
ference to the SLAM approaches known from robotics is, that unlike in robotics no additional
sensors like laser-range finders can be carried around by a pedestrian. So the features which
have to be extracted from the environment for SLAM [5] can only be obtained from the moving
patterns [20] and the behavior of the person. The difference to the hard SLAM problem exami-
ned in [20] is that using the coarse floor outline in combination with the Particle Filter, a vague
localization is possible.

44

5.2 Learning Accessibility

5.2.1 The Accessibility Map as a Radial Basis Function Network

The aim is to update the AM according to the walking patterns of a person through the corre-
sponding floor. In other words the AM should be enabled to learn the accessibility of its grid
elements from the estimated position of the person wearing the localization system.

To derive the learning rule for accessibility, at first a reinterpretation of the AM as a radial
basis function network (RBFN) [11] is necessary. This kind of three layer neural network can
approximate arbitrary functions. The RBFN concept originates from the theory of Neuronal
Networks with the difference that the activation functions of the neurons in the second layer
produce significant outputs only locally around a predefined center. Therefore the output of the
RBFN only depends on few inputs from the second layer. This property makes them suitable
for online learning, since in the learning phase only the few weights of the neurons in the
second layer, which contributed to the output have to be adapted. All the other weights are left
unchanged. Therefore the function described by the RBFN will change in the area where new
knowledge was acquired and it will remain unchanged in areas where no new information has
been given, thus keeping the memory of the previously learned course of the function. This kind
of learning behavior suits well for the objective to learn the accessibility of space, since this has
to be learned locally.

The AM can be interpreted as a RBFN of the structure depicted in Figure 5.7.

Figure 5.7: The AM interpreted as a RBFN.

45

5 Improving the Observation Model

The RBFN has two input neurons for the x and y coordinate and one output neuron with a
linear activation function

f (o1, . . . , on) = f

 n∑
i=1

wi · oi

 =

n∑
i=1

wi · oi. (5.9)

Every grid element i of the AM is now interpreted as a neuron i in the hidden layer, with the
activation function gi(x, y) as depicted in Figure 5.8 and mathematically defined by

oi = gi(x, y) =

1 if (Xi −
∆X
2 < x < Xi + ∆X

2) and (Yi −
∆Y
2 < y < Yi + ∆Y

2) holds
0 otherwise

, (5.10)

where (Xi,Yi) denotes the position of the center of the ith grid element in the AM. The Gaus-
sian activation function which is normally used in RBFNs is here approximated by gi(x, y), to
decrease computational efforts. Note that the weights of the connections from the input neurons
to the hidden layer neurons are set to 1 handing over the input (x, y) to the hidden layer neurons
without further weighting.

Figure 5.8: The activation function of the ith neuron of the hidden layer of the RBFN. Only in a
rectangle of the dimension ∆X × ∆Y around the position (Xi,Yi) of the neuron an output oi = 1
is produced. Inputs outside this rectangle do not activate the neuron hence producing an output
of zero.

Since the grid elements are equally distributed over the floor with a distance of ∆X respec-
tively ∆Y to the neighbor elements, the activation functions do not overlap. Therefore a given
input (x, y) always activates only a single neuron in the hidden layer.

The accessibility Λi in the AM is a property of the grid element, which can now be interpreted
as the weight wi of the connection from the ith hidden layer neuron to the output neuron, since
oi is either one or zero.

46

5.2 Learning Accessibility

5.2.2 The Learning Accessibility Map

Given this new interpretation of the AM as a RBFN, training techniques for neuronal networks
can be applied to learn the accessibility function from walking patterns of pedestrians. Since
the connections between the input and the hidden layer have fixed weights, only the weights
between the hidden layer neurons and the output neuron, which represent the accessibility of
the area associated with a hidden neuron, need to be trained. A single layer of neurons can
be trained using the delta rule [13], which modifies the weights wi in order to minimize the
difference between the output of the neuronal network and the desired output. The delta rule
utilizes a gradient descend method to find parameters such that the error between the training
values and the output of the neuronal network is minimized.

Let α ∈ [0, 1] be the learning rate of the neuronal network and Λ∗ the desired output for a
given position (x, y), then the delta rule for the RBFN is

wi = wi + α · oi · (Λ∗ − f (o1, . . . , on)) = wi − α · oi ·

Λ∗ − n∑
i=1

wi · oi

 , (5.11)

where the oi depend on the input (x, y) according to Equation (5.10). This usually means that
for every new Λ∗ which has to be trained, all weights wi have to be updated. As mentioned
beforehand the special form of the neurons’ activation function in the hidden layer and their
alignment ensures that only a single neuron I is activated for a given input, resulting in an
oI = 1 and oi = 0 ∀ i , I. This yields the learning rule

wi =

wi + α · (Λ∗ − wi) for i = I
wi for i , I

(5.12)

which implies that only the weight wI associated with the activated neuron, has to be trained
ensuring high performance for the learning process.

The last unknown variable is the desired accessibility Λ∗ of a position (x, y). Clearly only
positions on the trajectory of the pedestrian, can be seen as accessible. Since these positions
can only be estimated, as described in section (4.6), not the full accessibility can be assigned
to them. Therefore the degree of accessibility of a visited position is chosen to be dependent
on the accuracy of the position estimate. As the standard deviation of the position estimate is
calculated anyway to determine whether the distribution is localized, it can be exploited as a
measure for the accuracy of the mean position without further computational efforts.

Assuming that the particle distribution is localized which means σ < σloc, the accessibility
of the estimated position is set to

Λ∗ = 1 −
σloc − 0.5σmin − 0.5σ

σloc − σmin ∈ [0.5, 1] (5.13)

where σloc = max
(
σloc

x , σloc
y

)
, σmin = min

(
σmin

x , σmin
y

)
and σ = max

(
σx, σy

)
. Equation (5.13)

will output accessibility estimates ranging from 0.5 to 1. The lower bound is 0.5 in case σ =

σloc, which is the case when a particle distribution starts to be classified as localized, indicating

47

5 Improving the Observation Model

that the position estimate is rather vague and cannot be trusted too much. The upper bound
of an accessibility of 1 is achieved if the standard deviation of the position estimate equals
σmin, which is the standard deviation at which the position estimate is assumed to be accurate
enough to set the accessibility to 100%. In between those boundaries the accessibility is inver-
sely proportional to the positioning accuracy measured by the standard deviation. Referring to
the property of the normal distributionN(µ, σ), that a sample drawn from it will be in the range
of µ± 2σ with a likelihood of 2 · 34.1% + 2 · 13.6% = 95.4%, σmin was set to 0.4m. This means
that at least 95.4% of all particles have to be located within a circle of 0.8m around the estimated
position to assign full accessibility to that position.

Inserting Equation (5.13) into Equation (5.12) yields the accessibility training rule given a
position estimate and its standard deviation:

wi =

wi + α ·
(
σloc−0.5σmin−0.5σ

σloc−σmin − wi

)
for i = I

wi for i , I
. (5.14)

Transferring back to the grid based interpretation of the AM this learning rule can be formu-
lated as

AMk+1(x, y) = AMk(x, y) + α ·

(
σloc − 0.5σmin − 0.5σ

σloc − σmin − AMk(x, y)
)

(5.15)

where AMk(x, y) denotes the accessibility of the grid element associated with the position (x, y)
at time tk.

In case the particle distribution is localized in two subsequent timesteps, the whole trajectory
from the position at time tk−1 to the position at time tk is seen as valid and all grid elements
which lie on that path are updated according to the learning rule (5.15). The standard deviation
is interpolated linearly between σk−1 and σk to generate the necessary input for learning the
accessibility of the positions on the path yielding

σ(l) = σk−1 +
l · (σk − σk−1)

L
, (5.16)

where L is the distance between the two positions and l ∈ [0, L] denotes the distance traveled
on the path, as depicted in Figure 5.9.

48

5.2 Learning Accessibility

Figure 5.9: The standard deviation is linearly interpolated between two positions at time tk−1

and tk.

Algorithm 5.2 performs learning of the accessibility of space visited by a pedestrian on his
walk.

Algorithm 5.2 An update of the accessibility map is performed if the particle distribution is
localized. In case the distribution in the timestep before was localized as well, the accessibility
is updated on the path from the estimated position at time tk−1 to the position at time tk.
method learnAccessibility (AMk, S k, S k−1)

AMk+1 = AMk

if S k is localized then
posk =

(
meanx(S k),meany(S k)

)T

σk = max(
√

varx(S k),
√

vary(S k))
if S k−1 was localized then

posk−1 =
(
meanx(S k−1),meany(S k−1)

)T

σk−1 = max(
√

varx(S k−1),
√

vary(S k−1))
L = ‖posk − posk−1‖2

for all positions (x, y) on path from posk−1 to posk do
l = ‖ (x, y)T

− posk−1‖2

σ = σk−1 +
l·(σk−σk−1)

L ,

AMk+1(x, y) = AMk(x, y) + α ·
(
σloc−0.5σmin−0.5σ

σloc−σmin − AMk(x, y)
)

end for
else

AMk+1(x, y) = AMk(x, y) + α ·
(
σloc−0.5σmin−0.5σ

σloc−σmin − AMk(x, y)
)

end if
end if

return AMk+1

The expression ‖ (x, y) ‖2, used in the algorithm, denotes the euclidean norm of the vector
(x, y). The mean positions posk−1 and posk are calculated using Equation (4.11) whereas the
standard deviations σk−1 and σk are computed according to Equations (4.9).

49

5 Improving the Observation Model

An example for an AM trained with one walk and a learning rate of α = 0.4 is shown in
Figure 5.10. The AM learned from a trajectory of a pedestrian starting at the left. The path leads
in and out of the middle room and then to the right end of the corridor. This can be seen from
the increased accessibility in the areas where the particle distribution was localized and thus
accessibility was learned. Interesting is the accessibility in the middle room, since it decreases
in that area. This indicates that the distribution had a higher standard deviation there.

Figure 5.10: The AM depicted was trained by a single path which started at the left, lead in and
out of the middle room and ended at the right side of the floor.

As stated at the beginning the obstacles in a room might change their positions or orientation
from time to time. This means learning of accessibility is not enough. It is also necessary to
forget about the accessibility of space in case the area has not been visited for a longer period
of time. One way to implement this feature would be to periodically train all AM elements
the pure accessibility map as obtained from the simulated walking behavior of pedestrians,
yielding a process of forgetting learned accessibility. This would enable the accessibility map
to represent also dynamically changing environments.

50

5.2 Learning Accessibility

5.2.3 A Particle Filter using the learning Accessibility Map

The learning Algorithm 5.2 derived in the previous section is integrated into the Particle Fil-
ter Algorithm 5.1 yielding a learning accessibility map, which is used to weight the particles
according to the degree of contribution to the state pdf p(~x|Yk).

Algorithm 5.3 This KLD-sampling Particle Filter uses a Accessibility Map, which is enabled
to learn accessibility of visited space, to weight the particles which are propagated from time
tk−1 to tk.
method updateBeliefKLDLAM

(
S k−1 = {si

k−1; i = 0 . . .Nk−1}, Floor, µδθk , σ
2
δθk
, µlk , σ

2
lk

)
q = 0, j = 0
Empty all bins b
wS UM = 0
while j ≤ 1

2εχ
2
q−1,1−δ do

Randomly take si
k−1 from S k−1

Sample δθk ∼ N(µδθk , σ
2
δθk

)
Sample lk ∼ N(µlk , σ

2
lk
)

Propagate particle s̃ j
k = ~f (si

k−1, δθk, lk) // using Equation (4.2)
Roomk−1 = getRoom(si

k−1, Floor)
Roomk = getRoom(s̃ j

k, Floor)
if Roomk , NULL and
(Roomk−1 == Roomk or (Roomk−1 , Roomk and usedDoor(si

k−1, s̃
j
k, Floor))) then

Evaluate particle weight w̃ j
k ∼ AMk(s̃ j

k)
S̃ k = S̃ k ∪

〈
s̃ j

k; w̃ j
k

〉
if updateBin(s j

k) then
q + +

end if
j + +

wS UM = wS UM + w̃ j
k

else
delete s j

k
end if

end while
for i = 1 : Nk do

Normalize weights: w̃i
k =

w̃i
k

wS UM

end for
AMk+1 = learnAccessibility

(
AMk, S̃ k, S k−1

)
// using Algorithm 5.2

S k = resampleON
(
S̃ k

)
// using Algorithm 3.2

return S k =
{
si

k; wi
k

}

51

5 Improving the Observation Model

52

6 Evaluation

In the previous chapters (3) to (4), at first the theory for Bayesian filters was introduced, yiel-
ding the concept of a SIR Particle Filter. This Filter type was expanded to incorporate KLD-
Sampling, which adapts the size of the particle set dynamically. In chapter (5), a Accessibility
Map was proposed, which describes human walking behavior. In an attempt to learn accessibi-
lity from pedestrian walking patterns, a learning rule for the AM was derived. Exploiting these
fundamentals three different Particle Filters for pedestrian tracking were proposed:

• The KLD-sampling Particle Filter using a geometric floor plan (Algorithm 4.5)

• The KLD-sampling Particle Filter using an accessibility map (Algorithm 5.1)

• The KLD-sampling Particle Filter using a learning accessibility map (Algorithm 5.3)

In general there are two different tasks which have to be performed by the Particle Filter:
localization and tracking of a pedestrian. The first functionality denotes the process of finding
the position of the person starting from vague previous knowledge about the location in a buil-
ding. The second one aims to estimate the subsequent trajectory of a pedestrian starting from
a unimodal position pdf. Obviously without further knowledge at first localization has to be
performed yielding a belief of the persons position which is free from ambiguity. From this
position estimate the trajectory can be tracked.

In the following at first the computational performance during a typical walk starting from an
unknown position is evaluated. After that the performance of the three different Particle Filters
is examined. Since the two tasks, localization and tracking, are separated and of fixed order in
time, they were evaluated individually.

6.1 General System Setup

To enable faster testing of the algorithms and the software system an 1.6GHz laptop with
512MB RAM was used. Since there is a cross-compiler for the system on the computing de-
vice the software can be deployed on the mobile device as well.As mentioned in chapter (2),
the foot-mounted sensor was not yet completely integrated into the software architecture and is
therefore not used. This poses no critical restriction, since the pocket sensing device can deliver
stride information and orientation values on its own. All in all the setup as depicted in Figure 6.1
was used for the development and evaluation of the algorithms.

The test walks were done on the third floor of building three on the TU Munich main campus,
where the Institute for Real-Time Computer Systems is located. The corresponding CAD floor

53

6 Evaluation

Figure 6.1: The PiNav-System as used for the evaluation consisting of pocket unit and a laptop
replacing the computing device.

plan is depicted in Figure 4.5. Using a CAD viewer the rooms and doors were digitalized for
the PiNav-System with a resolution of 0.01m, as depicted in Figure 4.7. Since the transitions
between floors cannot be tracked, due to the lack of a filter in the PiNav-software extracting the
elevation of the person, the evaluation of the Particle Filters was confined to this single storey.

The step-detection algorithm in the PiNav-software could not yet provide stride length infor-
mation. Therefore the step length has been fixed to a length of 60cm in the test walks. This could
be achieved by affixing post-its to the ground at the positions of the single foot-steps using a
yard stick. Therefore the mean value of the stride length lk was set to µlk = 0.6m with a standard
deviation of σlk = 0.2m, which accounts for the errors in the calibration of the trajectory and the
errors induced by imperfect strides. The difference in the heading between two steps δθk could
be retrieved from the Kalman Filter in the PiNav-System yielding µδθk . The standard deviation
of δθk was fixed to σδθk = 3◦, which describes the perturbations of the orientation estimation.

The walks which have been evaluated were recorded using the pocket sensing device and the
PiNav-software. After that the data was fed into the PiNav-software using the replay function to
estimate the trajectory with the Particle Filter. All generated outputs like the particle sets at all
timesteps, the estimated positions and their standard deviations were stored. These results were
visualized and evaluated using Matlab.

6.2 Computational Performance

As new sensor information becomes available after every step, the Particle Filter has to be
evaluated within one step for on-line localization. According to [24] the maximum walking
speed is 1.69m

s at a stride length of 0.65m which results in a maximum walking frequency of
a healthy human of 2.68Hz. This imposes a deadline for the filter algorithm of a maximum
execution time of 373ms per cycle.

For large numbers of particles this deadline becomes critical if the algorithms in the Par-
ticle Filter are of higher time-complexity. Therefore care has been taken to incorporate only
algorithms with O(N) time-complexity in the KLD-sampling Particle Filters: The main loop, in
which prediction and update are performed, is of O(N). Also the normalization of the particle
weights and the resampling, which is only necessary for the Particle Filters using an AM, is
O(N). Calculating the mean of the particle positions in the current particle set, which yields a
position estimate (X̄k, Ȳk) as described in section (4.6), can be done in O(N) time as well. The

54

6.2 Computational Performance

standard deviation of the estimated position has to computed as a measure for the distribution’s
spread. As can be seen from Equation (4.9), this can also be done with O(N) time-complexity.

Figure 6.2 depicts the normalized curves of the evolution of the particle set size Nk and the
time tU taken for the update of the particle set by a KLD-Sampling Particle Filter. As can be
seen from this plot, besides some jitter induced by the operating system, the relation between
Nk and tU is linear, which confirms that the time complexity of the Particle Filter is O(N).

Figure 6.2: A typical plot of the normalized execution time tU and number of particles Nk. This
plot was created from an walk trough the RCS floor starting from an equally distributed particle
set as depicted in Figure 4.12a on page 35. The PiNav-System was run on a 1.6GHz processor
with 512MB RAM.

In the first phase after the initialization of the Particle Filter with an initial particle density, the
goal is to localize the person on the given floor. Depending on the amount of information which
can be exploited to constrain the prior belief of the system’s state this phase is computational-
ly demanding resulting in high execution times. The localization from an equally distributed
initial particle set is the worst case for the execution time of the Particle Filter update. For ap-
proximately 22.7 · 103 particles on the RCS floor with an area of about 420m2 this takes 150ms
according to Figure 6.2. Since the PiNav-System needs some computation time as well to filter
the incoming data, this means that the deadline of 373ms is likely to be violated for the first
steps.

After the person has been localized on a floor, the computational effort decreases, since the
amount of particles representing the pdf of the state of the person gets smaller, as can be seen
in Figure 6.2. As soon as the particle distribution is localized, which in this case is after about
35 steps, the the size of the cluster remains approximately constant at about 1.1 · 103 particles,

55

6 Evaluation

which results in an execution time of less than 15ms. This is more than one order of magnitude
smaller than the deadline of 373ms, which shows that the Particle Filter can provide on-line
tracking of a pedestrian on the laptop used.

6.3 Localization Behavior

6.3.1 Experimental Setup

The main indicators for the performance in the localization phase is the distance which has to
be walked until ambiguities are resolved and the accuracy of the obtained position estimate.
This performance was evaluated starting from an equally distributed particle set as depicted in
Figure 6.3. Since training the AM for such a large area imposes the need to walk through the
free space of every room several times, the localization behavior is evaluated only for the KLD-
Sampling Particle Filter using the geometric floor plan compared against the performance of
the Particle Filter using an AM which describes pedestrian behavior as depicted in Figure 5.5.

Figure 6.3: The Localization performance was evaluated starting from the depicted equally
distributed particle set.

The test-trajectory to evaluate the localization performance of both algorithms is depicted in
Figure 6.4. The starting point was at the left end of the track. The only room it leads trough
is the copier room of the RCS. The adjacent room left of the copier room is the server room
of the RCS. This path was chosen, since it reveals several interesting properties which show
the strength and weaknesses of the Particle Filter in the localization phase. The first three to
four meters could have been walked starting in every of the bigger rooms of the floor, which
is ambiguous. Moving more than four meters to the left, the starting point of the trajectory can
not have been in one of the rooms with a width smaller than four meters. This leaves only the

56

6.3 Localization Behavior

corridor, the big server room or one of the three connected rooms below the server room as
candidates for the position of the person. After walking in and out of the copier room, the only
possible position is somewhere in front of this room. But as soon as the person walks back
into the corridor, there are, due to uncertainty in the orientation of the person, two possible
trajectories. Besides the true trajectory into the corridor, the person could also have walked into
the server room. At the end of the corridor no ambiguity is left in the position of the person.

Figure 6.4: The trajectory which was chosen for the evaluation of the localization and tracking
performance of the algorithm. The track was walked from left to right and leads through the
copier room.

In order to be able to measure the localization accuracy, the position of every step of the
path was marked with post-its, which were calibrated using a laser range finder. In the final
analysis, this real path was compared against the position estimates during localization, which
are obtained using the mean over all positions in the particle set as introduced in section (4.6).
The distance of the estimated position (X̄k, Ȳk) from the real position (Xk,Yk) at time tk was
quantified using the euclidean distance

dk =

√(
Xk − X̄k

)2
+

(
Yk − Ȳk

)2
. (6.1)

The spread of the particle distribution was measured using the standard deviation as introdu-
ced in Equation (4.9).

57

6 Evaluation

6.3.2 Results

Figure 6.5 shows the trajectories of the mean positions of the particle sets after each step. The
estimated trajectories start from somewhere in the center of the floor, since an equally distributed
prior pdf is assumed, which explains the mean position at the beginning. The trajectories end on
the true path which indicates that the localization phase is finished. From here on the tracking
phase would start. Interestingly the localization fails in one walk if only the floor plan is used
as can be seen in Figure 6.5a.

(a) Using the Geometric Floor Plan (b) Using the Accessibility Map

Figure 6.5: Localization Phase Trajectories.

(a) Using the Geometric Floor Plan (b) Using the Accessibility Map

Figure 6.6: Localization Phase Standard Deviation of Position Estimates.

Figure 6.6 shows the standard deviation of the position estimates. In both cases, the standard
deviation starts at a high level of about 8m, indicating that the spread of the particle distribution
is large at the beginning since the particles are equally distributed over the whole floor. The

58

6.3 Localization Behavior

process of localization can be seen from the decreasing average standard deviation of the particle
sets, which drops to about 2.5m after 30 steps. This is an indicator for remaining ambiguities.
After 57 steps, the particle set is reduced to a single cluster with a mean standard deviation of
about 1m in both cases.

(a) Using the Geometric Floor Plan (b) Using the Accessibility Map

Figure 6.7: Localization Phase Distances between the Real Position and the Estimated ones.

The deviation of the estimated tracks from the true path is depicted in Figure 6.7 for both
algorithms. Again at the beginning the distance to the real path is high, since the mean of initial
particle set is somewhere in the center of the floor. This distance decreases until the position
is approximately found after about 27 steps. From that step number on the deviation increases
again, which is caused by the particles, that are propagated in the server room as depicted in
Figure 6.8. This draws the mean position of the particle set in the direction of the server room.
At the end the deviation decreases as soon as the particles in the server room are sorted out
because they hit the wall. After 60 steps the mean distance of the position estimate to the real
path in Figure 6.7a is 2.26m whereas in Figure 6.7b it is 1.53m.

Figure 6.8: At the end of the path the particle distribution splits into two clusters.

59

6 Evaluation

6.3.3 Interpretation

In summary the main results in the localization phase are shown in the following table:

Particle Filter using

Performance Criterion Geometric Floor Plan Accessibility Map

Average standard deviation of
the distances between the estimated 1.14m 0.95m

and the true positions

Mean distance to the real path 2.26m 1.53m
at the end of the walks

Steps till first minimum in 27 27
the distance to the real path

Figure 6.9: Main results of the evaluation of the localization phase.

As can be seen from Table 6.9, the average standard deviation of the distances between the
real path and the paths estimated with the Particle Filter using the AM is 13.2% lower than in
the case of the Particle Filter with the geometric floor plan. This indicates that the Particle Filter
using the AM produces similar trajectories in a more robust way than the Particle Filter without
AM. This assumption is further confirmed by the outlier produced by the Particle Filter without
AM which shows an increasing distance to the real path as visible in Figure 6.7a and 6.7a.

From Table 6.9 it becomes clear that in the examined scenario, the Particle Filter with the
support of the AM can localize the person with a 32% higher accuracy in comparison to the
Particle without the AM. The first minimum in the distance between estimated paths and the
true path occurs after 27 steps with both Particle Filters indicating that the localization speed is
the same.

In the examined scenario, the Particle Filter using the AM shows more robust and more
precise localization characteristics than the Particle Filter without the AM. The localization
speed is not influenced by the usage of the AM.

60

6.4 Tracking Performance

6.4 Tracking Performance

6.4.1 Experimental Setup

The localization phase is followed by the tracking phase which mainly aims to provide exact
position estimates. Therefore the performance of the Particle Filters can be measured by the
deviation of the position estimate from the true positions. Ground truth was established manu-
ally by walking the predefined trajectory depicted in Figure 6.4. As mentioned in the previous
section, the true path was defined by the step positions marked with post-its.

Since in the tracking phase the particle distribution is assumed to be localized, the initial
distribution for the Particle Filter was chosen to be a normal distribution of particles around the
real starting position of the track as depicted in Figure 6.10. The standard deviation is chosen
as 0.85m, which is approximately equal to the standard deviation at the end of the localization
phase.

Figure 6.10: In the tracking phase the position is approximately known, which is expressed by
the normally distributed particles around the starting position.

Starting from a localized particle set, learning of accessibility becomes possible. Therefo-
re in the following the results of all three Particle Filter variants are compared. The learning
Particle Filter started from the same AM as used by the non-learning Particle Filter with AM.
Successively as the different paths were walked, the AM was trained. The learning factor was
set to α = 0.4, to enable fast learning of the patterns, since only 12 walks were available.

61

6 Evaluation

6.4.2 Results

Starting from the same position at the right entrance of the corridor of the RCS floor, the real
track and the blue estimated trajectories are almost equal as depicted in Figure 6.11. After
turning right to enter the copier room, the trajectories start to diverge. In all three cases there
are outliers, which lead through the room right of the copier room, as a result of errors in the
orientation estimation. Its is visible that the path estimates of the Particle Filters with AM are
located denser around the real track than those of the Particle Filter without AM. Also the
outliers are drawn more to the real path if an AM is used. After leaving the copier room, an
interesting situation occurs. The real trajectory leads back to the corridor, whereas the particle
set has two possibilities: Due to the uncertainty of the sensor measurements, the person could
also have entered the server room. In such a situation the particle set just splits and takes both
possible paths. The mean of both clusters is somewhere in between them, which accounts for the
trajectories which bend into the server room, before the ambiguity is resolved and the estimated
paths end on the real track.

(a) Using the Geometric Floor Plan (b) Using the Accessibility Map

(c) Using the Learning Accessibility Map

Figure 6.11: Tracking Phase Trajectories with and without AM

62

6.4 Tracking Performance

The standard deviation of the position estimates show mainly two peaks as depicted in Figu-
re 6.12. The first smaller peak occurs, when the copier room is entered, since there is a small
chance that the person entered one of the rooms beside this room. The result is that the standard
deviation increases, since a few particles are propagated in the neighbor rooms. The second and
higher peak, originates from the ambiguity at the end of the path, where two clusters of particles
are propagated, one in the server room and one on the corridor.

(a) Using the Geometric Floor Plan (b) Using the Accessibility Map

(c) Using the Learning Accessibility Map

Figure 6.12: Tracking Phase Standard Deviation of the Particle Sets with and without AM.

63

6 Evaluation

Figure 6.13 depicts the distances between the real positions and the estimated ones for all
three Particle Filters. At first the deviation remains low, since the path only leads straight to the
left. As soon as the track bends to the right where several possible paths open up, the deviation
increases. The last peak in the distance to the real path originates again from the ambiguity bet-
ween corridor and server room, since the mean positions are drawn away from the real position
by the second cluster of particles in the server room. As the number of particles in the server
room cluster shrinks, the position estimates are pulled back to the real positions.

(a) Using the Geometric Floor Plan (b) Using the Accessibility Map

(c) Using the Learning Accessibility Map

Figure 6.13: Tracking Phase Distances between the Real Position and the Estimated ones.

64

6.4 Tracking Performance

The AM which was trained by the tracks depicted in Figure 6.11c, reflects the real path as
can be seen in Figure 6.14. Only at the end of the track where the ambiguity between server
room and corridor occurs, no accessibility could be learned since no particle set in all walks
was localized in that section of the path.

Figure 6.14: Using 12 walks the AM was trained the path of the tracking evaluation scenario.

65

6 Evaluation

6.4.3 Interpretation

The main results are summarized in the table below:

Particle Filter using

Geometric Floor Accessibility Learning
Performance Criterion Plan Map Accessibility Map

Average distance to 1.19m 1.10m 1.09m
the true positions

Average standard deviation of
the distances between the 0.74m 0.65m 0.61m

estimated and the true positions

Average standard deviation 1.34m 1.25m 1.23m
of the position estimates

Figure 6.15: Main results of the evaluation of the tracking phase.

As can be seen from Table 6.15, the Particle Filters with AM show slightly smaller average
standard deviation of the position estimates compared to the Particle Filter without AM, imply-
ing that their particle distributions are denser. Since KLD-Sampling is used this means that less
particles describe the pdf of the state of the system which results in a faster execution of the
Particle Filters with AM.

The average mean distance of the estimated paths from the real path is 7.6% lower when
using the AM than without it. Furthermore, the inclusion of the learning AM yields an enhan-
cement of 8.4% in the tracking accuracy. The mean standard deviation of the distance between
real and estimated track shows an improvement of 12.2% when using the AM in addition to
the geometric floor plan and an improvement of 17.6% when the learning AM is adopted. This
implies that supplementing the floor plan with the AM provides a more robust tracking of pede-
strians, since the different path estimates are narrower confined. Deploying the learning AM the
robustness of pedestrian tracking can also be improved while additionally recording the moving
patterns of a person.

The average deviation from the real path is about 1.1m when using either the AM or the
learning AM. The overall lower accuracy in comparison to the results of Woodman et al. in [28]
originates from the deployed hardware. Woodman uses a foot-mounted IMU which can provide
better measurements of stride length and stride direction. In contrast to this, the PiNav-System
is worn in the user’s pocket. This makes it more comfortable to use the navigation system but it
also makes it harder to extract accurate stride information from the IMU. In addition, for the test
runs fixed stride lengths were used as input for the Particle Filters. Under these two worsening
prerequisites the achieved localization accuracy is quite promising after all.

66

6.5 Using a trained Accessibility Map

6.5 Using a trained Accessibility Map

6.5.1 Experimental Setup

The capability of learning the accessibility in a room and the effects on the tracking accuracy
is further examined in the biggest room of the RCS floor, the server room. The room is mainly
occupied by several desks and storage racks leaving only sparse accessible areas. For this ex-
periment a localized particle distribution was assumed as initial distribution, since accessibility
can only be learned from a distribution free of ambiguity as described in section (5.2).

The starting point for all recorded tracks was three steps outside the server room. Around
this starting position, the initial particle set was normally distributed with a standard deviation
of 0.85m as depicted in Figure 6.16.

Figure 6.16: The particles are normally distributed around the starting position in front of the
server room.

For the evaluation 25 walks on a predefined trajectory and 10 random paths were recorded,
covering all accessible regions in the server room. Again the step length was fixed to 60cm using
post-its for the step positions. For the training of the AM, 14 of the 25 walks on the predefined
path were randomly selected and together with the 10 random walks used to train the AM. The
learning factor α was set to 0.4 to allow fast training. After that the 11 walks which were not
learned by the AM, could be used to evaluate the positioning performance of all three Particle
Filters.

67

6 Evaluation

6.5.2 Results and Interpretation

The trained AM, as depicted in Figure 6.17, reflects the free space in the server room.

Figure 6.17: Using 24 walks the AM was trained the free space in the server room.

It can be seen that the area with higher accessibility has the shape of an “U”, since there
are desks separating the server room into two free regions. By using the 10 random and the 14
defined trajectories to train the AM, a good coverage of these free areas could be achieved. This
becomes evident from the almost equally high accessibility in these regions.

68

6.5 Using a trained Accessibility Map

Figures 6.18a to 6.18c depict the estimated trajectories of the 11 test-walks obtained from
the three different Particle Filters. Although they produce very similar trajectories, it can be
seen that the path estimates of the Particle Filters using only the geometric floor plan, are more
expanded than those of the other two Particle Filter variants. This is an effect of the AM, which
decreases in proximity to walls, where a person is unlikely to walk.

(a) Using the Geometric Floor Plan (b) Using the Accessibility Map

(c) Using the Learning Accessibility Map

Figure 6.18: Estimated Trajectories through the Server Room of the three different Particle
Filters.

69

6 Evaluation

The standard deviation of the particle sets during these walks are shown in Figures 6.19a to 6.19c.
With an average standard deviation of 1.09m the particle sets of the Particle Filter using a geo-
metric floor plan have an 6.4% wider spread than if the static AM is used and a 7.3% wider
spread if the trained AM is used. The standard deviation from this average decreases from
0.131m using only the geometric floor plan to 0.116m using the learning AM. Compared
against the standard deviation of the average curve of the Particle Filter with the geometric floor
plan, this deviation decreased by 6.1% when using the untrained AM and by 11.5% when the
information of the trained AM were used.

(a) Using the Geometric Floor Plan (b) Using the Accessibility Map

(c) Using the Learning Accessibility Map

Figure 6.19: Standard deviation of the particle sets during the walk through the server room.

This results imply that the spread of the particle sets decreases if either one of the AM types
is used. The deployment of a trained AM yields particle set standard deviations which vary less
in comparison with the other two Particle Filter types. Since all 11 test-walks were obtained
from the same real path, this indicates that the estimation of the path is more robust with a
trained AM than with the two other methods.

70

7 Conclusion

From the theory of Bayesian Filters the derivation of the concept of a Particle Filter was shown.
Basing on these fundamentals, a KLD-Sampling Particle Filter for pedestrian localization was
developed, implemented and integrated into the existing PiNav-System. The Particle Filter can
provide online localization and tracking of a person in a building given its floor plans. KLD-
Sampling adapts the number of particles to describe the probability density function of the state
of the person dynamically which improves the computational efficiency of the Particle Filter.
All algorithms involved have a time complexity of O(N), where N is the number of particles in
the current set, which makes the Particle Filter suitable for online tracking of a pedestrian. In a
novel approach the accessibility of space in a floor was modeled according to human walking
behavior, which is mainly the tendency to avoid direct proximity of walls. This information was
encapsulated in the Accessibility Map, which is a grid based approximation of the accessibility
function of the specific floor. This means that the floor is discretized into small squares for which
the accessibility of this area is stored. According to the avoidance of small distances to walls,
areas immediately next to walls are assigned a lower accessibility than those in the inner regions
of a room of the floor. A Particle Filter can exploit the AM to weight particles proportional to the
accessibility of the area they are in. Since particles with heavier weights have a higher chance
to be propagated, the set of particles will be denser in areas with high accessibility, modeling
human walking behavior. The observation, that obstacles in a room are reflected in the walked
paths of a person through the room, led to the idea to learn accessibility from the estimated
paths. Interpreting the AM as a Radial Basis Function Network, the learning techniques for
Neural Networks could be transferred to the AM yielding a rule to learn accessibility of visited
areas.

In the evaluation, the performance of the Particle Filter using only a floor plan was compared
against the use of an AM and a learning AM for one trajectory through the RCS floor. The two
phases Localization and Tracking were evaluated separately from each other. In this scenario, it
turned out that, in comparison to a Particle Filter with a geometric floor plan, a pedestrian can
be localized in a floor with an up to 32% higher accuracy, when using an untrained AM. During
tracking of a person the AM yields a slight enhancement of 7.6% in the position estimation.
Additionally, if the floor plan is supplemented with an AM, the robustness of pedestrian tracking
can be improved as indicated by the standard deviation of the distance of the position estimates
to the real position which decreases by 12.2%. The learning AM can enhance both the tracking
accuracy and the tracking robustness while recording the walking patterns of a pedestrian. In
the best case, this leads to an absolute deviation of about 1.1m form the real path during tracking
using the AM, which is a promising result for the deployed hip-mounted IMU.

71

7 Conclusion

72

8 Outlook

The future application in the PiNav-System requires some additional implementations to enable
tracking over multiple floors. These were not realized since altitude estimation was not yet
implemented. Given an estimate of the current elevation, a method has to be implemented which
determines, whether the person changed floors, and which loads the subsequent floor plan to
hand it over to the Particle Filter. In the Particle Filter itself it would be desirable to have
defined stairwell regions which allow changes between floors. Only Particles which are located
in these areas would be copied to the next floor when a significant difference in elevation is
detected. This way a transition between floors would serve as an observation which significantly
constrains the possible location of the particles. For this thesis the layout of the RCS floor was
digitalized manually from a given CAD drawing, which in a real application would not be
feasible. Therefore an automated generation of the floor outline would be desirable. Since for
most modern buildings of public interest in Germany CAD drawings should be obtainable,
importing such a CAD floor outline into the Particle Filter format could be a possible solution.

Concerning the AM proposed in this thesis, some improvements could also be implemen-
ted regarding storage efficiency and performance. At the moment simply a rectangle around
the whole floor plan is taken as the area which is described by the AM. Therefore also areas
between rooms have accessibility values although particles cannot get their anyway. A more
sophisticated implementation with for example a quadtree representation of the AM, could im-
prove the storage efficiency in that areas outside rooms would not be described in such a high
resolution. This is important when thinking of a real application of the positioning system, sin-
ce a lot of AMs would have to be stored, if for example all public floor plans of a whole city
like Munich should be available on a mobile device. As already mentioned the learning AM
needs to be able to forget about previously learned accessibility in areas which are not visited
for a longer period of time, to react to dynamic changes in the environment. The proposed so-
lution to train the unlearned AM from time to time has to be evaluated in a long term test of
the system. It is anticipated that the performance of the learning AM could be improved if the
accessibility tracks learned would be smoothed from time to time, yielding gentle transitions
between the single elements of the AM. Smoothing could be done using a convolution with a
Gaussian kernel. The effect of the smoothed learned accessibility would be that gaps between
close accessibility peaks would be lifted. Small gaps of less than 0.4m are unlikely to originate
from an obstacle in a room, since obstacles like desks or chairs tend to have a larger extend.
Smoothing the trained AM would realize this observation.

73

8 Outlook

74

Bibliography

[1] John E. A. Bertram and Andy Ruina. Multiple walking speed-frequency relations are
predicted by constrained optimization. Journal of Theoretical Biology, 209(4):445–453,
2001. 6

[2] William M. Bolstad. Introduction to Bayesian Statistics. Wiley-Interscience, 2 edition,
April 2007. 10

[3] James Carpenter, Peter Clifford, and Paul Fearnhead. An improved particle filter for non-
linear problems. pages 2–7, 2004. 15

[4] F. Cavallo, A. M. Sabatini, and V. Genovese. A step toward gps/ins personal navigation
systems: real-time assessment of gait by foot inertial sensing. In Intelligent Robots and
Systems, 2005 (IROS 2005), pages 1187–1191, 2005. 2

[5] M. W. M. Gamini Dissanayake, Paul Newman, Stefen Clark, Hugh F. Durrant-whyte, and
M. Csorba. A solution to the simultaneous localization and map building (slam) problem.
IEEE Transactions on Robotics and Automation, 17:229–241, 2001. 2, 44

[6] Dieter Fox. Kld-sampling: Adaptive particle filters. In In Advances in Neural Information
Processing Systems 14, pages 713–720. MIT Press, 2001. 16, 17, 31

[7] Thomas Gebauer. Entwicklung eines dead reckoning prototypen zur persönlichen positi-
onsbestimmung. Studienarbeit at the TU Munich, Mai 2008. 1, 5, 6, 19

[8] Siome Klein Goldenstein. A gentle introduction to predictive filters. Revista de Informa-
tica Teorica e Aplicada (RITA) XI, 1:61–89, 2004. 9, 11

[9] N. J. Gordon, D. J. Salmond, and A. F. M. Smith. Novel approach to nonlinear/non-
gaussian bayesian state estimation. Radar and Signal Processing, IEEE Proceedings,
140(2):107–113, 1993. 11, 12

[10] J. Hartung, B. Elpelt, and K.-H. Klösener. Statistik: Lehr- und Handbuch der angewandten
Statistik. Oldenbourg, München, 1982. 31

[11] Braun Heinrich. Neuronale Netze Optimierung durch Lernen und Evolution. Springer-
Verlag, 1997. 45

[12] R. E. Kalman. A new approach to linear filtering and prediction problems. Transactions
of the ASME – Journal of Basic Engineering, (82 (Series D)):35–45, 1960. 11, 20

[13] George F. Luger. Artificial Intelligence: Structures and Strategies for Complex Problem
Solving. Personal Education Limited, 4 edition, 2002. 47

75

Bibliography

[14] D. Lurie and H. O. Hartley. Machine-generation of order statistics for monte carlo com-
putations. The American Statistician, 26(1):26–27, 1972. 15

[15] Martin Obermeir. Wlan basierte positionsbestimmung auf einem arm9 system. Diploma
thesis at the TU Munich, April 2009. 1

[16] Lauro Ojeda and Johann Borenstein. Non-gps navigation with the personal dead-
reckoning system. In Unmanned Systems Technology IX, volume 6561. SPIE Defense
and Security Conference, 2007. 2

[17] A. Papoulis. Probability, Random Variables, and Stochastic Processes. Mc-Graw Hill,
1984. 10

[18] Ioannis M. Rekleitis. A particle filter tutorial for mobile robot localization. Technical
Report TR-CIM-04-02, Centre for Intelligent Machines, McGill University, 2004. 14

[19] Branko Ristic, Sanjeev Arulampalam, and Neil Gordon. Beyond the Kalman Filter: Par-
ticle Filters for Tracking Applications. Artech House, 2004. 9, 11, 12

[20] P. Robertson, B. Krach, and M. Khider. Slam dance inertial-based joint mapping and
positioning for pedestrian navigation. InsideGNSS, May 2010. 2, 44

[21] H. W. Sorenson and D. L. Alspach. Recursive bayesian estimation using gaussian sums.
Automatica, 7(4):465–479, 1971. 11

[22] Ivan E. Sutherland, Robert F. Sproull, and Robert A. Schumacker. A characterization of
ten hidden-surface algorithms. ACM Computing Surveys, 6(1):1–55, 1974. 26

[23] E.A. Wan and R. Van Der Merwe. The unscented kalman filter for nonlinear estimation. In
Adaptive Systems for Signal Processing, Communications, and Control Symposium 2000.
AS-SPCC. The IEEE 2000, pages 153–158, 2000. 11

[24] Ulrich Weidmann. Transporttechnik der fußgänger - transporttechnische eigenschaften
des fußgängerverkehrs (literaturauswertung). In Schriftenreihe des IVT (90), Zürich, 1992.
Institut fuer Verkehrsplanung und Transportsysteme. 30, 37, 38, 54

[25] Widyawan, Martin Klepal, and Stephane Beauregard. A backtracking particle filter for
fusing building plans with pdr displacement estimates. In WPNC ’08: Proceedings of
the 5th workshop on positioning, navigation and communication, pages 207–212, March
2008. 2

[26] Wikipedia. Gps - position calculation introduction. http://en.wikipedia.org/wiki/
Global_Positioning_System#Position_calculation_introduction. 1

[27] E. B. Wilson and M. M. Hilferty. The distribution of chi-square. In Proceedings of the
National Academy of Sciences of the United States of America, 17, pages 684–688, 1931.
17

[28] Oliver Woodman and Robert Harle. Pedestrian localisation for indoor environments. In
UbiComp ’08: Proceedings of the 10th international conference on Ubiquitous computing,
pages 114–123, New York, NY, USA, 2008. ACM. 2, 16, 23, 66

76

http://en.wikipedia.org/wiki/Global_Positioning_System#Position_calculation_introduction
http://en.wikipedia.org/wiki/Global_Positioning_System#Position_calculation_introduction

	Table of Contents
	List of Figures
	List of Algorithms
	List of Symbols
	Indoor Navigation
	The PiNav-System
	Hardware
	The Pocket Inertial Sensing Device

	Software
	The Data-Collection Thread
	The Filtering Thread
	The Graphical User Interface Thread

	Theoretical Fundamentals of the Particle Filter
	Bayesian Inference with Predictive Filters
	The Sampling Importance Resampling Particle Filter
	Efficient Resampling
	The SIR Algorithm

	Kullback-Leibler Divergence Sampling
	KLD-Sampling Particle Filter Algorithm

	Pedestrian Localization with a Particle Filter
	The System Model of a Pedestrian
	The Observation Model
	A Map as a Geometric Observation Model
	Representation of the Map

	Implementation of the Observation Model
	getRoom Algorithm
	usedDoor Algorithm

	Preparations for KLD-Sampling
	A KLD-Sampling Particle Filter Algorithm
	Position Estimation
	Practical Aspects
	Prior Distribution
	Integration in the PiNav-Software

	Improving the Observation Model
	The Accessibility Function
	Pedestrian Behavior in Indoor Environments
	The Accessibility Map
	Incorporating Human Walking Behavior
	A Particle Filter using the Accessibility Map

	Learning Accessibility
	The Accessibility Map as a Radial Basis Function Network
	The Learning Accessibility Map
	A Particle Filter using the learning Accessibility Map

	Evaluation
	General System Setup
	Computational Performance
	Localization Behavior
	Experimental Setup
	Results
	Interpretation

	Tracking Performance
	Experimental Setup
	Results
	Interpretation

	Using a trained Accessibility Map
	Experimental Setup
	Results and Interpretation

	Conclusion
	Outlook
	Bibliography

