H

Technische Universitat Miinchen
Institute for Media Technology
Prof. Dr.-Ing. Eckehard Steinbach

Diplomarbeit

Visual Localization based on Binary Features

Author: Julian Straub, B.Sc.

Matriculation Number: 3026226

Address: Otte-von-Stetzlingen Str. 24
86316 Friedberg

Advisors: Dipl.-Ing. Sebastian Hilsenbeck, M.Sc. and
Dipl.-Ing. Georg Schroth

Begin: 01.03.2012

End: 21.08.2012

Abstract

Visual indoor localization and navigation for hand-held devices is becoming a hot topic
due to its potentially high localization accuracy and its independence from hardware in-
stallations. A typical visual localization system consists of a visual odometry system and
a global localization mechanism for initialization. Additionally, a relocalization algorithm
is usually employed to make the visual odometry system more robust against tracking loss
(e.g. due to rapid motion). The deployment of feature-based localization algorithms on
hand-held devices has mostly been avoided due to computational complexity of the feature
descriptors. Binary features like Binary Robust Features (BRIEF) [CLSE10] promise to
overcome this problem as they are about 40 times faster to extract than the quasi standard
descriptor SURF [BTVGO6]. At the same time they offer comparable matching precision
under small rotations and scale changes. This thesis investigates the deployment of bi-
nary features for global pose recovery as well as relocalization within the visual odometry
system. Integrated in the Parallel Tracking and Mapping (PTAM) algorithm [KMO0T7], the
developed BRIEF-based relocalization algorithm was found to yield accurate, fast and ro-
bust pose recovery even in sparsely textured and repetitive indoor environments. For global
localization, a novel quantizer for binary features was developed to enable Content-based
Image Retrieval (CBIR) [SZ03]. In combination with a Virtual Views database [HSH™12b]
the high distinctiveness of BRIEF features can thus be leveraged to perform accurate global
visual localization. This large scale visual localization system matches the precision of a
state of the art SURF-based system while reducing the computational burden of feature
extraction significantly. Deploying binary features for pose recovery leads to significant
speedups in the feature extraction without loss in localization performance. This makes
binary features ideal for mobile-device visual localization systems.

i

Contents

Contentsl

(I _Introduction|

[2

Monocular Visual Odometry |

[2.2 3D Computer Vision Preliminaries],
[2.2.1 Lie Groups and Lie Algebras tor 3D Vision|

[2.2.3 'T'he Levenberg Marquardt Algorithm |
[2.2.4 Robust Parameter Estimation using M-Estimators|.
[2.3 Parallel Tracking and Mapping (PTAM)|
[2.3.1 Tracking Thread
[2.3.2 Mapping Thread|,
[2.3.3 Keyframe-based Relocalization Algorithm |

Relocalization using Binary Features |

[3.1.1 Relocalization Strategies|
[3.1.2 Binary Features| oL
[3.2 Binary Robust Features (BRIEF) |.,
[3.3 Nearest Neighbor Search for Binary Features|
[3.3.1 Locality-Sensitive Hashing (LSH) |.
[3.4 Pose Recovery from 2D-3D Feature Matches
[3.4.1 3-Point Pose Algorithm |
[3.4.2 Hypothesize-and-Verify driven Pose Recovery |
[3.5 Relocalization Algorithm|.

Global Localization based on Binary Features |

[4.2 k-Binary Means Clustering
4.3 Content-based Image Retrieval (CBIR)[.
4.4 CBIR Localization from Virtual Views|.

il

[5 Software Reference |

[>.1 Binary Feature Search and Clustering)
0.2 PTAM Evaluation How-Tol
[b.2.1 Collecting Data with an Android Device | . . .
[5.2.2 Converting Tablet Data into a ROS bag| . . .
[>.2.3 Running PTAM|.
[>.3 Content-based Image Retrieval|.

6 FEvaluation!

[6.1 Relocalization within PTAMs own Map|.

[6.1.1 LSH Parameter Selection for Binary Feature Matching |

[6.1.2 RANSAC vs. PROSAC for BRIEF-based Pose Recovery|

[6.1.3 Relocalization Accuracy Comparison|
[6.2 Localization in a Global Map|

[6.2.1 LSH Parameter Selection for the kBM Quantizer|

[0.2.2 Localization Precision of Virtual Views CBIRI

[r__Conclusion |
8 Outlook]|

[List of Figures|
[List_of Tables|

[Bibliography|

72

74

75

76

Chapter 1

Introduction

Visual indoor localization is becoming a hot topic recently because it has the potential
to outperform competing technologies in terms of localization accuracy. Accurate and
efficient position tracking is the key technology for indoor navigation and location-based
services like for example location specific advertisements or warnings. Big companies like
Google [Gooll] and Microsoft [Binll] have launched the integration of indoor maps into
their map systems already. Other companies like Nokia [Nok10], Meridian [Merll] or
IndoorAtlas [Ltd12] are developing applications for hand-held devices which are able to
provide indoor navigation and location-based services.

Existing localization approaches utilize the typical built-in sensors of current high-end
cellphones: inertial measurement units (IMUs) which measure accelerations and rota-
tional speeds, magnetic field sensors, WiFi and cellphone receiver cards which can be
used to determine the signal strength of nearby base stations. The accuracy of posi-
tioning solutions relying on wireless signal strength measurements is in the rang of 3-
10 m [LDBLO7, [CPIP10, VdLH™07] given a dense coverage of the building with WiFi
hotspots. This is because at least three WiFi base stations have to be in range in order
to allow successful triangulation [Fri33] of the cellphone. If fewer hotspots are in range,
the localization accuracy degrades to room level. Some approaches are also fusing the
signal strength measurements with IMU and magnetic field data [KKDI11]. IndoorAtlas’
localization system [Ltd12] is solely based on magnetic field fingerprints of buildings.

Visual odometry and localization systems are able to provide more accurate positioning
as well as precise orientation estimates [KMO7, [JST1) [LS12]. This is very important since
a person using a localization system to navigate through a building will only perceive the
system as useful if it works reliably and accurately. Especially in complex and dense indoor
environments where hallways and rooms are not much wider than 2-3m, it is important
to have very accurate and fast positioning in order to provide correct guidance for the
user. Typically, buildings in which an indoor navigation system would be beneficial such

CHAPTER 1. INTRODUCTION 2

%l W 4:00

To The Wright Place Food Court DRECTonSSn

%2 min - 0.1 mi - Via Route

@ Bel H ><P 59A
er
Smlthsonlan u Lockieciiels <’Soy,

® IMAX Theater
Insmutlon
National Aif and

Space M.keum = HIMAT:
p O o Skylab Orbital i

Worksho . 7
« Wright Model 2 Beyond the Limits

Fi /
: /,EX }/m n = Wright Brothers = Surveyorid

. = Museum Map £

A
Apollo to /Ranger

. the Moon

/'/
® Closed /

Figure 1.1: Google indoor map of the Smithsonian National Air and Space Museum in
Washington D.C. on an Android phone (image from http://googleblog.blogspot.de/
2012/07/indoor-google-maps-help-you-make-your.html).

as office buildings, universities and supermarkets with narrow rows of goods exhibit these
challenging situations.

Additionally, visual localization systems scale better than WiFi-based systems since no
hardware infrastructure has to be provided. WiFi-based localization requires a building
to be densely populated with WiFi hotspots. This may be given in an office building but
is not likely in museums or art galleries. An initial mapping of the indoor environments
WiFi signal distribution is usually necessary to provide higher accuracy. Similarly, visual
localization systems need an initial visual mapping of the building. Hence both techniques
need an initial mapping of the environment in order to work properly but visual localization
has the advantage that no additional hardware infrastructure hast to be installed in the
building. This allows visual localization systems to be deployed in large scale indoor
environments easily.

Unlike WiFi-based localization systems, which are limited to areas with good WiFi cover-
age, cameras have virtually unlimited range in indoor environments. Hence the accuracy
does not suffer even in large rooms where WiFi-based systems have problems since the
WiFi signal strength attenuates with 1/R? as any electromagnetic wave. This limited
range becomes an issue in large halls which are typically found in airports and railway
stations. Here visual localization systems are advantageous since any textured structure of
the building in the view of the camera can be used to determine the position of the user.

http://googleblog.blogspot.de/2012/07/indoor-google-maps-help-you-make-your.html
http://googleblog.blogspot.de/2012/07/indoor-google-maps-help-you-make-your.html

CHAPTER 1. INTRODUCTION 3

l Yes
Gl?ba! Visual Odometry
Localization

Tracking
Lost?

Yes®» Relocalization

A 4

N
NO

Figure 1.2: This is an overview over the proposed visual localization architecture. The
main focus of this thesis is on the blue blocks: algorithms based on binary features for
relocalization and global localization.

Figure depicts the architecture of a typical visual localization system as it will be
considered in this thesis. A visual odometry system is running on the hand-held device
which incrementally estimates the position of the cellphone. The odometry is initialized
using a global localization algorithm which mainly runs on a server. In case of tracking
failure of the visual odometry system, a relocalization system first tries to recover the pose
of the camera within the map on the cellphone. If this fails, the whole system is restarted
from an initial pose obtained from the global localization aided by the server.

Key to visual localization on hand-held devices are highly efficient algorithms. Despite the
ever increasing computational power of todays cellphones, the energy storage is is limiting
the amount of computation an application can demand over an extended period of time.
Thus, key to the success of a navigation solution based on visual localization techniques is
a lightweight implementation that can be run in the background. This has the additional
advantage that computational power is available for location-based services, augmented
reality or other applications relying on the localization algorithm.

In state of the art feature-based localization system, the extraction of complex features
like SURF [BTVGO6] or SIFT [Low99] are the most time-consuming part of the algorithm.
This is because the aim of those descriptors is invariance with respect to scale, lighting,
rotation and distortion. These properties are desirable in order to obtain unique descriptors
for points in the 3D environment but demand complex computations.

Recently, simple binary feature descriptors such as BRIEF were shown to perform equally
well as complex descriptors like SURF or SIFT for small rotation and scale differ-
ences [CLSF10]. This is in stark contrast to any intuition because the binary descriptor is
simply composed of the results of image intensity comparisons at randomly selected posi-
tions around the keypoint position. The key advantage of binary features is their rapid ex-
traction speed which for BRIEF is in the order of 40 times faster than for SURF [CLSF10].
Additionally, the binary descriptors are more compact memory wise.

The question is: are binary features able to cope with the challenges of indoor environments
like sparsely textured surfaces and highly repetitive structures? If this was the case, the

CHAPTER 1. INTRODUCTION 4

advantages of binary features, namely rapid extraction and storage efficiency, could be
leveraged to enable visual localization on hand-held devices.

In this thesis, the deployment of binary features for visual localization is evaluated. As
depicted in Figure there are two different scenarios of localization that have to be
solved: (1) relocalization within the map on the mobile device and (2) global pose recovery
in large visual maps of buildings. A visual odometry system capable of both techniques
would be able to to provide robust visual positioning of a mobile device in an indoor
setting.

The first scenario of relocalization is important in order to enhance the robustness of
visual odometry systems against rapid motion, occlusions in dynamic environments and
bad lighting conditions. These disturbances, although probably limited to brief moments,
are likely to cause the tracking mechanism of a visual odometry system to fail. Therefore
it is crucial for robust operation to have a system for fast relocalization in place which can
be used to restart tracking.

The second scenario is large scale visual localization. Here, the goal is to allow for initial
localization of the hand-held device in extensive indoor environments. From this position
estimate the visual odometry system can be started to provide accurate positioning online.
Due to the storage and memory requirements, large scale visual localization will have to
be aided by a server. Here it becomes important that information which has to be sent
to the server to allow positioning is as compact as possible to minimize delay due to data
uploading. The eight times smaller size of for example BRIEF features compared to more
complex features like SURF would allow significant reduction of the amount of data to be
transferred to a server.

The thesis is structured as follows: first, in Chapter the visual odometry system is
introduced wich is deployed for the evaluation of the relocalization algorithm. In the same
chapter a detailed description of important computer vision techniques is given which are
needed throughout the thesis. Second, in Chapter (3)) a binary-feature-based relocaliza-
tion system is proposed and all algorithms involved are described. Third, in Chapter (4))
Content-based Image Retrieval (CBIR) is introduced as a method for visual localization
in large image databases of extensive indoor environments. Algorithms are described that
allow CBIR using binary features. An overview of the software developed during the course
of this work is given in Chapter ([5)) in order to foster the reusability of the code. The results
are presented and evaluated in Chapter @, before a conclusion is drawn in Chapter ([7)).
Finally, a brief outlook of possible directions for further research is given in Chapter (8]).

Chapter 2

Monocular Visual Odometry

The aim of monocular visual odometry is to provide incremental movement information of
a system equipped with a single camera. Areas of application for visual odometry systems
include for example mobile localization on hand-held devices [KM0Q9, [LS12] or odometry
for flying robots [BWSS10].

The essential problem which most monocular visual odometry system have to solve is that
in order to estimate the 3D position of a feature at least two observations from different
angles are required. One observation of a 3D feature point in an image only provides an
observation of the direction but not the depth of the feature. With a single camera, two
observations can only be obtained from frames that are distant in time and pose. This
means that the algorithm has to find the corresponding observations in the two frames
that originate from one feature in 3D space.

There are roughly two kinds of algorithms that can provide monocular visual odometry.
On the one hand, visual simultaneous localization and mapping (SLAM) algorithms can
provide both, estimation and optimization of the trajectory as well as the 3D structure of
the environment over time. The focus is on finding a globally optimal description of the
scene and the movement of the camera.

On the other hand, the pure visual odometry type of algorithms are mainly concerned with
estimating the incremental movement of the camera. While some of them also estimate
the geometry of the environment to aid the computation of the visual odometry, they do
usually not try to find an optimal solution and discard or ignore knowledge of the scene
which is not usefully anymore due to distance in location and time. These two measures
are important to limit the amount of memory and computation time such that real-time
operation becomes feasible.

CHAPTER 2. MONOCULAR VISUAL ODOMETRY 6
2.1 Related Work

The seminal work of Davison [Dav03, [DRMS07] in 2003 first demonstrated that monocular
visual Simultaneous Localization and Mapping (SLAM) is possible. The algorithm uses an
Extended Kalman filter (EKF) to obtain an estimate of the whole state vector consisting
of the pose of the camera and the positions of features in 3D. In order to keep track of
the movement of the camera, EKF updates are computed at each frame. Due to the
computational burden O(N?) of the EKF updates, this system is limited to about 100
features in the map.

Sim et al. [SEGT05] first deployed a particle filter to solve the visual SLAM problem. Their
system relies on a large database of SIFT feature descriptors to estimate the position of
robot in 2D. With a runtime of 11.9s per frame the system is unfit for real-time operation.

This limitation was removed by Eade and Drummond [ED06] by using a top down search for
features in each new frame instead of searching for extracted features in feature database.
Their system relies on a FastSLAM [MTKWO3| style particle filter for SLAM and is able
to run in real-time for maps of up to 250 landmarks.

With Parallel Tracking and Mapping, Klein and Murray [KMO7] introduced the idea of
splitting the task of tracking the camera pose and estimating the 3D positions of features
in the map. This has the advantage that the mapping thread can use any left over time not
needed for camera pose tracking to improve the quality of the map. With this approach
their system is able to construct maps with thousands of features while still performing
real-time camera pose tracking. In [KMO09] they even show that the PTAM paradigm
allows visual SLAM to be performed on an iPhone 3G for small workspaces

The visual odometry system by Jones and Soatto [JSII] uses an Inertial Measurement
Unit (IMU) in addition to a camera to estimate the trajectory of a moving car. The
different components of their system are highly interconnected to allow for an very efficient
implementation. For example, their RANSAC algorithm used for loop closure detection
uses the direction of gravity obtained from the IMU to allow for 2-point pose estimation.
Their map is represented as a graph of locations where a location is defined as a set of
features one would expect to observe at the respective location. They achieve an accuracy
of less than 0.5% drift in distance over runs of up to 30km.

Lupton and Sukkarieh [LS12] also use an IMU in addition to a camera to support the
odometry estimation within buildings. On sequences of around 750 frames, their custom
built system is able to track its path and to estimate the scale of the path using the IMU
information. This is important since the true scale of a map cannot be covered solely from
a monocular camera. The system estimates the trajectory with an accuracy of less than
1% of the path length.

Indelman et al. [[WKDI2] utilize the incremental Smoothing and Mapping algo-
rithm (iISAM2) |[KJRT11] to fuse information from a stereo camera, an IMU and GPS

CHAPTER 2. MONOCULAR VISUAL ODOMETRY 7

data. Smoothing tries to come up with a globally consistent trajectory, while filtering
approaches like the Extended Kalman Filter (EKF) are only concerned with incorporating
observations into the state estimate as they come. Sensor information which is usually
obtained at different rates and times is directly integrated into the graph which repre-
sents the estimation problem. iSAM?2 operates incrementally and thus enables globally
consistent trajectory estimation as new observations are made.

2.2 3D Computer Vision Preliminaries

3D Computer Vision is the theory of inferring the 3D structure of a scene that is observed
by a camera from different view points also called poses. This problem is challenging
since the observations of the scene are in the 2D image of the camera and hence lack the
information about the depths of the observations. Additionally, the transformation from
3D into the image is non-linear.

In the following first the theory of Lie Groups and Lie Algebras will be introduced. These
can be used to describe rigid body transformations in 3D space. Second, the math for
projecting a 3D point into the camera image given a camera model will be shown. And
finally, the Levenberg Marquardt algorithm will be explained which, in conjunction with
the theory of M-Estimators, can be used to robustly minimize a quadratic cost function
and is thus widely used in Computer Vision.

These preliminaries are important for the understanding of consecutive sections. The level
of depth in the preliminaries section is purposefully deep in order to give a thorough
introduction to the most important topics which can serve as a future reference.

2.2.1 Lie Groups and Lie Algebras for 3D Vision

Poses and rigid body motion, like translation and rotation, can be interpreted as Lie
Groups. This allows minimal parameterizations of those transformations within the re-
spective Lie Algebras [MSKS04, MLS94, [AgrO6]. Being able to obtain a minimal param-
eterization is important for incremental optimization algorithms to keep the number of
variables small.

A pose in 3D space is usually represented by the translation t € R3 and the rotation
R € R**3 with respect to some global coordinate frame. In the homogeneous coordinate
representation, the pose is defined by a 4 x 4 matrix

R |t 4x4
T = <F’T) c R*. (2.1)

CHAPTER 2. MONOCULAR VISUAL ODOMETRY 8

This representation is over-parameterized since it uses twelve parameters to describe a
pose in 3D space which does only have six parameters: three parameters for the position
and three for the orientation.

The pose T in 3D space is a member of the Special Euclidean Group in 3D (SE (3)). This
group comprises all distance and orientation preserving mappings from R? to R®. The
rotation R is a member of the Special Orthogonal Group in 3D (SO (3)), the group of all
orientation preserving orthogonal matrices.

Each Lie Group has a Lie Algebra associated in which the Lie Group is minimally param-
eterized. The Lie Algebra of SO (3) is denoted by so (3). This Lie Algebra is the set of all
skew symmetric matrices:

so(3) = {[w], e R |w e R}, (2.2)

where the operator [-],, is constructing a skew symmetric matrix in R**? from a vector in
R3. This operation is defined as

w1 0 —Ws3 W9
W], = wWo = | ws 0 —w]. (2.3)
w3 —Wo w1 0

X

The conversion from the Lie Algebra so (3) to the Lie Group SO (3) is performed using the
exponential mapping exp : so (3) — SO (3):

w € R?
0 = ||wl = Vwlw (2.4)
exp(w) = I+ 90 w] + 15820 (W] =R €S0 (3)

Note, that w describes the rotation axis around which R rotates about the angle ||w||s.
The inverse operation to the exponential mapping is the logarithm In : SO (3) — so (3):

ri1 T2 T3

R = 91 T92 T93 c SO (3)
31 T32 T33
|lw|la = arccos (%) (2.5)
32 — 723
hl(R) = 2si|rlc(‘\:||¢|iu2) T3 —T3 | =wE R3.
21 — T2

The Lie Algebra associated with the Lie Group SE (3) of a pose on 3D space is denoted
se (3). Again, there is the exponential mapping exp : se (3) — SE (3) and the logarithmic
mapping In : SE (3) — se (3) for the conversion between Lie Group and Lie Algebra.

CHAPTER 2. MONOCULAR VISUAL ODOMETRY 9

The exponential map from [v;w] € se(3) to T € SE (3) is defined as:

v,w € R?
0 = [lwll: =vwlw
R = T+ slw], + 1582 o], (26)
—cos —sin 3 X
Vo= T 5l + e]

exp(:) - <(1;; Vl'v):TesE(3),

where I is the identity matrix. The inverse operation, the logarithmic map from T € SE (3)
to [v;w] € se (3), can be computed by first finding w using the logarithmic map from SO (3)
to so (3) as outlined in Equation ({2.5). Then v can be obtained in the following way:

R |t
T = (F’T)GSE(?))

0 = [lwll
Vo= I+ 5le], + Sl o] (2.7)
v = Vit

In(T) = (Z’)) € RS.

In order to make use of the Lie Group and Lie Algebra formulation in iterative optimization
algorithms, it is important to find the derivatives of a 3D point transformed by a member
of a Lie Group with respect to the parameters of the corresponding Lie Algebra.

The derivative of the rotation of a point p by R € SO (3) with respect to the parameters
of the rotation w € so (3) can be derived [Ead08] as

YD) - [r.p), e B> (2.8)

For the coordinate transformation of a 3D point p by T € SE(3), the derivative with
respect to the parameters x = () € se (3) is given [Ead08] as

(T - p)

= (I ‘ —[T-pl,) € R¥C. (2.9)

Examples of how Lie Algebra is utilized in computer vision algorithms can be found in
successive sections.

CHAPTER 2. MONOCULAR VISUAL ODOMETRY 10

2.2.2 From 3D to 2D Points

A central piece of math for all algorithms trying to estimate the 3D structure of the
environment are the transformations involved in the projection of 3D points in world
coordinates into the image that the camera observes. This projection involves a series of
transformations as follows:

1. Compute the 3D position of a feature p. in the camera coordinate system of the
current camera pose estimate “T,, from the 3D position of the feature p, in world
coordinates:

Pe = Ty Pow- (2.10)

If the position of the features are not given in world coordinates but in some other
camera coordinate system "T,,, it is always possible to obtain p. by transforming
into the world coordinate system first:

p. =T, "T,' p.. (2.11)

2. Project the 3D position of the feature p. = (X, Y, Z) in the camera coordinate
system into camera plane coordinates:

po= (1) =7 (¥) (212)

3. Apply a distortion model like for example polynomial or field of view (FOV) distor-
tion model [DF01], depending on the amount of distortion induced by the camera
lens. The second order polynomial distortion model, which works well with low
distortion lenses, is defined as:

U
P polynomial = (@) = (1 +]’COT2 + k1T4) Pcp (213)

where ko and k; are the coefficients of the polynomial distortion model and r =
Va2 + 92, The FOV distortion model can be expressed using the same definition of
r and one distortion parameter kroy:

u 1 k
P arctan = (g) = ’I“kjFOV arctan (27“ tan F20V> Pcp- (214)

4. Project the feature position in the camera plane into the image plane using the
camera calibration
U Ufy + Cu
= = 2.1
“ (v> (va +Cv> (2.15)

where f, and f, are the focal lengths into the u and v direction and ¢ = (C“) is the

(%
optical center of the camera.

CHAPTER 2. MONOCULAR VISUAL ODOMETRY 11

The distortion parameters, the image center and the focal lengths are commonly referred
to as intrinsic camera parameters.

In the following, the transformation sequence performing the projection of a 3D point p,,
into the image plane of the camera will be denoted by the function h(p,, x). x is a vector
of parameters that characterizes the projection and that are variable within for example
an optimization algorithm. Usually x will hold the 6 parameters of the camera pose in
se (3). The parameters of the intrinsic camera calibration are obtained once in a separate
camera calibration program and then left fixed.

2.2.3 The Levenberg Marquardt Algorithm

The Levenberg Marquardt (LM) algorithm is an iterative optimization algorithm for non-
linear functions that optimally interpolates between the steepest descent method and the
Gaus-Newton optimization algorithm [Mar63]. The algorithm thus shows more robust con-
vergence than the Gaus-Newton algorithm and converges faster than the deepest descent.

The LM algorithm is designed to find a locally optimal solution to the weighted least
squares problem. This is the problem of minimizing or maximizing the following sum of
weighted squared errors with respect to a parameter vector x:

A AN\T A
arg min F(x) = arg min ||®(x) — ®||3 = argmin <(I>(X) - (I>> w <<I>(X) - (I>> (2.16)
where F(x) is the quadratic energy or cost function, W is the weighting matrix and ®(x)
is a possibly non-linear function that predicts the observations ® using the parameters
x. This means that the LM algorithm can in principal be used to find (locally) optimal
parameters for any continuous and differentiable function ®(x).

In 3D computer vision the algorithm is mostly used to determine or refine a subset or all
parameters involved in the projection process described in previous Section . In the
camera calibration process, for example, the intrinsic camera parameters as well as the
extrinsic camera parameters namely the pose of the camera relative to calibration pattern
can be determined using the LM algorithm. In PTAM and other visual SLAM systems, the
intrinsic camera parameters are assumed to be known from a preceding camera calibration
process. The two main areas of deployment are:

e Bundle Adjustment: estimation of the 3D structure of the environment and the cam-
era poses from which the scene is observed [TMHF00]. For this task, the parameter
vector x comprises the 3D positions of all features and the pose parameters of all
cameras observing the scene.

e Camera pose refinement: given correspondences between 3D feature positions and
their observations in the image, update the camera pose such that the projection
error of the features is minimized. In this case the parameter vector x describes the
pose of the camera.

CHAPTER 2. MONOCULAR VISUAL ODOMETRY 12

The following derivation [HZ04] for the update equation for the LM algorithm is performed
for the application in 3D computer vision. Using the projection function h(p,,x) as
previously defined, the quadratic cost function becomes:

sz z; — h(p?,x))" (z; — h(p¥, x) sze ei, (2.17)

where p{’ are the 3D points corresponding to the observations z; in the image and w; are
the weights for each individual observation.

In order to make the derivation more compact, the observations, the predicted positions
and errors are combined into single large vectors:
1

1
E(x) = §(Z —h(x))"W(z — h(x)) = §e(X)TW e(x), (2.18)
where W is a square matrix with the individual weightings on its diagonal.

To find an update Ax to the parameter vector x, the Taylor series expansion of F around
the state x + Ax up to the second order terms is derived:

E(x+Ax) =~ B(x)+ 2ZAx+ IAx"2EAx

E(x> e(X) WIJAx + —;AX7 (J7 WJ + e(X)T“""Q‘;) ’ (2.19)
_ Oe(x) Oh(x)
where J = _ 8(

Next, the Gauss-Newton approximation that e(a:)TW(% ~ 0 is applied and the derivative
of the second order approximation with respect to Ax is set to zero to find the optimal
update step Ax:

oE

i = 1 Welx) + I"WIAx = 0= Ax = — (ITWJI) ™ ITWe(x). (2.20)
X

Computing Ax according to Equation (2.20) gives the Gauss-Newton Minimization Algo-
rithm. In the LM Algorithm the diagonal entries of JYWJ are multiplied by a variable
factor A + 1. Hence we get the update equation:

Ax = — (JTWI + A1) JTWe(x), (2.21)

where I is the identity matrix. For low values of A the LM update Equation (2.21]) becomes
the Gaus-Newton update Equation (2.20)). If A takes on high values, Equation (2.21)) ap-
proximates Ax = —%J TWe(x) which resembles a step in the direction of steepest descent.

Going back to the original formulation using sums, Equation (2.21)) can be re-written as

3w (wITT; + A1) IT (2 — h(pY,x)), (2.22)

CHAPTER 2. MONOCULAR VISUAL ODOMETRY 13

oh(py,x)
ox w

where J; = — .
p; X

Starting from A = 10~ the LM algorithm computes and incorporates steps Ax and checks
at each iteration whether the cost E was reduced. If E decreased the step is accepted
and A is divided by 2. Otherwise the step is discarded and X increased by a factor of 10.
This way the LM Algorithm is dynamically mixing Gradient Descent and Gauss-Newton
Minimization [HZ04].

As already mentioned, in Computer Vision the LM algorithm is often used to estimate
rotations or poses of a camera. In order to do this efficiently, the LM algorithm operates
solely on the respective Lie Algebras so(3) or se(3). Updates Ax can be incorporated
into the rotation or pose estimate using the exponential map from the Lie Algebra to the
respective Lie Group.

2.2.4 Robust Parameter Estimation using M-Estimators

The insight which motivates M-Estimators is that instead of using a sum of squared errors
cost function any other function of the errors than the squaring them can be used inside
the sum. This is important since the squared error function is instable in the presence of
outliers. One outlier that is far enough away from the inliers of the true model can corrupt
the solution completely.

Thus Equation (2.17)) can be reformulated in a more general form:

Ex) =Y ole,), (2.23)

where e; are the deviations of the model from the observations and o(e;) is a function of
the errors which determines their contribution to the overall cost function.

In general Equation (2.23)) is minimized for

= Z 9o ox = (2.24)
Now let %ee:) = 1(e;) and define the weighting function
v(e;) 1 0o(e)
) — — 2.2
wle) = 12 - 200, (2.25)

where 1(e;) is called the influence function. With these definitions Equation (2.24)) becomes

Zw(ei)ei% = 0. (2.26)

)

CHAPTER 2. MONOCULAR VISUAL ODOMETRY 14

This is the same criterion for a minimum as if the problem is solved iteratively using a
weighted least squares cost function:

E(x) =) wlef™)(ef)*, (2.27)

where the weights w; depend on the errors of the previous e¥™! iteration. To show this,
the derivative of Equation ([2.27)) with respect to the parameters x is computed and the
result is set to zero:

OE(x) -1, 0(ef)* w1y, O€F
o —Zw(ei) T —2;w(ei)e; I = 0. (2.28)

i
This is the same criterion function for minimality as derived in Equation ([2.26)).

This means that using an iterative re-weighting least squares with a weighting according
to Equation ([2.25]) is equivalent to minimizing a cost function as given in Equation .
This provides the freedom to choose o(e;) such that large errors caused by outliers are
attenuated in order to render the parameter estimation robust to outlier data.

There are many different weighting functions [HZ04) [Zha96] which aim to make the param-
eter estimation more robust. The most common ones are the Tukey, Cauchy and Huber
weighting functions.

The weighting is based on a standard normal distribution of errors €;. That means the
errors are normalized by the standard deviation o, of the error distribution.
€;

& = — (2.29)

Oe

Using this definition, the Tukey weighting function is defined as:

w(éi):{ (1_%2)2 if & < (2.30)

where ¢ = 1.2107 again to achieve 95% asymptotic efficiency on the standard normal
distribution [Zha96].

Similarly, the Huber function is given as:

|&:]

where ¢ = 1.345 to achieve 95% asymptotic efficiency on the standard normal distribu-
tion [Zha96].

CHAPTER 2. MONOCULAR VISUAL ODOMETRY 15

And finally, the weighting according to Cauchy is defined as:

62

v =Fra

(2.32)

where ¢ = 2.3849 to achieve 95% asymptotic efficiency on the standard normal distribu-
tion [Zha96].

A common approach is to start out with a weighting function that does not fully ignore
gross outliers like the Cauchy or the Huber weighting functions. After a small number of
iterations, the weighting function is switched to the Tukey weighting function which simply
discards gross outliers. This approach gives datapoints with high errors the chance to draw
the model into their direction before the ones that still have high errors are completely
ignored.

2.3 Parallel Tracking and Mapping (PTAM)

The Parallel Tracking and Mapping (PTAM) algorithm developed by Klein and Mur-
ray [KMO7, [KM09, is an efficient algorithm to perform monocular Simultaneous Localiza-
tion and Mapping (SLAM). Monocular SLAM is the problem of estimating the pose of a
single camera and the 3D structure of the environment at the same time. The conventional
SLAM approach [DRMSO07| updates the estimate of the camera pose and the structure of
the environment at the same time whenever a new observation is obtained. In contrast to
that PTAM splits up the task of keeping track of the pose of the camera and the mapping
task into two threads: the tracking and the mapping thread.

The mapping thread estimates the 3D structure of the environment using the information
about 2D-3D point correspondences supplied by the tracking thread. The tracking thread
in turn uses the knowledge of 3D feature positions to find 2D-3D point correspondences
which are used for camera pose tracking.

PTAMs source code is readily available from Kleins homepage [KIe(08] for use in research.
Since the main topic of this thesis was tho improve relocalization and to allow for global
localization in buildings, the original PTAM code was adopted and extended. This chapter
serves as an introduction to the concepts used in PTAM and to the algorithm itself. The
relocalization algorithm of PTAM is described in depth and theoretical drawbacks are
discussed for an application of this relocalization algorithm when PTAM is used as a
visual odometry system. This motivates the consecutive chapter which deals in depth with
feature-based relocalization. For an exhaustive description of all details of the algorithm
the reader is referred to the original papers of Klein and Murray [KMO07, [KM09].

CHAPTER 2. MONOCULAR VISUAL ODOMETRY 16

(a) Camera Image with tracked Features (b) Feature Point-Cloud and Keyframe Poses

Figure 2.1: The PTAM implementation of Klein [KleOg| allows to switch between a view
of the camera image with the tracked features and a view of the estimated 3D feature
point-cloud.

2.3.1 Tracking Thread

The tracking thread is responsible for (1) keeping track of the data association of observed
features with their 3D positions and (2) for updating the pose estimate of the camera at
every new frame. This is achieved by two main components that are executed for each
frame: first, the algorithm searches for features at predicted locations in the current frame
to establish 2D-3D point correspondences. Second, the pose estimate is refined using 10
iterations of a robust LM algorithm to minimize the projection errors of the features that
were re-observed in the current frame.

These two steps are executed two times: first for a small set (50) of features at the highest
image pyramid level and then for the full set of features on all pyramid levels. This coarse
to fine approach ensures that the final pose refinement using all features has a good starting
pose for the LM algorithm and hence converges faster.

PTAM uses the FAST [RD05] keypoint detector to find features in the incoming frames.
Only keypoints with a high Shi-Thomasi score [ST94] are considered good feature points
and hence used for tracking. The image patch around a keypoint serves as the feature
descriptor.

Establishing 2D to 3D Point Correspondences

The frame-to-frame tracking is necessary in order to keep track of the so called data
association, the correspondence of an observed feature point with its 3D position. In

CHAPTER 2. MONOCULAR VISUAL ODOMETRY 17

order to find the corresponding 3D feature points to the features observed in the current
frame, the pose at the current frame is predicted using a rotation estimate obtained from

Efficient Second Order Minimization (ESM) [BM04] on the small blurred current and
previous frame. Zero translation is assumed.

T, = AT"T, (2.33)

The predicted pose “T, is then used to compute assumed feature locations in the current
image from all 3D feature points in the map as outlined in Section ([2.2.2)).

For all predicted points in the image plane the best matching image patch is found among
all close-by FAST corners. The cut-off proximity for the image patch search is 10 pixels for
fine and 20 pixels for coarse pose refinement. As the similarity measure between the 8*8
patch candidates in the current frame I. and the warped predicted patch I,, Zero Mean
Sum Squared Differences (ZMSSD) is used.

ZMSSD(I,, I,,) = Y (L(i) — I,(i) — I. — I,)’, (2.34)

where I, and I,, are the mean patch intensities computed as [= % > L(i).

The feature with the most similar warped image patch is assumed to be the observation
of the 3D feature in the current frame.

Pose Updates

Pose updates are computed by minimizing the difference between the observed and the
predicted feature positions with respect to the estimated camera pose. This minimization
problem can be formulated as a weighted Least Squares optimization:

ZwZ z; — h(p?,x))" (z; — h(p¥,x Zwle e, (2.35)

where the errors e; are defined as the deviation of an observed feature position z; in the
image from the prediction of the feature position h(p¥,x) given the se (3) parameters x
of the camera pose. The individual error’s contribution to the overall error is weighted by
W;.

The LM algorithm with the robust Tukey weighting function as introduced in Sections
and is deployed to update the camera pose such that the weighted error is
minimized. The updates Ax € se(3) to the camera pose computed by the LM algorithm
(see Equation) are incorporated into the camera pose using the exponential map
from Equation ({2.6)):

“T,, = exp(Ax) - “T,,. (2.36)

The PTAM implementation iterates the optimization algorithm ten times at each frame
to efficiently keep track of the pose of the camera.

CHAPTER 2. MONOCULAR VISUAL ODOMETRY 18

2.3.2 Mapping Thread

The mapping thread estimates the 3D structure of the environment using the information
about 3D-2D point correspondences supplied by the tracking thread.

The map in PTAM is represented as a set of keyframes and a set of 3D points. The
keyframes hold the pose from which the frame was seen as well as all observations of 3D
feature points in that frame. These observations constrain the poses of the keyframes and
the 3D point positions. A sparse LM algorithm [HZ04] is used to find an optimal set of
camera poses and 3D points. In Computer Vision this problem is often called Bundle
Adjustment [TMHFQQ].

To initialize the map, PTAM extracts features in an initial frame and tracks those frame-
to-frame until enough parallax is achieved. These 2D-2D correspondences are then used
to first estimate the transformation between the initial and the current frame. Given this
transformation the depth of each feature point can be estimated using triangulation [Eri33].
These depth estimates are used to initialize the 3D positions of feature points. PTAM keeps
these two frames as the first two keyframes. The pose of the first keyframe is fixed to the
origin of PTAMs internal coordinate system.

After the initialization from two different views of one scene, PTAM keeps adding keyframes
to the map whenever the number of re-observed 3D features falls below a certain threshold
and no other keyframe is nearby. This way the map is enlarged whenever the camera views
new scenes. Running the Bundle Adjustment whenever new keyframes are added ensures
global consistency of the map.

2.3.3 Keyframe-based Relocalization Algorithm

PTAMs relocalization algorithm makes use of the knowledge of all keyframe poses obtained
by the Bundle Adjustment performed in the mapping thread [KMO0S8]. Once tracking is lost
every new frame is scaled down to 40 x 30 pixels, the mean image intensity is subtracted
and the resulting image is blurred with a Gaussian kernel with standard deviation of 2.5
pixels. Blurring is performed efficiently using integral images. The same operations are
used to obtain scaled down, zero mean and blurred images of the keyframes.

After these preparations, an exhaustive search over all keyframes is conducted to find the
keyframe that looks most similar to the current frame. The camera pose estimate is set to
the pose T of the best matching keyframe. The similarity measure used in this Nearest
Neighbor search is Zero Mean Sum of Squared Differences (ZMSSD). Since all the small
images are already zero mean, the ZMSSD between the current image I, and a keyframe
I can be computed as follows:

ZMSSD(I,, 1) = S (1,(i) — Ly (i), (2.37)

)

CHAPTER 2. MONOCULAR VISUAL ODOMETRY 19

Figure 2.2: Geometry of the rotation refinement in PTAMs keyframe-based relocalization
algorithm. The rotation AR is found such that the projections of the 3D points p; o are
as close as possible to 2 s.

where 7 iterates over all pixels in the images.

In a second step the orientation of the camera is refined. Using Efficient Second Order
Minimization (ESM) [BM04] the transformation 7;,,, € SE (2)is determined which best
aligns the current frame with the small blurred keyframe. This SE (2) transformation is
then used to estimate the difference in rotation AR € SO (3) between the unknown current
pose and the pose of the most similar keyframe “T?..

The rotation AR is iteratively computed by an LM algorithm in the following way: First,
two points (3) and (7’) in the image coordinate system are transformed by T;,,, at the

image center ¢, = 1;::;’;; =(39):
5) -5
Z1 = Cimg + Timg 0 and zy = Cimg + Timg WE (2.38)

The same points (§) and () translated to the image center ¢;,, are undistorted and
unprojected using the FOV camera model (Section (2.2.2))) to obtain 3D points p; and ps
which were not transformed by T;,,,. The depth of p; and ps can be chosen arbitrarily
since only a rotation is estimated. In the PTAM implementation, the depth is set to one.
A LM algorithm is used to find the rotation AR under which the projection error of the
rotated 3D points into the image becomes minimal:

AR = argmin Y _ (z; — h(ARp;))*, (2.39)

CHAPTER 2. MONOCULAR VISUAL ODOMETRY 20

where h(-) denotes the projection of a 3D point into the image as defined in Section ([2.2.2)).
The geometry of this problem is depicted in Figure (2.2]). The rotation of the pose estimate
wT7 is updated by AR before tracking is restarted from this pose.

In conclusion, PTAM relocalization strategy is optimized for pose recovery in the proximity
of already seen keyframes since it assigns the position of the most similar keyframe and
only refines the rotation. This is sufficient for Augmented Reality applications in a small
confined workspace since a keyframe can always be assumed to be close by. For an indoor
localization scenario however, this clearly limits the situations in which relocalization is
possible. For example in the standard scenario, when the user is walking straight forward,
PTAM may not be able to recover from tracking loss since the camera moves away from
the last keyframe.

Chapter 3

Relocalization using Binary Features

In the previous chapter, drawbacks of PTAMSs original relocalization algorithm for indoor
localization were discussed. Due to the limited computational and battery power of hand-
held devices, an efficient relocalization algorithm is of paramount importance. For this
reason the objective was to utilize binary feature descriptors which are very efficient to
extract. Additionally, distance computations can be performed rapidly in the Hamming
space.

After examining related work in feature-based relocalization and binary features in Sec-
tion (3.1), the Binary Robust Features (BRIEF) [CLSF10] descriptor is introduced in Sec-
tion (3.2). Choosing to utilize binary features calls for different search strategies to find
matching features for relocalization. Such suitable search strategies are described in Sec-
tion . Finally, the algorithms necessary for pose recovery are described in Section (|3.4)
before a binary-feature-based algorithm for relocalization is introduced in Section (3.5]).

3.1 Related Work

At first, related work in small scale localization is reviewed. Both, frame-based and feature-
based relocalization strategies are examined. Since the aim is to utilize binary features for
relocalization, an overview over existing binary feature descriptors is given in the second
part of this section.

3.1.1 Relocalization Strategies

Small scale relocalization within a visual odometry system can roughly be performed in
two ways: (1) frame-based or (2) feature-based. Former method does require that the
map somehow stores the position and the image of a set of frames like for example the

21

CHAPTER 3. RELOCALIZATION USING BINARY FEATURES 22

keyframes in PTAM. Later method necessitates that feature positions are estimated in 3D
and that feature descriptors are remembered by the algorithm.

Among the earliest work for frame-based visual localization is the system by Dellaert et
al. [DBET99] which utilizes a Monte Carlo Localization (MCL) algorithm. Their system
uses a visual map of the ceiling to gradually localize a robot in a building. Since the
algorithm is a pure localization algorithm, the map has to be supplied to the system and
is not refined or updated by it.

A frame-based method proposed by Klein and Murray [KMO08] was already introduced
as the relocalization algorithm of PTAM in Section ([2.3.3). The algorithm uses down-
sampled images of keyframes (40 x 30 pixels) to find the most similar keyframe to the
current image in the ZMSSD sense. While this method is extremely fast (1.5 ms for pose
estimation within 250 keyframes), it can only localize to previously visited places where
keyframes were added. In a similar vein, Reitmayr et al. [RD06| were using frames observed
from estimated poses to restart their model tracking algorithm after tracking loss.

Among the earliest work for feature-based localization in a SLAM setting is the work by Se
et al. [SLL0O5]. They utilize SIFT features [Low99] combined with RANSAC to localize a
robot in a 2D map to solve the kidnapped robot problem. This is the problem of localizing
a robot without any prior knowledge of its position.

Early work on feature-based relocalization in a pure visual SLAM setting can be found
in [CPMCCO6], where visual indexing of feature image patches is utilized to allow robust
feature matching. These matches are used to recover the camera pose by deploying a
3-point algorithm combined with RANSAC.

Williams et al. [WSROT] propose a feature-based pose recovery system for the monocular
SLAM system by Davis et al. [Dav03, DRMS07]. Equal to Davis’ MonoSLAM algorithm,
they utilize image points with high Shi-Thomasi score [ST94] as features. The algorithm
finds feature matches using the correlation between keypoint image patches in the map and
in the frame for relocalization. Those putative feature matches are fed into a RANSAC
algorithm utilizing the 3-point algorithm for pose estimation.

In a different paper, Williams et al. [WKRQT7] propose a feature matching algorithm which
utilizes randomized trees for fast feature matching. Each branch in the proposed random-
ized tree amounts to a comparison of image intensities at random image positions. In
order to make their feature retrieval system robust to viewpoint changes, they train the
randomized trees with 400 warped patches of newly added features. Again RANSAC is
used to robustly determine a pose from a set of matched features. All in all the system
performs in real-time for maps of 80 features.

Wagner et al. [WRMT08| compare two algorithms for feature-based visual localization
relative to a planar object on mobile devices. On the one hand SIFT features with a
forest of spill trees [LMGY04], a technique for fast approximate NN search, are utilized for
feature matching. On the other hand FERNs [OFL07, (OCLE10] are deployed to obtain

CHAPTER 3. RELOCALIZATION USING BINARY FEATURES 23

putative matches. FERNs use random binary tests on a feature image patch to classify
the feature as belonging to one of several classes which have to be trained beforehand.
Modifications to both algorithms were implemented in order to allow deployment on the
cellphones. Using the matched features and assuming planarity of the scene, they estimate
a homography using MLESAC [TZ00] a variant of the RANSAC algorithm. From the
homography the relative transformation to the planar object is recovered. They present
detailed timing evaluations on several mobile phones with 320 x 240 pixels cameras showing

average frame rates of 15 fps for both localization algorithms. The match against around
200 to 400 SIFT features and 100 FERNs classes.

Arth et al. [AWK™09] also evaluate the performance of feature-based localization on a
cellphone. They divide their environment into potentially visible sets (PVS) which are
downloaded from a server as necessary. The SURF-like features are matched using ex-
haustive nearest neighbor search in close-by PVSs. The 3-point pose algorithm within
a RANSAC is used to obtain a pose estimate. This estimate is refined using a robust
Gaus-Newton algorithm.

3.1.2 Binary Features

Binary feature descriptors have gained considerable attention after the BRIEF feature
descriptor by Calonder [CLSF10] exhibited similar performance for small rotation and
scale differences compared to the SURF descriptor by Bay et al. [BTVGO0G], the quasi
standard feature descriptor in computer vision. The big advantage of BRIEF over SURF
is its up to 40 times faster extraction time and lower memory requirement. Additionally
the distance computations between BRIEF features are faster since the Hamming distance
can be used instead of the Euclidean distance.

These convincing results sparked a series of other binary feature descriptors. Among them
is ORB |[RRKB11] which adds rotation invariance to the binary descriptor. The rotation
is estimated using the intensity centroid method [Ros99]. Image intensity comparison
patterns are learned which when used in conjunction with the rotation corrected image
patches are less correlated than the ones utilized by BRIEF.

BRISK [LCSI11] is also a binary feature descriptor. In contrast to BRIEF and ORB, the
image sampling positions are not drawn randomly anymore. Besides taking the rotation
of a feature point into account, BRISK utilizes scale space theory to adapt the sampling
pattern to the maximum in scale space. Thus, BRISK is rotation and scale invariant.

The latest of the binary feature descriptors is FREAK [AOV12] which draws the inspiration
for the image intensity comparison pattern from the spatial organization of the human
retina. The evaluation of FREAK suggests that the descriptor is rotation, scale and

brightness invariant. According to the evaluation in their paper FREAK outperforms
BRIEF, ORB, BRISK, SURF and SIFT [Low99] in all aspects.

CHAPTER 3. RELOCALIZATION USING BINARY FEATURES 24

All previously mentioned feature descriptors need a keypoint detector which tells the al-
gorithm where to extract the descriptors. Since the main intention of using binary feature
descriptors is speed, these descriptors are usually combined with the FAST [RDO05] key-
point detector which, as its name suggests, is a very efficient corner detector. More resent
binary feature descriptors, namely BRISK and FREAK, rely on an improved version of
FAST the so called AGAST [MHB™10] keypoint detector. AGAST improves the order of
image intensity comparisons of FAST to obtain a generic detector which is not trained on
some specific environment. AGAST does detect the same corner locations as FAST.

3.2 Binary Robust Features (BRIEF)

In this work, the most basic variant of binary features namely Binary Robust Fea-
tures (BRIEF) by Calonder et al. [CLSF10] is used. The BRIEF descriptor is the least
complex binary descriptor and hence fastest to extract. This is because BRIEF is neither
scale nor rotation invariant. The implications of these properties will be discussed in the
sections of the localization algorithms. To detect where to extract BRIEF descriptors, the
FAST keypoint detector [RD05] is deployed. FAST was chosen instead of AGAST since
FAST is already integrated into the PTAM implementation. This might affect extraction
speed but will not alter keypoint locations since they both detect the same corner points.

251
207

10y

-10r

T235.20 10 0 10 20 25
Figure 3.1: The original image intensity comparison pattern employed by OpenCV for
BRIEF descriptor extraction.

The BRIEF descriptor bit string BD = (bity, . .., bity,) is obtained by a multitude of image
intensity comparisons around the feature position after smoothing the image:

bit; = { 0 otherwise (3.1)

CHAPTER 3. RELOCALIZATION USING BINARY FEATURES 25

The positions for image intensity comparisons are sampled from the normal distribution
pir2 ~ N(0, g—;) once at the beginning and are then fixed for all subsequent descriptor
extractions. In the OpenCV implementation, the area in which the positions for the com-
parisons come to lie in is a square of 49 x 49 pixels. Figure shows the image intensity

comparison pattern used for BRIEF descriptor extraction in the OpenCV implementation.

While theoretically any number M of bits for the BRIEF descriptor would be possible,
Calonder et. al. [CLSF10] found that M = 256 offers a good trade-off between recognition
rates and storage efficiency. Therefore, in this work the 256 bit version of BRIEF called
BRIEF32 from the OpenCV implementation is used. The smoothing is performed with a
Gaussian kernel of size 9 x 9 pixels with a variance of 2. The OpenCV implementation
performs the smoothing efficiently using integral images.

0 0.2 0.4 06 0.8 1 0 0.2 0.4 0.6 0.8 1
(a) Mutual Information (b) Absolute Correlation

Figure 3.2: Correlation and mutual information between bits in the BRIEF descriptors
from a database of about 9M features.

The way the BRIEF descriptor is constructed results in an interesting property: since the
positions are sampled independently from a normal distribution, bits in the descriptor are
independent and their ordering is arbitrary. This means the BRIEF descriptor designates
a point in 256 dimensional Hamming space. Hence, the Hamming distance can be used
as a similarity measure between two BRIEF features. This distance measure is defined as
the number of bits in two bit strings that differ.

The Hamming distance ||BD 4, BDg||y between two BRIEF bist strings can be computed
efficiently in two steps: first, the bits that differ in the two bit strings are detected by
performing an XOR between the bit-strings. Second, the number of ones in the resulting

CHAPTER 3. RELOCALIZATION USING BINARY FEATURES 26

bit string is counted. The bit counting can be performed by using a lookup table for
8 bit chunks of the BRIEF feature bit string. The lookup table consisting of 256 entries is
constructed once at startup:

LUTSbit = [071717271a272737”' 78] (32)

For every 8 bit number, it stores the amount of one-bits this bit string has. Thus, one-bit-
counting can be done by summing up the number of ones of all 8 bit chunks of the M bit
feature descriptor. The Hamming distance between two BRIEF features BD 4 and BDp is
therefore given as:

| M/3]
IBDA,BDpl[z = » LUTsy (byte (BDa @ BDy),) ., (3.3)

=0

where byte (), extracts the ith byte form a bit-string and @ denotes the XOR operator.

3.3 Nearest Neighbor Search for Binary Features

In contrast to distance metrics in continuous spaces, like the Euclidean or Manhattan
distance, the Hamming distance is discrete:

IBD 4, BDg||x € {0,1,--- , 256} (3.4)

For Nearest Neighbor searches in continuous spaces, using for example the Euclidean norm,
it is nearly impossible that a query feature has the same distance to two features in the
database. In contrast to that, the discrete Hamming distance makes it very likely that a
query feature has the same distance to one or more features in the database.

The exhaustive NN search algorithm implemented for this thesis returns all matching
features which have the same smallest Hamming distance to a query feature since the
correct NN in the set of matches with equal distance cannot be determined.

Hashing-based techniques for approximate Nearest Neighbor search are commonly used for
binary feature matching. More precisely Locality-Sensitive Hashing (LSH) [GIM99] can
be used to search for binary features rapidly.

Recently, Muja and Lowe [MLI12] proposed to use the FLANN library [MLO09] to perform
hierarchical clustering of a database of binary features to enable fast feature matching.
They show that their algorithm outperforms LSH for very large datasets of 5M features.
For smaller datasets in the order of 100k features both algorithms perform equally fast.
Although they do not give the timing for preparing the hierarchical clustering, it is very
likely that their algorithm takes longer to prepare than LSH. This makes it unsuitable for
binary feature matching on a mobile device since hierarchical clustering of all map features
would have to be performed at relocalization. Therefore, LSH will be used in this work.

CHAPTER 3. RELOCALIZATION USING BINARY FEATURES 27

3.3.1 Locality-Sensitive Hashing (LSH)

Locality-Sensitive Hashing (LSH) [IM98| [GIM99] is a hashing-based technique to perform
approximate Nearest Neighbor (aNN) search. The method is approximate in that there is
neither a guarantee that any neighbor is found nor that a retrieved match is the nearest
neighbor.

The main idea is to use a hash function that generates the same hash code for close-by
feature descriptors. To be more precise, the hash function should generate the same hash
codes for two BRIEF descriptors if their distance is less than r with a higher probability
than if their Hamming distance is greater than r. Several hash tables 7; are used in parallel
to increase the probability of finding the true nearest neighbor.

A locality-sensitive hash function g; for BRIEF features composes the hash code from m
randomly selected bits in the BRIEF descriptor bit strings BD; = (bity, ..., bit):

9:(BD;) = 0b (bit,,) (bit,,) ... (bit,,) € [0,...,2™ — 1], (3.5)

where Ob signals a binary number and the indices r; are drawn uniformly and without
repetition from {1,..., N} once at instantiation of the hash function.

In the following a proof will be given which shows that the hash function as defined in
Equation is indeed locality-sensitive. The necessary condition which has to be shown
is that the probability of two BRIEF features BD, and BDp being closer than r given
that they share the same hash code is smaller than the probability of them being closer
than r given that they have different hash codes:

|
P (||BD4,BDg||x < 7| g:(BD4) = ¢:(BDp)) > (3.6)
P (||BD4,BDg||z <7 | g:(BDa) # 9:(BDp)).

In order to proof this first consider the probability of two BRIEF features having Hamming
distance r:

P(||BD4,BDg||lg =7) = P (exactly r bits in BD4 and BDp are equal)
= (29) P (bita; = bitg;)" P (bita; # bitg;)** "
— (256) 0.570 5256 r
— (2?)6) 0.5256

(3.7)

where the following identities were used:

P (bity; = bitg;) = P (bity; = 1Nbitg; = 1)+ P (bits; = 0N bitg; = 0)
= P (bity; = 1) - P (bitg; = 1) + P (bits; = 0) - P (bitg; = 0)
= 0.524+05%°=0.5

P (bity; # bitg;) = P (bity; = 1Nbitg; =0)+ P (bity; = 0N bitg; = 1)
= P (bity; =1)- P (bitg; = 0) + P (bits; = 0) - P (bitg; = 1)
= 0.5+ 0.5 = 0.5.

CHAPTER 3. RELOCALIZATION USING BINARY FEATURES 28

In above equations the independence of bit positions in the BRIEF bit string and the
uniform distribution of the image intensity comparisons results were used.

Using Equation (3.7)), the probability of two BRIEF features being closer than r in the
multidimensional Hamming space can be computed as

r—1 r—1
P (||[BDA,BDg||y <) =Y _ P (|[BD4,BDsl[ny =d) =050 (25). (3.8)
d=0 d=0

The conditions in the conditional probabilities in Equation (3.6|) are reformulated in terms
of the Hamming distance between both BRIEF descriptors:

!
P (||BD4, BDg||r <7 [[|BD4, BDg||z > 0),

where m is the length of the hash code.
Using Bayes’ theorem the two sides in Equation (3.9) can be derived. The left side becomes:

P(||BD4,BDgl||g <7 |||BD4,BDg||g < 256 —m) =

_ P(IBD4,BDp|lu<r N ||BD4,BDg||n<256—m) __

- P(||BD4,BDg||r<256—m) -

_ _ P(IBD4,BDp||lp<r) _

~ P(IIBDABD3[[r<256—m) — (3.10)
o)

T 0.5256 Ziiﬁo_m_1(236) =

(%)

where 7 < 256 — m was assumed. And the right side amounts to:

P(HBDA,BDBHH <r | ||BDA,BDB||H > O) =
_ P(|BDA,BDg||a<r 0 ||BD4,BDg||lp>0) _
P(||BD4,BDg||r>0)

o P(O<||BDA,BDBHH<T) —
P(||BD4,BDg||z>0)

0.5256 22;1(226) 22;(1)(226)_1
o) T TR
iz (%0)

(3.11)

Plugging Equations (3.10) and (3.11)) into Inequality (3.9)) yields the necessary condition
for locality-sensitivity of the selected hash function:

Sio(R) L Zin()
235:607"L71 (226) 235:60 (236)
57256 (256 ! (3.12)
d=0\ ¢

& ST ey > L
T C)

CHAPTER 3. RELOCALIZATION USING BINARY FEATURES 29

Clearly, Inequality (3.12)) is satisfied for all reasonable values of m € {1,...,255}. There-
fore the hash function as defined in Equation ({3.5) is locality sensitive. [J

Before aNN queries are possible, the hash tables have to be prepared by inserting pointers
to all Brief features into the buckets in the hash table that the hash code of the respective
BRIEF feature maps to. This initialization procedure for the hash tables is outlined in
Algorithm (1.

Algorithm 1 Before queries can be performed the hash functions have to be generated
and all database features have to be sorted into the hash tables 7.

require The number of hash tables L and the number of bits per hash code M
Database of N BRIEF feature descriptors BD;.
for [=1to L do
Initialize hash function g, randomly for hash table 7;
end for
for [=1to L do
for:=1to N do
Add BD; to bucket ¢;(BD;) of hash table 7;
end for
end for
return L prepared hash tables 7;

Once the hash tables are initialized, aNNs can be found for arbitrary BRIEF query fea-
tures as can be seen in Algorithm . For a query feature BRIEF, a candidate set S is
constructed from all database features in hash buckets that the query feature maps to.
Multiple occurrences of the same database feature in the candidate set are discarded, be-
fore an exhaustive Nearest Neighbor search is conducted. The nearest neighbor within the
candidate set is assumed to be the nearest neighbor within the whole database of Brief
features.

Algorithm 2 The LSH matching algorithm searches for an approximated Nearest Neigh-
bor match for a given query feature.

require L prepared hash tables 7; with hash functions g; generating M bit hash codes;
Query feature bit-string BD,.
Candidate set S < 0
for/=1to L do
S < S U {feature descriptors from bucket g,(BD,) in 7;}
end for
Discard multiple occurrences of the same feature descriptors in S
{BDp1,...,BDmn} < Nearest Neighbors in S
return approximate Nearest Neighbor matches {BD,,1,...,BDy,}

CHAPTER 3. RELOCALIZATION USING BINARY FEATURES 30

As mentioned in the previous section, there might be several database features with the

same minimal distance to the query feature. In this case all potential matches are returned
by the LSH search.

3.4 Pose Recovery from 2D-3D Feature Matches

Using the search algorithms introduced in the previous section, 2D-3D feature correspon-
dences can be established. For a set of query features in the current image the best
matching descriptors in a database of previously observed features are found. These key-
point descriptors, which were extracted from previous frames, have to be associated with
a 3D position. This is usually done by the visual odometry system which maintains a
position estimate for all features.

How these 2D-3D correspondences can be utilized to estimate the pose of the camera
observing the features in a given image, will be described in the following sections. First,
the so called 3-point pose algorithm will be introduced which is able to compute the
pose of the camera solely from four 2D-3D feature associations. Second, it is explained
how the hypothesize-and-verify algorithms RANSAC and PROSAC can utilize the 3-point
algorithm to robustly estimate the camera pose.

3.4.1 3-Point Pose Algorithm

The 3-point pose algorithm solves the problem of finding the pose of a camera observing
three plus one 3D points. The fourth point is necessary to resolve a four-fold ambiguity in
the camera pose computation.

First, the depths of three points is computed using all four points. Knowing the depths of
the observed points means knowing the 3D position of the features in camera coordinates.
Thus, in a second step the transformation between the points in camera coordinates and
the points in world coordinates is computed. This transformation corresponds to the pose
of the camera.

Let pY, py and py be known 3D positions of the observed projections z;, z, and z3 in the
camera plane. The goal is to find s;, s3 and s3 since they define p§ = ”Zsm -z;. Figure 1)
e

depicts the geometry of the problem. Since the distances between the 3D points is
same in all coordinate frames, the problem is defined in terms of the distances:

a = ||py —pyll2
Py — P¥2 (3.13)
= [|IpY — Py |2

CHAPTER 3. RELOCALIZATION USING BINARY FEATURES 31

Figure 3.3: The geometry of the 3-point pose problem. The camera center is at the origins
of z1, z5 and z3. The camera observes the 3D points 1, 2, and 3.

The observed projections can be interpreted as the directions to the 3D points. The angles
between them can be computed as

T

Z5 73
COS (¢ —
||Z2||%||23||2
— %173 3.14
cos 3 R (3.14)
Z] 73
cosy B

The law of cosines gives three equations which need to be solved in order to obtain the
desired depths s;:

a? = s+ s3—2s983c08
b = s+ 53— 2sys3c08p3 (3.15)
2 = s+ 52— 2s15,c087

A good overview over the different solution strategies solving Equations can be found
in [HLONO94]. In this work the solution of Fischler and Bolles [FB81] was used because of
its superior accuracy and the fact that no singularities are possible. In the following the
only the formulas necessary for finding the solutions are given and the reader is referred

to [HLONO94] for the full derivation.
Fischler and Bolles rewrite Equation (3.15]) in terms of two variables

u=2and v =3 (3.16)
Then B.15 becomes
a> = s} (u®+v* —2uvcosa)
v = s¥(1+v*—2vcosf) (3.17)
A = sf(1+u®—2ucos?)

CHAPTER 3. RELOCALIZATION USING BINARY FEATURES

After some math they come up with a forth order polynomial in «

ut + Byt 4
Dy

where

Dy

Dag2 4 D1u+ DO = u* + D3u® + Dou® + Dyu' + Dy = 0

4b%c* cos? a — (a? — b? — ¢?)?
—4c*(a® + b* — ¢?) cos accos B — 8b*c? cos® avcos Y+
+4(a —b? — *)(a® — b?) cosy
4c(a? 2)0025—1—80 (a? +b2)cosacosﬁcosv+
+4c? (—?) cos a—2(a®—b*—?)(a® - b* +)
—4(a? b2)2 cos?
—8a?c? cos? B cosy — 4c? (b — ¢?)cosacos 3
—4a2c cos COSB +4(a® — b*)(a® — b* + ¢*) cosy
2c2cos? B — (a® — b? + 2)?

32

(3.18)

(3.19)

The solutions to the fourth order polynomial from Equation (3.18]) can be found using the
following formulas obtained using an algebraic solver:

where
T
Ty
T3
T,
Ts
and

uyp = T — Ry —+Rs — Rg
up = Ty — Ry ++Rs — Rg
uz = T+ Ry —+/Rs+ R
g — T1 +R4+ \/R5+R6

1
—1p,

4
D3 — 3D3D; + 12D,
2(2D3 — 9D3Dy Dy + 27D} + 27D3Dy — 72D Dy)

3—12 (—D3 +4D3Dy — 8Dy)

3 (3D3 — 8Dy)

48
R = VI3 -T3
RQ = \3/T3+R1

Ry = %(Tg/Rg—i—Rg)
Ry = 15+ R3

R5 - 2T5—R3
Re = Ty/Ry

(3.20)

(3.21)

(3.22)

It is possible that solutions wu,;; are imaginary due to several roots in Equa-
tions (3.20) to . While imaginary wu;; cannot be used for pose computation,
the implementation has to be able to handle imaginary numbers since intermediate results
might have imaginary parts that cancel out later on.

For each of the four solutions u; one can compute the associated value v; as

Uj

(0* + & — a*)u? 4 2(a® — b%) cos yu; — a* + b* — ¢

2¢%(cos auj — cos)

(3.23)

CHAPTER 3. RELOCALIZATION USING BINARY FEATURES 33

Using Equations (3.16) and (3.17)) the depths s; can now be computed for all real-valued

solutions pairs u;, v;:

a2

51 u2+v2 —2uw cos a
o — us (3.24)
S3 = VS

Only real-valued pairs u;, v; lead to real-valued depths s;.

Since the fourth order polynomial has up to four real-valued solutions wu;, up to four
sets of depths are computed. In order to resolve this four-fold ambiguity, a fourth 2D-
3D point correspondence is needed. From these four correspondences, four sets of three
correspondences each can be grouped together:

pY.z1); (P3.23); (PY{,Z4);
PYom); (pYam); (pYa7a) (3.25)
<p ,Z2>, (p}f,z3>; (p}f,z4>;

For each of those correspondence sets, the solution set of depths is computed. The true
set of depths can be found since it has to be contained four times in the set of all depths.
In theory it would be sufficient to evaluate the depths for two correspondence sets to find
the true set of depths. In practice however, it is more robust to compute the solutions for
all four correspondence sets to find the true set of depths.

Knowing the depths s; of all points, the positions p§ of the points in camera coordinates
can be computed as
S5

124 |2

Given the correspondences between points in camera coordinates p{ and points in world
coordinates p;’, the transformation from camera coordinates into world coordinates “T.,
the pose of the camera, can be computed.

First, the means of both point sets p. and p,, are subtracted:

P = Pi ~ Pu (3.27)
pz = pz - pC'

Second, the rotation “R. that aligns the two zero-mean point sets p;” and p§ best is
computed using a small number of Levenberg Marquardt iterations. The algorithm is the
same as described in Section ([2.2.3) except that the cost function is now:

E=3> (b = "Repf)’ (3.28)

CHAPTER 3. RELOCALIZATION USING BINARY FEATURES 34

The variables that the LM algorithm is optimizing are the so (3) parameters w of the
rotation YR, € SO (3). This means the Jacobians J; are

- 0 199 —ps
8ch c - 1z iy
=P B 0BG (3.29)
8"‘3 ~c = C
Piy —Pix 0

Ji

using the Lie Algebra formulation as introduced in Section (2.2.1). The update equation
becomes .
Aw = S, (S T+ M) IF (B~ R

YR, = exp(Aw)"R,, (3:30)

where Aw € R? is the differential rotation update in so (3). Starting from zero rotation,
the LM algorithm is iterated until the decrease in the cost function drops below 1072 and
convergence is assumed.

Using the means of the point sets in world and camera coordinates and the rotation “R,,
the camera pose “T,. can be computed as

w . ch ‘ I_)w — chpc
T, = (o | . > . (3.31)

In conclusion, the 3-point algorithm is able to estimate the pose of a camera observing four
points of known 3D position. The algorithm does not depend on any prior knowledge of
the pose of the camera and is hence suitable for obtaining an initial estimate on the pose
of a camera.

3.4.2 Hypothesize-and-Verify driven Pose Recovery

Hypothesize-and-verify driven algorithms instantiate hypothetical underlying models of a
dataset from minimal randomly selected sets of datapoints. These hypothetical models
are verified and ranked according to their capability to explain the whole dataset. This
capability is usually measured by the number of so called inliers. These are datapoints
within a certain error threshold from the position predicted by the model.

The strength of this kind of algorithm is the inherent robustness against outliers in the
dataset which cannot be explained by the model. Models instantiated from sets containing
outlier datapoints will have a lower number of inliers than models created from inlier
datapoints. The price for this robustness is that a good model can only be found with a
certain probability and that in order to find it, a large number of models might have to be
instantiated.

The basic hypothesize-and-verify algorithm commonly used for pose recovery is the Ran-
dom Sample Consensus (RANSAC) algorithm [FBS8I].

CHAPTER 3. RELOCALIZATION USING BINARY FEATURES 35

In the case of 3D pose estimation, the RANSAC algorithm (Algorithm 3) randomly samples
four 2D-3D point correspondences to compute a 3D camera pose YT, using the 3-point
pose algorithm as described in Section ([3.4.1). This model is then verified against the set
of all correspondences. A correspondence (z;, p’) is an inlier, if the projection of the 3D
point p;’ under the hypothetical camera pose T, is within a maximal error distance €jjier
from the observed 2D position z; in the image:

Hzi - h(sza ch>H2 < €inlier (332)

Algorithm 3 The RANSAC algorithm for camera pose recovery from a set of 2D-3D
feature correspondences.

require Model M and a set of 2D-3D point correspondences (z;, p¥);
S« {}
for i =1 to J,,,, do
Sample four 2D-3D point correspondences <zj, p;“> and compute YT,
Find consensus set .S; for pose “T.
if |S;| > |S*| then
YT« YT,
end if
end for
return best model “ T,

The Progressive Sample Consensus (PROSAC) algorithm [CMO05] is a variant of RANSAC
which can reduce the number of models which have to be sampled drastically. The nec-
essary condition for PROSAC to achieve these improvements is that it is possible to rank
the set of feature correspondences according to their likelihood of being a correct match.
Given such a quality measure, PROSAC samples from increasingly larger subsets of the
sorted set of all feature matches. Qualitatively high matches are sampled first.

One measure for the likelihood of being a good feature pairing is the proximity of the
matched descriptors in the feature space. In this work, the Hamming distance between
matched binary features is employed as the measure of pairing quality. Matches with a
lower distance are assumed to be more likely a correct pairing than ones lying further apart
in the feature space.

3.5 Relocalization Algorithm

The proposed binary-feature-based relocalization algorithm utilizes BRIEF features for
keypoint description, LSH for fast feature matching and RANSAC or PROSAC followed

CHAPTER 3. RELOCALIZATION USING BINARY FEATURES 36

BRIEF Feature based Relocalization Algorithm

Match Query
Extract BRIEF Features with
Camera Frame .
Features Features in Map
using LSH

RANSAC or
Camera Pose /l PROSAC for Pose

. Marquardt for K
Estimat \ r_
SHimate \l Pose Refinement Recovery

Robust Levenberg

Figure 3.4: Schema of the proposed feature-based relocalization algorithm using binary
descriptors.

by a few M-Estimator iterations for pose estimation. The algorithm is designed for the
deployment in a visual odometry system which does estimate 3D positions of keypoints
such as PTAM or other visual SLAM systems. In order for the relocalization system to
work, it is necessary that the visual odometry algorithm maintains a history of BRIEF
descriptor observations for each 3D keypoint. Keeping this history mitigates the impact
of BRIEF’s scale and rotation variance and allows to capture the appearance of a 3D
keypoint from different viewpoints. Due to the minimal time requirements for BRIEF
descriptor extraction (17.3 us per descriptor [CLSF10]) this is only a slight additional
computational burden. Additionally, it is not necessary to maintain a dense history of
descriptor observations of the 3D points. For the implementation of this relocalization
algorithm in PTAM, BRIEF descriptors were only extracted in keyframes. These are
inserted only approximately every 50 frames.

In case of tracking loss, e.g. due to motion blur, rapid lighting changes or occlusions, the
algorithm extracts BRIEF descriptors at image locations selected by the same keypoint
detector as used by the visual odometry system. This ensures that keypoints are potentially
re-observed and thus can be matched to the correct 3D features in the map.

LSH as described in Section is used to establish 2D-3D feature associations. Only
3D features which have been observed by from places not further away than 25 m are taken
into consideration in the matching process. Note, that 3D features might well be further
away than 25 m. This is important in long hallways and large rooms. In case LSH finds
several feature pairings with the same minimal distance, all these matches are added to
the set of putative correspondences.

All potential 2D-3D feature associations are then fed into a hypothesize-and-verify algo-
rithm for camera pose estimation. In this work, the hypothesize-and-verify algorithms
RANSAC and PROSAC were evaluated for robust pose recovery. The 3-point pose algo-

CHAPTER 3. RELOCALIZATION USING BINARY FEATURES 37

rithm as described in Section (3.4.1)) is utilized to compute potential camera poses from
four 2D-3D feature matches. Care is taken that hypothetical poses are not computed from
matches of one query feature to several 3D features. The pose with the largest inlier count
is returned and consecutively refined using a robust LM algorithm as described in Sec-
tion and Section . The LM algorithm is run on the set of inliers from the
hypothesize-and-verify algorithm to refine the pose.

Chapter 4

Global Localization based on Binary
Features

Global localization within a database of 10k images and 100M features necessitates different
approaches for localization than for relocalization in the map of the visual odometry system.
The techniques described in the previous section are suitable for database sizes of around
1k images and 100k features. The problem with large scale feature-based localization is
that feature descriptors are not descriptive enough to allow direct matching of features
from query image to a database of map features. This necessitates the introduction of
additional constraints to filter out wrong feature matches.

This work focuses on Content-based Image Retrieval (CBIR) [SZ03] techniques for large
scale localization. Image retrieval poses the constraint that features of a query image should
be visible in the best matching image in the database. Therefore it is not a matching from
one feature to another but from a set of query features to a set of features in the database.
The representation of an image as the set of features extracted from it, is the so called
Bag-of-Features (BoF) model [GLT12]. The assumption is that the image in a database
which looks most similar to the query image was taken somewhere in close proximity to
the query image. Thus, by finding the most similar image which was taken at a known
position the query image location can be recovered.

For image retrieval the quantization of features into so called visual words is necessary.
Thus, in order to allow the usage of binary features, a k-means algorithm for binary features
was developed. This so called k-Binary Means algorithm will be introduced in Section (|4.2])
after examining related work in Section . The use of the k-Binary Means algorithm as
a quantizer in a general CBIR system is detailed out in Section . Finally, the concept
of image retrieval driven localization based on Virtual Views [HSH™12b] is introduced in
Section (4.4)).

38

CHAPTER 4. GLOBAL LOCALIZATION BASED ON BINARY FEATURES 39

4.1 Related Work

The idea of localization using image retrieval has been explored e.g. by [WBB02] prior to
the introduction of techniques from textual search to image retrieval by Sivic and Zisser-
man [SZ03]. Since this knowledge transfer first enabled really large scale image retrieval
and thus large scale localization, only work utilizing these CBIR techniques will be reviewed
in the following.

FAB-MAP 2.0 [CN10] is an algorithm for appearance-based SLAM which is able to build
maps over 1000 km long driving sequences. They improve the bag of features representation
of images by adding information about metric distances between features and thus increase
the descriptiveness of the image representation. Their model can utilize an inverted index

to allow fast and scalable large scale place recognition and loop closure for the appearance-
based SLAM algorithm.

Schroth et al. deploy CBIR to localize a hand-held device using a database of Google Street
View images [SANHT11]. They utilize a Multiple Hypothesis Vocabulary Tree (MHVT)
which allows soft assignment of visual words to a query feature. This efficient algorithm
can be run on a cellphone to quantize extracted features. The visual words are then
uploaded to a server which performs CBIR to localize the hand-held device. In a second
paper [SHC™11], Schroth et al. show how localization using CBIR can be performed on a
hand-held device using partial vocabularies that are location specific. These allow precise
yet storage efficient quantizers which can be downloaded to the cellphone quickly. Since the
partial vocabularies are much smaller than the full vocabulary, they allow localization in
the area they are generated for directly on the mobile device. In this paper an approximate
k-means algorithm is used for feature quantization since hierarchical quantizers such as for
example the MHVT are not suitable for the generation of partial vocabularies.

Standard CBIR algorithms for place recognition rely on a set of position associated images
which are recorded once by traversing the area in which the system should operate. The
downside of this approach is that the system can only localize itself to the positions at
which images were taken in during collection of the database images. The Virtual Views
approach by Huitl et al. [HSH™12b] effectively removes this constraint by synthesizing
views of the indoor environment at positions which have not been visited while gathering
database images. Their results show that the image-retrieval-based localization precision
improves significantly when utilizing a Virtual Views database instead of the raw image
database.

The first localization system to utilize binary features and CBIR was proposed by Géalvez-
Loépez and Tarddés [GLT12]. Visual words are obtained by discretizing the binary feature
space of the BRIEF features using a hierarchical vocabulary tree of depth six and a branch-
ing factor of ten. Each level of the tree is obtained by partitioning the features using a
k-medoids algorithm. A geometric verification using RANSAC is performed on the images
obtained from CBIR.

CHAPTER 4. GLOBAL LOCALIZATION BASED ON BINARY FEATURES 40
4.2 k-Binary Means Clustering

The k-Binary Means (kBM) is an adaption of the k-means algorithm for binary strings. It
performs a clustering of a set of binary strings into K clusters where the means themselves
are binary strings. This is important because it allows the consistent use of the Hamming
distances as a similarity measure between the binary strings and the centroids of the
clusters. In the following it is assumed that the binary strings stem from BRIEF descriptors
although the algorithm can deal with any source of binary strings.

The kBM algorithm iteratively clusters the set of binary strings into K clusters. The
clustering is computed such that the cost function J is minimized:

K

k=11,j€Cy

where C} is the index set of BRIEF features bit-strings belonging to cluster k. This set
satisfies

Cy = {i | argmin ||BD;, BD;||x = k}, (4.2)
J
where BDj; is the binary string centroid belonging to the jth cluster.

After initializing the means from randomly sampled BRIEF features in the dataset, the
following three steps are iterated until convergence:

1. Assign all features to their nearest centroid. The distance measure used here is the
Hamming distance.

2. Balance empty and over-full clusters.
3. Recompute the centroids of all clusters.
Algorithm (4)) outlines the procedure in more detail.

The centroids are computed using a voting algorithm. Every feature in a cluster votes for
bit positions which are ones in its bit string. These votes are accumulated in one scoring
vector with elements score; for each bit position:

score, — { score; +1 if bit; =1 (4.3)

score; otherwise

A threshold of half the number of features N¢; in the cluster is applied to the resulting
votes score; to obtain a binary string for the centroid:
.. | 1 ifscore; > N¢y/2
bit; = { 0 otherwise ' (4.4)
This voting approach comes up with the same result as the naive implementation which
would compute the mean bit value for each position in the binary string. The average bit

CHAPTER 4. GLOBAL LOCALIZATION BASED ON BINARY FEATURES 41

Algorithm 4 k-Binary Means clustering algorithm for BRIEF descriptors.

require The desired number K of cluster,

Database of feature descriptors BD;.
Initialize k centroids from randomly drawn features.
Assign features in database to their nearest centroid.
Jo < 256
n <+ 0
while AJ > eNn < Ny do

Balance empty and over-full clusters
Recompute centroids BDj,
Re-assign features to closest centroids (compute Cy)
In = Zf:o Zieck |IBD;, BD||a
AJ=J,— Jn1
end while
return K centroids and clusters.

values would additionally have to be rounded to obtain a binary string centroid. Clearly,
the voting strategy needs less computational effort than the naive implementation.

Due to the high dimensionality of the Hamming space of the feature bit strings, it can
happen that there are empty clusters with only one feature and large clusters with over
ten times the average cluster size. In order to get a more fine grained and balanced
partitioning of the space, the kBM algorithm performs an extra step at each iteration to
balance empty and over-full clusters. First, a set of all features from Kempty empty clusters
is created and united with the features from the kgyerrun largest clusters. The number of
largest clusters is determined such that the united set of features can be clustered into
clusters which on average have the theoretical mean cluster size % From the united set
of descriptors kover-full + Kempty centroids are randomly initialized replacing the centroids
of the empty and over-full clusters. Consecutively, the features from the united set are
assigned to their respective closest centroid.

In order to enable kBM clustering of large datasets in the order of 10M to 100M features
into 100k to 1M clusters several improvements were implemented. Firstly, instead of
using exhaustive NN search to assign features to their nearest centroid, LSH as described
in Section (3.3.1]) is used. Secondly, computation intensive steps in the algorithm were
parallelized where possible. These steps are: (1) the assignment of database features
to their closest means using LSH, (2) the computation of the binary means and (3) the
balancing of empty and over-full clusters.

To parallelize the assignment of all database features to their closest centroid, the set of
all features is split into 1000 subsets of features. In multiple threads LSH is used to assign
the features of a subset to their closest centroids. In order to avoid copying of data, the

CHAPTER 4. GLOBAL LOCALIZATION BASED ON BINARY FEATURES 42

threads work on one large vector of pairings. Since the centroids are not changed in this
step of the algorithm, all threads can read from the same vector of centroids.

The recomputation of the centroids can also be parallelized since for each centroid only
the features in its cluster are necessary. Thus, the recomputation of the & centroids is
split among several threads. Again, each thread works on the assigned centroids which are
stored in a single vector in memory.

Finally, the balancing of empty and over-full clusters can be parallelized since the main
task is to assign the features in the united set of features from the empty clusters and the
over-full clusters to the new randomly sampled centroids. This assignment is parallelized
as previously described.

4.3 Content-based Image Retrieval (CBIR)

Content-based Image Retrieval (CBIR) is a technique for image search in large databases.
CBIR was first introduced in the context of image search within videos by Sivic and
Zisserman [SZ03]. Their main idea is to re-interpret the image retrieval problem in terms
of text search within a database of documents. Image features are interpreted as terms
(so called visual words) and images as text documents. This allows the application of the
large corpus of work done in textual search to the problem of image retrieval. This idea
was further developed by Yang et al. [YJHNO7] who called the representation of an image
by the set of its features the Bag-of-Features (BoF) representation.

By using features extracted from the query image as opposed to using the whole image
itself, the query becomes robust against partial occlusion and dynamic scene changes. The
query features are used to score all images in the database according to their similarity to
the query image.

Before queries on the database are possible, the feature quantizer has to be trained and
an inverted file for fast image lookup given a visual word has to be prepared. In this
work it is proposed to utilize the k-Binary Means algorithm (see Section ([4.2))) for feature
quantization. The quantizer is used to assign visual word ids to all features extracted
from all N images in the database. A kBM quantizer with M visual words is obtained by
clustering all features extracted from the image database into M clusters. The id of the
closest mean is used as the visual word id of a feature.

For the registration of all features in the database, exhaustive nearest neighbor search for
the closest of the k centroids is performed. This could also be replaced by an LSH search.
These visual word ids are then used to construct an inverted file which stores a list of
images for each visual word in which it has been observed. The inverted file is important
for scoring images in which a specific visual word has been observed without having to
traverse the whole list of all images for each visual word.

CHAPTER 4. GLOBAL LOCALIZATION BASED ON BINARY FEATURES 43

CBIR using BRIEF Features

Extract BRIEF | LSH to Match
Query Image Features . Query Features to
kBM Centroids

Top Ranked N Ranking of 1| Visual Word ID =

Database Images .
Images N (tF-idf Scoring) N\ Centroid ID

Figure 4.1: Schema of CBIR using BRIEF features. The kBM quantizer is used to facilitate
the assignment of visual word ids to BRIEF features.

Employing the BoF [YJHNOQT7] idea, each image in the database is interpreted and described
as a set of visual words. The naive approach would be to simply store a vector b of visual
word frequencies for all images in the database. This however ignores that some visual
words are more descriptive than others because they are observed less often in the database
images or because they are observed more often only in a small subset of database images.

To overcome those deficiencies of the naive approach the term frequency-inverse document
frequency (tf-idf) weighting [YJHNO7, INS06] is commonly used. The scores b;; in the BoF
vector b; of each image are computed as:
Tid N
b;; = — log —, 4.5

I g g ; (4.5)
where n;4 is the number occurrences of the visual word i in the d* image, ng is the number
of features in the d"* image, and n; is the total count of features in the database that map
to the visual word <.

After these preparations images can be queried in the database as depicted schematically in
Figure . First, features are extracted from the query image. Using the kBM quantizer
obtained in the preparation stage, each feature is assigned a visual word id. For the query,
the visual word ids are found by an approximate Nearest Neighbour search using LSH.
This speeds up the query significantly. Using the visual word ids of the features in the
query image, the BoF vector q is computed as defined in Equation , where Z—j is the
frequency of visual word 7 in the query image.

Following the approach of [NS06], all BoF vectors are normalized before the L; metric is
used to rank database images according to their distance to the query BoF vector q. The
L1 norm can be computed from the sparse BoF vectors as:

la—b;l[i =2+ Z (lgi = biz| = lasl — 1bis]) (4.6)
i|g;#0,d; ;70

CHAPTER 4. GLOBAL LOCALIZATION BASED ON BINARY FEATURES 44

where b, is the visual word vector of the jth database image.

CBIR can be used for localization if the images in the database are associated with the
pose from which the images was taken. The poses of the top ranked images are then
returned as hypothetical positions form which the query image might have been observed.
By incorporating additional information about the location or by filtering the pose over
several query images from slightly different viewpoints, a unique pose hypothesis can be
recovered.

4.4 CBIR Localization from Virtual Views

The problem with CBIR is that localization is only possible to poses for wich images exist
in the database. Since mapping larger environments like complete buildings is a time
consuming task, usually only one traversal of the area is done while recording localized
images in all directions [HSH™12al.

The virtual view approach by Huitl et al. [HSH™12b] aims to solve this issue by simulating
a virtual camera to compute a dense set of views of the environment. Views are extracted
in a grid of 1 m edge length. For each position 16 images are computed: one for each
15° of rotation on the spot. In order to render these views, planes are extracted from the
point-cloud of the building interior. Using these planes, homographies can be computed
between high resolution camera images from the dataset and the virtual camera. Given
these homographies the virtual view can be composed of the views of all observable planes
under the homography warping. Observability is checked using ray-casting on the planes
extracted from the 3D point-cloud model of the environment.

All virtual views together constitute an image database for which CBIR as described in
Section (4.3) can be utilized to search for a query image at an unknown location. The
positions of the top ranked retrieved images are the desired localization hypotheses.

Note, that by extracting BRIEF features from the virtual view database, the high dis-
tinctiveness of this binary descriptor is advantageous. Since the descriptor is neither scale
nor rotation invariant, a 3D keypoint will have different descriptors in different Virtual
Views. This means that different Virtual Views have distinct sets of features even if they
observe the same scene from a different distance or orientation. A query image can thus
be localized more accurately to one specific Virtual View.

Using scale and rotation invariant features like SURF does not provide additional value
when using Virtual Views. This is because the database is already composed of views
of the same scene from different scales and rotations and thus handles the invariance
with respect to scale and rotation implicitly. So in contrast to [GLT12], where the little
invariance of BRIEF features was found to be the limiting factor for CBIR, exactly this

CHAPTER 4. GLOBAL LOCALIZATION BASED ON BINARY FEATURES 45

CBIR using BRIEF Features on a Virtual Views DB

Extract BRIEF | LSH to Match
Query Image Features . Query Features to
kBM Centroids

Ranking of Virtual A
Top Ranked Poses <: Views 4

(tf-idf Scoring)

Visual Word ID =
Centroid ID

Figure 4.2: Schema of Image-retrieval-based localization using BRIEF features and a Vir-
tual View database (DB). The poses associated with the top ranked Virtual Views are
returned as global localization hypothesis.

higher distinctiveness is expected to yield better localization performance when using a
Virtual Views database.

Chapter 5

Software Reference

The implementation is split into three main software parts. The first part is the imple-
mentation of the NN and aNN search for binary features as well as the kBM clustering
algorithm. The second part is the implementation of the BRIEF-based relocalization for
PTAM and the integration of this code into the PTAM program by Klein [Kle0§|. The
third part is the implementation and integration of the kBM quantizer into the CBIR
system developed by Huitl [Huil(].

All code is written in C++ since the methods are mostly time-critical. Compilation of the
C++ code is handled using cmake. Evaluation and test programs are written in C+-+ as
well and are a good starting point to learn how the individual classes are used. Note that
some of the test programs which were not used frequently do not take parameters from
the command-line. Instead, the configuration needs to be changed in the code. Evaluation
and plotting scripts for the results are implemented as MATLAB scripts and can be found
in the matlab/ folder. Also note that the image databases for CBIR were created using
the MATLAB scripts developed by Robert Huitl as described in [Huil0)].

In order for most of the scripts to work properly, the environment variable
NAVVIS WORKSPACE has to be set to the root of the workspace directory.

>> export $NAVVISWORKSPACE=/path/to/toplevel/directory/

It is most convenient to add this line to the end of the users ~ /.bashre.

All code is available from the git repositories on the LMT servers under LM Tprojects,/-
Nawvvis/julian/git. In order for the code to work properly it is important that the folder
structure is recreated as outlined in Table . An example workspace exhibiting this
directory structure can be found at LM Tprojects/Navvis/julian/workspace. The datasets
used for the evaluation can be found there as well.

46

CHAPTER 5. SOFTWARE REFERENCE 47

Directory Description

data/ Output of data from PTAM runs

rosbags/ Rosbags for input to PTAM

dataTablet/ Data obtained from tablet

grundtruth/ Trolley groundtruth data

results/ Results and plots for evaluation
results/raw_*/ Raw results from test programs

matlab/ MATLAB scripts for analyzing and plotting results
IshKBM /tests/ Tests and evaluation code for LSH and kBM
androidDatal.ogger/ Datalogger application for Android
tabletDataROSPublisher/ ROS node to publish images and IMU data
ptamBriefRelocalize/ Starter scripts for PTAM

ptamBriefRelocalize/PTAM/ PTAM with BRIEF-based relocalization algorithm
ptamBriefRelocalize/test/ Tests for BRIEF-based relocalization methods

work/ CBIR code and MATLAB scripts from [Huil0]

3rdparty/TooN/ Math include files [Ros12c] used by PTAM

3rdparty/libcvd/ LibCVD Computer Vision library [Ros12b]
used by PTAM

3rdparty/gvars3/ GVars3 [Ros12a] used by PTAM

Table 5.1: Directory Structure

5.1 Binary Feature Search and Clustering

The IshKBM folder contains implementations of the exhaustive NN and LSH search algo-
rithms for binary features, the k-Binary Means clustering algorithm and the kBM quantizer
for use in CBIR. Since the search and the clustering algorithms are template classes, their

code can mainly resides in header files in IshiKBM /include. All source files for these algo-
rithms are stored in IshKBM/src.

In the IshKBM/tests folder the code for several test programs can be found:

IshKBM /tests/testLsh.cpp can be used to evaluate the precision, the timing and the per-
centage of matched features of the LSH algorithm. The program accepts parameters from
the command-line. A list of optional parameters can be obtained by running the program
with the “-h” option. Results of testLsh.cpp which are saved to IshKBM /IshResults can be
visualized using the MATLAB script matlab/plotLSHResults.m. Plots from this script
are shown in the evaluation chapter.

IshKBM /tests/testBriefDesc.cpp tests several methods of the BriefDesc class like for
example the constructor, voting on bit positions, and different Hamming distance compu-
tations. The BriefDesc class is used to handle binary features descriptors.

CHAPTER 5. SOFTWARE REFERENCE 48

IshKBM /tests/test DBQuery.cpp reads and displays information contained in an image
database. Image Databases for CBIR are created using MATLAB scripts by Robert Huitl
as described in [Huil0].

IshKBM /tests/testLshImageRetrieval.cpp performs a query of features from a PTAM
dataset on an image database and displays the top-ranked images. The program creates
the kBM quantizer and inverted file in case these files are not found at the specified path.

IshKBM /tests/testLshTable.cpp creates hash tables for LSH in different ways: sample
hash function randomly or aided by covariance or mutual information matrices. The bit
positions that the respective hash function will compose the hash code form are displayed.

5.2 PTAM Evaluation How-To

The original PTAM code from [Kle08] was used with slight modifications by Andreas
Moller to allow PTAM to obtain camera frames via the node-based architecture of the
Robot Operating System (ROS).

In the following, all steps are described which are necessary to run PTAM on a dataset
collected on an Android tablet.

5.2.1 Collecting Data with an Android Device

The android data-logger application in androidDataLogger/ can collect accelerometer and
gyroscope values alongside recording a .mp4 video from the backward facing camera of
the device. It was developed and tested on a Samsung Galaxy Tab 10.1. Eclipse with the
Android SDK plugin was used to program, upload and debug the application.

Figure shows the user interface of the data logger application. Via the preferences
button, the user can select the rate at which the IMU data is recorded. Available logging
intervals are: slow(200 ms), medium(60 ms), fast(20 ms) and maximum (1 ms to 20 ms -
as fast as possible).

Data-logging can be started by simply touching the screen in the area of the camera image.
Recording is stopped the same way. During data-logging the current rotational speeds and
accelerations are displayed in the lower left corner. Additionally, the logging-rate setting
and the path for data-logging is shown. The standard path for the log data is Log/ but this
can be changed in the preferences menu. The program automatically creates a subfolder
which is named according to the start date and time of the logging sequence. In this folder,
the logger places five files:

e video.mp4: a .mp4 video of the backwards-facing camera of the Android device.

e videoStart.txt: the starting time of the video in ns.

CHAPTER 5. SOFTWARE REFERENCE 49

Figure 5.1: Main screen of the Android datalogger application which was developed for
dataset collection.

e videoStop.txt: the end time of the video in ns.

e GyroLog.txt: an ASCII file which is composed of 4 columns: (te ‘ Wy ‘ Wy ‘ W,),

where t,, is the timestamp in ns of the rotationspeed w = (wx Wy wZ)T.

e Acclog.txt: an ASCII file which consists of 4 columns: (ta ‘ Ay ‘ @y ‘ a,), where

t, is the timestamp in ns of the acceleration a = (ax Qy az)T.

All timings are in ns and utilize the system time of the Android operating system.

5.2.2 Converting Tablet Data into a ROS bag

In order to run PTAM offline, rosbags need to be recorded. The scripts in tablet-
DataROSPublisher/scripts together with the tabletDataROSPublisher program can be
used to convert a video given as a series of frame pictures or as a .mp4 file into a ros-
bag.

tabletDataROSPublisher/README.txt contains instructions on how to setup ROS and
the environment to compile the tabletDataROSPublisher ROS node.

tabletDataROSPublisher /scripts/convert ToRosbag.sh is the central script which sets
up the ROS pipeline to publish images and IMU data with tabletDataROSPublisher The
ROS program rosbag record is then used to collect all published data into a single rosbag.
The script uses extractFramesFromMp/.sh and extractFrameTimestampsFromMp4.sh to
extract frames and timestamps in case the specified tablet data folder in dataTablet does
only contain a .mp4 file.

CHAPTER 5. SOFTWARE REFERENCE 50

tabletDataROSPublisher /src/tabletDataROSPublisher.cpp is a program to publish
images and IMU data to ROS nodes. The images have to be named according to the
following C printf-style naming convention: frame%06d.tzt. Additionally, the program
needs a file Framelnfo.tzt which is a list of timestamps ¢ and frame ids 77 in two columns:
(s ‘ if) From a .mp4 video this list can be created using the aforementioned script
extractFrame TimestampsFromMp4.sh. For the IMU data the program expects two files:
GyroLog.txt for the gyroscope measurements and AccLog.txt for the acceleration values.
The content of the files has to match the layout as obtained from the Android Data-
Logger application as described in the previous Section . It is important, that all
timestamps are in the same time reference.

tabletDataROSPublisher /scripts/convertBatchToRosbags.sh and convertAll.sh uti-
lize convertToRosbag.sh to convert multiple datasets to rosbags.

tabletDataROSPublisher/scripts/extractFramesFromMp4.sh is a bash script to ex-
tract all individual frames from a recorded .mp4 video. The frames are stored as a series
of images with the following naming convention: frame%06d.txt (C printf-style notation).
This script requires the ffmpeg package to be installed.

tabletDataROSPublisher /scripts/extractFrameTimestampsFromMp4.sh extracts
the timestamps of all frames in a .mp4 video and saves them to a Framelnfo.txt file as
specified previously. Note that this requires the program ffprobe which comes with the
ffmpeg packet in Linux.

For example, a command to convert the raw tablet data in dataTablet/20120420-175544/
into a rosbag would be:

>> ./convertToRosbag.sh 20120420.175544/

5.2.3 Running PTAM

A modification by Andreas Moller to PTAM allows it to obtain the input video from a ROS
image stream. The ROS integration is implemented in a shared library in ptamBriefRelo-
calize/ptam_ros_wrapper/. 1t is important that the ptam_ros_wrapper/ library and PTAM
itself are compiled before the following scripts can be used to run PTAM.

ptamBriefRelocalize/ README contains instructions on how to compile PTAM and the
shared library for ROS integration.

ptamBriefRelocalize/PTAM /makeRos is a short script to compile the shared library
which allows PTAM to obtain frames from an image_transport ROS node.

ptamBriefRelocalize/launchROS_PTAM.sh is a bash script for the evaluation of PTAM.
This script ensures that roscore is running, a specified rosbag is played and that im-
age_transport is started to uncompress the images in the rosbag. Once the ROS pipeline

CHAPTER 5. SOFTWARE REFERENCE 51

is properly setup, the script runs PTAM with an optional set of parameters. Once PTAM
is finished the script creates a new folder in data/ and copies all PTAM output into that
folder. Possible parameters can be seen by running:

>> . /launchROS PTAM. sh —h

Launch programs necessary to process data with PTAM

valid configuration parameters are:

—b |-—bag <bagfile >: .bag file to be played
—s |——start <seconds>: Start <seconds> into the dataset
—x |——skip <frames>: Skip <frames> frames before one is handed over to PTAM
—rt|——reloc—time <frames>: Relocalize always after <frames> frames
—rw|——reloc—wait—time <dt>: Wait for <dt> ms after relocalization before tracking is
resumed
—r |——reloc—type <typeNr>: Use relocaliser of type <typeNr> (O=standard PTAM,
1= BRIEF4+LSH+PROSAC+MEstimator)
—e |——end <frames>: Stop after <frames> frames
—h |——help: Display this help message

ptamBriefRelocalize/calibrateROS_PTAM.sh can be used to calibrate the FOV camera
model deployed by PTAM given a calibration video in a rosbag. This bash script runs sets
up the ROS image publishing pipeline as described for launchROS_PTAM.sh and runs the
original camera calibration program of PTAM.

ptamBriefRelocalize/test /statisticsBRIEF.cpp contains code to evaluate several statis-
tics and probabilities of a set of BRIEF features and to save them to several files in the
same directory. Among the statistics is the computation of the joint probability distri-
bution of all bit positions in with all others, the computation of the mean and standard
deviation of the bit positions and the computation of the covariance matrix between all
bit positions. MATLAB scripts in matlab/briefStatistics/ are used to visualize the BRIEF
statistics. The main scripts are plotCorrelation.m and plotMutuallnformation.m.

ptamBriefRelocalize/test /testLshKbm.cpp: similarly to testLsh.cpp this program can
be used to evaluate the precision, the timing and the percentage of matched features of the
LSH algorithm. In contrast to testLsh.cpp it is possible to evaluate LSH on large sets of
BRIEF features taken from a database create using scripts from [Huil(]. A list of optional
parameters can be obtained by running the program with the “-h” option. The results
of testLshKbm.cpp are stored in ptamBriefRelocalize/test/IshResults and can be plotted
using the MATLAB script matlab/plotLSHResults.m. The LSH performance plots for
LSH in the kBM quantizer were plotted using the combination of those two programs.

ptamBriefRelocalize/test /testLSHRansacLoc.cpp can be used to evaluate the perfor-
mance of BRIEF-based relocalization within PTAM generated maps. The program accepts
a series of parameters which can be seen by running it with the “-h” option. Using the
“-p” parameter it is possible to switch between RANSAC and PROSAC for pose recov-
ery. Results are saved in ptamBriefRelocalize/test/relocResults and named according to
the current machine time in order to make file names unique. The MATLAB script mat-
lab/evalRANSACRelocWithinPTAM.m utilizes the results of test LSHRansacLoc.cpp

CHAPTER 5. SOFTWARE REFERENCE 52

to generate the performance statistics of RANSAC and PROSAC localization shown in the
evaluation chapter.

ptamBriefRelocalize/test /testRANSACImageRetrievalLoc.cpp contains code for the
performance evaluation of Image-retrieval-based localization strategies. The set of optional
parameters for this program can be seen by running it with the “-h” option.

There are several MATLAB scripts in matlab/ which can be used to evaluate the perfor-
mance of PTAM and the relocalization algorithms:

matlab/evalDist ToGT.m is used to evaluate and plot the deviation of PTAM’s pose
estimates from the groundtruth trajectory collected with the trolley. Additionally statistics
such as average distance to groundtruth before and after relocalization as well as time taken
for relocalization is displayed in the MATLAB console.

matlab/videoPathInMap.m can be used to display a video of the PTAM pose estimates
alongside the groundtruth positions as time progresses. This script was used to cut the
video of the PTAM program’s camera view next to PTAMs pose estimates and correspond-
ing groundtruth positions.

5.3 Content-based Image Retrieval

The kBM quantizer as described in Section (4.2)) as well as the option to extract BRIEF
features form the database images, was integrated into the CBIR system developed by
Huitl [HuilO]. The files features.cpp and the cbir.cpp were modified accordingly.

work /mser-surf/cbir/cbir.cpp allows the selection of the kBM quantizer via the “-q kbm”
option. The file ending of the quantizer is .kbm and the inverted files are called .kbm.set.
The number of distinct visual words NV can be set using the option “n N”. In case of very
large feature databases, the parameter “~max-samples=Ngmple” can be used to create the
quantizer from Ngample features that were randomly sampled from the whole database. The
kBM quantizer implements the same interface as the other existing quantizers and thus
supports all operations supported by cbir.cpp.

work /mser-surf/features/cvfeatures.cpp does now contain methods for extracting BRIEF
descriptors at FAST corner locations. The OpenCV implementation of BRIEF and the
libCVD implementation of FAST is used. The configuration struct config has to be set to
the following values in order to construct a database with BRIEF features:

config.detector = ’fast ’;
config.descriptor = ’brief ’;
config.dims = 32;

% FAST detector
config.fast_number_octaves = 1;
% BRIEF descriptor
config.brief_bytes = config.dims;
config.expand_bits = false;

% Feature descriptor type

CHAPTER 5. SOFTWARE REFERENCE 53

config.type = ’uint8 ’;

work /mser-surf/configs/config_indoor_ptam.m is the configuration file used for evalu-
ations of the kBM quantizer. The configuration for the generation of BRIEF descriptor
databases can be seen here as well.

work /mser-surf/do_evalVirtualViewDB.m was used for the evaluation of the precision
of Image-retrieval-based localization using BRIEF features and a Virtual Views database.

An example command for generating a k-binary means quantizer with 200k visual words
and the associated inverted file would be:

>> ./cbir —q kbm —n 200000 —max—samples=20000000 —b /path/to/db.db

Note that the —max-samples=N option for randomly sampling a subset of size N from
all features in the database is supported by the kBM quantizer and used in the example
above.

CBIR queries can be issued as described in [Huil(]. Here the command is given for a
querying all images in a query-database:

>> ./cbir —q kbm /path/to/querydb.db —query—db /path/to/db.db
—query—all —prefix /path/to/results

For an in depth description of the source code and the MATLAB scripts for CBIR in the
work/ folder, the reader is referred to the Diplomarbeit of Huitl [Huil0].

Chapter 6

Evaluation

In order to measure the performance of the proposed binary-feature-based localization
strategies, two scenarios where evaluated: (1) BRIEF-based relocalization in maps gener-
ated by PTAM and (2) the global localization using CBIR on a Virtual Views database of
one floor of the Technische Universitdt Miinchen (TUM).

The main difference between those two scenarios is the scale of the map. While a typical
PTAM map of 100 images contains about 30k features, the map of one floor of the TUM
from the NAVVIS database [HSHT12a| has between 10M features for the raw dataset and
10M for Virtual Views.

For each of the scenarios, the key algorithms involved in the respective localization method
were evaluated individually as well to aid optimal parameter selection. This includes the
evaluation of LSH for direct feature matching (Section (6.1.1))) and for the use in the
kBM quantizer (Section (6.2.1])) as well as the evaluation of RANSAC and PROSAC in

Section ((6.1.2)),

6.1 Relocalization within PTAMs own Map

For the evaluation of the accuracy of PTAM and the relocalization mechanisms, a video
dataset with associated groundtruth positions was recorded. To facilitate this a Samsung
Galaxy Tab 10.1 tablet was mounted on the same trolley that was used to obtain the TUM
indoor dataset [HSH™12al]. This setup is depicted in Figure (6.1).

On the trolley a localization algorithm was run to localize the trolley within the previously
built and globally optimized map. The localization algorithm utilized the precise laser
scanner of the trolley and a particle filter for 2D pose estimation. Thus, it can be assumed
that the groundtruth trajectory is sufficiently accurate. For the tablet, a data-logging ap-

54

CHAPTER 6. EVALUATION 59

Figure 6.1: The Samsung Galaxy Tab 10.1 was mounted on the NAVVIS trolley to obtain
a groundtruth trajectory for the dataset.

plication was developed to record a .mp4 video from the backwards-facing camera alongside
the measurements of the built in inertial sensors of the tablet.

Synchronisation of the video and position data was enabled by inserting artificial move-
ment features, i.e. by moving the trolley backwards and forwards once at the beginning
and at the end of a dataset. These cues were manually aligned using IMU, video and
positioning data. The timestamps for the frames of the video from the tablet were ex-
tracted from the .mp4 using the Linux program ffprobe and transformed into tablet time
using a timestamp at the start of video recording. Unfortunately, this pretty coarse way
of obtaining timestamps was the only possibility since recording individual frames with
associated timestamps was not possible due to hardware limitations of the tablet. Since
the timestamps of the frames are used to associate PTAM and groundtruth poses, it is
likely that some deviation of PTAM from the groundtruth is due to this coarse way of
obtaining the timestamps.

As can be seen in Figures (6.1) and (6.2b) - (6.2d)), the dataset was recorded in a well

lit corridor without lots of texture rich areas. The left side of the corridor is a series of
windows whereas the right side is white except for several display cases. Only in the middle
part the right side opens up for a large staircase.

Figure ([6.2a}) shows the groundtruth path which was recorded by the localization algorithm
on the trolley. The run starts in the left segment of the hallway which is traversed three
times before entering the middle segment. In the middle, the trolley was pushed past
a staircase to enter the right segment of the hallway. The dataset has a length of 8:00
minutes and the trajectory is about 100 m long.

CHAPTER 6. EVALUATION 56

(b) Start Segment (c) Middle Segment (d) End Segment

Figure 6.2: Groundtruth path that the trolley was pushed with the Samsung Galaxy Tab
10.1 mounted on it. The dataset starts in the left segment of the corridor, which is traversed
three times. Then, after passing a staircase in the middle segment, the path ends on the
right.

The evaluation of the relocalization within PTAMs own map is split into three parts: (1)
the evaluation of the aNN search algorithm LSH for BRIEF feature matching, (2) the
evaluation of RANSAC vs. PROSAC pose recovery accuracy and (3) the comparison of
the relocalization accuracy of PTAMs original relocalization strategy vs. the BRIEF-based
relocalization algorithm.

6.1.1 LSH Parameter Selection for Binary Feature Matching

LSH is dependent on two parameters: the number of hash tables L and the number of bits
M that the hash code is composed off. Figure shows the contour lines of timing, the
precision and the percentage of matched features with respect to the aforementioned two
parameters M and L. Those plots are averages over ten times 100 queries on a database
of 15000 features.

The precision is defined as the number of correctly retrieved nearest neighbors over the
number of paired features:

|true nearest neighbors|

(6.1)

precision = -
|paired features|

CHAPTER 6. EVALUATION 57

The denominator is the number of matches for the query features since LSH might return
more matches than features queried. This is due to the fact that for one query feature
several features in the database might have the same minimal distance. Dividing by the
number of queried features would allow the precision to become greater than 100% which
would not make sense.

1 3 5 7 9 1113 1517 19 21 23 25 27 29 31 33 35 37 39
number of hash tables | number of hash tables |

(a) LSH Timing per Query [ms] (b) LSH Precision

11.13 ,
2221

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 3 5 7 9 1113 15 17 19 21 23 25 27 29 31 33 35 37 39
number of hash tables | number of hash tables |

(c) LSH Timing per Query [ms] with 90% and (d) LSH Percentage of Matched Features

95% Precision Areas

Figure 6.3: Timing, Precision and percentage of matched features for LSH over k and L.
The timings are given for the LSH search of the approximate NN of one feature in the
database. The contour line corresponding to the timing of exhaustive NN search is plottet
in red to allow easy comparison.

The size of the database was chosen by looking at the average number of features that
were visible in keyframes within a radius of 25 m around the last known pose. This is the
same map feature selection strategy as employed for the BRIEF-based relocalization in

CHAPTER 6. EVALUATION 58

PTAM. While the average number of features selected by this method was about 25k, the
number dropped down to as low as 15k. The LSH parameters were optimized for the 15k
map features case for security reasons: when the parameters are optimal for 15k features
but the actual number of map features is 25k, the matching takes slightly longer and is
more precise. In the opposite case, when parameters would be selected for 25k features
but there were actually only 15k features in the map, queries would be faster and less
precise. Therefore, selecting optimal features for the lower end of the number of expected
map features ensures high precision at the cost of slightly longer matching times.

It is also important to look at the percentage of matched features since LSH is not guar-
anteed to always find a match for a given query feature as explained in Section (3.3.1)).
The reason is that the hash code of the query feature might map to an empty bucket
in the hash table. This happens more often as the number of bits M for the hash code
increases. This can be seen in Figure (6.3d]). The cause for this observation is, that the
number of bins that can be distinguished with M bits in the hash code is 2 and hence
grows exponentially. For N features in the database, empty buckets in the hash tables
become increasingly probable for M > logy(N). With N = 15000 in the database of this
experiment, empty buckets are likely to occur for M > log,(15000) = 13.87. This can be
observed in Figure (|6.3d)).

The plots in Figures (6.3a)) and (6.3b]) were used to determine a pair of parameters suitable
for the use on a mobile device with a limited amount of memory and computational power.
Since the memory requirements scale linearly with the number L of hash tables, a good pair
of parameters will have a low value for L. A second constraint is that the precision for a
query should be 95% or more. For convenience refer to Figure (6.3c) which shows the areas
of precision greater than 90% and 95% shaded in gray. As can be seen from Figure ,
this constraint also means that the matching probability will be 100%. This is desirable
if only very few features are queried. To satisfy the requirement of high computational
speed, the lowest possible computation time on the curve of 90% precision can be found in
Figure . The parameters M = 14 and L = 11 were chosen as the optimal parameters
for the deployment of LSH retrieval in a mobile device. Consequently, this parameter
configuration was used in all subsequent evaluations.

With a computation time of 59 us per query LSH search with M = 14 and L = 11 is
more than 23 times as fast as the exhaustive NN search which takes 1.38 ms. The memory
usage of eleven hash tables storing 15000 features each is 4.38 MiB. The C++ Standard
Template Library map container was used to for the implementation of the hash tables.
The size in memory does not include the storage required for the BRIEF descriptors since
the hash tables only hold pointers to BRIEF descriptors. The memory consumption was
measured using the valgrind tool massif. If an even smaller memory footprint is desired, the
parameter configuration of for example M = 11 and L = 7 can still provide 90% precision
while taking about 89 us per query. This still presents more than a 15-fold speedup over
exhaustive NN search. Only 2.20 MiB of memory are necessary to store the seven hash
tables of this configuration.

CHAPTER 6. EVALUATION 59

When comparing the timings of LSH in Figure with the exhaustive NN search
timing of 1.38 ms per query, the question arises why LSH performs significantly worse for
parameter configurations with small hash function lengths M. The reason is that there are
2M buckets in any of the L hash tables. For small numbers of M there are only few buckets
in comparison to the number of features that has to be stored in the hash tables. Therefore,
the hash buckets contain many elements (on average N/2). This means, that the set of
potential candidates for a query features becomes large as well (on average L x N/2M).
The overhead which leads to longer execution time comes from the removal of duplicated
database features from the candidate set. Since smaller values of M and larger values of
L lead to larger candidate set sizes, this overhead increases for smaller M and larger L as

can be verified in the timing Figure (6.3a)).

6.1.2 RANSAC vs. PROSAC for BRIEF-based Pose Recovery

A standard RANSAC algorithm as introduced in Section was implemented and
compared against the slightly more complicated PROSAC algorithm. The best pose es-
timate from either of the algorithms was refined using a small number of M-Estimator
iterations. The 2D-3D BRIEF feature correspondences were established using LSH.

For the evaluation, relocalizations within an original PTAM map were simulated. It is
important to note that for each relocalization, the algorithms did only know of the features
which PTAM would have observed prior to the relocalization. This resembles exactly the
situation that the algorithms would encounter in a real relocalization situation.

Using this setup, the precision and the timing of the localization procedure with respect to
the maximal number of pose samples I for both RANSAC and PROSAC was evaluated.
For each query frame both algorithms were run five times to account for the inherent and
deliberate randomness of the algorithms. The inlier threshold was set to ten pixels.

Figures ([6.4) and (6.5) show the probability of the algorithm to localize within a certain
radius r around the pose estimate tpran of PTAM:

precision(r) = P (|[tpram — test|]2 < 7)), (6.2)

where t is the translation estimated by the respective algorithm.

As can be seen in Figures and (6.5]), PROSAC needs to sample less poses in order
to obtain a high precision pose estimate. This becomes especially clear when looking at
I € {1,3}. Therefore PROSAC has a higher probability of sampling a good pose. The
main difference between PROSAC and RANSAC is the sorting of all feature matches
according to their Hamming distance. Hence, this result confirms that a low Hamming
distance between matching BRIEF features provides a good measure for the correctness
of the association.

CHAPTER 6. EVALUATION 60

—
~
=)

. -1 H
09. -|=3 7 60
0.8H [I1=10 M &
[11=30 H E 50
0_7. |:||=100 g
s 0.6H E1=300 (oo df | [M........ *E 40
2 o ImI=1000f MW . T
8
........ o 30
S
...... 2 20
...... £
......................... 10
0 — ” = = 0
0.1 0.5 1 2 3
radius [m] around PTAM pose maximum number of iterations |

Figure 6.4: Accuracy and timing of the relocalization using LSH for feature matching and
RANSAC combined with a M-Estimator for pose estimation.

1 r T T T T 5
= k
0_9. -|=3 e
0.8H [I1=10 & 4
[11=30 i E _
0_7. |:||=100 g
< 0.6H E1=300 oo [M........ '}E 3 o
2 Il I-1000 =
8 05.] - 8
E_ 04 . ~ E.) 2
0.3F ug
0.2. g 1
01 P 1| (|t |
0 — ” = = 0
0.1 0.5 1 2 3
radius [m] around PTAM pose maximum number of iterations |

Figure 6.5: Accuracy and timing of the relocalization using LSH for feature matching and
PROSAC combined with a M-Estimator for pose estimation.

The timings of RANSAC and PROSAC are displayed in the left plots in Fig-
ures and . Especially for large numbers of sampled hypothetical poses I,
RANSAC needs significantly more time than PROSAC. This is due to the maximality
stopping criterion which is employed by PROSAC to terminate early in case the prob-
ability that a better solution exists and was not yet found is smaller than 1%. Hence
PROSAC ist faster because the algorithm does not sample the maximal number of poses
I. The increased speed leads to slightly smaller precision for large I € {100,300, 1000}. In
this range of I, RANSAC delivers slightly more accurate position estimates. This however

CHAPTER 6. EVALUATION 61

comes at the prize of a more than three times longer computation time in comparison to

PROSAC.

In the following evaluations of the BRIEF-based relocalization algorithm, PROSAC was
used for robust pose recovery due to its higher efficiency. From the evaluation in Fig-
ure it was deduced that sampling 100 hypothetical poses within PROSAC offers a
save trade-off between a high computational speed of below 4 ms and high localization
precision. If even less time should be consumed, sampling as few as 30 poses could also be
sufficiently accurate while recovering a camera pose in less than 3 ms.

6.1.3 Relocalization Accuracy Comparison

The accuracy of the location estimate of PTAM is evaluated by looking at the distances
of pose estimates of PTAM from the groundtruth poses. The poses are associated using
their timestamps.

Before the distances can be evaluated, PTAMs trajectory has to be rescaled and trans-
formed into the groundtruth coordinate system. The transformation of PTAM coordinate
poses into the groundtruth/world coordinate system “T\piam is defined as

troll
prtam - throlley o eyTptam (63)

where the transformation from trolley into world coordinates “Ti,opey is determined by the
mounting position of the tablet and the transformation from PTAM into trolley coordinates
troneyTptam is a rotation, to align the forward movement direction in PTAM coordinates
and in trolley coordinates.

Since PTAM can only estimate the trajectory up to scale, it is necessary to rescale PTAM
to allow meaningful comparison with the groundtruth. For the following evaluation, the
scale of the PTAM trajectory was estimated using the time associations between PTAM
and groundtruth poses. Essentially, the scale is determined such that it minimizes the sum
of squared differences between groundtruth and rescaled PTAM poses at equal times.

Before the relocalization accuracy can be evaluated, it is important to see how well PTAM
is able to estimate the trajectory of the dataset. In Figure four plots of the deviation
of PTAMs trajectory estimate from the groundtruth path. These trajectories are without
relocalizations. It becomes clear that while the localization accuracy is less than 0.25 m
up to about 400 s into the dataset, the deviation increases drastically at the end of the
dataset. This can be explained by wrong position estimation of features at the end of the
hallway which have been observed almost the whole dataset. Since they were observed
from far away, their constraints in the image space are fairly coarse and thus might lead to
wrong position estimates. Wrong feature position estimates in turn lead to deviations of
the pose estimates from the groundtruth. It is important to keep these deviations at the
end of the dataset in mind when evaluating the relocalization accuracy. It is assumed, that

CHAPTER 6. EVALUATION 62

the coarse timestamp extraction from the .mp4 video contributes to some of the variations
in the deviation from the groundtruth.

=15 : =15 =15 =15
= ——distance = = =
< . < < <
5 mean dist. 5 5 5
B 1} —reloc. marker T A B 4 3 4
c c c c
3 3 3 3
>) > >
[e]] [e]]
= 0.5 =05 = 0.5 =05
N A R e e e i
: o g Lt B MW b
2 OM "oyt 2 o bk 2 2,
100 200 300 400 100 200 300 400 100 200 300 400 100 200 300 400
time [s] time [s] time [s] time [s]

Figure 6.6: Accuracy of PTAMs trajectory estimation on the same evaluation dataset
without relocalization.

The relocalization accuracy of PTAMs keyframe-based relocalization scheme is compared
with the relocalization algorithm using BRIEF features, LSH for matching and PROSAC
with consecutive robust LM iterations for pose recovery as proposed in Section . The
behaviors of both algorithms are evaluated in two different relocalization scenarios: (1)
relocalization in a previously traversed area and (2) relocalization in an area which has
been observed but not passed before and therefore does not have keyframes associated
with it. Figure shows the positions that were selected for the evaluation. For this
experiment code was added to the original PTAM implementation which allows to force
relocalization at a specific frame in the video dataset. After artificially triggering the
relocalization no frames are handed to PTAM for 10 s to simulate a longer tracking failure.
After this pause normal operation is resumed and PTAM uses the first frame after the
break for a first relocalization attempt.

Figure 6.7: The red circles denote the positions at which relocalization was triggered for the
accuracy comparison. The left position is the scenario for relocalization within a previously
traversed area. The right position was selected to test pose recovery in an area which has
not been visited before.

Figure shows the deviation of PTAMs pose estimates from the groundtruth for the
relocalization scenario within an already visited area. Relocalization is triggered after 1500
frames or about 130 s at the position of th left red circle in Figure (6.7). The upper row of

CHAPTER 6. EVALUATION 63

plots corresponding to PTAMs built in relocalization algorithm show significant deviations
from the groundtruth after relocalization. This is despite of the fact that PTAM was
designed for relocalization within areas densely populated by keyframes. The problem is
the repetitive structure of the hallway which PTAMSs native relocalization strategy was not
designed to handle. As can be seen from the average distances to the groundtruth after
relocalization, the hallway seems to have repetitive elements every 4 m. This could be the
windows on the left side of the corridor which are about 4 m apart from each other.

E6 6 E6 €6

= = = =

E E 3 El

B4 B4 B4 B4

5 !5 - e 3 W

> > >)

22 22 22 22

3 3 3 3

c c c c

© [v} © [o]

B Lo, B e, B L B L |

T Qe T 0 il T 0 SR o T |

50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200
time [s] time [s] time [s] time [s]
€038 ' 038 €08 038
E 7d|stancg E E E
206 mean dist. 206 206 206
s} —reloc. marker s} s s}
c c o c
3 3 3 3
504 50.4 504 5)0.4
: NI Ml 2 Bl 2 W)
802 PN 8 0.2 WY 8 02 (M g 00 AN
g) (IR < Wl A I <Rl DY hev Wl ey
s i AM UAV'h‘) S A ll.lV whn) S i M‘ s, S " ‘W'M 1.
3 MY 3 WY 3 Ll 3 R
T 0 5 0 T 0 °
50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200

time [s] time [s] time [s] time [s]

Figure 6.8: Deviation from groundtruth when relocalization is triggered in the first segment
of the corridor after the second traversal. The area is thus already explored and PTAM has
inserted keyframes around the relocalization position. Top row: relocalization mechanism
of PTAM is used. Bottom row: BRIEF-based relocalization is used.

In contrast to that, feature-based relocalization is able to cope with the repetitive structure
of the hallway. The average distance before and after relocalization are almost equal and
well below 0.50 cm as can be seen in the bottom row of Figure . This shows the ad-
vantage of BRIEF descriptors which can capture the appearance of fine grained texture in
the environment. The BRIEF-based relocalization algorithm is able to identify the correct
location even in the presence of repetitive elements in the hallway. The keyframe-based
approach, however, cannot distinguish the places because it discards all detailed informa-
tion by down-sampling and blurring the images in order to make a similarity ranking using
ZMSSD feasible.

Results for the relocalization scenario in an unexplored area are plotted in Figure .
The position selected for to evaluate pose recovery accuracy is marked by the right red circle
in Figure (6.7). The deviations for PTAMs built-in relocalization algorithm are even larger

CHAPTER 6. EVALUATION 64

than in the first scenario. In fact, the algorithm is never able to recover from the tracking
loss which can be seen from the relocalization marker. In the second row of plots the
relocalization accuracy is plotted for the proposed BRIEF-based relocalization algorithm.
While at first sight it looks like the algorithm would fail to recover the pose correctly.
When these plots are compared with PTAMs trajectory estimates without relocalization
in Figure it becomes clear that the large deviations after relocalization are due to the
failure of PTAM to estimate the 3D structure of the environment correctly as discussed
above.

T 60 : T 60 £ 60 £ 60
= ——distance = = =
5 mean dist. E] = E]
S 40(| —reloc. marker 3 40 S 40 S 40
> > > >
< o o o
(o] (o] o (o]
220 220 220 220
8 3 3 3
5 S S 5
B B B B Il
S 0 S 0 = —— S —
100 200 300 400 100 200 300 400 100 200 300 400 100 200 300 400
time [s] time [s] time [s] time [s]
1.5 €15 €15 €15
£ £ £ s
= = 2 =
g 1 M81 ME1 ME1 m
>3]) >
[o o o
(o] (o)) o (o))
205 205 205 205
[0 [0} [0] [0}
o [8] [&] [$]
c o C C
I FM.M’Llu s MMM\.A 8 MMMMN..L IS NMM.
2o W il U W il 2 U iz e
100 200 300 400 100 200 300 400 100 200 300 400 100 200 300 400
time [s] time [s] time [s] time [s]

Figure 6.9: Distance to groundtruth over a longer run of PTAM. Relocalization is triggered
in the last segment of the hallway. The algorithms need to relocalize in an unexplored area
without keyframes. Top row: relocalization mechanism of PTAM is used. Bottom row:
BRIEF-based relocalization is used.

On average the BRIEF-based relocalization takes 169 ms with a standard deviation of
36 ms and had to be executed only once in each test. This time measurement includes
everything from BRIEF feature extraction to pose refinement. While relocalization takes
only about 90 ms in case the number of features selected from the map is around 15k, the
average number of map features is 25k as pointed out in the beginning of Section (|6.1.1]).
Therefore matching elongates the time for relocalization. In any case, with an average
timing of 169 ms, the whole BRIEF-based relocalization is much faster than extracting the
same number (around 700) of SURF features from an image.

In comparison, PTAMs built in relocalization algorithm takes about 1 ms but either relo-
calize to an incorrect position or failed to relocalize at all. This can be assumed since the
relocalization algorithm was called over and over again (see top row of Figure)

CHAPTER 6. EVALUATION 65

before relocalization
—— after relocalization , ,/

N
N [$)]
T
» a
o (=]

—_
T
n
o
T

before relocalization
—— after relocalization

average distance to groundtruth [m]
o

average distance to groundtruth [m]
w
o

I
&
:
—
=)

2 4 6 8 10 12 14 2 4 6 8 10 12 14
time for relocalization [s] time for relocalization [s]

(a) First Relocalization Scenario (b) Second Relocalization Scenario

Figure 6.10: Impact of the time it takes the algorithm to relocalize on the localization
accuracy. The average distance to groundtruth is shown before and after relocalization for
different timings of the relocalization algorithm. Note that the high average deviation form
groundtruth for the second scenario is due to PTAMs failure to estimate the structure of
the environment correctly at the end of the corridor.

Figures and show the average deviations from groundtruth before and after
relocalization for the two relocalization scenarios. The mean distances to groundtruth are
plotted against the time it takes the relocalization algorithm to recover the pose of the
camera. For this evaluation, the BRIEF-based relocalization algorithm was used. The time
for relocalization was artificially elongated to evaluate the ability of PTAM to cope with
long relocalization delays. This capability is important since the pose is computed from
the frame when relocalization is triggered. Due to the time taken by the pose recovery
algorithm, this pose is already outdated once it is available. Hence the visual odometry
system has to be able to restart tracking from a pose that does not exactly reflect the true
pose at that instance in time.

From Figures and it is clear, that PTAM is able to continue tracking even
if the relocalization takes up to 10 s in the first scenario and up to 3 s in the second
scenario. The higher tolerance to long relocalization times in the first scenario stem from
the fact that the relocalization happens in a well explored area. Compared to the average
relocalization time of 169 ms a tolerance of 10 s or even 3 s is a long period of time.
Therefore it is save to assume that the BRIEF-based relocalization algorithm is able to
recover the camera pose fast enough to allow PTAM to continue tracking in time.

CHAPTER 6. EVALUATION 66

Figure 6.11: The map created while recording the image dataset used for the evaluation

of global localization (from [HSH*12a]).
6.2 Localization in a Global Map

For the performance evaluation of the BRIEF-based CBIR algorithm for localization in
a large map, the indoor dataset of TUM [HSHT12a] was used. The dataset is comprised
of 9438 LadyBug3 images and 3146 high resolution DSLR images. These images were
recorded with the trolley described in [HSH'12a] from a complete traversal of the first
floor of the TUM main campus in the center of Munich. The map created during this run
is displayed in Figure ([6.11]).

From the dataset of high resolution DSLR images and a 3D point cloud recorded with two
high resolution laser scanners, a virtual views database was created using the same code as
in [HSH*12b]. The virtual view dataset consists of around 100k images from which about
10M BRIEF descriptors were extracted.

Unfortunately, the lighting conditions in the database images and the Android video
datasets used in previous section differ significantly. Thus a different query dataset was
used. The images for the query are associated with poses in the groundtruth coordinate
system and can thus be used to evaluate localization accuracy. The query dataset is the
same as used in [HSHT12b| and the results are thus directly comparable.

CHAPTER 6. EVALUATION 67

6.2.1 LSH Parameter Selection for the kBM Quantizer

The typical quantizer size exhibiting good CBIR results consisted of 200k visual words. In
order to optimally tune the performance of LSH for the kBM clustering and quantization,
the performance of LSH as an aNN algorithm for matching against 200k centroids was
evaluated. These results were collected on an Intel(R) Xeon(R) CPU X5660 running at
2.80GHz. For each parameter configuration 20 different randomly sampled query sets
of 100 BRIEF features each was matched against the 200k centroids obtained by kBM
clustering of a Virtual Views dataset.

In contrast to the line of argumentation for optimal parameter selection in Section (6.1.1)),
there are no memory restrictions in this scenario, since all computations are performed
offline on a powerful server. This means that the parameter configuration is chosen which
minimizes time consumption while maintaining a high retrieval precision. Additionally,
it is important that the percentage of matched features is at 100% especially for the
quantization of query features, where it is not acceptable to not get a matching centroid.

By looking at the joint plot of timing and precision performance in Figure (6.12d), M = 19
and L = 31 was found to be a good parameter set. This configuration has 90% retrieval
precision at matching times of about 560 us per query. Compared to 5.3 ms for exhaustive
NN search, this presents more than a nine-fold speedup. The memory footprint of the
31 hash tables storing 200k centroids each was measured to be 138.8 MiB. Again, the
hash table implementation utilizes a Standard Template Library map container which
hold pointers to the binary centroids. The memory consumption was determined using the
valgrind tool massif.

The clustering of 20Mio features into 200k clusters can be done in about 4.5 h using 24
threads on a twelve core Intel(R) Xeon(R) CPU X5660 running at 2.80 GHz. The kBM
clustering is terminated after 30 iterations. This is a reasonable time for the generation of
a kBM quantizer since this has to be done only once for each image database.

6.2.2 Localization Precision of Virtual Views CBIR

As outlined in Chapter , CBIR on a virtual views image database is used to perform
large scale localization. In order to evaluate the localization precision, poses within a
radius r of 5 m around the true location are declared a correct localization. Any pose
outside this radius is defined as a wrong pose estimate. The localization precision at rank
¢ is then defined as

precision(i) = [top @ poses W?thin radius 7| ' (6.4)
i

For the evaluation different vocabulary size of 100k, 200k and 500k visual words were
created and their localization performance tested. Precisions are averaged over ten times

CHAPTER 6. EVALUATION 68

1 St

length of hash functi

/ L L L L L L L L L L L L L L L L L L
1 83 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39
number of hash tables | number of hash tables |

(a) LSH Timing per Query [ms] (b) LSH Precision

m
NN
w »

21 1§21

length of hash func
length of hash functi

- W 0 N © = W o N ©
T

- W o N
I —

13 5 7 9 1113 1517 19 21 23 25 27 29 31 33 35 37 39 13 5 7 9 1113 1517 19 21 23 25 27 29 31 33 35 37 39
number of hash tables | number of hash tables |

(c) LSH Timing per Query [ms] with 90% and (d) LSH Percentage of Matched Features
95% Precision Areas

Figure 6.12: Timing, Precision and percentage of matched features for LSH over k and
1. The timings are given for the LSH search of the approximate NN of one feature in the
database. The contour line corresponding to the timing of exhaustive NN search is plottet
in red to allow easy comparison.

the same sequence of 252 query images. Multiple evaluations of of the same query image is
important since LSH is used for BRIEF feature quantization. The slightly random outcome
of the image retrieval stems from the parameter set of M = 19 and L = 31 found in the
previous section which has only 90% precision. The average query timings were measured
running 24 threads on a twelve core Intel(R) Xeon(R) CPU X5660 with 2.80 GHz clock
frequency.

CHAPTER 6. EVALUATION 69

0.95
0.9
0.85
0.8
0.75
0.7
0.65

o
o))

0.55

0.45

o
~

precision at cutoff rank
o
[¢)]

0.35
0.3
0.25
0.2
0.15
0.1
0.05

1 3 5
cutoff rank

Figure 6.13: Localization precisions at ranks 1, 3 and 5 for BRIEF-based CBIR on Virtual
Views databases. The feature databases were constructed from single scale images. For
the kBM precision results the 3-sigma errors are plotted as well. These are unfortunately
not known for the localization precision of CBIR using AKM and SURF features.

Figure shows the results of the localization accuracy evaluation of BRIEF-based
CBIR on Virtual Views databases. The significant difference in precision from the 100k
vocabulary to the 200k and 500k vocabulary shows that 100k visual words are not sufficient
for CBIR using binary features. While the 500k binary means quantizer shows the highest
precision, the difference in performance between 200k and 500k visual words is only small.
With a time of 0.90 ms, the quantization of a query feature using the 500k vocabulary
takes almost three times as long as if the 200k quantizer with a timing of 0.37 ms is used.
Additionally, the 500k quantizer needs 16 MB of storage whereas the 200k version is only
6.2 MB large. Therefore, the 200k visual words quantizer offers the best trade off between
speed and localization precision while consuming significantly smaller disk space than the
500k quantizer.

Chapter 7

Conclusion

In this thesis, two algorithms based on binary features were developed: the first algorithm
utilizes LSH to establish 2D-3D correspondences which are then used by PROSAC to
estimate the pose of the camera. Deployed in a visual odometry system, this algorithm
can be used for relocalization in case of tracking loss. The second algorithm allows large
scale localization of a camera via CBIR from a Virtual Views database. This makes the
initialization of a visual odometry system’s position in large indoor environments possible.
Extensive evaluations were conducted to aid parameter selection for these algorithms.

A thorough evaluation of the LSH matching algorithm was conducted to allow optimal
parameter selection for fast and precise BRIEF descriptor matching. For relocalization in
PTAM, a parameter set was selected offering more than 90% precision while reducing the
query time by a factor of 23 in comparison to exhaustive NN search. The low memory
consumption of only around 4.4 MiB for typical database sizes of 15k features makes this
LSH configuration suitable for deployment on a hand-held device. By relaxing the memory
constraints, a configuration for LSH within the kBM quantizer was found which, at above
90% precision, speeds up the matching process by a factor of nine. Consuming around
140 MiB of memory for a 200k visual word quantizer, this parameter set was selected for
BRIEF-based CBIR on a server. Optimal parameters for differing requirements can be
found using the timing and precision contour plots.

The comparison of RANSACs and PROSACs positioning accuracy indicated that the Ham-
ming distance between matched BRIEF features can be utilized as a measure of pairing
quality. This was deduced from the higher accuracy of pose recovery using PROSAC as
opposed to RANSAC when sampling the same number of hypothetical poses. PROSAC
prefers BRIEF matches with lower Hamming distance for pose computation. Sampling
from low Hamming distance features first yields better pose estimates.

The built-in localization mechanism of PTAM was replaced with the proposed BRIEF-
based algorithm. This was shown to yield robust pose recovery in typical sparsely textured
and repetitive indoor environments. Hence, it can be assumed that BRIEF features can

70

CHAPTER 7. CONCLUSION 71

replace other more complex feature descriptors like SURF which have been used in related
work. This leads to significant speed ups: with an average duration of around 169 ms,
the whole BRIEF-based relocalization procedure takes less than half the time necessary to
solely extract the same number of SURF features (450 ms for 700 SURF features [CLSE10]).

Using a voting approach, the classical k-means algorithm was adapted for the clustering of
bit-strings in high dimensional Hamming spaces. The resulting k-Binary Means algorithm
combined with LSH for fast approximate matching was used as quantizer for binary feature
bit-strings. This kBM quantizer was deployed in a CBIR system to enable large scale
image-retrieval-based localization. Evaluated on a Virtual Views image database, this
localization system matched the performance of a state of the art SURF-based CBIR
system. Since kBM is not a hierarchical quantizer, location specific partial vocabularies as
proposed in [SHCT11] could be created to allow CBIR on a mobile device.

In conclusion, it was shown that the binary feature descriptor BRIEF can successfully
replace more complex descriptors like SURF without loss in localization precision. The
benefits are twofold: (1) BRIEF extraction is about 40 times faster than SURF extraction
and (2) BRIEF needs eight times less storage than the commonly used SURF descriptor.
Therefore, the use of binary features is highly recommended. It can be assumed that
binary features are key to robust and lightweight localization of hand-held devices.

Chapter 8

Outlook

This chapter summarizes possible future research directions and open questions that arose
during the work on this thesis.

As reviewed in Section there are several more sophisticated binary feature descrip-
tors like ORB, BRISK, or FREAK, which promise to be more invariant to rotation and/or
scale changes. While the BRIEF descriptor was used in this thesis to obtain base line re-
sults for binary descriptors, it is assumed that these more invariant binary features would
yield further improvements at least for the relocalization. It would thus be interesting to
evaluate the algorithms performance with the other binary features. The FREAK descrip-
tor, which is supposedly scale and rotation invariant, would be a good starting point.

The implementation of the BRIEF-based relocalization algorithm for PTAM does right
now simply store all BRIEF descriptors of all observations of a 3D feature in keyframes
and builds new LSH hash tables each time relocalization is performed. This waists a lot of
computation time especially if many relocalizations are performed. Thus an improvement
to the current implementation would be to have a separate thread that manages the binary
features. This thread would incrementally add binary features to one instance of LSH as
they are observed. Additionally, this thread could take care of discarding old binary
features or ones that are duplicates of features already in the hash tables. This would
potentially reduce the number of binary features in the hash tables and thus speed up the
matching of query features in the case of relocalization.

In related work on CBIR systems for large scale localization, a geometric post verification
of the top-ranked images is performed to detect the retrieved images which can explain
the query image under some rigid body motion. For this extra filtering step a hypothesize-
and-verify algorithm is used to estimate the transformation between the query and the
database image. If the algorithm is not able to find a transformation with enough inlier
feature associations the database image is discarded as a potential match. It would be
interesting to add a geometric verification step to the CBIR localization pipeline to see
how much the localization precision could be improved by such an extra filtering step.

72

CHAPTER 8. OUTLOOK 73

The implementation of BRIEF-based localization on a cellphone is another future direction
of work. It is unclear whether the processor architecture on a cellphone can handle binary
feature extraction and Hamming distance computation as efficiently as modern laptop or
desktop computers. As a starting point, BRIEF-based CBIR for global localization could
be ported onto an Android device.

With the implementation of large scale localization on a hand-held device, it also becomes
interesting how the bit-strings of the binary features are best encoded for the transmission
to a central server. This transmission is necessary to allow the server to support localization
based on CBIR by i.e. transmitting a partial vocabulary of the surrounding area back to
the cellphone.

Once the large scale localization in a client server architecture has been developed, the
question becomes what else besides the pose estimate should be transmitted back to the
hand-held device. One possibility would be to send a small set of features and their 3D
positions in the world coordinate frame back to the cellphone. A visual odometry algorithm
on the mobile device could use those features to initialize its own map of the environment.
Not only would this allow for a very simple and fast map initialization wich would not
require user interaction but it would also implicitly initialize the scale of the map on the
cellphone correctly.

List of Figures

[1.1 Google Indoor Maps on an Android Phone| 2
(1.2 Overview over the Proposed Visual Localization Architecture/. 3
[2.1 Tracking and Mapping View of the PTAM Program|. 16
[2.2 Geometry of the Rotation Refinement in PTAMs Relocalization Algorithm| 19
[3.1 Image Intensity Comparison Pattern for BRIEF Descriptor Extraction|. . . 24
[3.2 Correlation and Mutual Information within BRIEF bit strings| 25
[3.3 Geometry of the 3-Point Pose Problem| 31
[3.4 Schema of the Relocalization Algorithm using Binary Features| 36
[4.1 Schema of CBIR using BRIEF Features|. 43
[4.2 Schema of Image-retrieval-based Localization using BRIEF Features| 45
[>.1 Android Datalogger Application| 49
6.1 Samsung Galaxy Tab 10.1 mounted on the NAVVIS Trolleyl 55
6.2 Groundtruth of the Dataset for Fivaluation of PTAM| 56
[6.3 LSH Timing, Precision and Percentage ot Matched Features| 57
6.4 RANSAC and M-Estimator Relocalization Accuracy and Timingf. 60
6.5 PROSAC and M-Estimator Relocalization Accuracy and Timing| 60
[6.6 Accuracy of PTAMs Trajectory Estimation|. 62
[6.7 Positions for Relocalization Accuracy Evaluationl. 62
[6.8 Relocalization Accuracy in the Middle of Known Areal. 63
[6.9 Relocalization Accuracy in an Unexplored Area] 64
[6.10 Impact ot Time for Relocalization on Localization Accuracy] 65
[6.11 Map of the First Floor ot TUM| 66
[6.12 LSH Timing, Precision and Percentage ot Matched Features| 68

[6.13 Localization Precision of BRIEF-based CBIR on Virtual View Databases . 69

74

List of Tables

[>.1 Directory Structurel

75

Bibliography

[Agr06]

[AOV12]

[AWK*09]

[Binl1]

[BMO4]

[BTVGO6]

[BWSS10]

[CLSF10]

M. Agrawal. A lie algebraic approach for consistent pose registration for gen-
eral euclidean motion. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 1891-1897, Beijing, China, 2006. IEEE.
[

A. Alahi, R. Ortiz, and P. Vandergheynst. FREAK: Fast retina keypoint. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (To
Appear), Providence, Rhode Island, 2012. IEEE.

C. Arth, D. Wagner, M. Klopschitz, A. Irschara, and D. Schmalstieg. Wide
area localization on mobile phones. In IEEE International Symposium on
Mized and Augmented Reality (ISMAR), pages 73-82, Orlando, Florida, USA,
2009. IEEE. 23

Bing. Indoor maps. http://www.bing.com/
community/site_blogs/b/search/archive/2011/08/03/
new-airport-maps-for-bing-and-mall-maps-come-to-mobile.aspx,
2011. [

S. Benhimane and E. Malis. Real-time image-based tracking of planes using
efficient second-order minimization. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), volume 1, pages 943-948, Sendai,

Japan, 2004. IEEE. [17]

H. Bay, T. Tuytelaars, and L. Van Gool. SURF: Speeded up robust features.
European Conference on Computer Vision (ECCV), pages 404-417, 2006. ,
B 23]

M. Blosch, S. Weiss, D. Scaramuzza, and R. Siegwart. Vision based mav nav-
igation in unknown and unstructured environments. In IEEFE international
conference on Robotics and automation (ICRA), pages 21-28, Anchorage,
Alaska, USA, 2010. IEEE.

M. Calonder, V. Lepetit, C. Strecha, and P. Fua. BRIEF: Binary robust
independent elementary features. Furopean Conference on Computer Vision

(ECCV), pages 778-792, 2010. [[3] 23] 24 [25] [36]

76

http://www.bing.com/community/site_blogs/b/search/archive/2011/08/03/new-airport-maps-for-bing-and-mall-maps-come-to-mobile.aspx
http://www.bing.com/community/site_blogs/b/search/archive/2011/08/03/new-airport-maps-for-bing-and-mall-maps-come-to-mobile.aspx
http://www.bing.com/community/site_blogs/b/search/archive/2011/08/03/new-airport-maps-for-bing-and-mall-maps-come-to-mobile.aspx

BIBLIOGRAPHY 7

[CMO5]

[CN10]

[CPIP10]

[CPMCCO6]

[Dav03]

[DBFT99]

IDFO1]

[DRMS07]

[Ead08]

[EDO6]

[FBS1]

[Fri33]

O. Chum and J. Matas. Matching with prosac-progressive sample consensus.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
volume 1, pages 220-226, San Diego, CA, USA, 2005. IEEE.

Mark Cummins and Paul Newman. Appearance-only SLAM at large scale
with FAB-MAP 2.0. The International Journal of Robotics Research (IJRR),
November 2010. B9

K. Chintalapudi, A. Padmanabha Iyer, and V.N. Padmanabhan. Indoor
localization without the pain. In ACM International Conference on Mobile
Computing and Networking (MobiCom), pages 173-184, Chicago, Illinois,
USA, 2010. ACM. []

D. Chekhlov, M. Pupilli, W. Mayol-Cuevas, and A. Calway. Real-time and
robust monocular SLAM using predictive multi-resolution descriptors. Ad-
vances in Visual Computing, pages 276-285, 2006.

A.J. Davison. Real-time simultaneous localisation and mapping with a single
camera. In IEEE International Conference on Computer Vision (ICCV),
pages 1403-1410, Nice, France, 2003. IEEE. [6]

F. Dellaert, W. Burgard, D. Fox, and S. Thrun. Using the condensation algo-
rithm for robust, vision-based mobile robot localization. In IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR),
volume 2, Ft. Collins, CO, USA, 1999. IEEE.

F. Devernay and O. Faugeras. Straight lines have to be straight. Machine
Vision and Applications, 13(1):14-24, 2001.

A.J. Davison, I.D. Reid, N.D. Molton, and O. Stasse. MonoSLAM: Real-time
single camera SLAM. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 29(6):1052-1067, 2007. [6] [L5]

E. Eade. Monocular simultaneous localisation and mapping. PhD thesis, PhD
thesis, University of Cambridge, 2008. []

E. Eade and T. Drummond. Scalable monocular SLAM. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), volume 1, pages 469—
476, New York, NY, USA, 2006. IEEE. [§

M.A. Fischler and R.C. Bolles. Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography.
Communications of the ACM, 24(6):381-395, 1981.

Gemma Frisius. Libellus de locorum describendorum ratione. In Cosmo-

graphica, 1533.

BIBLIOGRAPHY 78

[GIMOY)]

[GLT12]

[Gooll]
[HLON94|

[HSH*12a]

[HSH*12b]

[Huil0]

[HZ04]

[IMOS]

[TWKD12]

[JS11]

[KJRT11]

A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions
via hashing. In International Conference on Very Large Data Bases (VLDB),
pages 518-529, Edinburgh, Scotland, UK, 1999. [26]

D. Gélvez-Lépez and J.D. Tardos. Bags of binary words for fast place recog-
nition in image sequences. IEEE Transactions on Robotics, 2012. [38] B9
A4

Google. Indoor maps. http://www.google.com/mobile/maps/, 2011.

B.M. Haralick, C.N. Lee, K. Ottenberg, and M. Nolle. Review and analysis
of solutions of the three point perspective pose estimation problem. Interna-
tional Journal of Computer Vision (IJCV), 13(3):331-356, 1994.

R. Huitl, G. Schroth, S. Hilsenbeck, F. Schweiger, and E. Steinbach. TU-
Mindoor: An extensive image and point cloud dataset for visual indoor
localization and mapping. In International Conference on Image Process-
ing (ICIP), Orlando, FL, USA, September 2012. Dataset available at

http://navvis.de/dataset. [44]

Robert Huitl, Georg Schroth, Sebastian Hilsenbeck, Florian Schweiger, and
Eckehard Steinbach. Virtual reference view generation for CBIR-based visual
pose estimation. In ACM Multimedia (MM), Nara, Japan, October 2012.

ACM 2012. [, B8] 39} 44} [66]

Robert Huitl. Fast image retrieval for mobile location recognition. Master’s
thesis, Technische Universitdt Miinchen, Munich, Germany, 2010. [46] [47], [48]

bl 52 B3

Richard Hartley and Andrew Zisserman. Multiple View Geometry in Com-
puter Vision. Cambridge University Press, 2 edition, April 2004. [12] [13] [14]
1K

P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing
the curse of dimensionality. In ACM Symposium on Theory of Computing
(STOC), pages 604-613, Dallas, Texas, USA, 1998. ACM.

V. Indelman, S. Williams, M. Kaess, and F. Dellaert. Factor graph based in-
cremental smoothing in inertial navigation systems. International Conference
on Information Fusion (Fusion), 2012. [f]

E.S. Jones and S. Soatto. Visual-inertial navigation, mapping and localiza-
tion: A scalable real-time causal approach. The International Journal of
Robotics Research (IJRR), 30(4):407-430, 2011. [1] [f]

Michael Kaess, Hordur Johannsson, Richard Roberts, Viorela Ila, John
Leonard, and Frank Dellaert. iSAM2: Incremental smoothing and map-
ping with fluid relinearization and incremental variable reordering. In IFEE

http://www.google.com/mobile/maps/
http://navvis.de/dataset

BIBLIOGRAPHY 79

[KKD11]

[K1e08]

[KMO7]

[KMOS]

[KMO9]

[LCS11]

[LDBLO7]

[LMGY04]

[Low99]

[LS12]

[Ltd12]
[Mar63]

International Conference on Robotics and Automation (ICRA). IEEE, 2011.
0]

Nisarg Kothari, Balajee Kannan, and M Bernardine Dias. Robust indoor
localization on a commercial smart-phone. Technical Report CMU-RI-TR-
11-27, Robotics Institute, Pittsburgh, PA, USA, August 2011.

Georg Klein. PTAM code. http://www.robots.ox.ac.uk/~gk/PTAM/, 2008.

[15 [16} {46} [13

G. Klein and D. Murray. Parallel tracking and mapping for small AR
workspaces. In IEEE and ACM International Symposium on Mized and Aug-
mented Reality (ISMAR), pages 1-10, Nara, Japan, 2007. IEEE Computer

Society. [i, [T}, [6]

G. Klein and D. Murray. Improving the agility of keyframe-based SLAM.
European Conference on Computer Vision (ECCV), pages 802-815, 2008.

18} 22

G. Klein and D. Murray. Parallel tracking and mapping on a camera phone. In
IEEFE International Symposium on Mized and Augmented Reality (ISMAR),
pages 83-86, Orlando, Florida, USA, 2009. IEEE. [5 [6]

S. Leutenegger, M. Chli, and R.Y. Siegwart. BRISK: Binary robust invariant
scalable keypoints. In IEEE International Conference on Computer Vision
(ICCV), pages 2548-2555, Barcelona, Spain, 2011. IEEE.

H. Liu, H. Darabi, P. Banerjee, and J. Liu. Survey of wireless indoor position-
ing techniques and systems. IEEE Transactions on Systems, Man, and Cy-
bernetics (SMC), Part C: Applications and Reviews, 37(6):1067-1080, 2007.
il

T. Liu, A.W. Moore, A. Gray, and K. Yang. An investigation of practical
approximate nearest neighbor algorithms. Advances in neural information
processing systems, 17:825-832, 2004. 22]

D.G. Lowe. Object recognition from local scale-invariant features. In IEEFE
International Conference on Computer Vision (ICCV), volume 2, pages

1150-1157, Kerkyra, Corfu, Greece, 1999. IEEE. [3] [22]

T. Lupton and S. Sukkarieh. Visual-inertial-aided navigation for high-
dynamic motion in built environments without initial conditions. I[EEE
Transactions on Robotics, 28(1):61-76, 2012. , |§|

IndoorAtlas Ltd. http://www.indooratlas.com/, 2012.

D.W. Marquardt. An algorithm for least-squares estimation of nonlinear
parameters. Journal of the Society for Industrial and Applied Mathematics
(SIAM), 11(2):431-441, 1963.

http://www.robots.ox.ac.uk/~gk/PTAM/
http://www.indooratlas.com/

BIBLIOGRAPHY 80

[Mer11]
IMHB*10]

[MLOY]

IML12]

[MLS94]

[MSKS04]

[MTKWO03]

[Nok10]

INS06]

[OCLF10]

[OFLO7]

[RDO5]

[RDO6]

Meridian. http://www.meridianapps.com/, 2011.

E. Mair, G. Hager, D. Burschka, M. Suppa, and G. Hirzinger. Adaptive and
generic corner detection based on the accelerated segment test. Furopean
Conference on Computer Vision (ECCV), pages 183-196, 2010.

M. Muja and D.G. Lowe. Fast approximate nearest neighbors with automatic
algorithm configuration. In International Conference on Computer Vision
Theory and Applications (VISSAPP), pages 331-340, Lisboa, Portugal, 2009.
20

M. Muja and D.G. Lowe. Fast matching of binary features. In Conference
on Computer and Robot Vision (CRV), pages 404-410, Toronto, Ontario,
Canada, 2012. IEEE.

R.M. Murray, Z. Li, and S.S. Sastry. A mathematical introduction to robotic
manipulation. CRC Press Florida, 1994. [7]

Y. Ma, S. Soatto, J. Kosecka, and S. Sastry. An invitation to 3-d vision. from
images to geometric models, 2004. [7]

M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM 2.0: An
improved particle filtering algorithm for simultaneous localization and map-
ping that provably converges. In International Joint Conference on Artificial
Intelligence (IJCAI), volume 18, pages 11511156, Acapulco, Mexico, 2003.
[JCAL

Nokia. http://research.nokia.com/news/9505, 2010.

D. Nister and H. Stewenius. Scalable recognition with a vocabulary tree.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
volume 2, pages 2161-2168, New York, NY, USA, 2006. IEEE.

M. Ozuysal, M. Calonder, V. Lepetit, and P. Fua. Fast keypoint recognition
using random ferns. IEEFE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 32(3):448-461, 2010.

M. Ogzuysal, P. Fua, and V. Lepetit. Fast keypoint recognition in ten lines
of code. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 1-8, Minneapolis, Minnesota, USA, 2007. IEEE.

E. Rosten and T. Drummond. Fusing points and lines for high performance
tracking. In IEEFE International Conference on Computer Vision (ICCV),
volume 2, pages 1508-1515. IEEE, 2005. [16]

G. Reitmayr and T.W. Drummond. Going out: robust model-based tracking
for outdoor augmented reality. In IEEE/ACM International Symposium on
Mized and Augmented Reality (ISMAR), pages 109-118, Santa Barbara, CA,
USA, 2006. IEEE. [22]

http://www.meridianapps.com/
http://research.nokia.com/news/9505

BIBLIOGRAPHY 81

[Ros99)

[Ros12a]
[Ros12b]
[Ros12c]

[RRKB11]

[SANH*11]

[SEG+05]

[SHC*11]

[SLLO5]

[STY4]

SZ03]

[TMHFO0]

[TZ00]

P.L. Rosin. Measuring corner properties. Computer Vision and Image Un-
derstanding, 73(2):291-307, 1999.

Edward Rosten. GVars3. http://www.edwardrosten.com/cvd/gvars3.
html, 2012. [A7]

Edward Rosten. 1ibCVD. http://www.edwardrosten.com/cvd/index.
html, 2012. [A7]

Edward Rosten. TooN. http://www.edwardrosten.com/cvd/toon.html,
2012. (47

E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB: an efficient al-
ternative to SIFT or SURF. In IEEE International Conference on Computer
Vision (ICCV), pages 25642571, Barcelona, Spain, 2011. IEEE.

Georg Schroth, Anas Al-Nuaimi, Robert Huitl, Florian Schweiger, and Eck-
ehard Steinbach. Rapid image retrieval for mobile location recognition. In
IEEFE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), Prague, Czech Republik, May 2011.

R. Sim, P. Elinas, M. Griffin, J.J. Little, et al. Vision-based SLAM using
the rao-blackwellised particle filter. In IJCAI Workshop on Reasoning with
Uncertainty in Robotics, volume 14, pages 9-16, Edinburgh, Scotland, UK,
2005.

G. Schroth, R. Huitl, D. Chen, M. Abu-Alqumsan, A. Al-Nuaimi, and
E. Steinbach. Mobile visual location recognition. IFEFE Signal Processing
Magazine, 28(4):77-89, 2011. [39]

S. Se, D.G. Lowe, and J.J. Little. Vision-based global localization and map-
ping for mobile robots. IEEFE Transactions on Robotics, 21(3):364-375, 2005.
22

J. Shi and C. Tomasi. Good features to track. In IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition (CVPR), pages
593-600, Seattle, WA, USA, 1994. IEEE. [16]

J. Sivic and A. Zisserman. Video google: A text retrieval approach to object

matching in videos. In IEEFE International Conference on Computer Vision
(ICCYV), pages 1470-1477, Nice, France, 2003. IEEE. [ii] 8] [39]

B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon. Bundle adjustment
—a modern synthesis. Vision algorithms: theory and practice, pages 153-177,

2000. [T} [I§

P.H.S. Torr and A. Zisserman. MLESAC: A new robust estimator with ap-
plication to estimating image geometry. Computer Vision and Image Under-
standing, 78(1):138-156, 2000.

http://www.edwardrosten.com/cvd/gvars3.html
http://www.edwardrosten.com/cvd/gvars3.html
http://www.edwardrosten.com/cvd/index.html
http://www.edwardrosten.com/cvd/index.html
http://www.edwardrosten.com/cvd/toon.html

BIBLIOGRAPHY 82

[VALH*07]

[WBB02]

[WKRO7]

[WRM*08]

[WSRO7]

[YJHNO7]

[Zha96]

A. Varshavsky, E. de Lara, J. Hightower, A. LaMarca, and V. Otsason. Gsm
indoor localization. Pervasive and Mobile Computing, 3(6):698-720, 2007.

J. Wolf, W. Burgard, and H. Burkhardt. Robust vision-based localization for
mobile robots using an image retrieval system based on invariant features.
In IEEE International Conference on Robotics and Automation (ICRA), vol-
ume 1, pages 359-365, Washington DC, USA, 2002. IEEE.

B. Williams, G. Klein, and I. Reid. Real-time SLAM relocalisation. In IFEE
International Conference on Computer Vision (ICCV), pages 1-8, Rio de
Janeiro, Brazil, 2007. IEEE.

D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and D. Schmalstieg.
Pose tracking from natural features on mobile phones. In IEEE/ACM In-
ternational Symposium on Mized and Augmented Reality (ISMAR), pages

125-134, Cambridge, UK, 2008. IEEE Computer Society.

B. Williams, P. Smith, and I. Reid. Automatic relocalisation for a single-
camera simultaneous localisation and mapping system. In 2007 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 2784-2790,
Roma, Italy, 2007. IEEE.

J. Yang, Y.G. Jiang, A.G. Hauptmann, and C.W. Ngo. FEvaluating bag-
of-visual-words representations in scene classification. In ACM International
Workshop on Multimedia Information Retrieval (MIR), pages 197-206, Augs-
burg, Germany, 2007. ACM. [42]

Zhengyou Zhang. M-estimators. http://research.microsoft.com/en-us/
um/people/zhang/INRIA/Publis/Tutorial-Estim/node24.html} 1996. [I4]
151

http://research.microsoft.com/en-us/um/people/zhang/INRIA/Publis/Tutorial-Estim/node24.html
http://research.microsoft.com/en-us/um/people/zhang/INRIA/Publis/Tutorial-Estim/node24.html

	Contents
	Introduction
	Monocular Visual Odometry
	Related Work
	3D Computer Vision Preliminaries
	Lie Groups and Lie Algebras for 3D Vision
	From 3D to 2D Points
	The Levenberg Marquardt Algorithm
	Robust Parameter Estimation using M-Estimators

	Parallel Tracking and Mapping (PTAM)
	Tracking Thread
	Mapping Thread
	Keyframe-based Relocalization Algorithm

	Relocalization using Binary Features
	Related Work
	Relocalization Strategies
	Binary Features

	Binary Robust Features (BRIEF)
	Nearest Neighbor Search for Binary Features
	Locality-Sensitive Hashing (LSH)

	Pose Recovery from 2D-3D Feature Matches
	3-Point Pose Algorithm
	Hypothesize-and-Verify driven Pose Recovery

	Relocalization Algorithm

	Global Localization based on Binary Features
	Related Work
	k-Binary Means Clustering
	Content-based Image Retrieval (CBIR)
	CBIR Localization from Virtual Views

	Software Reference
	Binary Feature Search and Clustering
	PTAM Evaluation How-To
	Collecting Data with an Android Device
	Converting Tablet Data into a ROS bag
	Running PTAM

	Content-based Image Retrieval

	Evaluation
	Relocalization within PTAMs own Map
	LSH Parameter Selection for Binary Feature Matching
	RANSAC vs. PROSAC for BRIEF-based Pose Recovery
	Relocalization Accuracy Comparison

	Localization in a Global Map
	LSH Parameter Selection for the kBM Quantizer
	Localization Precision of Virtual Views CBIR

	Conclusion
	Outlook
	List of Figures
	List of Tables
	Bibliography

