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Abstract

This is the supplemental material for the paper “A Mixture of Manhattan Frames: Beyond the Manhattan World” [8]. We
derive the distributions involved in the split/merge proposals for the Mixture of Manhattan Frames (MMF). Additionally, we
give details for how we define a Gaussian distribution on rotations in 3D, as well as details for the Riemannian exponential
and logarithm operators for the manifold of the unit sphere S2.

1. Split/Merge Proposals for the Mixture of Manhattan Frames (MMF) Model
Here we derive split and merge proposals for the MMF model as well as their acceptance probability in an approach

similar to Richardson and Green [7]. Note that a merge involves moving all points from MF l and m into a new MF n and
then removing MFs l and m. Similarly, a split creates two new MFs l and m from a single MF n. Hence, both a split and
a merge change the number of parameters in the model. Specifically the parameters that change their dimension are the set
of MF rotations, R, and the set of covariances on the MF axes, Σ. The labels z and c remain the of same dimensions, only
the range for c changes from [1,K] to [1,K − 1] (merge) or from [1,K] to [1,K + 1] (split). Therefore, we employ the
theory of Reverse Jump Markov Chain Monte Carlo (RJMCMC) [4] to derive a proper acceptance probability. RJMCMC
is a generalization of Metropolis-Hastings MCMC [5] and provides a way of computing an acceptance probability when the
number of parameters changes between moves. In the following we first introduce RJMCMC before we derive split/merge
proposal distributions for the MMF as well as the respective acceptance probabilities.

We will see that the split/merge proposals as well as the acceptance probabilities are similar to what one would expect to
see when employing the Metropolis-Hastings algorithm. For this reason and because the MH algorithm is more well-known,
we chose to refer to the inference algorithm in the MMF paper [8] as to Metropolis-Hastings MCMC.

1.1. General Introduction of Reverse Jump MCMC

RJMCMC utilizes auxiliary variables to propose deterministic moves to change between model orders. In general the
RJMCMC algorithm executes the following steps when proposing a move:

1. Draw auxiliary variables v given the current state x from some proposal distribution q(v|x):

v ∼ q(v|x) . (1)

2. Apply a deterministic function f([x, v]) to generate the state after the move x̂ as well as auxiliary variables u:

f([x, v]) = [u, x̂] . (2)

By [x, v] we denote stacking of all parameters in x and v.

3. Accept the move from state x to state x̂ with probability

Pr (accept move) = min

{
1,
p(x̂)

p(x)

q(x|x̂)

q(x̂|x)
|det(Jf )|

}
, (3)

where the Jacobian Jf = ∂f([x,v])
∂[x,v] .
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As an example, suppose that we wanted to merge two clusters A and B parameterized by xA and xB into one clusters C
(with parameters x̂C). We would first sample an auxiliary cluster v from the current clusters:

v ∼ q(v|xA, xB) , (4)

where q(v|xA, xB) is some proposal distribution. Second, we would use a deterministic function f([xA, xB , v]) to generate
the parameters for the merged cluster x̂C . In this example, the deterministic function assigns the auxiliary cluster v to the
merged cluster C:

[u1,u2, x̂C ] = f([xA, xB , v]) = [xA, xB , v] . (5)

Therefore, the Jacobian Jf is the identity matrix which has determinant 1. Merge moves are thus accepted with probability

Pr (accept merge) = min

{
1,

p(x̂C)

p(xA, xB)

q(xA, xB |x̂C)

q(x̂C |xA, xB)

}
. (6)

1.2. RJMCMC Merge Moves in an MMF

In the following, we will give the RJMCMC algorithm for a merge proposal between two MFs as well as the acceptance
probability of the move. Note that the computation of the acceptance probability requires the probability of an inverse
proposal: the split proposal q(split). Since the details of the split proposal are not important for the derivation in this section,
we defer those details to the next section.

As outlined in the previous section, an RJMCMC merge proposal is executed in the following three steps:

1. Draw an auxiliary MF v parameterized by v = {cv, zv, wv, Rv,Σv,{1...6}} from the current MFs l andm parameterized
by xl = {c{c=l}, z{c=l}, wl, Rl,Σl,{1...6}} and xm = {c{c=m}, z{c=m}, wm, Rm,Σm,{1...6}}, where z{c=m} denotes
the set of labels zi for which ci = m.

We first assign all normals of MF l and m to MF v: cvc∈{l,m} = v, which corresponds to the proposal distribution:

q(cv{c∈{l,m}}|c) = δ(cv{c∈{l,m}} − v) . (7)

Second, we sample the axes assignments zv{ĉ=v} = {zvi }i:ĉi=v according to

q(zvi = j|wl, Rl,Σl,q) ∝ wlj p(qi; [Ml]j ,Σlj) . (8)

Next, given associations cv and zv , we optimize the rotation of MF v to obtain R?v starting (arbitrarily) from rotation
Rl – in our experiments the conjugate gradient optimization was not sensitive to initialization and Rl as well as Rn
were generally close to R?v . Then we sample Rv from a narrow Gaussian distribution over rotations with mean R?v:

q(Rv|zv, cv,q, Rl) = N (Rv;R
?
v(zv, cv,q, Rl),Σso(3)) = N ((R?Tv LogR?v(·)(Rv))

∨; 0,Σso(3)) , (9)

where LogR?v (R) : SO(3) → TR?vSO(3) denotes the logarithm map of R into the tangent space TR?vSO(3) around
R?v . The vee operator ∨ [2] extracts the unique elements of a skew-symmetric matrix W ∈ R3×3 into a vector w:
W∨ = w = [−W23;W13;−W12] ∈ R3. Σso(3) ∈ R3×3 is the covariance of the Normal distribution in TRµSO(3).
Refer to Sec. 2 for an in depth discussion.

Finally, we obtain samples for the axis covariances Σv,{1...6} according to the proposal distribution

q(Σv,{1...6}|cv, zv, Rv,q; ∆, ν) =

6∏
j=1

p(Σvj |zv, cv,q, Rv; ∆, ν) , (10)

where p(Σvj |zv, cv,q, Rv; ∆, ν) is the posterior distribution over covariance Σvj under the assigned normals in the
tangent space T[Mv]jS

2. Since the Inverse Wishart (IW) prior on the covariances is a conjugate prior, the posterior
distribution is an IW distribution as well. Therefore, it is straight forward to sample from the posterior distribution.
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2. Apply the deterministic function f([xl, xm, v]) = [u1,u2, x̂n] to obtain MF n parameterized by x̂n (MF after the
merge). The auxiliary MFs u1 and u2 absorb MFs l and m (MFs before the merge). The function f([xl, xm, v]) is
hence defined as

u1 = xl
u2 = xm
x̂n = v .

(11)

Therefore, the Jacobian Jf of the function f([xl, xm, v]) is

Jf =
∂f([xl, xm, v])

∂[xl, xm, v]
= I , (12)

where I is the identity matrix.

3. Accept the merge move with acceptance probability

Pr (accept merge) = min

{
1,
p(q, ĉ, ẑ, π̂, ŵ, Σ̂, R̂;α, γ,∆, ν)

p(q, c, z, π,w,Σ,R;α, γ,∆, ν)

q(split)
q(merge)

|det(Jf )|

}
, (13)

where parameters after the merge are designated with a hat and Jf is the Jacobian of the deterministic transformation
f(·) in the RJMCMC algorithm. The proposal distributions for a split or a merge are denoted q(split) and respectively
q(merge). From Eq. (12) we immediately see, that |det(Jf )| = 1 and hence

Pr (accept merge) = min

{
1,
p(q, ĉ, ẑ, π̂, ŵ, Σ̂, R̂;α, γ,∆, ν)

p(q, c, z, π,w,Σ,R;α, γ,∆, ν)

q(split)
q(merge)

}
. (14)

Note that the RJMCMC acceptance probability for split/merge moves in an MMF looks like the Metropolis-Hastings
acceptance probability, because |det(Jf )| = 1. However, since the model orders in the nominator and denominator of
the fractions are different, it technically is not a Metropolis-Hastings acceptance probability.

1.3. RJMCMC Split Moves in an MMF

For a split move, the reverse of a merge, we sample two auxiliary MFs u1 and u2 and use the inverse of Eq. (11) to obtain
the MMF after the split. In the following, we compress steps (1) and (2) in the RJMCMC algorithm into a single: we directly
draw the state after the split from the MMF state before. Note that while this process looks like Metropolis-Hastings MCMC,
it technically still is RJMCMC since we are changing the model order between moves. Here we denote variables after the
split with a hat.

First, we randomly assign normals in MF n to MF l or m by drawing MF assignments to MFs m and l according to

q(ĉ{c=n}|c;α) = DirMult
(
ĉ{c=n};αl, αm

)
. (15)

Within each of the MFs l and m we assign normals q to an axis by drawing the assignments ẑ{c=n} = {ẑi}i:ci=n as

q(ẑi = j|wn, Rn,Σn,q) ∝ wnj p(qi; [Mn]j ,Σnj) . (16)

Using these assignments, we find optimal rotations R̂?l and R̂?m and draw R̂l and R̂m:

q(R̂l, R̂m|ẑ, ĉ,q, Rn) = N (R̂l; R̂
?
l (Rn, ẑ, ĉ,q),Σso(3))N (R̂m; R̂?m(Rn, ẑ, ĉ,q),Σso(3)) . (17)

Given rotations as well as labels, we can draw axis covariances Σ̂{l,m},{1...6} from the respective posterior:

q(Σ̂{l,m},{1...6}|ĉ, ẑ,q, R̂{l,m}; ∆, ν) =

6∏
j=1

p(Σ̂lj |ẑ, ĉ,q, R̂l; ∆, ν)p(Σ̂mj |ẑ, ĉ,q, R̂m; ∆, ν) (18)

While for a merge move the acceptance probability is equal to Eq. (14), we invert the ratio to obtain the acceptance
probability for a split move:

Pr (accept split) = min

{
1,
p(q, ĉ, ẑ, π̂, ŵ, Σ̂, R̂;α, γ,∆, ν)

p(q, c, z, π,w,Σ,R;α, γ,∆, ν)

q(merge)

q(split)

}
. (19)
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1.4. Acceptance Probability for Split/Merge Proposals in an MMF

After introducing the RJMCMC merge and the split proposals in the previous sections, we will now derive the acceptance
probabilities for those two moves by detailing the distributions involved in the computation of Eq. (14) and (19). First, the
joint distribution for the MMF model is

p(q, c, z, π,w,Σ,R;α, γ,∆, ν) =
∏N
i p(qi|ci, zi, Rci ,Σcizi)p(zi|ci, wci)p(ci|π)p(π;α)

∏K
k p(Rk)p(wk; γ)∏6

j p(Σkj ; ∆, ν) .
(20)

For the evaluation of the acceptance probability, we marginalize over the categorical variables π and {wk}Kk=1:

p(c;α) =

∫
π

p(c|π)p(π;α)dπ = DirMult(c;α) (21)

p(z{c=k}|c; γ) =

∫
wk

p(z{c=k}|c, wk)p(wk; γ)dwk = DirMult(z{c=k}; γ) , (22)

where z{c=k} = {zi}i:ci=k and DirMult denotes the Dirichlet Multinomial distribution:

DirMult(c;α) =
Γ(
∑K
k=1 αk)

Γ(
∑K
k=1 αk +Nk)

K∏
k=1

Γ(αk +Nk)

Γ(αk)
. (23)

The counts Nk of labels c pointing to MF k are computed as Nk =
∑N
i=1 1[ci=k]. After marginalization of π and {wk}Kk=1,

the joint distribution of the MMF is:

p(q, c, z,Σ,R;α, γ,∆, ν) = p(c;α)
∏N
i p(qi|ci, zi, Rci ,Σcizi)

∏K
k p(Rk)p(z{c=k}|c; γ)

∏6
j p(Σkj ; ∆, ν) , (24)

where we have assumed that the prior over rotations factors according to p(R) =
∏K
k=1 p(Rk). Each p(Rk) is an uniform

distribution over all rotations Rk ∈ SO(3). Since SO(3) is a manifold with finite support, we can compute its volume
and obtain 8π2 [2] which implies p(Rk) = 1

8π2 . Therefore, the ratio of joint probabilities in the merge move acceptance
probability in Eq. (14) becomes

p(q,̂c,̂z,Σ̂,R̂;α,γ,∆,ν)
p(q,c,z,Σ,R;α,γ,∆,ν) = p(ĉ;α)p(q|̂c,̂z,R̂,Σ̂)p(ẑ|̂c;γ)p(Σ̂;∆,ν)p(R̂)

p(c;α)p(q|c,z,R,Σ)p(z|c;γ)p(Σ;∆,ν)p(R) =
8π2p(ĉ;α)(

∏N
i p(qi|ĉi,ẑi,R̂,Σ̂))

∏K̂
k=1 p(ẑ{̂c=k} |̂c;γ)

∏6
j=1 p(Σ̂kj ;∆,ν)

p(c;α)(
∏N
i p(qi|ci,zi,R,Σ))

∏K
k=1 p(z{c=k}|c;γ)

∏6
j=1 p(Σkj ;∆,ν)

,

(25)
where K̂ = K − 1. For the acceptance probability of a split proposal in Eq. (19) we get the following ratio:

p(q,̂c,̂z,Σ̂,R̂;α,γ,∆,ν)
p(q,c,z,Σ,R;α,γ,∆,ν) =

p(ĉ;α)(
∏N
i p(qi|ĉi,ẑi,R̂,Σ̂))

∏K̂
k=1 p(ẑ{̂c=k} |̂c;γ)

∏6
j=1 p(Σ̂kj ;∆,ν)

8π2p(c;α)(
∏N
i p(qi|ci,zi,R,Σ))

∏K
k=1 p(z{c=k}|c;γ)

∏6
j=1 p(Σkj ;∆,ν)

, (26)

where K̂ = K + 1.
For a split or a merge move, we have to sample new labels, new rotations as well as new covariances given the assignments.

Therefore, we formulate the split and merge proposals as

q(split) = q(c, z, w{l,m}, R{l,m},Σ{l,m},{1...6}|ĉ, ŵn, R̂n, Σ̂n,q;α, γ,∆, ν) (27)

q(merge) = q(ĉ, ẑ, ŵn, R̂n, Σ̂n,{1...6}|c, w{l,m}, R{l,m},Σ{l,m},q;α, γ,∆, ν) . (28)

In the following we will first derive the merge and then the split proposal distributions.
The merge proposal is the same as derived previously for the auxiliary MF v in the RJMCMC algorithm. Hence, the

proposal distribution in Eq. (28) of merging MF l and m into MF n factors as

q(merge) = q(ĉ, ẑ, ŵn, R̂n, Σ̂n,{1...6}|c, w{l,m}, R{l,m},Σ{l,m},q;α, γ,∆, ν)

= q(ĉ{c∈{l,m}}|c)
∏
i:ĉi=n

q(ẑi|wl, Rl,Σl,q)q(R̂n|Rl, ẑ, ĉ,q)q(Σ̂n,{1...6}|ĉ, ẑ,q, R̂n; ∆, ν) .
(29)
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We restate the individual factors from Sec. 1.2 here for completeness:

q(ĉ{c∈{l,m}}|c) = δ(ĉ{c∈{l,m}} = n) (30)
q(ẑi = j|wl, Rl,Σl,q) ∝ wlj p(qi; [Ml]j ,Σlj) (31)

q(R̂n|Rl, ẑ, ĉ,q) = N (R̂n; R̂?n(Rl, ẑ, ĉ,q),Σso(3)) (32)

q(Σ̂n,{1...6}|ĉ, ẑ,q, R̂n; ∆, ν) =

6∏
j=1

p(Σ̂nj |ẑ, ĉ,q, R̂n; ∆, ν) . (33)

The split proposal distribution in Eq. (27) factors into

q(split) = q(c, z, w{l,m}, R{l,m},Σ{l,m},{1...6}|ĉ, ŵn, R̂n, Σ̂n,q;α, γ,∆, ν) =

= q(c{ĉ=n}|ĉ;α)
∏
i:ĉi=n

q(zi|ŵn, R̂n, Σ̂n,q)q(Rl, Rm|z, c,q, R̂n)q(Σ{l,m},{1...6}|c, z,q, R{l,m}; ∆, ν) .
(34)

The individual factors were introduced in Seq. 1.3 and are restated here for completeness:

q(c{ĉ=n}|ĉ;α) = DirMult
(
c{ĉ=n};αl, αm

)
(35)

q(zi = j|ŵn, R̂n, Σ̂n,q) ∝ ŵnj p(qi; [M̂n]j , Σ̂nj) (36)

q(Rl, Rm|z, c,q, R̂n) = N (Rl;R
?
l (R̂n, z, c,q),Σso(3))N (Rm;R?m(R̂n, z, c,q),Σso(3)) (37)

q(Σ{l,m},{1...6}|c, z,q, R{l,m}; ∆, ν) =

6∏
j=1

p(Σlj |z, c,q, Rl; ∆, ν)p(Σmj |z, c,q, Rm; ∆, ν) . (38)

All in all, the ratio for the right side of the min(1, ·) in the acceptance probability for a merge move in Eq. (14) is:

8π2(
∏N
i=1 p(qi|ĉi,ẑi,R̂,Σ̂))p(ĉ;α)

∏K̂
k=1 p(ẑ{̂c=k} |̂c;γ)

∏6
j=1 p(Σ̂kj ;∆,ν)

(
∏N
i=1 p(qi|ci,zi,R,Σ))p(c;α)

∏K
k=1 p(z{c=k}|c;γ)

∏6
j=1 p(Σkj ;∆,ν)

q(c,z,w{l,m},R{l,m},Σ{l,m},{1...6} |̂c,ŵn,R̂n,Σ̂n,q;α,γ,∆,ν)

q(ĉ,̂z,ŵn,R̂n,Σ̂n,{1...6}|c,w{l,m},R{l,m},Σ{l,m},q;α,γ,∆,ν)
=

= 8π2
∏N
i=1

p(qi|ĉi,ẑi,R̂,Σ̂)
p(qi|ci,zi,R,Σ)

∏
i:ĉi=n

q(zi|ŵn,R̂n,Σ̂n,q)
q(ẑi|wl,Rl,Σl,q)

∏6
j=1

p(Σlj |z,c,q,Rl;∆,ν)p(Σmj |z,c,q,Rm;∆,ν)p(Σ̂nj ;∆,ν)

p(Σlj ;∆,ν)p(Σmj ;∆,ν)p(Σ̂nj |̂z,̂c,q,R̂n;∆,ν)

DirMult(ĉ;α) DirMult(ẑ{̂c=n};γ) DirMult(c{̂c=n};αl,αm)
DirMult(c;α) DirMult(z{c=l};γ) DirMult(z{c=m};γ)δ(ĉ{c∈{l,m}}−n)

N (Rl;R
?
l (R̂n,z,c,q),Σso(3))N (Rm;R?m(R̂n,z,c,q),Σso(3))

N (R̂n;R̂?n(Rl ,̂z,̂c,q),Σso(3))

(39)
Plugging Eq. (39) into Eq. (14), we can compute the acceptance probability for a merge of two MFs l and m into MF n.

For a split of MF l into MFs m and n the acceptance probability is computed using the inverse ratio of Eq. (39).

2. Normal Distribution over Rotation Matrices
A matrix R ∈ R3×3 is called a rotation matrix if it is an element of SO(3), the Special Orthogonal group; namely,

RTR = I and det(R) = 1. Probability distributions over rotation matrices can be defined by exploiting the manifold
structure of SO(3) (e.g., [2, 6]). In particular, one well-known way to construct an analog of a Gaussian distribution over this
nonlinear space utilizes the linearity of the tangent spaces.

Let LogRµ(R) : SO(3) → TRµSO(3) denote the Riemannian logarithm map of R into the tangent space TRµSO(3)
around Rµ:

θ = arccos

(
trace(RTµR)− 1

2

)
; (40)

LogRµ(R) = Rµ

(
θ

2 sin(θ)

(
RTµR−RTRµ

))
. (41)

While LogRµ(R) is in TRµSO(3), the matrix W = RTµLogRµ(R) is an element of the Lie Algebra so(3); i.e., W is skew-
symmetric. The vee operator ∨ [2] extracts the unique elements of W into a vector w: W∨ = w = [−W23;W13;−W12] ∈
R3. The Riemannian logarithm map in conjunction with the vee operator allows us to define a normal distribution with mean
rotation Rµ and covariance Σso(3) in the tangent space TRµSO(3):

p(R;Rµ,Σso(3)) = N ((RTµ LogRµ(R))∨; 0,Σso(3)) , (42)
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Figure 1: The unit sphere S2 in 3 dimensions. The blue plane on the sphere illustrates TpS2, the tangent space to S2 at point
p. A tangent vector x ∈ TpS2 is mapped to q ∈ S2 via Expp, the Riemannian exponential map with respect to p.

where Σso(3) ∈ R3×3.
In order to sample from the distribution in Eq. (42), we sample w = W∨ ∼ N (0,Σso(3)) and map it back from the tangent

space TRµSO(3) to SO(3) using the Riemannian exponential map ExpRµ : TRµSO(3)→ SO(3):

θ = ||w||2 (43)

ExpRµ(W ) = Rµ

(
I +

sin(θ)

θ
W +

1− cos(θ)

θ2
W 2

)
(44)

For further details on the manifold of rotations SO(3), the log and exp maps we have briefly reviewed here, as well as the
relation to the Lie Algebra so(3), refer to [2, 3].

3. Geodesic Distances and the Riemannian Exponential/Log map for the Unit Sphere S2

Let p and q be two points on the unit sphere in 3D S2, and let TpS2 denote the tangent space to S2 at point p; namely,

pT p = qT q = 1 (45)

TpS
2 = {x : x ∈ R3 ; xT p = 0} . (46)

Note that while S2 is a nonlinear manifold, TpS2 is a 2-dimensional linear space as depicted in Fig. 1. It can be shown [1, 3]
that the geodesic distance between p and q is given by the angle between p and q

dG(p, q) = arccos(pT q) . (47)

Furthermore, the Riemannian exponential map Expp : TpS
2 → S2 maps a point x in the tangent space TpS2 around p onto

the sphere S2:

x 7→ p cos(||x||) + x
||x|| sin(||x||) . (48)

The inverse of Expp, the Riemannian logarithm map Logp : S2/{−p} → TpS
2 can be computed as:

q 7→ (q − p cos θ) θ
sin θ , (49)

where θ = dG(p, q).
In other words, the geodesic distance between two unit normals is the angle between them, Expp maps TpS2 onto S2, and

Logp, whose action can be thought of as a linearization of S2, is defined over the entire sphere except the antipodal point−p.
Note that Expp and Logp depend on p. For further details and an introduction to Riemannian geometry see [3].
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