The Manhattan Frame Model-Manhattan World Inference in the Space of Surface Normals

1 minute read

Objects and structures within man-made environments typically exhibit a high degree of organization in the form of orthogonal and parallel planes. Traditional approaches utilize these regularities via the restrictive, and rather local, Manhattan World (MW) assumption which posits that every plane is perpendicular to one of the axes of a single coordinate system. The aforementioned regularities are especially evident in the surface normal distribution of a scene where they manifest as orthogonally-coupled clusters. This motivates the introduction of the Manhattan-Frame (MF) model which captures the notion of a MW in the surface normals space, the unit sphere, and two probabilistic MF models over this space. First, for a single MF we propose novel real-time MAP inference algorithms, evaluate their performance and their use in drift-free rotation estimation. Second, to capture the complexity of real-world scenes at a global scale, we extend the MF model to a probabilistic mixture of Manhattan Frames (MMF). For MMF inference we propose a simple MAP inference algorithm and an adaptive Markov-Chain Monte-Carlo sampling algorithm with Metropolis-Hastings split/merge moves that let us infer the unknown number of mixture components. We demonstrate the versatility of the MMF model and inference algorithm across several scales of man-made environments.

Mixture of Manhattan Frames Code

We are releasing the MMF inference code under an academic license. You can download it from here.

Mixture of Manhattan Frames extracted from NYU depth dataset v2

We ran the MMF inference on the full NYU depth dataset v2 [Silberman 2012] consisting of 1449 RGB-D frames and provide the results as a dataset which can be found here.

Bibtex

@inproceedings{straub2017manhattan,
  author = {Straub, Julian and Freifeld, Oren and Rosman, Guy and Leonard, John J. and Fisher III, John W.},
  title = {The Manhattan Frame Model---Manhattan World Inference in the Space of Surface Normals},
  year = {2017},
  booktitle ={IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)},
  url ={ http://people.csail.mit.edu/jstraub/download/straub2017manhattan.pdf}
}

Categories:

Updated: