
Efficient Solution of Markov Decision Problems
with Multiscale Representations

Jake Bouvrie1 and Mauro Maggioni2

Last Updated: December 5, 2012

Abstract— Many problems in sequential decision making and
stochastic control naturally enjoy strong multiscale structure:
sub-tasks are often assembled together to accomplish complex
goals. However, systematically inferring and leveraging hier-
archical structure has remained a longstanding challenge. We
describe a fast multiscale procedure for repeatedly compressing
or homogenizing Markov decision processes (MDPs), wherein
a hierarchy of sub-problems at different scales is automatically
determined. Coarsened MDPs are themselves independent,
deterministic MDPs, and may be solved using any method. The
multiscale representation delivered by the algorithm decouples
sub-tasks from each other and improves conditioning. These
advantages lead to potentially significant computational savings
when solving a problem, as well as immediate transfer learning
opportunities across related tasks.

I. INTRODUCTION

Identifying and leveraging hierarchical structure has been
a key, longstanding challenge for sequential decision making
and planning research [1]–[3]. Hierarchical structure gener-
ally suggests a decomposition of a complex problem into
smaller, simpler sub-tasks, which may be, ideally, considered
independently [4]. One or more layers of abstraction may
also provide a broad mechanism for reusing or transferring
commonly occurring sub-tasks among related problems [5]–
[8]. These themes are simply restatements of the divide-and-
conquer principle: it is usually dramatically cheaper to solve
a collection of small problems than a single big problem.

This paper considers the inference and use of hierarchical
structure – multiscale structure in particular – in the context
of discrete-time Markov decision problems. Fundamentally,
inferring multiscale decompositions, learning, and planning
across scales are intimately related concepts, and we have
sought to couple these elements tightly within a unifying
framework. Our main contribution is a multiscale procedure
for partitioning and then repeatedly compressing or homog-
enizing Markov decision processes (MDPs). The result is a
multiscale representation decomposing the original problem
into a hierarchy of distinct sub-problems at multiple scales,
each of which may be solved efficiently and independently
of the others. Solutions to these sub-problems may also
be transferred among related problems, giving a systematic
means to approach transfer learning at multiple scales in
planning and reinforcement learning domains.

1Department of Mathematics, Duke University, Durham, NC 27708, USA
jvb@math.duke.edu.

2Departments of Mathematics and Computer Science, Duke University,
Durham, NC 27708, USA mauro@math.duke.edu.

Research supported by DARPA FA8650-11-1-7150 SUB#7-3130298,
MSEE FA8650-11-1-7150; Washington State U. SUB#113054 G002745;
NSF IIS-08-03293, DMS-08-47388; ONR N00014-07-1-0625.

The homogenization we propose is consistent in that a
compressed MDP is again another independent, deterministic
MDP, and the statespace of the compressed MDP is a
(small) subset of the original problem’s statespace. Moreover,
each coarse MDP in a multiscale hierarchy is consistent
in the mean with the underlying fine scale problem. The
compressed representation coarsely summarizes a problem’s
statespace, reward structure and Markov transition dynamics,
and may be computed either analytically or by Monte-Carlo
simulations.

Given a hierarchy of successively coarsened representa-
tions, an MDP may be solved efficiently. We describe a fam-
ily of multiscale solution algorithms which realize computa-
tional savings in two ways: (1) Localization: computation in-
volves small, decoupled sub-problems; and (2) Conditioning:
sub-problems are comparatively well-conditioned, and obey
a form of global consistency with each other through coarser
scales. The key idea behind these algorithms is that sub-
problems at a given scale decouple conditional on a solution
at the next coarser scale, but must contribute constructively
towards solving the overarching problem through the coarse
solution; interleaved updates to solutions at pairs of fine
and coarse scales are repeatedly applied until convergence.
We present one particular algorithm, a localized variant of
modified asynchronous policy iteration, that can achieve a
cost of O(n log n) per iteration, if there are n states in the
original problem.

This paper describes preliminary results, and due to space
limitations proofs and many details are omitted. A compre-
hensive manuscript, including a detailed discussion, proofs,
experimental validation, and a wide-ranging literature review,
is forthcoming from the authors.

II. BACKGROUND

A. Markov Decision Processes and Stochastic Policies
Formally, a Markov decision process (MDP) (see e.g. [9],

[10]) is a sequential decision problem defined by a tuple
(S,A, P,R,Γ) consisting of a state space S, an action (or
“control”) set A, and for s, s′ ∈ S, a ∈ A, a transition
probability tensor P (s, a, s′), reward function R(s, a, s′) and
collection of discount factors Γ(s, a, s′) ∈ (0, 1). We will
assume that S,A are finite sets, and that R is bounded.
The probability P (s, a, s′) refers to the probability that we
transition to s′ upon taking action a in s, while R(s, a, s′)
is the reward collected in the event we transition from s to
s′ after taking action a in s.

1) Stochastic Policies: Let P(A) denote the set of all dis-
crete probability distributions on A. A stationary stochastic
policy (simply a policy, from now on) π : S → P(A) is a

function mapping states into distributions over the actions.
A policy π may be thought of as a non-negative function on
S × A satisfying

∑
a∈A π(s, a) = 1 for each s ∈ S, where

π(s, a) denotes the probability that we take action a in state
s. We will often write π(s) when referring to the distribution
on actions associated to the (deterministic) state s ∈ S, so
that a ∼ π(s) denotes the A-valued random variable a having
law π(s).

We may compute the policy-specific Markov transition
matrix and reward function by averaging over the actions
according to π:

Pπ(s, s′) = E
a∼π(s)

[P (s, a, s′)] =
∑
a∈A

P (s, a, s′)π(s, a) (1)

and Rπ(s, s′) = Ea∼π(s)[R(s, a, s′)].
Deterministic policies can be recovered by placing unit

masses on the desired actions1. Working with stochastic
policies will allow convex combinations of policies. Finally,
we will often make use of the uniform random or diffusion
policy, denoted πu, which always takes an action drawn ran-
domly according to the uniform distribution on the feasible
actions.

2) Value Functions: Given a policy, we may define a value
function V π : S → R assigning to each state s the expected
sum of discounted rewards collected over an infinite horizon
by running the policy π starting in s:

V π(s) = E [R(s0, a1, s1) | s0 = s] +

E

[∞∑
t=1

t−1∏
τ=0

Γ(sτ , aτ+1, sτ+1)R(st, at+1, st+1)
∣∣∣ s0 = s

]
(2)

where the sequence of random variables (si)
∞
i=1 is a Markov

chain with transition probability matrix Pπ . The expectation
is taken over all sequences of state-action pairs {(st, at)}t≥1,
where at is an A-valued random variable representing the
action which brings the Markov chain to state st from st−1:
if st−1 is observed, then at ∼ π(st−1). The optimal value
function V ∗ is defined as V ∗(s) = supπ∈Π V

π(s) for all
s ∈ S, with Π the set of stationary, Markov policies, and
the corresponding optimal policy π∗ is any policy achieving
the optimal value function. Under the assumptions we have
imposed here, a deterministic optimal policy exists when-
ever an optimal policy (possibly stochastic) exists [10, Sec.
1.1.4]. We will make use of stochastic policies primarily to
regularize a class of MDP solution algorithms.

The process of computing V π given π is known as
value determination (see e.g. [11] for a discussion regarding
potential theory and Markov chains). Following the usual
approach, a linear system describing V π is obtained by
conditioning on the first transition in (2) and applying the
Markov property: for s ∈ S,

V π(s) =
∑
s′,a

P (s, a, s′)π(s, a)

×
[
R(s, a, s′) + Γ(s, a, s′)V π(s′)

]
.

(3)

1We will allow the set of actions available in state s to be limited to a
nonempty state-dependent subset A(s) ⊆ A of feasible actions, but do not
explicitly keep track of the sets A(s) to avoid cluttering the notation.

B. Notation

For S′ ⊆ S, we define the restriction of P : S×A×S →
R+ to S′ to be the transition tensor PS′ defined by

PS′(s, a, s
′) =

{
P (s, a, s′), if s, s′ ∈ S′, s 6= s′

P (s, a, s) +
∑
s′′ /∈S′ P (s, a, s′′), s = s′ .

(4)
The rewards associated to transitions between states in the
subset S′ are unmodified: RS′(s, a, s′) = R(s, a, s′), for
all (s, a, s′) such that s, s′ ∈ S′, a ∈ A. We will refer to
this operation as truncation, to distinguish it from restriction
as defined by (4). The sub-tensor ΓS′ is similarly defined
from Γ. Note that, by definition, PS′ , RS′ ,ΓS′ do not include
tuples which start from a state s in the cluster but which end
at a state s′ outside of the cluster.

The restriction operation introduced above does not com-
mute with taking expectations with respect to a policy. The
matrix PπS′ will be defined by first restricting to S′ by
Equation (4), and then averaging PS′ with respect to π as in
Equation (1).

III. MULTISCALE MARKOV DECISION PROCESSES

The high-level procedure for efficiently solving a problem
with a multiscale MDP hierarchy consists of the following
steps, to be described individually in more detail below:

Step 1 Partition the statespace into subsets of states
(“clusters”) connected via “bottleneck” states.

Step 2 Given the decomposition into clusters by bottle-
necks, compress or homogenize the MDP into
another, smaller and coarser MDP, whose state
space is the set of bottlenecks, and whose actions
are given by following certain policies in clusters
connecting bottlenecks (“sub-tasks”).
Repeat the steps above with the compressed MDP
as input, until the desired number of compression
steps, obtaining a hierarchy of MDPs.

Step 3 Solve the hierarchy of MDPs from the top-down
(coarse to fine) by pushing solutions of coarse
MDPs to successively finer MDPs, down to the
finest scale.

We say that the procedure above compresses or homoge-
nizes, in a multiscale fashion, a given MDP. The construction
is perfectly recursive, in the sense that the same steps and
algorithms are used to proceed from one scale to the next
coarser scale. It also enjoys various notions of consistency, as
mentioned in the introduction. Actions at coarser scales are
typically, as one may expect, complex, “higher-level” actions,
and the above procedure may be thought of as producing
different levels of “abstraction” of the original problem.
While automating the process of hierarchically decomposing,
in a novel fashion, large complex MDPs, the framework we
propose may also yield significant computational savings.
The details are discussed in Section VI-B. Finally, the
framework facilitates knowledge transfer between related
MDPs. Sub-tasks may be transferred anywhere within the
hierarchies for a pair of problems, instead of mapping entire
problems. We provide a brief overview of transfer ideas in
Section VII.

The next three Sections are devoted to providing an
overview of the steps (1) − (3) above. Details, algorithmic
and theoretical, are omitted due to space constraints but may
be found in a longer forthcoming paper.

IV. Step 1: BOTTLENECK DETECTION AND STATESPACE
PARTITIONING

The first step of the algorithm involves partitioning the
MDP’s statespace S by identifying a set B ⊆ S of bottle-
necks, that induce a partitioning of S \ B into a family C of
connected components. Typically B depends on a policy π,
and when we want to emphasize this dependency, we will
write Bπ . We always assume that Bπ includes all terminal
states of Pπ . The partitioning of {S \ Bπ} induced by the
bottlenecks is the set of equivalence classes S/∼, under the
relation si ∼ sj if si, sj /∈ Bπ and there is a path from
si to sj not passing through any b ∈ Bπ . Clearly these
equivalence classes yield a partitioning of S \ Bπ . The term
cluster will refer to an equivalence class plus any bottleneck
states connected to states in the class: if [s] := {s′ | s ∼ s′}
is an equivalence class,

c([s]) := [s] ∪
{
b ∈ Bπ | Pπ(s′, b) > 0 or
Pπ(b, s′) > 0 for some s′ ∈ [s]

}
.

The set of clusters is denoted by C. If c = c([s]), [s] will
be referred to as the cluster’s interior ◦c, and the bottlenecks
attached to [s] will be referred to as the cluster’s boundary,
denoted by ∂c.

To each cluster c, and policy π (defined on at least c),
we associate the Markov process with transition matrix Pπc ,
defined according to Section II-B.

We also assume that a set of designated policies πc is
provided for each cluster c. For example πc may be the
singleton consisting of the diffusion policy in c. Or πc could
be the set of optimal policies in c for the family of MDPs,
parametrized by s′ ∈ ∂c with reward equal to the original
rewards plus an additional reward when s′ is reached. Finally,
we say that ∂c is π-reachable, for a policy π, if the set ∂c
can be reached in a finite number of steps of Pπc , starting
from any initial state s ∈ c.

A. Algorithms for bottleneck detection

Many algorithms may be used to partition the statespace,
and detect bottlenecks (e.g. [12]–[14]). We consider one
such possibility, a simple hierarchical spectral clustering
algorithm, for illustrative purposes. Given a policy π, we
can construct a weighted statespace graph G with vertices
corresponding to states, and edge weights given by Pπ . A
policy that allows thorough exploration, such as the diffusion
policy πu, can be chosen to define the weighted statespace
graph.

The hierarchical spectral clustering algorithm we will
consider recursively splits the statespace graph into pieces
by looking for low-conductance cuts. The spectrum of the
symmetrized Laplacian for directed graphs [15] is used to
determine the graph cuts at each step. The sequence of cuts
establishes a partitioning of the statespace, and bottleneck
states are states with edges that are severed by any of the cuts.

Algorithm 1 Recursive spectral partitioning.

1) Restrict Pπ to non-absorbing states.
2) Set Pπtel = (1 − η)Pπ + ηn−111>, for some small,

positive η.
3) Find the eigenvector (invariant distribution) µ satis-

fying (Pπtel)
>µ = µ.

4) Let Φ = diag(µ), and compute the symmetrized
Laplacian for directed graphs [15]

L = I − 1
2

(
Φ1/2PπtelΦ

−1/2 + Φ−1/2(Pπtel)
>Φ1/2

)
.

5) Compute the K eigenvectors of L correspond-
ing to the K smallest non-trivial eigenvalues
λ1 < · · · < λK .

6) For each eigenvector Ψ(i), i = 1, . . . ,K, define a set
of cuts by sweeping over thresholds ranging from
the smallest entry of Ψ(i) to the largest. The points
for which Ψ(i) are above/below the given threshold
defines the states Z,Zc ⊂ S on either side of the
cut.

7) Choose the cut Z∗ with minimum conductance

ϕ(Z) =

∑
i∈Z

∑
j∈Zc Pπij

vol(Z) ∧ vol(Zc)
,

where vol(Z) =
∑
i∈Z

∑
j∈S P

π
ij .

8) Identify bottleneck states as the states on one side
of the edges in Pπ severed by the cut, choosing the
side which gives the smallest bottleneck set.

9) Store the partition of the statespace given by the cut.
10) Unless stopping criteria is met, run the algorithm

again on each of the two subgraphs resulting from
the cut.

Algorithm 1 describes the process. Localized variants of this
algorithm may also be pursued, and one can also consider
model-free versions that only have access to a “black-box”
computing the results of running a process (e.g. truncated
random walk, evolving sets process).

A recursive application of Algorithm 1 produces a set of
bottlenecks Bπ . Each bottleneck and partition discovered by
the clustering algorithm is associated with a spatial scale
determined by the recursion depth. The finest scale consists
of the finest partition and all bottlenecks. Due to the addition
of a teleport matrix in Algorithm 1 (Step 2), the equivalence
classes are strongly connected components of the graph
induced by Pπtel and are guaranteed to partition {S \ Bπ}.

Because graph weights are determined by Pπ in this
algorithm, which bottlenecks will be identified generally
depends on the policy π. In this sense there are two types
of “bottlenecks”: problem bottlenecks and geometric bottle-
necks. Geometric bottlenecks may be defined as interesting
regions of the state space alone, as determined by a ran-
dom walk exploration if π is a diffusion policy (e.g. πu).
Problem bottlenecks are regions of the state space which are
interesting from a geometric standpoint and in light of the
goal structure of the MDP. If the policy is already strongly
directed according to the goals defined by the rewards, then

the bottlenecks can be interpreted as choke points for a
random walker in the presence of a strong potential.

V. Step 2: MULTISCALE COMPRESSION AND THE
STRUCTURE OF MULTISCALE MARKOV DECISION

PROBLEMS

Given a set of bottlenecks B, we can compress (or homog-
enize, or coarsen) an MDP into another MDP with statespace
B. The coarse MDP can be thought of as a low-resolution
version of the original problem, where transitions between
clusters are the events of interest, rather than what occurs
within each cluster. As such, coarse MDPs may be vastly
simpler: the size of the coarse statespace is on the order of the
number of clusters, which may be small relative to the size
of the original statespace. Indeed, clusters may be generally
thought of as geometric properties of a problem, and are
constrained by the inherent complexity of the problem, rather
than the choice of statespace representation, discretization or
sampling.

A solution to the coarse MDP may be viewed as a coarse
solution to the original fine scale problem. An optimal
coarse policy describes how to solve the original problem by
specifying which sub-tasks to carry out and in which order.
As we will describe in Section VI, a coarse value function
provides an efficient means to obtain a fine scale value
function and its associated policy. Coarse MDPs and their
solutions also provide a framework for systematic transfer
learning; these ideas are briefly discussed in Section VII.

A homogenized, coarse scale MDP will be denoted by the
tuple (S̃, Ã, P̃ , R̃, Γ̃). We first give a brief description of the
primary ingredients needed to define a coarse MDP, with a
more detailed discussion to follow.
• Statespace S̃: The coarse scale statespace S̃ is the set

of bottleneck states B for the fine scale, obtained by
clustering the fine scale statespace graph, for example
with the methods described in Section IV.

• Action set Ã: A coarse action invoked from b ∈ S̃ = B
consists of executing a given fine scale policy πc ∈ πc

within the fine scale cluster c, starting from b ∈ ∂c (at
a time that we may reset to 0), until the first positive
time at which a bottleneck state in ∂c is hit.

• Coarse scale transition probabilities P̃ (s, a, s′): If
a ∈ Ã is an action executing the policy πc ∈ πc, then
P̃ (s, a, s′) is defined as the probability that the Markov
chain Pπc

c started from s ∈ S̃, hits s′ ∈ S̃ before hitting
any other bottleneck. In particular, P̃ (s, a, s′) may be
nonzero only when s, s′ ∈ ∂c for some c ∈ C.

• Coarse scale rewards R̃(s, a, s′): The coarse reward
R̃(s, a, s′) is defined to be the expected total discounted
reward collected along trajectories of the Markov chain
associated to action a described above, which start at
s ∈ S̃ and end by hitting s′ ∈ S̃ before hitting any other
bottleneck.

• Coarse scale discount factors Γ̃(s, a, s′): The coarse
discount factor Γ̃(s, a, s′) is the expected product of
the discounts applied to rewards along trajectories of
the Markov chain Pπc

c associated to a action a ∈ Ã,
starting at s ∈ S̃ and ending at s′ ∈ S̃.

We observe, before proceeding with details, that one of
the important consequences of these definitions is that the
optimal fine scale value function on the bottlenecks is,
in an appropriate sense, the solution to the coarse MDP,
compressed with respect to the optimal fine scale policy. The
general philosophy is to reduce a large problem to a smaller
one constructed by “locally averaging” parts of the original
problem.

We now consider the objects constituting the coarser
MDP in more detail, and show that, perhaps surprisingly,
many of them may be quickly and locally computed in
parallel by solving certain linear systems that we can describe
analytically. The coarsening step may also be accomplished
computationally by Monte Carlo simulations, as it involves
computing the relevant statistics of certain functionals of
Markov processes in each of the clusters. As such, the
computation is embarrassingly parallel2.

While this brings great flexibility to the framework above,
it is interesting to note that many of those computations may
in fact be carried out analytically, and that eventually they re-
duce to the solution of multiple, small and independent (and
therefore embarrassingly parallelizable) linear systems, of
size comparable to the size of a cluster. These linear systems
uncover the natural structure of the multiscale organization
we introduce, and lead to efficient, “explicit” algorithms for
the solution of Markov decision problems.

A. Assumptions
We will always assume that the fine scale policy π used

to compress has been regularized, by blending with a small
amount of the diffusion policy πu:

π(s, ·)← λπu(s, ·) + (1− λ)π(s, ·), s ∈ S
for some small, positive choice of the regularization pa-
rameter λ. In particular we will assume this is the case
everywhere quantities such as Pπ appear below. This form
of regularization addresses certain pathological situations and
helps enforce π-reachability of B (the boundary).

B. Actions
An action Ã at s ∈ S̃ for the compressed MDP consists of

executing a policy πc ∈ πc for some cluster c having s on its
boundary, until hitting a bottleneck state in c. The number
of actions is equal to the total number of policies across
clusters,|Ã| =

∑
c∈C |πc|. We now fix a cluster c and a policy

πc ∈ πc. The corresponding local Markov transition matrix
is Pπc

c , and let Rπc
c denote the reward structure, and Γπc

c

denote the system of discount factors, following Section II-
B. Let ((Xπc

c)n)n≥0 denote the Markov chain with transition
matrix Pπc

c . If the coarse action is invoked in state s ∈ S̃,
then we have X0 = s. The set of actions available at s ∈ S̃
for the compressed MDP is given by

Ã(s) :=
⋃

c∈C:s∈∂c

{
“run the MRP (Pπc

c , Rπc
c ,Γ

πc
c) in c until

the first n > 0 : (Xπc
c)n ∈ B”

}
πc∈πc

.

2Moreover, it does not require a priori knowledge of the fine details of
the models in each cluster, but only requires the ability to call a “black box”
which simulates the prescribed process in each cluster, and computes the
corresponding functional (in this sense coarsening becomes model-free).

A Markov reward process (MRP) refers to an MDP with a
fixed policy and corresponding P,R,Γ restricted to the fixed
policy. The actions above involve running an MRP because
while the action is being executed the policy remains fixed.
In general, the compressed MDP will have action and state
dependent rewards and discount factors, even if the fine scale
problem does not.

C. Transition Probabilities
Consider the cluster c referred to by a coarse action a ∈ Ã.

The transition probability P̃ (s, a, s′) for s, s′ ∈ ∂c ⊆ S̃ is
defined to be the probability that a trajectory in c ⊂ S hits
state s′ starting from s before hitting any other state in B
(including itself) when running the fine scale MRP restricted
to c and along the policy determined by the action a. If s
is a state not in the cluster associated to a, then a is not an
available control when in state s.

These probabilities may be estimated either by sampling
(Monte Carlo simulations), or computed analytically. The
first approach is trivially implemented; here we develop the
latter, which leads to a set of linear problems to be solved,
and sheds light on both the mathematical and computational
structure. As the bottlenecks partition the statespace into
disjoint sets, the probabilities P̃ (s, a, s′) can be quickly
computed in each cluster separately.

Proposition 1. Let a be the action corresponding to execut-
ing a policy πc in cluster c. Then

P̃ (s, a, s′) = Hs,s′ , for all s, s′ ∈ ∂c,

where H is the minimal non-negative solution, for each s′ ∈
∂c, to the linear system

Hs,s′ = Pπc
c (s, s′)+

∑
s′′∈◦c

Pπc
c (s, s′′)Hs′′,s′ , s ∈ c, s′ ∈ ∂c .

When deriving the the compressed rewards and discount
factors below, we will need to reference the set of all pairs
of bottlenecks s, s′ for which the probability of reaching s′

starting from s is positive, when executing the policy πc
associated to a. Having defined P̃ , this set may be easily
characterized as

suppa(P̃) := {(s, s′) ∈ ∂c | P̃ (s, a, s′) > 0}

where c is the cluster associated to the coarse action a.

D. Rewards
The rewards R̃ = R̃(s, a, s′), with s, s′ ∈ ∂c and a ∈ Ã,

are defined to be the expected discounted rewards collected
along trajectories that start from s and hit s′ before hitting
any other bottleneck state in ∂c, when running the fine-scale
MRP restricted to the cluster c associated to a.

In general, rewards under different policies and/or in other
clusters are calculated by repeating the process described
below for different choices of π ∈ πc, c ∈ C. Even if
the fine scale MDP rewards do not depend on the source
state or actions, the compressed MDP’s rewards will, in
general, depend on the source, destination and action taken.
As before, the relevant computations involve only the given
cluster’s subgraph.

Given a policy πc on cluster c, consider the Markov chain
(Xt)t≥0 with transition matrix Pπc

c . Let T and T ′ be two
arbitrary stopping times satisfying 0 ≤ T < T ′ < ∞ (a.s.).
The discounted reward accumulated over the interval T ≤
t ≤ T ′ is given by the random variable

RT
′

T := R(XT , aT+1, XT+1) +

T ′−1∑
t=T+1

[
t−1∏
τ=T

Γ
(
Xτ , aτ+1, Xτ+1

)]
R
(
Xt, at+1, Xt+1

)
where at+1 ∼ πc(Xt) for t = T, . . . , T ′ − 1, and we set
RTT ≡ 0 for any T . Next, define the hitting times of ∂c:

Tm = inf{t > Tm−1 | Xt ∈ ∂c}, m = 1, 2, . . .

with T0 = inf{t ≥ 0 | Xt ∈ ∂c}. Note that if the
chain is started in a bottleneck state X0 = b ∈ ∂c, then
clearly T0 = 0. We will be concerned with the rewards
accumulated between these successive hitting times, and
by the Markovianity of (Xt)t, we may, without loss of
generality, consider the reward between T0 and T1, namely
RT1

T0
. The following proposition describes how to compute

the expected discounted rewards by solving a collection of
linear systems.

Proposition 2. Suppose the coarse scale action a corre-
sponds to executing a policy πc in cluster c, and let (Xt)t≥0

denote the Markov chain with transition matrix Pπc
c . The

state and action dependent rewards R̃ at the coarse scale
may be characterized as

R̃(s, a, s′) = E[RT1
0 |X0 = s,XT1 = s′], (s, s′) ∈ suppa(P̃) .

Moreover, for fixed a, R̃(s, a, s′) =: Hs,s′ may be computed
by finding the (unique, bounded) solution H to the linear
system

Hs,s′ =

∑
s′′∈◦c∩ c′

s′ ,a∈A

Phs′ (s, a, s
′′)Γ(s, a, s′′)Hs′′,s′

+
∑

s′′∈c′
s′ ,a∈A

Phs′ (s, a, s
′′)R(s, a, s′′), if s ∈ ◦c ∩ c′s′∑

s′′∈◦c∩ c′
s′ ,a∈A

Ph̃s′
(s, a, s′′)Γ(s, a, s′′)Hs′′,s′

+
∑

s′′∈c′
s′ ,a∈A

Ph̃s′
(s, a, s′′)R(s, a, s′′), if (s, s′) ∈

suppa(P̃)

where c′s′ := {s ∈ c | hs′(s) > 0};

Phs′ (s, a, s
′′) :=

Pc(s, a, s
′′)πc(s, a)hs′(s

′′)

hs′(s)

for s ∈ ◦c ∩ c′s′ , a ∈ A, s′′ ∈ c′s′ ; and

Ph̃s′
(s, a, s′′) :=

Pc(s, a, s
′′)πc(s, a)hs′(s

′′)

P̃ (s, a, s′)

for (s, s′) ∈ suppa(P̃), a ∈ A, s′′ ∈ c′s′ ; with hs′(s) :=
Ps(XT0

= s′), for s ∈ c, s′ ∈ ∂c denoting the minimal
non-negative, harmonic function satisfying

hs′(s) =

{
δs,s′ s ∈ ∂c
Pπc
c (s, s′) +

∑
s′′∈◦c P

πc
c (s, s′′)hs′(s

′′) s ∈ ◦c .

Thus, the total cost of computing the compressed rewards
R̃(s, a, s′) with respect to a given fine policy is O

(
|∂c||◦c|3 +

|∂c|2|◦c|
)

for each cluster c ∈ C.

E. Discount Factors
In the preceding sections, a coarse MDP was computed

by averaging over paths between bottlenecks at a finer scale.
Depending on the particular source/destination pair of states,
the paths will in general have different length distributions.
Thus, when solving a coarse MDP, rewards collected upon
transitioning between states at the coarse scale should be
discounted at different, state-dependent rates. The correct
discount rate is a random variable, and transitions at the
coarse scale implicitly depend on outcomes at the fine scale.
We will partially correct for differing length distributions,
and avoid the need to simulate at the fine scale, by imposing
a coarse non-uniform discount factor based on the cumulative
fine scale discount applied on average to paths between
bottlenecks. The coarse discount factors Γ̃ are incorporated
when solving the coarse MDP so that the scale of the
coarse value function is more compatible with the fine
problem, and convergence towards the fine-scale policy may
be accelerated.

The expected cumulative discounts may be computed
using a procedure similar to the one given for computing
expected rewards in Section V-D. As before, given a policy
πc on cluster c, consider the Markov chain (Xn)n≥0 with
transition matrix Pπc

c , and let T, T ′ be two arbitrary stopping
times satisfying 0 ≤ T < T ′ < ∞ (a.s.). The cumulative
discount applied to trajectories (XT , XT+1, . . . , XT ′) over
the interval T ≤ t ≤ T ′ is given by the random variable

∆T ′

T :=

T ′−1∏
t=T

Γ
(
Xt, at+1, Xt+1

)
,

where at+1 ∼ πc(Xt) for t = T, . . . , T ′ − 1. The following
proposition describes how to compute the expected discount
factors by solving another set of linear problems.

Proposition 3. Suppose the coarse scale action a corre-
sponds to executing the policy πc in cluster c. Let (Xt)t≥0

denote the Markov chain with transition matrix Pπc
c , and

let (Tm)m≥0 denote the boundary hitting times defined in
Section V-D. The state and action dependent discount factors
at the coarse scale may be characterized as

Γ̃(s, a, s′) = E[∆T1
0 |X0 = s,XT1

= s′], (s, s′) ∈ suppa(P̃)

and, letting Hs,s′ := Γ̃(s, a, s′), may be computed by finding
the minimal non-negative solution H to the linear system

Hs,s′ =

∑
s′′∈◦c∩c′

s′ ,a∈A

Phs′ (s, a, s
′′)Γ(s, a, s′′)Hs′′,s′

+
∑
a∈A

Phs′ (s, a, s
′)Γ(s, a, s′), if s ∈ ◦c ∩ c′s′∑

s′′∈◦c∩c′
s′ ,a∈A

Ph̃s′
(s, a, s′′)Γ(s, a, s′′)Hs′′,s′

+
∑
a∈A

Ph̃s′
(s, a, s′)Γ(s, a, s′), if (s, s′) ∈

suppa(P̃)

compress solve coarse update fine

update boundary

π0
Vcoarse πnew

1

Fig. 1. Different solution algorithms for solving a pair of coarse/fine
MDPs are obtained by iterating over different paths in this flow
graph. See text for details.

where hs′(s), c′s′ , Phs′ , and Ph̃s′
are as defined in Proposi-

tion 2.

The approach taken above is in the spirit of revealing the
structure of the coarsening step and how it is possible to
compute many coarser variables, or approximations thereof,
by solutions of linear systems. Of course one may always
use Monte-Carlo methods, which in addition to estimates
of the expected values may be used to obtain more refined
approximations to the law of the coarse random variables
∆T1

T0
and RT1

T0
.

VI. Step 3: MULTISCALE SOLUTION OF MDPS

Given a (fine) MDP and a coarsening as above, a solu-
tion to the fine scale MDP may be obtained by applying
one of several possible algorithms suggested by the flow
diagram in Figure 1. Solving for the finer scale’s policy
involves alternating between two main computational steps:
(1) updating the fine solution given the coarse solution, and
(2) updating the coarse solution given the fine solution.
Given a coarse solution defined on bottleneck states, the
fine scale problem decomposes into a collection of smaller
independent sub-problems, each of which may be solved
approximately or exactly. These are iterations along the
inner loop surrounding “update fine” in Figure 1. After the
fine scale problem has been updated, the solution on the
bottlenecks may be updated either with or without a re-
compression step. The former is represented by the long
upper feedback loop in Figure 1, while the latter corresponds
to the outer, lower loop passing through “update boundary”.
Updating without re-compressing may, for instance, take the
form of the updates (e.g. Bellman, averaging) appearing in
any of the asynchronous policy/value iteration algorithms.
Updating by re-compression consists of re-compressing with
respect to the current, updated fine policy and then solving
the resulting coarse MDP.

A. An Alternating Interior-Boundary Algorithm

The particular algorithm we will consider here solves top-
down, and employs localized policy iteration for fine-scale
policy improvement, and local averaging for updating values
at bottleneck states. We will describe the solution of a two
layer hierarchy consisting of a fine scale problem and a single
coarsened problem, although the main ideas may be readily
extended to hierarchies of arbitrary depth; what is important
is the handling of pairs of successive scales. Algorithm 2
gives the basic steps comprising the solution process.

The fine scale MDP is first compressed with respect to one
or more policies. We suggest a collection of policies which

Algorithm 2 Top-down solution of MDPs: Alternating interior-boundary approach for pairs of layers.

Set the initial fine scale policy to random uniform if not otherwise given via transfer.
1) Compress the MDP using one or more policies.
2) Solve the coarse MDP using any algorithm, and save the resulting value function Vcoarse.
3) Fix the value function Vfine of the fine MDP at bottleneck states B to Vcoarse.
4) Solve the local boundary value problems separately within each cluster to fill in the rest of Vfine, given the current

fine scale policy.
5) Recover a fine scale policy π :

◦
S ×A→ R+ on cluster interiors (

◦
S := S \ B) from the resulting Vfine. For s ∈

◦
S,

a∗(s) = arg max
a∈A

∑
s′∈c([s])

P (s, a, s′)
(
R(s, a, s′) + Γ(s, a, s′)Vfine(s′)

)
(5a)

π(s, ·) = δa∗(s) . (5b)

6) Blend in a regularized fashion with the previous global policy. For s ∈
◦
S,

πnew(s, ·) = λπ(s, ·) + (1− λ)πold(s, ·) . (6)

where λ ∈ (0, 1] is a regularization parameter.
7) (Optional - Local Policy Iteration) Set πold = πnew. Repeat from step (4) until convergence criteria met.
8) Update the fine policy on bottleneck states by applying Equations (5)-(6) for s ∈ B.
9) Update the boundary states’ values either exactly, or by repeated local averaging,

Vfine(s)← Ea∼πnew(s)

[∑
s′

P (s, a, s′)
(
R(s, a, s′) + Γ(s, a, s′)Vfine(s′)

)]
, s ∈ B

where the number of averaging passes N for each bottleneck state s ∈ B satisfies N > logγ̄
1
2 with γ̄ :=

maxs,a,s′
{

Γ(s, a, s′)1[P (s,a,s′)>0]

}
.

10) Set πold = πnew. Repeat from step (4) until convergence criteria met.

provide all of the coarse actions an agent could possibly
want to take involving each respective cluster. These coarse
actions involve traversing a particular cluster towards each
bottleneck along paths which vary in their directedness, and
may be efficiently pre-computed by placing properly scaled
artificial rewards at each bottleneck.

Next, the coarse MDP is solved to convergence. Solving
the coarse MDP amounts to choosing the best fine policies
(actions) from the available pool. Since the coarse MDP
may itself be compressed and solved efficiently, this step
is relatively inexpensive. The optimal value function for the
coarse problem is then assigned to the set of bottleneck states
for the fine problem.

With bottleneck values fixed, policy iteration is invoked
within each cluster’s interior independently (Steps (4)-(6)).
The local value determination step can be thought of as a
Poisson boundary value problem: For a given cluster c, we
set V (s) = Vcoarse(s) for s ∈ ∂c, and seek V (s) := E

[
RT0

0 +

∆T0
0 Vcoarse(XT0

) | X0 = s
]

for s ∈ ◦
c, where (Xt)t≥0 ∼

Pπc
c . This amounts to solving the linear system

V (s) =
∑

s′∈c,a′∈A
Pc(s, a, s

′)πc(s, a)
[
R(s, a, s′)+Γ(s, a, s′)V (s′)

]
for s ∈ ◦

c, where Pc is the restriction of P to c defined
by Equation (4). A greedy fine scale policy π on a cluster’s
interior states is computed from the interior values (Step (5)),
however the new interior policy is a convex blend between
the greedy policy and the previous policy (Step (6)). Policy
blending allows one to regularize the solution and maintain a

degree of stochasticity sufficient to repair coarse scale errors.
When policy iteration has converged to the desired tolerance
within each cluster independently, the individual cluster’s
value functions may be simply concatenated together along
with the given values at the bottlenecks to obtain a globally
defined value function.

Finally, information between clusters is exchanged by
updating the policy on bottleneck states (Step (8)), and then
using this (globally defined) policy in combination with the
interior values to update bottleneck values by local averaging
(Step (9)) via

V (b)←
∑
s′,a

P (b, a, s′)π(b, a)
(
R(b, a, s′)+Γ(b, a, s′)V (s′)

)
for b ∈ B. Both of these steps are computationally inexpen-
sive. Alternating updates to cluster interiors and boundaries
are executed until convergence.

We emphasize that at each level of the hierarchy below
the topmost level, the corresponding fine MDP may be
decomposed into distinct pieces which are solved locally
and independently of each other. Obtaining solutions at each
resolution is an efficient process and at no point do we solve
a large, global problem.

In practice, the multiscale algorithm we have discussed
requires fewer iterations to converge than global, single-scale
algorithms, for two primary reasons. First, the multiscale
algorithm starts with a coarse approximation of the fine
solution given by the solution to the compressed MDP,
which provides a good warm start. Second, the multiscale

approach can offer faster convergence since the solution
of the sub-problems are decoupled from each other given
the bottlenecks. Convergence of local (within cluster) policy
iteration is thus constrained by what are likely to be faster
mixing times within clusters, rather than slow global times
across clusters, as clusters do not have strong geometric
bottlenecks by construction.

B. Algorithm Analysis
The solution algorithm described above is an instance of

modified asynchronous policy iteration, and can be shown to
recover an optimal fine scale policy:

Theorem 1. Fix any initial fine-scale policy π0, and any
collection of compression policies {πc}c∈C such that each
∂c is πc-reachable for all πc ∈ πc. Let V k denote the global
fine scale value function after k passes of Steps (4)-(10)
in Algorithm 2. For an appropriate number of updates per
bottleneck per algorithm iteration,

N > logγ̄
1
2

with γ̄ := maxs,a,s′
{

Γ(s, a, s′)1[P (s,a,s′)>0]

}
, the sequence

V k generated by the alternating interior-boundary policy
iteration Algorithm 2 satisfies

lim
k→∞

max
s∈S
|V ∗(s)− V k(s)| = 0.

Algorithm 2 may also afford substantial computational
savings, as compared to the complexity of standard, global
dynamic programming methods. Let n be the size of the
original state space. If at a scale j there are rj clusters of
roughly equal size, and nj states, an iteration at that scale
has cost O

(
rj(nj/rj)

3
)
. If rj = nj/C (the clusters are

of roughly equal size across scales) and nj = n/Cj (the
number of bottlenecks at each scale is about the number of
clusters), then the computation time across log n scales is
O
(
n log n

)
per iteration. By contrast, DP methods typically

require O(n3) time per iteration.

VII. MULTISCALE TRANSFER

The multiscale decomposition of MDPs we have described
can be used to effect knowledge transfer between sufficiently
related problems. We define transfer here as the process
of transferring some aspect of a solution for one problem
to another problem, such that the second problem may be
solved faster or better (a better policy) than would otherwise
be the case. Faster may refer to either less exploration
(samples) or fewer computations, or both. Depending on
the degree and type of relatedness among a pair of prob-
lems, transfer may entail small or large improvements, and
may take on several different forms. It is our goal to be
able to systematically: (1) Identify transfer opportunities;
(2) Encode/represent the transferable information; and (3)
Incorporate transferred knowledge into new problems. We
describe only the broad contours of a transfer framework
here; algorithmic details and experiments illustrating transfer
in both discrete and continuous domains may be found in a
longer forthcoming report.

A novel form of systematic knowledge transfer between
sufficiently related MDPs is made possible by the multiscale

framework discussed above. If a problem can be decomposed
into a hierarchy of distinct parts then there is hope that
both coarse policies governing transitions between the parts,
as well as the parts themselves, may be transferred when
appropriate. A key conceptual distinction is the transfer
of policies and potential operators (quantities of the form(
I − (Γc ◦ Pc)

π
)−1

), rather than value functions.
At a high-level, transfer between two multiscale MDPs

proceeds by matching sub-problems at various scales, testing
whether transfer can actually be expected to help, transferring
policies and/or potential operators where appropriate (along
suitable statespace and action correspondences), and finally
solving the unsolved problem using the transferred infor-
mation as an initial condition. Transfer into sub-problems
might also involve a database of pre-solved tasks: A new
problem is solved by decomposing it into parts, identifying
which parts are already in the database, and then stitching
the pre-solved components together into a global policy by
way of a coarse MDP. Any remaining unsolved parts may be
solved for independently, and learning a meta policy on sub-
tasks is comparatively inexpensive. The primary difficulty
is determining suitable statespace correspondences, although
this task is made easier by the multiscale partitioning, and
the multiscale solution algorithms we have discussed can be
robust to errors. As with the multiscale decomposition itself,
the transfer process is inexpensive because it is inherently
local.

REFERENCES

[1] R. S. Sutton, D. Precup, and S. Singh, “Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement learn-
ing,” Artificial Intelligence, vol. 112, pp. 181–211, 1999.

[2] T. G. Dietterich, “Hierarchical reinforcement learning with the MAXQ
value function decomposition,” Journal of Artificial Intelligence Re-
search, vol. 13, pp. 227–303, 2000.

[3] R. Parr and S. Russell, “Reinforcement learning with hierarchies of
machines,” in Advances in Neural Information Processing Systems
(NIPS), 1997.

[4] A. G. Barto and S. Mahadevan, “Recent advances in hierarchical
reinforcement learning,” Discrete Event Dynamic Systems, vol. 13, pp.
341–379, 2003.

[5] J. Barry, L. Kaelbling, and T. Lozano-Pérez, “DetH*: Approximate
hierarchical solution of large markov decision processes,” in Proc.
International Joint Conference on Artificial Intelligence, 2011.

[6] M. E. Taylor and P. Stone, “Transfer learning for reinforcement
learning domains: A survey,” Journal of Machine Learning Research,
vol. 10, pp. 1633–1685, 2009.

[7] V. Soni and S. Singh, “Using homomorphisms to transfer options
across reinforcement learning domains,” in Proc. National Conference
on Artificial Intelligence (AAAI), 2006.

[8] K. Ferguson and S. Mahadevan, “Proto-transfer learning in markov
decision processes using spectral methods,” in ICML Workshop on
Transfer Learning, 2006.

[9] M. L. Puterman, Markov Decision Processes. Wiley, 1994.
[10] D. P. Bertsekas, Dynamic Programming and Optimal Control (Vol. II),

3rd ed. Athena Scientific, 2007.
[11] J. R. Norris, Markov Chains. Cambridge University Press, 1997.
[12] O. Simsek and A. Barto, “Skill characterization based on between-

ness,” in Advances in Neural Information Processing Systems (NIPS)
21, D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, Eds., 2009.

[13] D. A. Spielman and S.-H. Teng, “A local clustering algorithm for mas-
sive graphs and its application to nearly-linear time graph partitioning,”
eprint, 2008, arXiv:0809.3232.

[14] R. Andersen and Y. Peres, “Finding sparse cuts locally using evolving
sets,” in Proceedings of the 41st annual ACM symposium on Theory
of computing, ser. STOC ’09. ACM, 2009, pp. 235–244.

[15] F. Chung, “Laplacians and the cheeger inequality for directed graphs,”
Annals of Combinatorics, vol. 9, pp. 1–19, 2005.

	Introduction
	Background
	Markov Decision Processes and Stochastic Policies
	Stochastic Policies
	Value Functions

	Notation

	Multiscale Markov Decision Processes
	Step 1: Bottleneck Detection and Statespace Partitioning
	Algorithms for bottleneck detection

	Step 2: Multiscale Compression and The structure of Multiscale Markov Decision Problems
	Assumptions
	Actions
	Transition Probabilities
	Rewards
	Discount Factors

	Step 3: Multiscale Solution of MDPs
	An Alternating Interior-Boundary Algorithm
	Algorithm Analysis

	Multiscale Transfer
	References

