
Geometric Multiscale Reduction for Autonomous and Controlled
Nonlinear Systems

Jake Bouvrie and Mauro Maggioni

c©IEEE 2012. Personal use of this material is permitted.
Version: September 9, 2012

Abstract— Most generic approaches to empirical reduction of
dynamical systems, controlled or otherwise, are global in na-
ture. Yet interesting systems often exhibit multiscale structure in
time or in space, suggesting that localized reduction techniques
which take advantage of this multiscale structure might provide
better approximations with lower complexity. We introduce a
snapshot-based framework for localized analysis and reduction
of nonlinear systems, based on a systematic multiscale decom-
position of the statespace induced by the geometry of empirical
trajectories. A given system is approximated by a piecewise
collection of low-dimensional systems at different scales, each
of which is suited to and responsible for a particular region of
the statespace. Within this framework, we describe localized,
multiscale variants of the proper orthogonal decomposition
(POD) and empirical balanced truncation methods for model
order reduction of nonlinear systems. The inherent locality
of the treatment further motivates control strategies involving
collections of simple, local controllers and raises decentralized
control possibilities. We illustrate the localized POD approach
in the context of a high-dimensional fluid mechanics problem
involving incompressible flow over a bluff body.

I. INTRODUCTION

The analysis and control of large-scale dynamical systems
has emerged as a ubiquitous challenge across a range of
fields. Increased computing power has made the simulation
of previously untouchable systems, such as those arising
in molecular dynamics and control of fluids, a realistic
possibility, but one that is still fraught with difficulty. Without
some form of dimension reduction, simulation, analysis and
controller design is often intractable. And yet many dynami-
cal systems naturally enjoy multiscale structure, both in time
and in space. Taken together, these considerations underscore
and motivate the need for model reduction techniques that
take advantage of this multiscale structure whenever possible.
The benefits are clear: localized, multi-resolution approxi-
mations have the potential to offer better accuracy at lower
complexity, leading to faster simulations, simpler controllers
and revealing analyses or interpretations.

We introduce a snapshot-based framework for localized
analysis and reduction of nonlinear systems, based on a sys-
tematic multiscale decomposition of the statespace induced
by the geometry of empirical system trajectories. A given
system is approximated by a collection of low-dimensional
systems at different scales, each of which is suited to and

J. Bouvrie is with the Department of Mathematics, Duke University, Box
90320, Durham, NC 27708, USA jvb@math.duke.edu.

M. Maggioni is with the Departments of Mathematics and Com-
puter Science, Duke University, Box 90320, Durham, NC 27708, USA
mauro@math.duke.edu.

Research supported by DARPA FA8650-11-1-7150 SUB#7-3130298,
MSEE FA8650-11-1-7150; Washington State U. SUB#113054 G002745;
NSF IIS-08-03293, DMS-08-47388; ONR N00014-07-1-0625.

responsible for a particular region of the statespace. The
number of low-dimensional systems, their dimensions and
their regions of responsibility are all chosen adaptively, given
a prescribed precision ε > 0. Within this framework, we
describe localized variants of the proper orthogonal decom-
position (POD) and empirical balanced truncation methods
for model order reduction of nonlinear systems.

Given sample measurements from one or more simulated
state trajectories, a multiscale tree decomposition of the
subspace containing the trajectories is first constructed using
a modified version of the technique proposed in [1]. To
each node of the tree we associate a subset of the sam-
ples. Next, approximating subspaces are estimated from the
samples at each node. How these subspaces are computed
depends on the analysis that is desired: a localized POD-
based reduction method is obtained by taking the SVD and
applying an affine Galerkin projection that is valid locally;
local empirical balanced truncation is made possible by way
of a local observability subspace estimation step combined
with an affine Petrov-Galerkin projection defined by a local
balancing transformation and its inverse. A system may then
be simulated, controlled or analyzed by switching between or
blending the reduced, local systems as the global trajectory
evolves throughout the statespace. The basis vectors encod-
ing the local approximating subspaces may be collectively
viewed as a multiscale, data-dependent dictionary designed
to efficiently encode the behavior of a nonlinear system.

The advantages of this approach may be divided into two
categories, one analytical and the other computational. From
an analytical perspective, the framework described here can
potentially decompose complex phenomena into a multi-
resolution hierarchy of simple parts which may be analyzed
separately. To this end we describe a localized variant of
dynamic mode decomposition (DMD) for understanding the
behavior of nonlinear systems at different stages of a simula-
tion without having to manually decide which time intervals
to consider. From a computational perspective, a localized
approximation scheme can indeed be expected to provide
better approximation properties at lower complexity, since
the approximating subspaces do not need to capture global
phenomena, but only need to be good locally. This then
opens the door to control strategies involving a collection of
simple, local controllers and raises interesting decentralized
control possibilities which could leverage parallelization and
sensor/actuator locality.

Due to space limitations we will forgo a detailed review
of the existing reduction techniques upon which we build.
Detailed expositions are readily available; some good refer-
ences for POD and balanced truncation of linear systems in-
clude [2], [3]. Reference [4] discusses what are now standard

1

extensions of these methods to nonlinear systems, and [5],
[6], [7] discuss DMD. We begin by describing the multiscale
tree decomposition for snapshot data in Section II. Local
reduction and spectral analysis algorithms are developed in
Section III, with Section IV focusing specifically on the
question of efficient simulation and controller design with
local approximating dynamical systems of low dimension.
Finally we conclude in Section V with an illustrative ap-
plication of the localized POD method proposed here to a
high-dimensional fluid mechanics problem involving a 2-D
incompressible flow over a bluff body. The simulations reveal
that a localized reduction approach yields greater accuracy
with a simpler model.

A. Prior Work
Localized reduction and analysis of dynamical systems

often proceeds on the basis of a priori domain knowledge and
manual intervention [8]. Local modeling and dimensionality
reduction for static datasets is a well explored space ([9],
[10] are two popular algorithms), but to our knowledge there
has been no attempt to extend these ideas to dynamical
systems. In [11] a local POD scheme is proposed, however
localization is achieved by binning snapshots in time accord-
ing to a heuristic and computationally costly procedure that
attempts to successively minimize reconstruction error by
applying POD to different simulation intervals. Geometry
of the system trajectories is not taken into account and
multiscale structure is not explicitly explored in time, or
explored at all in space. Various efforts have included wavelet
analysis of snapshots to capture spatio-temporally localized
phenomena, however the resulting reduction methods are
often tailored to the specific problem (see e.g. [12]) and do
not support balancing for controlled dynamical systems.

II. GEOMETRIC DATA TREE CONSTRUCTION

The construction of a multiscale tree T organizes a dataset
of N samples {xi}Ni=1 into a spatially hierarchical structure.
As the geometry of a continuous system will evolve more
or less smoothly over time, a spatial analysis will also tend
to identify geometrically self-similar temporal extents. Each
“node” in the tree corresponds to a subset of the samples,
and children beneath a given node partition the data points
belonging to that node. Samples are not assigned to nodes
arbitrarily; geometric properties of the dataset are used to
partition the data into clusters. A cluster may be further
split into smaller clusters depending on whether more or less
resolution is needed to approximate points in a particular
region of the statespace to the prescribed accuracy.

We will follow the development in [1] to construct a
suitable multiscale decomposition of a metric measure space
(M, ρ, µ) endowed with (Borel) probability measure µ and
metric ρ. In practice (M, ρ, µ) will be a finite discrete metric
space, µ will simply be the counting measure andM⊂ RD.
Let Br(x) denote the ρ-ball of radius r > 0 centered at
x ∈M.

Definition 1 ([1], Def. 1) A tree decomposition T of a D-
dimensional metric measure space (M, ρ, µ) is a family of
open sets in M, {Cj,k}k∈Kj ,j∈Z, called dyadic cells, such
that

(i) for every j ∈ Z, µ
(
M\∪k∈Kj

Cj,k
)

= 0;
(ii) for j′ ≥ j and k′ ∈ Kj′ , either Cj′,k′ ⊆ Cj,k or

µ
(
Cj′,k′ ∩ Cj,k

)
= 0;

(iii) for j < j′ and k′ ∈ Kj′ , there exists a unique k ∈ Kj
such that Cj′,k′ ⊆ Cj,k;

(iv) each Cj,k contains a point cj,k such that Bc12−j (cj,k) ⊆
Cj,k ⊆ B2−j (cj,k), for a constant c1 depending on the
intrinsic geometric properties of M.

Given a dataset {xi}i, a tree satisfying (or approximately
satisfying) the properties above may be constructed in a num-
ber of ways, for instance by recursive spectral partitioning,
iterated k-means clustering, or cover trees [13]. For the sim-
ulations described here we applied the METIS [14] partition-
ing algorithm to the k-nearest neighbor weight matrix with
neighbor weights Wij = exp(−‖xi − xj‖22/σiσj), where
σi is taken to be the distance between xi and its bk/2c-
th nearest neighbor. If the snapshots {xi}i are sampled
from a manifold M, the combinatorial Laplacian L =
diag(W1)−W can be shown to approximate the Laplace-
Beltrami operator ∆M on M.

METIS produces a dyadic tree containing the collection
of cells {Cj,k} down to a scale where the cells contain a pre-
specified maximum number points. The tree is then pruned
by eliminating leaf nodes until a principal components
approximation of the data at a node, assuming dimension
less than or equal to the parent’s approximating dimension,
fails to adhere to a prescribed L2 approximation precision
ε > 0. See [1, Sec. 7.1] for details explaining the pruning
procedure. Different branches of the tree may therefore reach
to different scales. We will let j = J denote the finest
resulting scale (where there are at least the minimum number
of points passed as a parameter to METIS), and j = 0
denote the coarsest scale (which includes all points in the
dataset). The number of neighbors k used to construct W
as well as the parent subspace dimensions and precision
parameter ε used for pruning typically must be chosen based
on the particular application. The cost of constructing a
tree is O(DN(d2

ι + logN)), where dι is the approximate
intrinsic dimension of the data and of the planes used for
approximation.

In the discussion below, we will denote by Leaf(T) the
set of scale/cell index pairs (j, k) such that {Cj,k}(j,k)∈Leaf
are the leaf node cells of T . When the tree in question is
clear from the context, we will simply write Leaf.

III. LOCAL REDUCTION

In this section we propose localized, multiscale variants
of the proper orthogonal decomposition (POD) and em-
pirical balanced truncation methods for reduction of non-
linear systems. A localized variant of the dynamic mode
decomposition (DMD) approach to system analysis is also
briefly described. Local POD may be applied to any system,
however it is best suited to autonomous and locally ap-
proximately normal systems. For dynamical control systems,
the local empirical balanced truncation algorithm we will
describe takes into account the input-output behavior of the
system, and is preferred. For analysis of autonomous systems
suspected to be locally non-normal, we suggest the DMD-
based technique.

2

In the sections that follow we will consider a general
nonlinear system of the form{

Ẋ = f(X,u)

y = h(X)

with state X ∈ RD, input u ∈ Rp (omitted for autonomous
systems), output y ∈ Rq , and continuous dynamics f : RD×
Rp → RD and output function h : RD → Rq . The vectors
{ei}i will refer to the canonical basis vectors of a Euclidean
space determined by the context in which they are used.

A. Local POD for Controlled and Autonomous Systems
Perhaps the simplest method for reducing the order of

nonlinear dynamical systems and systems described by PDEs
is the proper orthogonal decomposition (POD) method (see
e.g. [3] for a detailed introduction). Given a collection of
trajectory samples, {xi ∈ RD}Ni=1, POD returns a low-
dimensional subspace which best approximates the subspace
containing the state trajectories in an L2 sense. For linear
systems, the approximation is optimal.

Given a multiscale decomposition T of a snapshot dataset
{xi}i as described in Section II, we can systematically
localize POD-based reduction as follows:

1) Apply POD to the samples belonging to leaf node
dyadic cells (separately).

2) Define local, reduced dynamical systems at each leaf
node via appropriate Galerkin projections.

3) Combine local dynamical systems by, e.g. averaging
or a switching rule.

Each of these steps will be explained in turn. For each leaf-
node cell Cj,k, (j, k) ∈ Leaf, we define the local mean cj,k =
|Cj,k|−1

∑
x∈Cj,k

x and covariance

covj,k = |Cj,k|−1
∑
x∈Cj,k

(x− cj,k)(x− cj,k)∗. (1)

Taking the SVD

covj,k = Uj,kΣ2
j,kU

∗
j,k, (2)

let Pj,k denote the matrix whose rows are the columns of
Uj,k corresponding to the r < D largest singular values. A
locally-defined Galerkin projection is obtained by consider-
ing the dynamics of X′ = X − cj,k and projecting down
to the subspace spanned by the r orthonormal rows of Pj,k.
The reduced-order dynamical system valid in the vicinity of
cj,k is thus given by{

ẋj,k = Pj,kf
(
P ∗j,kxj,k + cj,k

)
y = h

(
P ∗j,kxj,k + cj,k

) (3)

for each (j, k) ∈ Leaf. We note that the local systems need
not have the same dimension. In practice, the dimension of
a leaf node system is chosen adaptively on the basis of the
tree precision parameter ε as described in Section II.

By building the tree T and estimating the (affine) sub-
spaces spanned by the rows of the Pj,k, we are approximat-
ing the statespace with an arrangement of low-dimensional
planes which pass through the respective centers cj,k. The
dynamical systems (3) attempt to approximate the original

system by projecting the vector field f onto these planes. We
will discuss in Section IV below how to construct a model of
the system that is valid globally, by combining the dynamics
of the local reduced systems.

B. Local Empirical Balanced Truncation
The POD method renders a set of r < D modes which

attempt to capture the input-to-state behavior of a controlled
system, but entirely ignores state-to-output properties. Bal-
anced truncation (see [3], [2] for details) is a method that
attempts to find a low-dimensional approximating subspace
by choosing directions which are simultaneously the most
controllable (capturing input-to-state energy) and the most
observable (capturing state-to-output energy). An empirical,
snapshot based variant of balanced truncation (also known as
balanced POD) for linear systems was first studied in [15],
and was subsequently extended to nonlinear systems in [4].
The approach proposed in [4] essentially carries out the
linear balancing theory and applies a Petrov-Galerkin pro-
jection to a nonlinear system as if it were linear, however
empirical estimation of the observability and controllability
gramians is different from the method of snapshots for
linear systems. While snapshots are typically computed from
primal and adjoint systems by matrix multiplications in the
linear setting [16], for nonlinear systems true state/output
trajectories are simulated from impulsive input (as the primal
simulation), and from impulsive initial conditions (as the
“adjoint” simulation). We will largely follow the balanced
truncation process for nonlinear systems proposed in [4], but
adapted to the localized setting considered here by way of
some important modifications.

The local empirical balanced truncation methodology we
propose consists of the following steps:

1) Controllability Tree Construction and Local POD:
First, perform local POD following the approach described
in Section III-A: Simulate the system with u(t) = eiδ(t)
for i = 1, . . . , p and X(0) = 0, collect Nc state trajectory
samples, and build a controllability tree Tc to precision ε
following the process described in Section II. Then, for each
leaf node in the tree, compute the partial isometries Pj,k
as described in Section III-A. Temporarily use more POD
modes than is necessary for the final reduced system so that
the observability simulations described immediately below
can reliably estimate the observable subspace.

2) Observability Subspace Estimation: Let {φ(i)
j,k}ri=1 de-

note the top r orthonormal basis vectors spanning the
POD subspace associated to node (j, k), computed above
according to (1)-(2) (note that r may be different for each
(j, k) ∈ Leaf). These are the rows of Pj,k. For each leaf
node (j, k) ∈ Leaf(Tc), run r simulations of the original
high-dimensional system from initial conditions X(0) =

φ
(i)
j,k+cj,k, i = 1, . . . , r, respectively, setting u(t) = 0. These

simulations assess observability locally, and so should be
stopped shortly after the state trajectory leaves the relevant
region of responsibility defined by the centers {cj,k} (see
Definition 2 and surrounding discussion below). Global
observability properties are therefore measured by way of
r · |Leaf| short simulations.

Estimation of the observability gramian in [4] requires at
least D simulations, corresponding to the initial conditions

3

X(0) = eiδ(t), i = 1, . . . , D. For large systems (which
motivate reduction in the first place), this can be prohibitively
expensive. Fluid control problems can easily involve a 103−6

dimensional state variable, for example. Computational con-
siderations aside, if an r-dimensional local POD subspace
can well-approximate the dynamics locally, then one can
expect that the output trajectories should approximately lie
within a subspace of dimension no greater than r. This
observation justifies simulating the system starting only from
the controllability POD modes {φ(i)

j,k}i, and is similar in spirit
to output-projection approximations applied in the context
of linear systems [16]. On the other hand, from a geometric
point of view, we would like to perform a localized balancing
and so wish to assess controllability and observability only
locally as well. We therefore need to simulate the system
locally near each affine subspace spanned by the {φ(i)

j,k}i, and
capture observability properties within the relevant region of
responsibility of the statespace.

Let y(i)
j,k(α, β) denote the response of output (y) coordinate

α ∈ {1, . . . , q} at time tβ , β ∈ {1, . . . , No} simulated using
X(0) = φ

(i)
j,k + cj,k as the initial condition, and define the

snapshot vector dj,k(α, β) =
(
y

(i)
j,k(α, β)

)r
i=1
∈ Rr. We can

think of these simulations as yielding the sampled output
measurement collections {dj,k(α, β)}α,β for each (j, k) ∈
Leaf. The simulation procedure above leads to a rank-r
approximation of the true local observability gramian W o

j,k
given by

W o
j,k ≈ (P ∗j,kYj,k)(P ∗j,kYj,k)∗ = P ∗j,kW̃

o
j,kPj,k

where Yj,k is the (r × Noq) matrix storing the snapshots
{dj,k(α, β)}α,β and W̃ o

j,k = Yj,kY
∗
j,k is the (r × r) reduced

observability gramian local to leaf node (j, k) of Tc. We will
overload the notation W o

j,k and use it to refer to the local
low-rank approximation. For purposes of computing a bal-
ancing transformation (discussed below), one need not (and
should not) explicitly form the large (D ×D) matrix W o

j,k
unless D < Noq. We will proceed under the assumption that
D � Noq.

Finally, as an organizational step, define the cell Dj,k =
{dj,k(α, β)}α,β and associate this cell with node (j, k) of
Tc. Conceptually, one can alternatively think of organizing
the cells Dj,k into an observability tree To with structure
identical to that of the controllability tree Tc, and invoking
the canonical matching between the two trees.

3) Local Balancing and Truncation: Next, apply empir-
ical balancing and truncation separately at each leaf node
given the respective controllability and observability snap-
shot pairs (Cj,k,Dj,k). The local balancing transformations
Tj,k, one for each (j, k) ∈ Leaf(Tc), are computed as
follows. Let

Hj,k = Y ∗j,kPj,kXj,k

denote the (Noq×Nc) Hankel matrix of inner-products local
to node (j, k), where Yj,k is the matrix of observability
snapshots in Dj,k as defined above, and Xj,k is the (d ×
Nc) matrix of controllability snapshots in Cj,k. Compute
the (economy sized) SVD of Hj,k, Hj,k = Uj,kΣj,kV

∗
j,k,

organized so that the singular values are sorted in descending
order by magnitude and stored along the main diagonal

of Σj,k. Let Ũj,k, Ṽj,k denote the submatrices of Uj,k, Vj,k
which include the first d < D columns, respectively, and
let Σ̃j,k denote the top-left (d× d) block of Σj,k. Then the
truncated balancing coordinate transformation is given by the
pair

T ∗j,k = P ∗j,kYj,kŨj,kΣ̃
−1/2
j,k , T−1

j,k = Xj,kṼj,kΣ̃
−1/2
j,k .

A balanced, reduced order system valid in a local region of
the statespace near cj,k is obtained by performing a Petrov-
Galerkin projection onto the d directions corresponding to
the largest singular values of Hj,k, giving{

ẋj,k = Tj,kf
(
T−1
j,k xj,k + cj,k

)
y = h

(
T−1
j,k xj,k + cj,k

) (4)

for each (j, k) ∈ Leaf.
We note that in the local POD and balancing algorithms

described above, time enters via the locality of the plane
projection operators. By contrast, global approaches ignore
time.

C. Dynamic Mode Decomposition and Non-Normal Approx-
imations

The reduction methods discussed above make a strong
normality assumption. Sampled trajectories are analyzed as
if they were generated from a linear system by way of the
singular value decomposition, which is really only useful
when the system may be locally well-approximated by a
linearization Ẋ = AX involving a normal matrix A. For
many systems, particularly nonlinear systems, this may not
be the case, and non-normal matrices can generate rich
dynamics not predicted by the spectrum (see [17] for a
detailed discussion of non-normal matrices).

This observation motivates an alternative approach which
does not use the SVD. Dynamic mode decomposition
(DMD) [5], [7], [6] is a method that analyzes empirical
trajectory data by applying a variant of the Arnoldi iteration
for non-symmetric matrices [18]. The Arnoldi algorithm is
an iterative algorithm for finding eigenvalues of a matrix A
requiring only a black box capable of computing the product
Ax. DMD feeds Arnoldi sequential samples generated by a
discrete-time nonlinear system, xk+1 = f(xk) (in place of
xk+1 = Axk), and can be viewed as computing eigenvalues
and eigenvectors of a non-symmetric linear approximation to
the (unknown) nonlinear system. Here, time enters explicitly.

Dynamic mode decomposition has recently been applied
to understand unsteady fluid flow problems [6], [8], but
this and other problem domains require a priori knowledge
specifying appropriate time intervals to study (see e.g. [8],
Sec. 6.3). The modes returned by DMD may not make
sense if long trajectories are analyzed, and equilibrium,
transient or cycle behaviors become conflated. Similarly,
short trajectories many not include enough information to
deliver revealing information.

Our contribution here is to simply suggest that 1) Applying
DMD is a good idea for gaining insight into the behavior
of nonlinear systems, and 2) Applying DMD locally, as
determined by a geometric multiscale decomposition, can
resolve some of the difficulty in deciding how and where
to apply DMD. We do not give a detailed description of

4

the DMD algorithm or present experimental validation, but
remark that a naive localization of DMD can be obtained by
following the approach described in Section III-A, replacing
POD with DMD.

The tree construction technique described in Section II
decomposes the statespace into geometrically-meaningful re-
gions. For continuous systems describing physical processes
it is likely that sequential trajectory snippets will be placed
into the leaf node cells Cj,k

1, in which case these snippets
can be fed directly to DMD (assuming one keeps track of the
time attached to each observation). If samples are missing,
then the map f will need to be applied as necessary to fill
in temporal gaps.

IV. SIMULATION AND CONTROLLER DESIGN

With a collection of locally defined dynamical systems
on hand, it remains to specify how to combine the local
systems into a globally defined system. A given system may
be modeled globally by activating a local system whenever
the trajectory is in or near the area of the statespace for which
the local system is “responsible”. We define these areas as
follows.

Definition 2 The statespace regions of responsibility are
defined as the Voronoi regions of the statespace induced
by the centers {cj,k}(j,k)∈Leaf under the metric ρ. In other
words, a particular local system with index (j′, k′) is respon-
sible for a state s ∈ RD if s is ρ-closer to cj′,k′ than any
other leaf node center.

A global system may be most easily defined by applying a
switching rule, wherein only one local system is active at
any point in time, and the active system is swapped out
for another whenever a responsibility region boundary is
crossed. While simple and computationally inexpensive, the
switching rule can potentially lead to non-smooth transitions
near boundaries, when an old model is dropped and a new set
of projections are applied. One solution to this problem is to
blend several reduced systems in the vicinity of a boundary
in proportion to the distance from the current state to a given
center cj,k. We consider each of these possibilities, switching
and blending, in turn.

In the following we will adopt a more generic notation
and assume that the local, reduced dynamical systems are re-
spectively parameterized by the tuples {(Φi,Ψi, ci, f)}|Leaf|i=1
so that we may define the maps

fi(x) , Φif
(
Ψ∗i x+ ci

)
(5)

hi(x) , h
(
Ψ∗i x+ ci

)
(6)

with fi : Rdi → Rdi , di = dim(range Φi), and write{
ẋi(t) = fi(xi)

y(t) = hi(xi)
(7)

for the reduced local system associated to leaf node i of
the data tree. For POD, Φi = Ψi = Pi, while for balanced
systems Φi = Ti,Ψi = T−∗i , where we have replaced the
subscript index notation (j, k) with i for brevity.

1We found that this is indeed the case for the fluid flow problem examined
in Section V.

Before continuing, we make an important observation
regarding (7). The systems (7) are responsible for localized
regions of the statespace, characterized to a prescribed degree
of accuracy by low-dimensional planes. As such, we argue
that it is reasonable to attempt to approximate the low
dimensional dynamics (5) locally on these planes, by fitting
simple functions that can be quickly evaluated (e.g. a linear
operator, neural network, or kernel function approximation
scheme). In the case of fluid simulations, for example, this
could avoid the solution of large linear systems at each
time step, and lead to substantial computational savings. The
local, geometric nature of the piecewise decomposition of the
statespace and dynamics may plausibly support higher accu-
racy approximations consisting of simpler localized models,
as compared to global approximation approaches.

A. Switching Between Local Systems
A switching rule is the simplest possible means for

combining local systems: a new model is swapped in
whenever a responsibility region boundary is crossed. The
new system picks up where the previous one left off
via its initial condition. Without loss of generality, we
can consider the discrete collection of time instances
t0 < · · · < tn < tn+1 < · · · < tT at which the simulation
computes the globally defined trajectory x(t). Suppose the
current (or initial) local system has index i0 so that x(t) =
xi0(t), where xi0(t) is a solution to (7), from time t = t0
until time ti0,i1 ∈ (t0, tT) when the boundary between
system i0 and some other system i1 6= i0 is crossed. That is,

argmin
j

ρ
(
Ψ∗i0x(t) + ci0 , cj

)
=

{
i0, t0 ≤ t < ti0,i1
i1, t = ti0,i1 .

Let X(t0) ∈ RD denote a pre-specified initial condition for
the original system, and suppose ti1,i2 > ti0,i1 is the time of
a second, subsequent boundary crossing. The global reduced
system for t0 ≤ t ≤ ti1,i2 may be defined as

ẋ(t) =

fi0(x), x(t0) = Φi0(X(t0)− ci0),

for t0 < t ≤ ti0,i1
fi1(x), x(ti0,i1)← Φi1

(
Ψ∗i0x(ti0,i1) + ci0 − ci1

)
,

for ti0,i1 < t ≤ ti1,i2 .

The last state computed by system i0, x(ti0,i1), serves
as the initial condition for system i1 only after project-
ing x(ti0,i1) onto plane i1 via the affine transformation
Φi1
(
Ψ∗i0x(ti0,i1) + ci0 − ci1

)
. The process above then con-

tinues for further boundary crossings, replacing the indices
i0, i1, i2 as appropriate.

B. Blending Local Systems
Transitions between local models can be smoothed by

blending several systems in a neighborhood of a given
boundary. However, trajectories and dynamics of the reduced
systems are expressed in differing coordinate systems spe-
cific to the respective approximating planes, and cannot be
averaged directly. This difficulty can be resolved by blending
in a common space just large enough to include the planes
associated to the collection of local systems participating
in the blend. In the following, we will consider a blend

5

involving two local systems for simplicity, however the
development readily applies more generally to an arbitrary
number of systems.

Let S ⊆ RD denote the high dimensional statespace, let
Si ⊇ rangeΦi denote the di dimensional subspace containing
the statespace of the local dynamical system i, and let the
blending neighborhood N = N (t) consist of two arbitrary
(but distinct) local systems i and j; N = {i, j}. A plane in
S describing the common subspace SN = Si ⊕ Sj may be
found via the SVD. Let

U∗NΣNVN = svd
(
[(Φ∗i + ci1

>
di) (Φ∗j + cj1

>
dj)]
)
. (8)

The common plane has dimension dN ≤ di + dj , center
cN = U∗Ne1, and orthogonal basis vectors {U∗Nek}

dN
k=2.

Temporarily omitting the role of the plane centers ci for
simplicity, the following diagrams describe the situation:

Si S Sj

SN = Si ⊕ Sj

Ψ∗i

Φi

Pi→N

Ψ∗j

Φj

UN
Pj→N

S S

SN SN

f

Ti,N

fi,N

T−1
i,N

The map Pi→N is obtained from the diagram on the left as
Pi→N = UNΨ∗i . Subsequently, its “reverse” PN→i is given
by PN→i = ΦiU

∗
N . A similar argument applies to Pj→N .

We can define a global reduced system valid for t > 0 as
ẋ(t) =

∑
i∈N

wi(x, t)Pi→N fi(PN→ix)

y(t) =
∑
i∈N

wi(x, t)hi(PN→ix)
(9)

where the weights wi satisfy wi ≥ 0,
∑
i∈N wi = 1 for all

x, t. The right-hand diagram above exhibits the relationship
of the blended system (9) to the original system on S. Letting
Ti,N , UNΨ∗iΦi and T−1

i,N , Ψ∗iΦiU
∗
N , we may write the

contribution of system i to the reduced dynamics in SN as
fi,N (x) = Ti,N f(T−1

i,Nx) using Equation (5).
The initial condition of (9) is x(0) = UNX(0) if X(0)

is a given initial condition for the high-dimensional sys-
tem. Note that this gives the correct initial conditions for
the local systems {fi}i∈N since xi(0) = PN→ix(0) =
ΦiU

∗
NUNX(0) = ΦiX(0) as the columns of Φ∗i are already

in the range of the projector U∗NUN from (8) (still omitting
the centers). When a new local model fk is added to the
blending neighborhood N , its initial condition is similarly
obtained from the current state of the system x(t) ∈ SN
as PN→kx(t). Local models may be added or dropped as
needed as long as the operators {Pi→N }i∈N are updated as
necessary.

The interpolation weights wi in (9) may be chosen in a
variety of ways. Combining local systems on the basis of
distance to the plane centers is a reasonable choice. The
weights in this case may be defined as follows. Consider a
discretization2 t0 < . . . < tn < tn+1 < . . . tT of the simula-
tion time interval. Given a collection of weights wi(tn) at

2Chosen so that the movement in time of the system is small compared
to the scale of change of the interpolation weights wi.

an arbitrary time tn, the high-dimensional embedding into S
of the low dimensional state x(tn) evolving according to (9)
is given by

X̃(tn) =
∑
i∈N

wi(tn)T−1
i,Nx(tn).

The set of weights at the next simulation time step can then
be computed as

wi(tn+1) =
K
(
X̃(tn), ci

)∑
j∈N K

(
X̃(tn), cj

) , i ∈ N (10)

where K : RD×RD → R+ is a non-negative valued, positive
definite, symmetric similarity function. The Gaussian kernel
K(x, x′) = exp(−ρ2(x, x′)/σ2) is a natural choice (σ may
be rather easily chosen based on the size of the local
neighborhoods). The initial set of weights wi(0) may be
computed by comparing the initial condition X(0) to the
centers {ci}i with K.

In practice, one could apply a threshold to the weights (10)
so that only a small number of systems contribute to the
interpolation, and only near transition regions. Although the
global, reduced system is characterized by a collection of
|Leaf| local systems (with in general different dimensions),
at any given time the system can be entirely described by
either a single low-dimensional system, or if desired, a small
number of systems during transitions from one region of re-
sponsibility to another; simulations always remain governed
by low-dimensional dynamics.

In the context of control, one can therefore design simple
controllers responsible only for the respective local regions
of the statespace associated to each local reduced model, and
switch (or blend) between them as needed in practice. The
controllers can be simple both because they are applied to
low-dimensional systems and because they only need to be
effective in a restricted, localized region of the statespace.
Furthermore, the control problem is decomposed into nearly
independent parts, so that if a complex controller is needed in
one part of the statespace, the other controllers responsible
for different parts do not necessarily need to be complex.
Maintaining a multiscale collection of controllers also opens
the door to interesting decentralized control schemes. Global
control of a complex system may be effected by applying
local control, thereby distributing the computational burden,
reducing communication overhead and possibly bringing a
controller closer to the relevant sensors and actuators3.

V. APPLICATION TO A FLUID FLOW PROBLEM

We illustrate the local POD algorithm discussed in sec-
tion III-A in the context of an uncontrolled, nonlinear fluid
flow simulation with statespace dimension D = 3721.

A. Problem Specification
We consider the two-dimensional unsteady, incompress-

ible flow of fluid past a stationary, infinite cylinder. This is a
well-studied problem in fluid mechanics (see e.g. [19]), and
is related to flow past inclined plates and airfoils at various

3Consider control of coupled systems, as in flocking, or problems relying
heavily on parallel computation where data-locality and easy parallelization
with low communication overhead is critical.

6

10
−1

10
0

10
1

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Advection Time τ

R
el

a
ti

v
e

E
rr

o
r

Psi

10
−1

10
0

10
1

0

0.5

1

1.5

2

2.5

Advection Time τ

A
b
so

lu
te

E
rr

o
r

Omega

Global POD−5
Local POD−3

Global POD−5
Local POD−3

Fig. 1. Evolution of the simulation error for global POD vs. the local POD approach described in Section III-A: stream function ψ error (left) and
vorticity ω error (right). Arrows indicate where switching between models occurred in the local POD simulation. See text for details.

angles of attack. Control of fluids flowing past obstacles is an
active area of research, with applications in civil engineering
and aerodynamics (see [20] for a review which includes
applications of POD to fluids). We restrict our attention
to a low-Reynolds number regime with Re = 40, non-
dimensionalized as Re , Udc/ν where U is the free-
stream velocity, dc is the cylinder diameter and ν is the
kinematic viscosity. At this Reynolds number the flow is
stable and does not exhibit vortex shedding. The velocity
V = [u(x, y) v(x, y)]> and pressure p(x, y) of the fluid are
governed by the unsteady Navier-Stokes equations, which
for this problem can be reformulated in terms of vorticity
ω = ∇×V, and a stream function ψ defined by the relations
u = ∂yψ and v = −∂xψ. Denoting by ω the z-component
of ω, the system of PDEs governing the 2D flow can be
expressed as

∂tω + ∂yψ∂xω − ∂xψ∂yω = R−1
e ∆ω (11a)

∆ψ = −ω. (11b)

See e.g. [21] for a detailed discussion of the stream function-
vorticity formulation of 2D flow problems.

B. Simulation Protocol
We followed the general approach described in [21] (Sec.

4.6) to simulate the system (11). A mixture of explicit and
implicit finite difference schemes were employed to solve
the vorticity equation, and no-slip boundary conditions were
enforced on the cylinder surface. The unbounded physical
domain was mapped to a finite computational domain via
an algebraic transformation. Symmetry of the solution in
the absence of vortex shedding allows for simulation of
only the top half of the problem, and we used a (61 × 61)
collocated grid with identical spatial discretizations in the x
and y-directions. Given the nondimensional advection time
τ , tU/dc, the integration time step was set to δτ = 10−3.

Local POD was performed as follows. We first simulated
the system from zero initial conditions for 0 ≤ τ ≤ 20, tak-
ing snapshots of the the vorticity ω(x, y) every 30 integration
steps, giving n = 665 D-dimensional samples (D = 3721).
A geometric multi-resolution tree decomposition was then
computed, following the process described in Section II, to
precision ε = 0.001 with non-leaf node dimension (dimen-
sion of the PCA approximation) set to 3. This resulted in a

tree with 5 nodes, of which 3 were leaf nodes. The dimension
of the POD basis at all leaf nodes was also 3 (note that this is
determined automatically based on ε and the dimension at the
parent nodes – see [1] for details). Construction of the tree,
including PCA basis vectors at each node, took on the order
of a few seconds on a Linux PC equipped with a Xeon 5320
CPU running MATLAB. For comparison purposes, global,
vanilla POD, with centering, was also computed on the above
snapshot dataset, and the top 5 most energetic modes were
selected.

Local reduced systems were then defined exactly as in (3),
and simulated for 0 ≤ τ ≤ 20 (again from zero initial condi-
tions) using the simple switching rule defined in Section IV-
A. Parasitic oscillation between models near responsibility
region boundary transitions was not found to be a problem.

C. Results

Let ψred(τ) ∈ RD denote a reduced model’s stream
function, embedded into the full statespace RD via an
appropriate P ∗j,k at (advection) time τ , and let ψtrue(τ) denote
the full model simulation stream function. Similarly, define
the analogous vorticities ωred(τ), ωtrue(τ) ∈ RD. The relative
error

eψ(τ) =
‖ψred(τ)− ψtrue(τ)‖2

‖ψtrue(τ)‖2
and absolute error

eω(τ) = ‖ωred(τ)− ωtrue(τ)‖2

for each of global (vanilla) POD and local POD were
computed at each (respective) simulation time step. Figure 1
shows error signals for the stream functions ψ (left) and
vorticity ω (right), over the duration of the simulation. The
vorticity error was assessed on an absolute basis due to zero
or nearly zero vorticity for the first second or so of this
simulation. The time axis is given on a logarithmic scale
for improved readability. Arrows mark the points in time
where the local POD simulation switched between models
(near τ = 2.8 and τ = 9.2). Abrupt switching between local
models is the cause of the spike in error seen at τ = 2.8 in
the solid/green traces, however it is likely that this could be
mitigated by blending the models around transition regions,
as described in Section IV-B. Stream functions computed (by

7

Fig. 2. Stream functions associated to the (respective) top local POD modes from each of the leaf nodes.

−2 0 2 4 6 8

−2

−1

0

1

2

x

y

Local POD: Psi, τ = 0.1, leaf = 1

−2 0 2 4 6 8

−2

−1

0

1

2

x

y

Local POD: Psi, τ = 2.8, leaf = 2

−2 0 2 4 6 8

−2

−1

0

1

2

x

y

Local POD: Psi, τ = 9.2, leaf = 3

Fig. 3. Streamlines illustrating the local POD flow simulation near the beginning (left), after a transition from leaf node model 1 to 2 (middle), and after
a transition from leaf node model 2 to 3 (right).

numerically solving (11b)) from the top local POD vorticity
mode at each of the three leaf nodes (respectively) are
shown in Figure 2. These modes correspond to clear temporal
phases of the flow, suggesting that the tree has decomposed
trajectories into temporally meaningful segments. Figure 3
shows contour plots of the local POD simulation’s stream
function ψ, in left to right order, near the start of the
simulation, just after switching from leaf node model 1 to 2,
and just after switching from leaf node model 2 to 3.

Although the global POD simulation (Figure 1, blue
dashed traces) uses five components, the global POD error
is in general seen to be higher than the switching local
POD simulation (green solid traces), which at any given
moment in time uses three components. Thus, for this
particular problem, there is a computational savings of two
projections over global POD during simulation. We ignore
the cost of constructing the multiresolution sample tree in this
comparison, as it is a one-time cost, and is typically small
relative to the cost of simulating. As discussed above, the
fact that simple local models support accurate simulations
provides evidence that one may be able to fit low dimen-
sional approximations to the projected dynamics locally, and
simulate at a drastically reduced computational cost. The fact
that the local models are of lower dimension than a global
POD approximation also suggests that in a fluid control
setting, simpler, localized controllers may be possible relative
to global approaches. We seek to address these interesting
topics in a more comprehensive, future publication.

REFERENCES

[1] W. K. Allard, G. Chen, and M. Maggioni, “Multi-scale geometric
methods for data sets ii: Geometric multi-resolution analysis,” Appl.
Comput. Harmon. Anal., vol. 32, pp. 435–462, 2012.

[2] G. E. Dullerud and F. Paganini, A Course in Robust Control Theory:
a Convex Approach. Springer, 2000.

[3] A. Antoulas, Approximation of large-scale dynamical systems. Cam-
bridge University Press, 2005.

[4] S. J. Lall, J. Marsden, and S. Glavaski, “A subspace approach to
balanced truncation for model reduction of nonlinear control systems,”
International Journal on Robust and Nonlinear Control, vol. 12,
pp. 519–535, 2002.

[5] I. Mezić, “Spectral properties of dynamical systems, model reduction
and decompositions,” Nonlinear Dynam., vol. 41, no. 1-3, pp. 309–
325, 2005.

[6] C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, and D. S. Henningson,
“Spectral analysis of nonlinear flows,” J. Fluid Mech., vol. 641,
pp. 115–127, 2009.

[7] P. J. Schmid, “Dynamic mode decomposition of numerical and exper-
imental data,” J. Fluid Mech., vol. 656, pp. 5–28, 2010.

[8] K. K. Chen, J. H. Tu, and C. W. Rowley, “Variants of dynamic
mode decomposition: Boundary condition, koopman, and fourier anal-
yses,” Journal of Nonlinear Science, 2012. [published online; DOI:
10.1007/s00332-012-9130-9].

[9] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reduction,” Science, vol. 290,
pp. 2319–2323, 2000.

[10] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” Science, vol. 290, pp. 2323–2326, 2000.

[11] M.-L. Rapún and J. Vega, “Reduced order models based on local POD
plus Galerkin projection,” J. Comput. Phys., vol. 229, no. 8, pp. 3046–
3063, 2010.

[12] M. Schlegel, B. R. Noack, P. Comte, D. Kolomenskiy, K. Schnei-
der, M. Farge, D. M. Luchtenburg, J. E. Scouten, and G. Tadmor,
“Reduced-order modelling of turbulent jets for noise control,” in Notes
on Numerical Fluid Mechanics and Multidisciplinary Design (Eds. C.
Brun et al.), vol. 104, pp. 3–27, Springer, 2009.

[13] S. Beygelzimer, S. Kakade, and J. Langford, “Cover trees for nearest
neighbor,” in Proc. ICML, pp. 97–104, 2006.

[14] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM J. Sci. Comput., vol. 20,
pp. 359–392, 1999.

[15] B. Moore, “Principal component analysis in linear systems: Con-
trollability, observability and model reduction,” IEEE Tran. Automat.
Control, vol. 26, pp. 17–32, 1981.

[16] C. W. Rowley, “Model reduction for fluids using balanced proper
orthogonal decomposition,” Internat. J. Bifur. Chaos Appl. Sci. Engrg.,
vol. 15, pp. 997–1013, 2005.

[17] L. N. Trefethen and M. Embree, Spectra and Pseudospectra: The
Behavior of Nonnormal Matrices and Operators. Princeton University
Press, 2005.

[18] Y. Saad, “Variations on Arnoldi’s method for computing eigenele-
ments of large unsymmetric matrices,” Linear Algebra Appl., vol. 34,
pp. 269–295, 1980.

[19] C. H. K. Williamson, “Vortex dynamics in the cylinder wake,” in
Annual review of fluid mechanics, Vol. 28, pp. 477–539, Palo Alto,
CA: Annual Reviews, 1996.

[20] H. Choi, W.-P. Jeon, and J. Kim, “Control of flow over a bluff body,”
in Annual review of fluid mechanics. Vol. 40, vol. 40 of Annu. Rev.
Fluid Mech., pp. 113–139, Palo Alto, CA: Annual Reviews, 2008.

[21] S. Biringen and C.-Y. Chow, An Introduction to Computational Fluid
Mechanics by Example. Wiley, 2011.

8

