
Geometric Multiscale Reduction for Autonomous
and Controlled Nonlinear Systems

Jake Bouvrie1 and Mauro Maggioni2

1Laboratory for Computational and Statistical Learning, MIT
2Mathematics, Computer Science, ECE Departments, Duke University

IEEE CDC, December 2012



Motivation

Many interesting dynamical systems have natural multiscale
structure, in time and/or in space.

I Goal: Statistical model reduction that systematically takes
advantage of this structure whenever possible.

Advantage: Higher-accuracy at lower complexity:

I Simpler controllers

I Faster simulations

I Revealing analyses/interpretations



Approach

A system will be approximated by a collection of local,
low-dimensional systems at different scales:

ẋ = f(x)

Π

ẋr = fr(xr)

A globally defined, reduced-order system is obtained by blending or
switching between local sub-systems.



Approach

I Step (1). Analyze the geometry of empirical trajectories ⇒
build multiscale data tree.

I Nodes are subsets of samples.

I Step (2). Estimate approximating subspaces at nodes of the
tree (multiscale data-dependent dictionary), and project.

I POD + Galerkin projection
I Balanced truncation + Petrov-Galerkin projection

I Step (3). Combine subsystems.



Geometric Data Tree Construction

Given a precision ε > 0, build a multiscale tree T = {Cj,k}
organizing a dataset of N samples {xi}Ni=1 into a spatially
hierarchical structure (with e.g., recursive spectral partitioning,
METIS, iterated k-means,...).

I Each node corresponds to a subset of the samples
(snapshots), Cj,k (scale j, cell k).

I Children partition the samples of their parent.

I Bottom-up pruning: If parent can be encoded to precision ε
with d ≤ dmax PCA components, then delete children.

Collection of leaf nodes of T is interpreted as a partitioning of the
statespace into clusters occurring at different scales.



Local Reduction: POD

Suppose we are given a tree T of snapshots for the
high-dimensional system{

Ẋ = f(X,u)

y = h(X)

with state X ∈ RD, input u ∈ Rp, and output y ∈ Rq.
For each leaf-node cell Cj,k, (j, k) ∈ Leaf, define the local mean

cj,k = |Cj,k|−1
∑
x∈Cj,k

x

and covariance

covj,k = |Cj,k|−1
∑
x∈Cj,k

(x− cj,k)(x− cj,k)∗.



Local Reduction: POD

Take the SVD
covj,k = Uj,kΣ

2
j,kU

∗
j,k.

I Define Pj,k: matrix whose rows are the columns of Uj,k
corresponding to the r < D largest singular values.

Local, affine Galerkin projection:

I Consider the dynamics of X′ = X− cj,k
I Project down to the subspace spanned by the r orthonormal

rows of Pj,k.

A reduced-order dynamical system valid in the vicinity of cj,k is
given by {

ẋj,k = Pj,kf
(
P ∗j,kxj,k + cj,k

)
y = h

(
P ∗j,kxj,k + cj,k

)
for each (j, k) ∈ Leaf.



Local Reduction: POD - Comments

I Approximation of the statespace with an arrangement of
low-dimensional planes.

I Approximating subspaces/dynamics only need to be good
locally.

I Local systems need not have the same dimension (chosen
adaptively based on ε).

I Approximation captures local input-to-state behavior, but
ignores state-to-output properties.



Local Reduction: Balanced Truncation

Approach is similar to (Lall, Marsden, Glavaski ’02), but adapted
to the localized setting with some modifications.

Local Empirical Balanced Truncation

I Controllability tree + local POD.

I Observability tree + local observability subspace estimation.

I Local truncation & projection.



Local Reduction: Balanced Truncation

Controllability tree construction & local POD:

I Simulate the system with u(t) = eiδ(t) for i = 1, . . . , p and
X(0) = 0, collect Nc state trajectory samples.

I Build a controllability tree Tc to precision ε.

I For each leaf node in the tree, compute the projections
(partial isometries) Pj,k described before.



Local Reduction: Balanced Truncation

Local observability assessment:

Let {φ(i)j,k}ri=1 denote the top r orthonormal basis vectors spanning
the POD subspace associated to node (j, k) of Tc.

I For each (j, k) ∈ Leaf(Tc), run r simulations of the original

system from initial conditions X(0) = φ
(i)
j,k + cj,k, i = 1, . . . , r,

respectively, with u(t) = 0. Collect No snapshots each.

I Assumes that if dim r POD reduction locally
well-approximates the dynamics, then output trajectories
should approximately lie in a subspace of dimension ≤ r.

I Total of r · |Leaf| short simulations.



Local Reduction: Balanced Truncation

Collect the snapshot vectors v(α, β) =
(
y
(i)
α (tβ)

)r
i=1
∈ Rr into a

(r ×Noq) matrix Yj,k.

A rank-r approximation of the true local observability gramian
W o
j,k is given by

W o
j,k ≈ (P ∗j,kYj,k)(P

∗
j,kYj,k)

∗ = P ∗j,kW̃
o
j,kPj,k

W̃ o
j,k = Yj,kY

∗
j,k is the (r × r) reduced observability gramian local

to leaf node (j, k) of Tc.

Note: We do not explicitly form the large (D ×D) matrix W o
j,k.



Local Reduction: Balanced Truncation

Compute local balancing transformations Tj,k:

Define the (Noq ×Ncp) Hankel matrix of inner-products local to
node (j, k),

Hj,k = Y ∗j,kPj,kXj,k

where

I Yj,k is the (r ×Noq) matrix of observability snapshots

I Xj,k is the (d×Ncp) matrix of controllability snapshots

Compute the (sorted, economy) SVD Hj,k = Uj,kΣj,kV
∗
j,k .

Truncated balancing coordinate transformation:

T ∗j,k = P ∗j,kYj,kŨj,kΣ̃
−1/2
j,k , T−1j,k = Xj,kṼj,kΣ̃

−1/2
j,k .

where Ũj,k, Ṽj,k, Σ̃j,k denote the d-truncated submatrices.



Local Reduction: Balanced Truncation

Local Petrov-Galerkin Projection at node (j, k):

A balanced, reduced order system valid in a local region of the statespace

near cj,k is obtained by performing a Petrov-Galerkin projection onto the

d directions corresponding to the largest singular values of Hj,k:{
ẋj,k = Tj,kf

(
T−1j,k xj,k + cj,k

)
y = h

(
T−1j,k xj,k + cj,k

)
for each (j, k) ∈ Leaf.

Note: Time enters via the locality of the transformations.



Combining Subsystems: Switching

Definition

The statespace regions of responsibility are defined as the
Voronoi regions of the statespace induced by the centers
{cj,k}(j,k)∈Leaf under the metric ρ. In other words, a particular

local system with index (j′, k′) is responsible for a state s ∈ RD if
s is ρ-closer to cj′,k′ than any other leaf node center.

Motivates the simple switching rule:

The active system at time t+ is the system associated to the plane
with center cj,k closest to X(t−).



Combining Subsystems: Switching

Hand-off from one system to another is via initial conditions:

Parameterize subsystems with tuples {(Φi,Ψi, ci, f)}|Leaf|i=1 and
define

fi(x) , Φif
(
Ψ∗ix+ ci

)
hi(x) , h

(
Ψ∗ix+ ci

)
with fi : Rdi → Rdi , di = dim(range Φi),

I Suppose we switch from system i0 to i1 at time ti0,i1 .

The global reduced system for t0 ≤ t ≤ ti1,i2 may be defined as

ẋ(t) =


fi0(x), x(t0) = Φi0(X(t0)− ci0),

for t0 < t ≤ ti0,i1
fi1(x), x(ti0,i1)← Φi1

(
Ψ∗i0x(ti0,i1) + ci0 − ci1

)
,

for ti0,i1 < t ≤ ti1,i2 .



Combining Subsystems: Blending

Transitions can be smoothed by blending systems in a
neighborhood of a boundary. However,

I Local systems are expressed in different coordinate systems.

I Dimension of local systems can be different.

Solution:
Interpolate in a common space just large enough to include the
planes participating in the blend. Common space is found with an
SVD.



Combining Subsystems: Blending

Example: Blending two systems.

I S ⊆ RD: high dimensional statespace

I Si ⊇ rangeΦi: di dimensional subspace associated to local
system i.

I Blending neighborhood N = N (t) consists of two arbitrary
(but distinct) local systems i and j.

A plane in S describing the common subspace SN = Si ⊕ Sj may
be found via the SVD:

U∗NΣNVN = svd
(
[(Φ∗i + ci1

>
di

) (Φ∗j + cj1
>
dj

)]
)
. (1)

The common plane has dimension dN ≤ di + dj , center

cN = U∗Ne1, and orthogonal basis vectors {U∗Nek}dNk=2.



Combining Subsystems: Blending

Si S Sj

SN = Si ⊕ Sj

Ψ∗i

Φi

Pi→N

Ψ∗j

Φj

UN
Pj→N

1

Diagram chasing yields:

Pi→N = UNΨ∗i

PN→i = ΦiU
∗
N .

Global reduced system:
ẋ(t) =

∑
i∈N

wi(x, t)Pi→N fi(PN→ix)

y(t) =
∑
i∈N

wi(x, t)hi(PN→ix)
(2)

where wi satisfy wi ≥ 0,
∑

i∈N wi = 1 for all x, t.



Demonstration: Fluid Simulation

I Stable (Re = 40) 2-D flow past a stationary cylinder. 61× 61
grid, D=3721.

I Mixture of implicit and explicit finite difference schemes to
numerically integrate the unsteady Navier-Stokes equations in
vorticity/stream-function form.

I Local POD: snapshots every 30 steps (δt = 10−3), n=665
samples.

I Tree: ε = 10−3, 5 node tree, 3 leaf nodes of dimension d = 3.

I Comparison: Global POD, 5 modes.

I Reduced simulation: switching rule.



Demonstration: Fluid Simulation

−2 0 2 4 6 8

−2

−1

0

1

2

x

y

Local POD: Psi, τ = 0.1, leaf = 1

−2 0 2 4 6 8

−2

−1

0

1

2

x

y

Local POD: Psi, τ = 2.8, leaf = 2

−2 0 2 4 6 8

−2

−1

0

1

2

x

y

Local POD: Psi, τ = 9.2, leaf = 3

Streamlines illustrating the local POD flow simulation near the beginning

(top), after a transition from leaf node model 1 to 2 (middle), and after a

transition from leaf node model 2 to 3 (bottom).



Demonstration: Fluid Simulation

Evolution of the simulation error for global POD (5 modes)
vs. local POD (3 modes):

10
−1

10
0

10
1

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Advection Time τ

R
el

a
ti

v
e

E
rr

o
r

Psi

 

 

10
−1

10
0

10
1

0

0.5

1

1.5

2

2.5

Advection Time τ

A
b
so

lu
te

E
rr

o
r

Omega

 

 
Global POD−5
Local POD−3

Global POD−5
Local POD−3

Vorticity ω error (right) and stream function ψ error (left). Arrows
indicate where switching between models occurred in the local
POD simulation.



Summary

I Snapshot-based framework for localized, multiscale reduction

I Statespace decomposed into a collection of planes determined by
geometry of empirical trajectories.

I Defined local POD/balanced-POD projections ⇒ multiscale
data-dependent dictionary designed to efficiently encode behavior of
a nonlinear system as a collection of simpler systems.

I Global reduced system described by combining local,
low-dimensional systems.

Advantages:

I Can decompose complex phenomena into multi-resolution hierarchy
of simple parts.

I Better approximation at lower complexity: approximating subspaces
do not need to capture global behavior.

I Control with simple local controllers ; decentralized possibilities.

Open problem: approximate the local dynamics with simple, easy to

evaluate maps.


