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Motivation

Many interesting dynamical systems have natural multiscale
structure, in time and/or in space.

I Goal: Statistical model reduction that systematically takes
advantage of this structure whenever possible.

Advantage: Higher-accuracy at lower complexity:

I Simpler controllers

I Faster simulations

I Revealing analyses/interpretations



Approach

A system will be approximated by a collection of local,
low-dimensional systems at different scales:

ẋ = f(x)

Π

ẋr = fr(xr)

A globally defined, reduced-order system is obtained by blending or
switching between local sub-systems.



Approach

I Step (1). Analyze the geometry of empirical trajectories ⇒
build multiscale data tree.

I Nodes are subsets of samples.

I Step (2). Estimate approximating subspaces at nodes of the
tree (multiscale data-dependent dictionary), and project.

I POD + Galerkin projection
I Balanced truncation + Petrov-Galerkin projection

I Step (3). Combine subsystems.



Geometric Data Tree Construction

Given a precision ε > 0, build a multiscale tree T = {Cj,k}
organizing a dataset of N samples {xi}Ni=1 into a spatially
hierarchical structure (with e.g., recursive spectral partitioning,
METIS, iterated k-means,...).

I Each node corresponds to a subset of the samples
(snapshots), Cj,k (scale j, cell k).

I Children partition the samples of their parent.

I Bottom-up pruning: If parent can be encoded to precision ε
with d ≤ dmax PCA components, then delete children.

Collection of leaf nodes of T is interpreted as a partitioning of the
statespace into clusters occurring at different scales.



Local Reduction: POD

Suppose we are given a tree T of snapshots for the
high-dimensional system{

Ẋ = f(X,u)

y = h(X)

with state X ∈ RD, input u ∈ Rp, and output y ∈ Rq.
For each leaf-node cell Cj,k, (j, k) ∈ Leaf, define the local mean

cj,k = |Cj,k|−1
∑
x∈Cj,k

x

and covariance

covj,k = |Cj,k|−1
∑
x∈Cj,k

(x− cj,k)(x− cj,k)∗.



Local Reduction: POD

Take the SVD
covj,k = Uj,kΣ

2
j,kU

∗
j,k.

I Define Pj,k: matrix whose rows are the columns of Uj,k
corresponding to the r < D largest singular values.

Local, affine Galerkin projection:

I Consider the dynamics of X′ = X− cj,k
I Project down to the subspace spanned by the r orthonormal

rows of Pj,k.

A reduced-order dynamical system valid in the vicinity of cj,k is
given by {

ẋj,k = Pj,kf
(
P ∗j,kxj,k + cj,k

)
y = h

(
P ∗j,kxj,k + cj,k

)
for each (j, k) ∈ Leaf.



Local Reduction: POD - Comments

I Approximation of the statespace with an arrangement of
low-dimensional planes.

I Approximating subspaces/dynamics only need to be good
locally.

I Local systems need not have the same dimension (chosen
adaptively based on ε).

I Approximation captures local input-to-state behavior, but
ignores state-to-output properties.



Local Reduction: Balanced Truncation

Approach is similar to (Lall, Marsden, Glavaski ’02), but adapted
to the localized setting with some modifications.

Local Empirical Balanced Truncation

I Controllability tree + local POD.

I Observability tree + local observability subspace estimation.

I Local truncation & projection.



Local Reduction: Balanced Truncation

Controllability tree construction & local POD:

I Simulate the system with u(t) = eiδ(t) for i = 1, . . . , p and
X(0) = 0, collect Nc state trajectory samples.

I Build a controllability tree Tc to precision ε.

I For each leaf node in the tree, compute the projections
(partial isometries) Pj,k described before.



Local Reduction: Balanced Truncation

Local observability assessment:

Let {φ(i)j,k}ri=1 denote the top r orthonormal basis vectors spanning
the POD subspace associated to node (j, k) of Tc.

I For each (j, k) ∈ Leaf(Tc), run r simulations of the original

system from initial conditions X(0) = φ
(i)
j,k + cj,k, i = 1, . . . , r,

respectively, with u(t) = 0. Collect No snapshots each.

I Assumes that if dim r POD reduction locally
well-approximates the dynamics, then output trajectories
should approximately lie in a subspace of dimension ≤ r.

I Total of r · |Leaf| short simulations.



Local Reduction: Balanced Truncation

Collect the snapshot vectors v(α, β) =
(
y
(i)
α (tβ)

)r
i=1
∈ Rr into a

(r ×Noq) matrix Yj,k.

A rank-r approximation of the true local observability gramian
W o
j,k is given by

W o
j,k ≈ (P ∗j,kYj,k)(P

∗
j,kYj,k)

∗ = P ∗j,kW̃
o
j,kPj,k

W̃ o
j,k = Yj,kY

∗
j,k is the (r × r) reduced observability gramian local

to leaf node (j, k) of Tc.

Note: We do not explicitly form the large (D ×D) matrix W o
j,k.



Local Reduction: Balanced Truncation

Compute local balancing transformations Tj,k:

Define the (Noq ×Ncp) Hankel matrix of inner-products local to
node (j, k),

Hj,k = Y ∗j,kPj,kXj,k

where

I Yj,k is the (r ×Noq) matrix of observability snapshots

I Xj,k is the (d×Ncp) matrix of controllability snapshots

Compute the (sorted, economy) SVD Hj,k = Uj,kΣj,kV
∗
j,k .

Truncated balancing coordinate transformation:

T ∗j,k = P ∗j,kYj,kŨj,kΣ̃
−1/2
j,k , T−1j,k = Xj,kṼj,kΣ̃

−1/2
j,k .

where Ũj,k, Ṽj,k, Σ̃j,k denote the d-truncated submatrices.



Local Reduction: Balanced Truncation

Local Petrov-Galerkin Projection at node (j, k):

A balanced, reduced order system valid in a local region of the statespace

near cj,k is obtained by performing a Petrov-Galerkin projection onto the

d directions corresponding to the largest singular values of Hj,k:{
ẋj,k = Tj,kf

(
T−1j,k xj,k + cj,k

)
y = h

(
T−1j,k xj,k + cj,k

)
for each (j, k) ∈ Leaf.

Note: Time enters via the locality of the transformations.



Combining Subsystems: Switching

Definition

The statespace regions of responsibility are defined as the
Voronoi regions of the statespace induced by the centers
{cj,k}(j,k)∈Leaf under the metric ρ. In other words, a particular

local system with index (j′, k′) is responsible for a state s ∈ RD if
s is ρ-closer to cj′,k′ than any other leaf node center.

Motivates the simple switching rule:

The active system at time t+ is the system associated to the plane
with center cj,k closest to X(t−).



Combining Subsystems: Switching

Hand-off from one system to another is via initial conditions:

Parameterize subsystems with tuples {(Φi,Ψi, ci, f)}|Leaf|i=1 and
define

fi(x) , Φif
(
Ψ∗ix+ ci

)
hi(x) , h

(
Ψ∗ix+ ci

)
with fi : Rdi → Rdi , di = dim(range Φi),

I Suppose we switch from system i0 to i1 at time ti0,i1 .

The global reduced system for t0 ≤ t ≤ ti1,i2 may be defined as

ẋ(t) =


fi0(x), x(t0) = Φi0(X(t0)− ci0),

for t0 < t ≤ ti0,i1
fi1(x), x(ti0,i1)← Φi1

(
Ψ∗i0x(ti0,i1) + ci0 − ci1

)
,

for ti0,i1 < t ≤ ti1,i2 .



Combining Subsystems: Blending

Transitions can be smoothed by blending systems in a
neighborhood of a boundary. However,

I Local systems are expressed in different coordinate systems.

I Dimension of local systems can be different.

Solution:
Interpolate in a common space just large enough to include the
planes participating in the blend. Common space is found with an
SVD.



Combining Subsystems: Blending

Example: Blending two systems.

I S ⊆ RD: high dimensional statespace

I Si ⊇ rangeΦi: di dimensional subspace associated to local
system i.

I Blending neighborhood N = N (t) consists of two arbitrary
(but distinct) local systems i and j.

A plane in S describing the common subspace SN = Si ⊕ Sj may
be found via the SVD:

U∗NΣNVN = svd
(
[(Φ∗i + ci1

>
di

) (Φ∗j + cj1
>
dj

)]
)
. (1)

The common plane has dimension dN ≤ di + dj , center

cN = U∗Ne1, and orthogonal basis vectors {U∗Nek}dNk=2.



Combining Subsystems: Blending

Si S Sj

SN = Si ⊕ Sj

Ψ∗i

Φi

Pi→N

Ψ∗j

Φj

UN
Pj→N

1

Diagram chasing yields:

Pi→N = UNΨ∗i

PN→i = ΦiU
∗
N .

Global reduced system:
ẋ(t) =

∑
i∈N

wi(x, t)Pi→N fi(PN→ix)

y(t) =
∑
i∈N

wi(x, t)hi(PN→ix)
(2)

where wi satisfy wi ≥ 0,
∑

i∈N wi = 1 for all x, t.



Demonstration: Fluid Simulation

I Stable (Re = 40) 2-D flow past a stationary cylinder. 61× 61
grid, D=3721.

I Mixture of implicit and explicit finite difference schemes to
numerically integrate the unsteady Navier-Stokes equations in
vorticity/stream-function form.

I Local POD: snapshots every 30 steps (δt = 10−3), n=665
samples.

I Tree: ε = 10−3, 5 node tree, 3 leaf nodes of dimension d = 3.

I Comparison: Global POD, 5 modes.

I Reduced simulation: switching rule.



Demonstration: Fluid Simulation
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Local POD: Psi, τ = 9.2, leaf = 3

Streamlines illustrating the local POD flow simulation near the beginning

(top), after a transition from leaf node model 1 to 2 (middle), and after a

transition from leaf node model 2 to 3 (bottom).



Demonstration: Fluid Simulation

Evolution of the simulation error for global POD (5 modes)
vs. local POD (3 modes):
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Global POD−5
Local POD−3

Global POD−5
Local POD−3

Vorticity ω error (right) and stream function ψ error (left). Arrows
indicate where switching between models occurred in the local
POD simulation.



Summary

I Snapshot-based framework for localized, multiscale reduction

I Statespace decomposed into a collection of planes determined by
geometry of empirical trajectories.

I Defined local POD/balanced-POD projections ⇒ multiscale
data-dependent dictionary designed to efficiently encode behavior of
a nonlinear system as a collection of simpler systems.

I Global reduced system described by combining local,
low-dimensional systems.

Advantages:

I Can decompose complex phenomena into multi-resolution hierarchy
of simple parts.

I Better approximation at lower complexity: approximating subspaces
do not need to capture global behavior.

I Control with simple local controllers ; decentralized possibilities.

Open problem: approximate the local dynamics with simple, easy to

evaluate maps.


