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Abstract 

A preliminary set of experiments are described in which a biologically-inspired computer vision system 
(Serre, Wolf et al. 2005; Serre 2006; Serre, Oliva et al. 2006; Serre, Wolf et al. 2006) designed for visual 
object recognition was applied to the task of phonetic classification.  During learning, the system 
processed 2-D wideband magnitude spectrograms directly as images, producing a set of 2-D spectro-
temporal patch dictionaries at different spectro-temporal positions, orientations, scales, and of varying 
complexity. During testing, features were computed by comparing the stored patches with patches from 
novel spectrograms. Classification was performed using a regularized least squares classifier (Rifkin, Yeo 
et al. 2003; Rifkin, Schutte et al. 2007) trained on the features computed by the system. On a 20-class 
TIMIT vowel classification task, the model features achieved a best result of 58.74% error, compared to 
48.57% error using state-of-the-art MFCC-based features trained using the same classifier. This suggests 
that hierarchical, feed-forward, spectro-temporal patch-based architectures may be useful for phonetic 
analysis. 



I. Introduction & Motivation 

 
Humans are adept at recognizing speech in a variety of noisy environments and in the presence of 

competing speakers (Allen 1994; Lippmann 1997).  It has proven a very hard task to make computers do 
the same (Morgan, Zhu et al. 2005). The current paradigm of using mel-frequency cepstral coefficients 
(MFCCs) (Rabiner and Juang 1993) as speech features has so far failed to produce computer recognition 
levels that achieve human performance in a variety of speech-related tasks.  Common characteristics of 
the MFCC representations are that they:  1) capture only aspects of the spectral envelope, and not the 
spectral frame itself; 2) are global, in that the final cepstral parameters represent the entire envelope, and 
not just local portions of it; and  3) are frame-based, in that they model spectral features that fall within the 
10-30 msec window of time over which the MFCC features are computed. 

A large body of recent work has attempted to develop feature representations which address one or 
more of these shortcomings.  These attempts include: capturing dynamic information by including MFCC 
derivatives (Furui 1986); using subband frame MFCC features (Bourlard and Dupont 1997; Morris, Hagen 
et al. 1999); using long, thin time-slices of subband spectral activity (Hermansky and Sharma 1999; 
Hermansky 2003); smoothing the MFCCs in time  (Greenberg and Kingsbury 1997; Kingsbury, N.Morgan 
et al. 1998); modeling the temporal envelope (Athineos and Ellis 2003; Athineos, Hermansky et al. 2004); 
extracting spectro-temporal edge features (Amit, Koloydenko et al. 2005); extracting temporal boundary 
features (Glass, Chang et al. 1996; Glass 2003); extracting localized spectro-temporal patterns 
(Kleinschmidt and Gelbart 2002; Kleinschmidt 2003) 

In this work, we also seek to explore alternative approaches to speech recognition, by making 
recourse to recent progress made in computational visual neuroscience.  Although the link between vision 
and audition has been made in the past (Mendelson and Cynader 1985; deCharms, Blake et al. 1998), 
engineering contributions from the visual domain have yet to be demonstrated for speech recognition. We 
argue that the recent advances in visual neuroscience and computer vision may in fact be useful for 
computational audition. 

The first basic parallel between human vision and audition is in the input: sound is converted from a 
one-dimensional pressure wave to a two-dimensional pattern of neural activity, distributed over time along 
a tonotopic (frequency) axis (Chi, Ru et al. 2005).  The two-dimensional pattern (frequency vs. time) 
constitutes a 2-D auditory image (Patterson, Robinson et al. 1992) which is presented by the auditory 
nerve to the auditory cortex for further processing.  While the nature of the two input “images” is different, 
at a small scale local patterns within both the retinotopic grids and the auditory grids may be similar, and 
this suggests common cortical computational elements may be able to detect features in both visual and 
auditory images. 

Work by a number of auditory neurophysiologists (Theunissen, Sen et al. 2000; Sen, Theunissen et 
al. 2001; Linden, R.C.Liu et al. 2003; Chi, Ru et al. 2005) indicates that there is a secondary level of 
analysis in the auditory cortex (AI), in which cells in AI analyze and process elements of the underlying 
input auditory image.  Measurements of the so-called spectro-temporal receptive fields (STRFs) of cells in 
AI indicate that they can be tuned to different optimal frequencies, have different spectral scales, and also 
respond to different temporal rates.  An analogy suggests itself between cells in this layer and the 
oriented Gabor-like filters of the first layer in the visual cortex (Hubel and Wiesel 1962; Hubel and Wiesel 
1968).  The cells at this stage seem to be responding to harmonics and/or spectral envelopes at different 
spectro-temporal frequencies, orientations, and time scales.  This is the second basic parallel between 
human vision and audition at the biological level. 

The parallel between vision and audition extends to a perceptual viewpoint (Bregman 1990; Amit, 
Koloydenko et al. 2005):  We observe that humans are capable of recognizing specific visual objects 
despite variations in position, scale, rotation, and presence of clutter.  As such, the visual brain forms a 
representation of visual objects that is invariant to a number of transformations that can be applied to that 
object.  On the other hand, the representation of that object has to be specific enough to be able to 
differentiate one particular object from another.  The visual brain learns to trade-off, in some sense, 
selectivity to certain input patterns and invariance to certain transformations. 

Similarly, human speech perception can also be construed to be a form of auditory object recognition. 
Humans are capable of recognizing specific auditory objects such as phonemes despite variations in 
pitch, duration, location in time, and the presence of noise.  As such, the brain also forms a 
representation of auditory objects that is invariant to a number of transformations that can be applied to 



that object.  On the other hand, the representation of that object has to be specific enough to be able to 
differentiate one particular auditory object from another, as for example we do when we differentiate /but/ 
from /boot/. 

In this work, we seek to leverage our success over the past few years in building a biologically-
inspired computer vision system that performs visual object recognition (Serre, Wolf et al. 2005; Serre 
2006; Serre, Wolf et al. 2006).  The system, which was designed to closely match the currently known 
architecture and physiology of the visual cortex, processes images in a feed-forward, hierarchical way 
producing a set of features at different positions, scales, orientations, and of varying complexity. The 
features computed by this system are then used as inputs to a classifier which is trained to determine the 
category of a particular object within that image.  The system is capable of identifying the object in the 
image irrespective of variations in position, scale, orientation, and even in the presence of clutter.  
Recently this system has been shown to achieve human-level performance on rapid animal/non-animal 
categorization tasks. 

Motivated by the success of our computer vision system in recognizing visual objects, we decided to 
explore whether the same 2-D, hierarchical, feed-forward architecture, coupled with a regularized least 
squares classifier, can be useful in a 20-class TIMIT vowel classification task.  To judge the performance 
of our feature set more accurately, we compared classification performance of our model with a set of  
conventional state-of-the-art MFCC-based features (Halberstadt and Glass 1998) trained using the same 
classifier.   

It is worth mentioning that recent work by (Domont, Heckmann et al. 2007) presents a system that is 
very similar to ours, in which a hierarchical system inspired from visual neuroscience is applied to the task 
of syllable recognition (specifically, their task is a 25 monosyllabic word recognition task, in which the 
words are embedded in various SNRs of babble noise).  They report results in which their system 
outperforms Sphinx (Walker, Lamere et al. 2004) by 10-20% on word error rate for moderate to low SNR 
ratios. 

In the following sections, we describe our task and data, our model architecture, and our experimental 
results in greater detail.  

 

II. Task & Data 

 
For our task, we chose a subset of the TIMIT phonetic classification corpus (Garofolo, Lamel et 

al. 1993). The classes were 20 vowel sounds /ay/, /ae/, /ow/, /ey/, /ao/, /uw/, /aa/, /ah/, /aw/, /ax/, /ax-h/, 
/axr/, /eh/, /er/, /ih/, /ix/, /iy/, /oy/, /uh/, and /ux/. Shown in Appendix 1 are the respective numbers of 
training, testing, and development examples for each phoneme (We describe the purpose of the 
development set in section III-D below). 

For all sounds, a wideband, high frame-rate, short-time Fourier transform (STFT) is computed 
with 4ms hamming windows every 2ms, resulting in 500 frames per second.  Each frame is zero-padded 
to 256 points, resulting in 129 point spectra.  The STFT magnitude is smoothed with a single pole low-
pass filter with time constant 8ms to remove effects of the pitch periods.  The final spectrograms used are 
the log of this image, normalized to zero-mean, unit-variance. The images form the direct input to the 
model as will be described in the next section. 
 All sounds were time-normalized to 85 columns (170 msec), which is the median duration of the 
vowel classes under consideration. The matlab function imresize() was used to perform this time-
normalization. At the completion of our pre-processing, all inputs sounds were thus 129 bins high and 85 
bins wide.  

Shown in Appendix 2 are example images of the spectrograms for each vowel class, before 
amplitude and time normalization. 

III. Hierarchical, Feed-forward, Spectro-temporal Patch Based Model Architecture 

A. Overview 

 
The model consists of eight hierarchical layers of computational units composed of alternating 

simple S units and complex C units.  In the next sections, we review the functionality of the S and C units, 



and then briefly describe each layer. Since our model architecture is exactly as the one described in 
(Serre, Kouh et al. 2005; Serre, Oliva et al. 2006) (with some minor modifications which are listed in 
Appendix 3) we only summarize the basic ideas, and refer the reader to (Serre, Oliva et al. 2006) for the 
details. 

 

B. Simple and Complex Computational Units 

 
There are two types of functional layers in the model: the S layers which are composed of simple units 
are interleaved with C layers which are composed of complex units. 
 
Simple units in each Sk layer pool over afferent units from a topologically related local neighborhood in 
the previous Ck−1 layer with different selectivities. As a result, the complexity of the preferred stimulus of 
units increases from layer Ck−1 to Sk. The pooling operation at the S level is a Gaussian-like tuning 
function. That is, the response y of a simple unit receiving the pattern of x, is 
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where σ  defines the sharpness of the tuning around the preferred stimulus of the unit corresponding to 

the weight vector w. The response of the unit is thus maximal (y = 1) when the current pattern of input x 
matches exactly the synaptic weight vector w and decreases with a bell-shaped tuning profile as the 
pattern of input becomes more dissimilar (Note: Equation 1 is actually implemented by a more 
biologically-plausible tuning operation of the form of a normalized dot-product followed by a sigmoid 
function. See (Serre, Kouh et al. 2005) for more details). 
 
Complex units in the Ck layer pool over afferent units from the previous Sk layer with the same selectivity 
but at slightly different positions and scales to increase the tolerance to 2D translation and scale 
transformations from layer Sk to Ck. The pooling operation at the complex C level is a MAX operation. 
The response y of a complex C unit thus corresponds to the response of the strongest of its afferents x 
from the previous Sk layer. An idealized mathematical description of the complex unit operation is given 
by 
 

)( 1 NxxMAXy K=      Equation 2 

(Note:  In practice Equation 2 is implemented using a soft-max operation. See (Serre, Kouh et al. 2005) 
for more details). 

C. Layered Architecture 

 
S1 units:  The 2-D spectrograms are first analyzed by an array of simple hand-coded S1 units which 
correspond to the classical simple cells of Hubel & Wiesel (Hubel and Wiesel 1962; Hubel and Wiesel 
1968) found in primary visual cortex (V1). S1 units take the form of Gabor functions (Daugman 1988; Lee 
1996), which have been shown to provide a good model of cortical simple cell receptive fields. Intuitively, 
the S1 units perform a localized, oriented-edge detection on the image, where each S1 unit corresponds 
to a 2-D Gabor filter with a particular orientation, scale, and position. The population of units consists of 
68 types of units: 4 orientations x 17 sizes. Shown in Figure 1 are the set of Gabor filters used at this 
layer. Our Gabors are even-symmetric and have amplitude normalized between 1 and -1. 
 



 

Figure 1: Gabor filters used at Layer S1 

 
 

C1 units:  The next C1 level corresponds to striate complex cells (Hubel and Wiesel 1959). Each of the 
complex C1 units receives the outputs of a group of simple S1 units with the same preferred orientation 
but at slightly different positions and sizes (or peak frequencies). Each complex unit pools over its inputs 
using a MAX operation; i.e., the response of a complex unit corresponds to the response of the strongest 
of its afferents from the previous S1 layer. The result of the pooling over positions is that C1 units become 
insensitive to the location of the stimulus within their receptive fields, which is a hallmark of complex cells 
(Hubel and Wiesel 1959).  
 
S2 units:  At the S2 level, units pool the activities of 10 complex C1 units at different preferred orientations 
in a local neighborhood via a tuning operation as in Equation 1. As a result, the complexity of the 
preferred stimuli is increased: At the C1 level units are selective for single bars at a particular orientation, 
whereas at the S2 level, units become selective to more complex patterns,  such as the combination of 
oriented bars to form contours or boundary-conformations.  

We define each S2 unit as a patch, and the entire collection of S2 units as a patch dictionary. The 
learning stage consists of setting the w weights for each of K patches within that layer. We describe 
below in Section D how patch “learning” (or development) occurs, ie, how the weights w are set for each 
patch, and also how the number K of patches is determined. Subsequently in Section E, we describe how 
the patch dictionaries are used during training and testing phases. 
 
C2 units: In the next C2 stage, units pool over S2 units that are tuned to the same preferred stimulus (they 
correspond to the same combination of C1 units and therefore share the same weight vector w) but at 
slightly different positions and scales. C2 units are therefore selective for the same stimulus as their 
afferents S2 units. Yet they are less sensitive to the position and scale of the stimulus within their 
receptive field.  
 
S3 and C3 stages: Beyond the S2 and C2 stages, the same process is iterated once more to increase the 
complexity of the preferred stimulus at the S3 level, where the response of 100 C2 units with different 
selectivities are combined with a tuning operation to yield even more complex selectivities. In the next 
stage, the complex C3 units, obtained by pooling S3 units with the same selectivity at neighboring 
positions and scales, are also selective to moderately complex features as the S3 units, but with a larger 
range of invariance. The S3 and C3 layers provide a representation based on broadly tuned shape 
components. As in the S2 layer, each S3 unit is termed a patch, and the entire set of units a S3 patch 
dictionary. 
 
S2b and C2b stages: S2b units (where “b” stands for “bypass”) combine the response of several complex 
C1 units at different orientations just like S2 units. Yet their receptive field is larger (2 to 3 times larger) 
than the receptive fields of the S2 units. Importantly, the number of afferents to the S2b units is also larger 
(100 vs. 10), which results in units which are more “elaborate” than the S2 units, yet, less tolerant to 
deformations. The C2b is a final stage in that their outputs are not passed on to a higher stage. 

D. Learning Stage 

 
The learning stage determines the set of weight vectors w (see Eq. 1) for each patch within the patch 
dictionary in layers S2, S2b and S3. Additionally, the learning stage determines the number of patches K 
for each S layer.  



Learning in the model is sequential up the hierarchy:  first the patch dictionaries at layers S2/S2b 
are constructed, followed by the construction of the patch dictionary at layer S3. To construct each 
dictionary, the spectrograms in the development set are presented in random order, and features are 
propagated up the hierarchy up to the Sk layer of interest. At this point, the Sk dictionary is constructed. In 
the next iteration, the same development spectrograms are presented again in random order, but now the 
features are propagated to the next Sk+1 layer. The dictionaries thus need to be created in sequential 
fashion, but this process only needs to be performed once for each layer. 

During the patch dictionary construction process for layer Sk,  the weights w of each of K patches 
are learned using an imprinting process: each unit stores in its synaptic weights w the current pattern of 
activity from its afferent inputs (from the previous layer) in response to the part of the spectrogram that 
falls within its receptive field. This is done by setting w to be equal to the current pattern of pre-synaptic 
activity x. As a result, the patch x that falls within the receptive field of the unit w becomes its preferred 
stimulus. Note that units in higher layers are thus tuned to larger patches.    

We explored two different patch imprinting strategies: In one strategy (minimal average 
response), a patch is only imprinted if the average value of its afferents is larger than some minimal 
value. In another strategy (minimal max response), a patch is only imprinted if the maximum value of its 
afferents is larger than some minimal value. If a patch’s afferents do not satisfy either the minimal 
average response or the minimal max response constraints, then that patch is not imprinted.  

The number of K patches imprinted per S layer is determined as a heuristic tradeoff between the 
number of patches with minimal average/max afferent responses, and the number of features that the 
regularized least squares classification architecture can handle. Typically the number of patches with 
minimal average response is too large for a classifier to handle, so a heuristic pruning is performed in 
order to reduce their size to a more manageable number. Typically, the final number of patches retained 
in each dictionary ranges from 2000 to 4000. See Appendix 3 for more details for the size K at each S 
layer. 
 

E. Training and Testing Stages 

 
 The training stage follows the development stage, and consists of presenting spectrograms from 
a training set to the model. In this stage the features are computed all the way up the hierarchy, since the 
S2, S2b, and S3 dictionaries have already been created in the previous development stage.  

It is important to note that the responses computed at the C layers form the input features to the 
classifier, not the responses at the S layers. Each C layers pools over its afferents in the previous layer 
using a MAX operation, thus producing either a reduction or an expansion of the previous S layer’s 
dimensionality. A reduction or expansion can happen depending on the type of pooling operations defined 
for that C layer. For example, layers C1 and C2b are architected to reduce the dimensionality of the 
previous S1 and S2b layers, but layer C2 expands the dimensionality of the previous S2 layer. In all cases, 
however, the dimensionality of the feature inputs to the classifier are determined by the C layers.  

The outputs of the C stages are used as the inputs to the regularized least squares classifier. The 
training stage also optimizes the parameters of the RLSC classifier (described in Secion IV below).  

During testing, a separate set of spectrograms from a testing set are presented to the developed 
model and the trained classifier, and used to compute our final scores, described in Section V below. 

 

IV. Linear Regularized Least Square Classifier 

 
Linear regularized least squares is an instance of Tikhonov regularization (Poggio and Girosi 

1990; Wahba 1990), a very general framework for learning that includes many common discriminative 
learning algorithms, including support vector machines (Vapnik 1995). The regularized least squares 
classification framework adopted in this work is presented in greater detail in (Rifkin, Yeo et al. 2003; 
Rifkin, Schutte et al. 2007), so we only summarize the relevant details here. 

We are given a data set {(x1, y1), ..., (xn, yn)} where the xi represent points to be classified, while 
the yi are the desired labels. In our case, each xi will consist of a row of features from any one of the C 



layers (C1, C2, C2b, or C3). The label yi will consist of a label for the vowel class of that training data point. 
The data points are collected in a matrix X and the labels are collected in vector Y. 

The linear regularized least squares problem is to find a vector w minimizing: 
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where λ  is a positive regularization parameter controlling the tradeoff between fitting the observations 

and finding a w with small norm, and L2 norm is defined as vvv T=
2

. This is a differentiable, convex 

optimization problem, and straightforward calculus and linear algebra shows that the optimal w is given 
by: 
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λ  is chosen as detailed in (Rifkin, Schutte et al. 2007) using an SVD procedure. 

 

Given a multi-class data set, we train a binary RLS classifier for each pair of classes (for c 
classes, we train c(c − 1)/2 binary classifiers). For each pair of classes i and j (i < j), we train a binary 
classifier using the points in class i with y = 1 and the points in class j with y = −1. Given a new test point, 
we threshold the outputs of all the classifiers at 0, forcing each classifier to make a hard vote for one of 
the two classes it was trained on. We then classify the example into the class that received the most 
votes. In the case of ties, we restrict our attention to the k classes that received the most votes and 
recount votes from only the k(k − 1)/2 classifiers on these classes (in the simple case of a two-way tie 
between classes i and j, we choose in accord with the i-vs-j classifier). If a tie remains after this restriction, 
we pick the class with the highest prior (most training examples) from among the classes receiving the 
most votes. 
 

V. Experiments & Results  

 
We performed 12 classification experiments in total, 10 using the dictionaries learned by our 

model from labeled examples, and 2 using comparison feature sets which we term the “MFCC” and the 
“Raw Spectral”  feature sets. Both comparison feature sets are described in more detail in Appendix 4. 

Five of the experiments using our model features consisted of using as input to the classifier 
either the C1, C2, C2b, C3, or a concatenation of the full C1+C2+C2b+C3 features, where the dictionaries 
are computed using a minimal average response patch imprinting strategy. These results are shown in 
Table 1. 

Another four of the experiments using our model features consisted of using as input to the 
classifier either the C1, C2, C2b, C3, where the dictionaries are computed using a minimal maximum 
response patch imprinting strategy. These results are shown in Table 2. 

The last of the experiments using our model feature set consisted of using only C1 features 
obtained from a slightly re-architected Gabor filter set. This experiment was a follow-up experiment 
designed to identify the influence of the type of Gabor filters on performance.This result is shown in Table 
3. Details of the re-architected Gabors are described in Appendix 3. 

Finally, the results using the comparison feature sets are shown in Table 4. 
In all experiments, an RLS classifier was trained using the method described in Section IV. 

Training and testing sets were identical in all experiments. The development set was only used in order to 
build the patch dictionaries.  

 
 
 



Feature Layer Feature Dimensionality Classification Error 

C1 model features 8252 59.68% 

C2 model features 10,000 67.32% 

C2b model features 2000 63.09% 

C3 model features 4000 76.51% 

C1+C2+C2b+C3 model 
features 

24252 59.85% 

    
Table 1: The model feature experiments using a minimal average response patch imprinting strategy. 

 

 
Feature Layer Feature Dimensionality Classification Error 

C1 model features 8252 59.68% 

C2 model features 10,000 62.32% 

C2b model features 4000 65.91% 

C3 model features 4000 72.36% 

 
Table 2: The model feature experiments using a minimal maximum response patch imprinting strategy. 

 
 

Feature Layer Feature Dimensionality Classification Error 

C1 model features 7932 58.74% 

 
Table 3: The model feature experiments using a re-architected Gabor filter set. 

 

 

Feature Layer Feature Dimensionality Classification Error 

“MFCC” features 61 48.57% 

“Raw Spectral” features 646 51.26% 

 
Table 4: The comparison “MFCC” and “Raw Spectral” feature experiments. 

VI. Discussion 

 
Our best result using the model features is using only the C1 layer, which yields either 58.74% or 

59.68% classification error depending on the Gabor filter set we used. This compares favorably with the 
error rates using the comparison “MFCC” and “Raw Spectral” features, which are 48.57% and 51.26% 
respectively. However, the feature dimensionality in our C1 layer increases dramatically to 8252, as 
compared to 61 and 646 in the “MFCC” and “Raw Spectral” cases respectively.  

Our experiments with C2, C2b, and C3 features indicated that nothing was being gained by adding 
these additional layers, and performance in fact degraded when those features were added. There are 
two possible reasons for this:   

Firstly, it might mean that the spectrograms themselves do not contain much information beyond 
the S1-C1 scale.  

Alternatively (and more likely), it might mean that the construction of the S-layer dictionaries 
and/or the pooling of the C layers is being performed in a detrimental manner.  

This leads to the following set of questions which are avenues of future exploration: 
 

1. The model as it was architected in (Serre, Oliva et al. 2006) was designed with position- and scale-
invariance in mind, which are two of the most common types of invariances found in human vision. 



What are the analogous invariances in audition, and how may these be appropriately coded for in a 
re-architected version of the model? 

 
2. What are the appropriate number of layers to use in the model for audition? Is the S1-C1 layer 

sufficient, or do we need higher layers to account for more complex selectivities in the patch 
dictionaries?  

 
 
3. The current inputs to our model are wideband spectrograms which effectively represent the spectral 

envelopes in speech. What about speech harmonics? Can a lower level of harmonic detail be useful 
at all for recognition? If so, how would the model perform on raw spectrograms instead of envelopes? 
Also, how would a “tandem” approach perform, where tandem hierarchical models process the 
harmonics layer and envelope layers separately, and then combined? 

 
4. How would the model features perform in classifying phonemes in the presence of noise?  
 
 
5. How would the model features perform in classifying other types of phonemes besides vowels?  

   

VII. Conclusion 

We described a set of preliminary experiments in which a biologically-inspired computer vision 
system (Serre, Wolf et al. 2005; Serre 2006; Serre, Oliva et al. 2006; Serre, Wolf et al. 2006) designed for 
visual object recognition was applied to the task of phonetic classification. On a 20-class TIMIT vowel 
classification task, the model features achieved a best result of 58.74% error, compared to 48.57% error 
using state-of-the-art MFCC-based features trained using the same classifier. This suggests that 
hierarchical, feed-forward, spectro-temporal patch-based architectures may be useful for phonetic 
analysis.  
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Appendix 1: Training, Testing, and Development Set Sizes 

 
 

 
Phonetic 
Label 

TEST 
SET 

TRAINING 
SET 

DEV 
SET 

aa 131 1000 236 
ae 105 1000 237 
ah 135 1001 248 
ao 97 1000 223 
aw 30 728 61 
ax 172 1000 366 
ax-h 14 357 37 
axr 141 1000 321 
ay 89 1000 214 
eh 189 1000 391 
er 93 1000 193 
ey 114 1000 230 
ih 203 1000 444 
ix 377 1004 757 
iy 243 1000 564 
ow 89 1000 168 
oy 16 304 30 
uh 29 500 54 
uw 22 529 48 
ux 52 1001 116 

 



Appendix 2: Example Spectrogram Inputs 

 

 

Examples of spectrograms for the 20 vowel classes, before time and amplitude normalization. 



Appendix 3: Modifications to the Parameters of the Model 

 
 

The majority of the model parameters used in the experiments presented in this memo were 
identical to those chosen by (Serre, Oliva et al. 2006). The particular instances where we modified model 
settings from Serre and Oliva’s “defaults” are noted as follows: 

a) The sigmoid nonlinearity applied to normalized dot-products at the S layers takes the form 
1)))(exp(1()( −−−+= bzazg . At layers S2 and S3 the sigmoid’s “a” parameter was changed 

from a default of 20 to 8.  
b) Layer S2b was configured to look at only the top (largest) 4 scales from C1, rather than the top 5 

scales, while layer S3 was configured to look at only the top 2 scales from C2, rather than the top 
3 scales. 

c) Layer S3 was configured to examine 2x2 spatial blocks at the above C2 scales, rather than 
blocks of size 3x3. 

 
Modification (a) was made to accommodate extremely small normalized dot-product responses, wile 

modifications (b) and (c) were made to adjust for smaller input stimuli (spectrograms). 
 

For the experiments described in Table 1, the size of the patch dictionaries learned at layers S2, 
S2b, and S3 were 2000, 2000, and 4000 respectively. Because the size of the receptive fields at layers 
S2b and S3 are large compared to the size of the input stimuli, “local” pooling is effectively global and the 
dimensionality of the model’s output at layers C2b and C3 is equal to the size of the patch dictionary. 
Receptive fields are still small at layer C2, however, and the dimensionality of the output is much larger 
than the number of patches in the S2/C2 dictionary.  

  For the experiments described in Tables 2 and 3, the patch dictionaries were of size 4000 at all 
learnable S-layers (S2, S2b, and S3). 

  The experiments presented in Table 3 reflect three additional modifications to the S1 and C1 
layers. In particular, we first changed the set of Gabor filter orientation angles from {0,45,90,-45} to 
{0,10,20,90,-10,-20} (note that we have modified both the number of filters and the choice of angles). We 
have found that the majority of vowel phonemes in the TIMIT corpus involve formants which slope up- or 
down-wards at an angle between 0 and 20 degrees, assuming spectrograms which span a time-
frequency region of size 8kHz by 170ms. A shift from 45 degrees to 20 degrees is thus equivalent to 
shifting our preferences from formants sloping at 47 Hz/ms to those which slope somewhere near 19 
Hz/ms. Second, because it is usually the case that information at high-frequencies in vowels does not 
provide much discriminative power, we additionally eliminated all frequency bins above 5kHz, giving a 
spectrogram “image” of size 80x85 rather than 129x85. This modification simplifies the learning problem 
by eliminating non-informative features, and also reduces the computation time needed to train and test 
the model. The final change to the model involved a shifting of the spatial pooling sizes at layer C1. The 
default configuration used by (Serre, Oliva et al. 2006) called for spatial pooling over blocks with edges of 
length {8,10,12,14,16,18,20,22}. Visual inspection of Gabor filtered spectrograms revealed that there may 
be important information at a resolution higher than that given by 8x8 pooling. We therefore chose to shift 
the entire spatial pooling range down by 4, giving a set of pooling resolutions equal to 
{4,6,8,10,12,14,16,18}. Note however that pooling at C1 involves combining information from multiple S1 
features, and thus does not refer to blocks in the original image. An 8x8 pool of S1 features therefore 
corresponds to a receptive field which looks at an area of the original image much larger than 8x8.



Appendix 4: “MFCC” and “Raw Spectral” Features  

 
The “MFCC” features used are the ``S2'' features from (Halberstadt 1998). Short-time Fourier 

analysis is done with a 30ms Hamming window every 5ms.  For each frame, we compute 12 Mel 
frequency cepstral coefficients (MFCCs).  To get a fixed-length feature vector for each phonetic segment, 
the MFCCs are averaged over five regions: the 30ms before and after the segment, and three regions 
within the segment (in 3-4-3 proportion).  The log duration is also included, giving a total of 5*12+1=61 
dimensions.  These features are then whitened using a principle component analysis (PCA) matrix 
derived from the training set. 
 MFCC’s are computed in the traditional way: Over each spectral slice, a bank of triangular filters 
spaced according to the mel-frequency scale is applied.  The log-energy under each filter is retained, and 
the resulting vector (typically approximately 40 dimensions) is referred to as a set of MFSCs, Mel-
Frequency Spectral Coefficients. In each frame, a discrete cosine transform (DCT) of the MFSCs is taken, 
and only the first 12 coefficients are retained. 

 The “Raw Spectral” features are computed on the same spectrograms that were used as input 
to the model (before time and amplitude normalization) was applied, and using the same time-averaging 
technique as in the “MFCC” features: the 30ms before and after the segment, and three regions within the 
segment (in 3-4-3 proportion). The log duration is also included, giving a total of 5*129+1=646 
dimensions.  No PCA was performed on the “Raw Spectral” features. 
 




