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Abstract. Pooling under a softmax operation and Gaussian-like tun-
ing in the form of a normalized dot-product were proposed as the key
operations in a recent model of object recognition in the ventral stream
of visual cortex. We investigate how these two operations might be im-
plemented by plausible circuits of a few hundred neurons in cortex. We
consider two different sets of circuits whose different properties may cor-
respond to the conditions in visual and barrel cortices, respectively. They
constitute a plausibility proof that stringent timing and accuracy con-
straints imposed by the neuroscience of object recognition can be satisfied
with standard spiking and synaptic mechanisms. We provide simulations
illustrating the performance of the circuits, and discuss the relevance of
our work to neurophysiology as well as what bearing it may have on the
search for maximum and tuning circuits in cortex.

1 Introduction

A recent theory of object recognition in the feed-forward pathway of the ventral
stream in primate visual cortex [1, 2] is based on a hierarchical model with two
main operations iterated several times throughout the hierarchy. The two basic
operations are a bell-shaped tuning mechanism to provide selectivity of units –
learned in an unsupervised way – along the pathway and a maximum-like op-
eration to achieve invariance for position, scale and clutter while maintaining
selectivity. To support the biological plausibility of the theory it is important to
show that these two basic operations can be implemented using well-established,
plausible properties of neurons and synapses. The primary goal here is to de-
scribe realistic circuits for the maximum and tuning operations utilized by this
model. There are several possible circuit designs that can theoretically provide
the level of robustness required by model simulations, and yet, little is known
about how such circuits might be implemented in the brain. The circuits de-
scribed herein therefore represent a plausibility proof and may also be seen as
specific hypotheses that neurophysiologists may try to prove or disprove using,
for example, extracellular and intracellular recordings.

Several groups have reported neurons in visual cortex that respond rapidly and
sub-linearly to the combined presentation of two simple stimuli in their receptive
field [3, 4], i.e. the response to the combined stimulus is significantly smaller than
the sum of the responses to the single stimuli. It has been proposed that, instead
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of summing the inputs, these neurons compute either the maximum or the av-
erage of the inputs. Normalization circuits were suggested for gain control in [5]
and for the biased competition model in [6] (see also [7, 8] and for older work
on related dynamics of shunting inhibition [9]). Another possible mechanism for
gain control relies on synaptic depression [10]. Several possible circuits for com-
puting the maximum operation have been proposed on an abstract level [7, 11],
but were not investigated with respect to their biophysical plausibility. A recent
study presented a framework to unify both computations, softmax and tuning,
providing a single equation that will produce either of the two behaviors depend-
ing on a small set of parameters [12]. The circuits presented here share some of
the general architectural features presented in the above research. Additionally,
we emphasize biological plausibility to a novel extent.

First, we introduce quite restrictive timing constraints on the circuits per-
forming both computations imposed by physiological data and discuss how and
where such constraints arise. We then present two different coding schemes in
different sensory cortices and their implications, leading to the development of
two sets of circuit models matched to the conditions prevalent in the respec-
tive areas. In section 2 we describe the architecture, dynamics, parameters and
results of the Population Packet Code models, followed by the Poisson Code
models in section 3 and a discussion of the results and their relevance.

1.1 Time, Computational, and Bandwidth Constraints

A plausible circuit must satisfy several constraints imposed by the physiological
mechanisms underlying synaptic transmission: we must perform the above com-
putations assuming that information leaves and arrives in discrete spikes. Further-
more, object recognition simulations with a computational model [2] suggest that
the connections between visual areas must be able to relay at least 2 bits of infor-
mation (within about 10 ms– to be discussed later), i. e., represent approximately
4 different levels of spike activity at the population level during time bins of as
little as around 10-20 ms. It has been found that the model is robust to pertur-
bations of the max and tuning operations. In particular, the input to the highest
level can be binarized without significantly affecting performance in multi-class
recognition tasks. The entire visual recognition model, encompassing many max-
imum and tuning sub-circuits, must be able to perform the basic computation
within an amount of time that is faithful to the known physiology. Recordings
from inferotemporal cortex (IT) [13] reveal that information containing sufficient
accuracy for good categorization arrives in anterior IT about 100-120 ms after
stimulus onset and about 20 ms after onset of activity in AIT (which is about 80
ms after stimulus onset). In addition, [13] found that neural activity in a popula-
tion of 256 neurons during a time bin of just 12.5 ms at around 20 ms after onset of
the AIT response contain significant information for good categorizationaccuracy.
This implies that each stage in the recognition model – roughly corresponding to
a visual area (V1, V2, V4, PIT and AIT) – has about 10 to 20 ms for process-
ing and representing the information. In the mammalian brain, the firing rates of
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excitatory cells in visual cortex rarely exceed 100Hz, and we can expect at most 1-2
spikes per neuron within the prescribed time window. Thus, a single neuron cannot
possibly provide enough dynamic range given the timing constraints imposed by
available physiological data.

To overcome this insufficiency, we replace each unit with an ensemble of n
cells. All cells in an ensemble have similar, but not identical, parameters and
receive highly correlated inputs from the other units in the circuit. Instead of
0 or 1 spike, the postsynaptic cell can now receive up to 2n spikes, i. e., the
dynamic range of the input is multiplied by n, as shown in Fig. 11. In early
stages of the visual pathway, a large dynamic range of the inputs is needed,
whereas at the other extreme in IT, only the binary presence or absence of each
feature has to be conveyed.2 In the spiking circuits presented below, we therefore
consider ensembles of spiking neurons for each unit in the computational model
presented in [2]. In particular, we will also consider redundant parallel copies
of circuit inputs, outputs, and networks themselves in order to overcome the
above constraints placed on the timing and resolution of the two computations
of interest. This is the essence of our contribution: we use ensembles of redundant
spiking cells to achieve fast, “non-binary” computation.

Groups of equivalent
simple cells

Groups of equivalent 
complex cells

“wires”

“cable”

Fig. 1. Signal propagation between two somata with spiking neurons and “cables”.
Each of the ensemble cells on the bottom, which receive highly correlated input, spikes
independently. Each spike is propagated independently in its own “wire” in the “cable”
and then triggers neurotransmitter release at one synapse for each of the ensemble
postsynaptic neurons. This process is used for each synapse in the model.

1 It is thought that the number of cells per ensemble n decreases along the visual
hierarchy from V1 to IT.

2 Contrast invariance data provide some indirect support for the idea that the ca-
bles get thinner along the hierarchy. [14] showed that the steepness of the contrast-
response functions of neurons increases from LGN through V1, V2 to MT and that
“cells become, in the contrast domain, progressively more like switches, being either
on or off” [15].
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1.2 Different Coding Regimes in Sensory Cortices

Neurons in the visual cortex of cats and primates are thought to have spon-
taneous and evoked firing rates on the order of tens of Hertz. At these rates,
Poisson spike trains are a fair approximation for the observed firing patterns.
Each presynaptic neuron can contribute up to 3-4 spikes within the first 20-30ms
of processing in the postsynaptic cell and dynamic circuit models can assume
that the underlying rate of the Poisson spike train inputs is constant.

However, there are other sensory cortices in which the coding is very differ-
ent. Rodent somatosensory “barrel” cortex is an example for extremely sparse
representation of sensory stimuli. Both the spontaneous and evoked firing rates
in barrel cortex have been estimated to be below 1Hz by several groups. In other
words, a single neuron responds to a given stimulus with on average less than
one spike per trial, i. e., either zero or one spike. These extremely low rates in
conjunction with precise spike timing call for circuits that perform computa-
tions based on a single volley or “packet” of incoming spikes from an ensemble
of presynaptic neurons. We call the corresponding coding scheme Population
Packet Code.

Rat primary somatosensory cortex (SI) is an ideal model system to address
questions about circuitry and coding, not only because of its sparse coding but
also due to its regular columnar architecture, the barrel columns [16] and its
externalized receptors, the vibrissae. These properties allow exquisite control
over the stimulation, recording and analysis of discrete channels of information
processing which are impossible with visual stimulation, since every visual stim-
ulus will excite a large number of photoreceptors while the deflection of a single
whisker only activates a single follicle. In addition, SI shares several basic proper-
ties of its circuitry and cells with cat or primate primary visual cortex (V1) and
the two systems exhibit similar generalization and learning capabilities, likely
because both are high-resolution sensory systems.

2 Population Packet Code Models

Transferring analog graded information with digital spikes poses the problem
of how to encode analog values with spikes. Three common proposals to over-
come this problem are to either use the population firing rate, a purely tem-
poral code such as time-to-spike or representations based on synchrony. Our
proposed coding scheme lies somewhat in between continuous population rate
coding and synfire chains, two more widely studied coding schemes [17]. Given
the constraints outlined above, we assume here that information is coded by the
number of spikes in a brief packet of spikes from a presynaptic population, i.e.,
by a short-time “packet” population rate code. In this coding scheme, when a
single cell integrates spikes from several converging inputs, the dynamic range of
the signal is strongly compressed. Either the combination of inputs from the en-
semble of presynaptic neurons provides enough excitatory conductance to drive
the postsynaptic membrane potential above spike threshold or not. Considering
an ensemble of identical postsynaptic neurons all receiving identical input from
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the presynaptic ensemble, the responses of all cells are identical. Thus, there
will be no postsynaptic spikes for any combination of inputs below a certain
threshold. Above this threshold, all postsynaptic cells will spike together. The
dynamic range of the signal is compressed into a binary signal. However, neurons
in cortex show diversity in their morphology and physiological parameters and
receive ongoing “background”, noise-like input from many different presynap-
tic cells that are overlapping but not identical for a given set of postsynaptic
neurons. It has been shown that this synaptic background input can decrease
the slope of the spike probability function dependent on input strength [18]. In
an ensemble of neurons, the synaptic activity together with variable intrinsic
properties of the cells effectively linearizes the transfer function of the ensemble
under the proposed coding scheme (see also [19] for a general argument).

2.1 Network Architecture for Softmax and Gaussian-Like Tuning

The population packet code model is a simplified canonical cortical microcir-
cuit [20] using ensembles of integrate-and-fire neurons. Importantly, the same
canonical circuit perform either a max or a tuning operation depending on just
different synaptic conductance values. In the proposed coding scheme, compu-
tation has to be quasi-instantaneous, i. e., carried out over in a short period of
time during which each neuron can only spike at most once or twice. Thus the
notion of a steady state firing rate is not appropriate for this case. Unlike the cir-
cuit presented in [21], which operates on a timescale of hundreds of milliseconds,
our model is entirely feed-forward since the need for very fast and inherently
transient computation implies that recurrent connections would most likely be
too slow to contribute.

The most salient feature of our model architecture is the combination of
monosynaptic excitation (x → y) with disynaptic inhibition (x → p → y), which
is strongly supported by the observation that strong excitation in form of an
excitatory postsynaptic potential (EPSP) is generally followed by an inhibitory

2

x1

x2

p
1

y1

y2

z

p

Fig. 2. Population packet code network architecture. Small circles indicate excitatory
synapses, bars represent inhibitory connections. Note that the same circuit is used to
approximate a max as well as a tuning operation with different conductances for some
of the synapses.
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postsynaptic potential (IPSP) after about 4ms, which has been made during
intracellular recordings by several labs [22, 23, 24, 25]. Following the analogy
with barrel cortex, the x units correspond to thalamic cells while the p, y and z
units correspond to cortical cells. The inhibitory interneurons p synapse onto y
units of the same channel as well as the other channel. The operating regime of
these interneurons will be the determining factor for which computation (max or
tuning) is performed by the microcircuit. Both y units synapse onto the output
z unit, which relays the output. Each unit depicted in Fig. 2 is implemented as
an ensemble of 100 cells modeled as a variant of integrate-and-fire neurons as
described below.

Sparse connectivity. Although commonly used in models and simulations, there
has been no anatomical evidence for ensembles of hundreds of neurons exhibiting
all-to-all connectivity. Instead, connectivity patterns of cortical neurons depend
on spatial distance. Although more careful analysis reveals a dependence on
specific cell types [26, 27], nearby neurons are generally more interconnected
and show a high correlation in their membrane potential [22]. Because not all
cells in an ensemble are driven by exactly the same primary input, their output is
more variable, increasing the dynamic range of the ensemble. We model this kind
of connectivity by using a noisy Gaussian synaptic strength pattern between a
given presynaptic cell and all its potential targets in the postsynaptic ensemble.
For a presynaptic cell with index m and a postsynaptic cell with index n, the
synaptic scaling factor is

g̃mn = exp(
−(m − n)2

2σ2
d

) · N (1, σg) (1)

Consistent with experimental observations [28], inhibitory interneurons receive
less specific inputs, i. e., σd is larger for interneurons. The parameters used for
these simulations are σde = 50 and σdi = 100.

For the max computation, the synaptic conductances were ĝxy = 1.2nS, ĝxp =
0.16nS, ĝpy = 0, ĝpyl = 0.8nS and ĝyz = 0.5nS. The input conductance to the
inhibitory interneurons p is smaller than the inputs to the excitatory neurons
because of the different morphology, physiology and connectivity of these cells.
The, in comparison to the tuning, relatively high ĝxp causes the p units to be
fairly active even for moderate input levels, causing strong cross-inhibition via
the cross-channel p → y synapse.

For the tuning computation, the synaptic conductances were ĝxy = 1.2nS,
ĝxp = 0.09nS, ĝpy = 4nS, ĝpyl = 4nS and ĝyz = 0.72nS. The tuning point,
i. e., the input eliciting the maximal output, is governed by the balance of ex-
citatory and inhibitory input to the y unit in combination with the transfer
function of the p unit. The lower ĝxp in this configuration causes the p units to
be activated only for stronger inputs, causing the decreasing output for those
high input values because the inhibitory transfer function is steeper than the ex-
citatory one, compatible with high-threshold, high-gain inhibitory interneurons
found in cortex such as Chandelier cells [29].
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2.2 Neural Dynamics

Each cell is modeled as a conductance-based single compartment leaky integrate-
and-fire neuron with a simple kinetic model of neurotransmitter receptors. Vari-
ables and constants that are unique to each of the nw instances in a group are
marked with upper indices such as V m

i and similarly for terms specific to an
instance of a synapse such as gmn

ij , the conductance of the synapse between cell
m of group i and cell n of group j. If the upper indices are missing, the value is
the same for all instances.

Integrate-and-Fire Dynamics. The membrane potential of a postsynaptic
neuron is calculated according to the membrane equation

Cn
j

dV n
j

dt
=

∑

i,m

gmn
ij (Eij − V n

j ) + gLj(ELj − V n
j ) (2)

The capacitive current charging the cell membrane is equal to the sum of the
synaptic and leak currents. In order to better capture the firing properties of
cortical neurons, we do not reset the membrane potential once it reaches the
spike threshold Vθ but instead activate a strong hyper-polarizing current with a
time constant of a few milliseconds which will bring the cell’s potential back to
its “resting” state.

Intrinsic cell parameters. Neurons in cortex have very different morphologies
and channel distributions. While we cannot model these directly in our single
compartment models, we impose some variability on the resulting physiological
parameters such as membrane capacitance, input resistance and spike thresh-
old. In accordance with several physiological studies, interneurons are assumed
to be smaller, i. e., having smaller membrane capacitance. The interneurons
in this model are of the high-threshold, high-gain class discussed in numerous
studies, i. e., their spike threshold is higher than for the excitatory neurons
(Vθe = −50mV , Vθi = −45mV ). The membrane capacitance of a cell is a trun-
cated normally distributed random but fixed variable of the form: Cn

j = Ĉ[e,i] ·C̃n
j

with C̃n
j = N (1, σC) ∈ [0.5, 1.5]. The reversal potential of the leak current is set

to EL = −70mV and its conductance is gL = 10nS.

Synaptic Input. Release of neurotransmitter, the first step of synaptic trans-
mission, is modeled as an all-or-none release of one “vesicle” of 1mM transmitter
into the synaptic cleft which is present for 1ms.

To model ionotropic receptors such as AMPA/Kainate and GABAA receptors,
we assume simple two-state kinetics where the receptor is either open or closed.
In the closed state it can bind neurotransmitter which results in an transition to
the open state. In the open state, the channel will close as a result of dissociation.

C + T ⇀↽ O, (3)

These simple kinetics can be described by the following first-order kinetic equa-
tion:

drmn
ij

dt
= αijT

m
ij (1 − rmn

ij ) − βijr
mn
ij (4)
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The rate constants α and β, are set to the values reported in [30] for either AMPA
and GABAA, respectively. The synaptic input conductance is calculated from
the fraction of open channels calculated in (4), adding a normally distributed
random background component (see below):

gmn
ij =

[
rmn
ij ĝij g̃

mn
ij + N (ḡij , σgij )

]+ (5)

The current results are based on AMPA as excitatory and GABAA as in-
hibitory neurotransmitters and their respective receptors. The parameters are
EAMPA = 0mV , EGABAA = −80mV , αAMPA = 1.1 · 106M−1s−1, αGABAA =
5 · 106M−1s−1, βAMPA = 190s−1, βGABAA = 180s−1.

Noise-like background synaptic input. Background synaptic noise, which is likely
to represent unknown inputs, helps to recover the dynamic range of a population
of neurons by linearizing the spike probability function [18]. If different neurons
in an ensemble have slightly different synaptic inputs, their membrane potential
will slightly vary. Thus, the same incoming postsynaptic potential (PSP) might
drive some neurons with higher membrane potentials above the spike threshold,
initiating a spike, while others with lower potential will stay below threshold and
not spike. Adding synaptic background inputs also introduces a variability in the
output spike timing. Compatible with data from in vivo and in vitro recordings,
spike time jitter decreases with increasing strength of the input. The parameters
used for the conductances (5) are ḡe = 2nS, ḡi = 1nS, σge = 1nS, σgi = 1nS.

External Input. As input to the circuit, the x units receive a variable number
of spikes proportional to the input strength. Each spike is assumed to originate at
one out of 100 presynaptic cells. The connectivity pattern is the same Gaussian
shaped synaptic strength profile as for the other excitatory units in the model
and the spike arrival times are normally distributed as N (t̄x, σtx) with t̄x = 30ms
and σtx = 5ms.

2.3 Population Packet Code Simulations

Maximum. Figure 3 (left) shows the mean output over 50 runs of the circuit
depicted in Fig. 2 in maximum configuration for all possible combinations of
four levels of inputs (0, 50, 75, 100 spikes in a packet). For input combinations
including the maximum (100 spikes) input, the circuit output is actually below
the desired maximum value. Interestingly, similar effects can be seen in vivo,
e. g., in rat barrel cortex , where subthreshold neural responses tend to be more
suppressive for stronger inputs. The histograms on the right show the distribu-
tion of outputs for the three possible desired output values (50, 75 and 100 spikes
from top to bottom). As mentioned above, the circuit underestimates the desired
output for inputs that include full activity (100 spikes) for at least one of the
two channels. For all three cases, about 20-25% of the runs result in an output
that does not match the desired output value. While this behavior is consistent
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Fig. 3. Mean response of max circuit depicted in Fig. 2 over 50 runs for all possible
combinations of 0, 50, 75 and 100 spikes per input packet, plotted against the desired
(true) maximum of the inputs (left). Histogram of all outputs (spike count in output
packet) for three cases (right). The true maximum of the inputs is 50, 75 and 100
spikes, respectively (top to bottom).

with physiological data, it has to be investigated how well a large-scale model
of object recognition [2] will perform under these conditions.

Tuning. In the tuning configuration, the circuit shown in Fig. 2 effectively
performs a one-dimensional tuning for each of the input channels, i. e., each y
unit will be maximally active for the input level it is tuned to and activity will
decrease for lower or higher input values. The y unit activity is then combined
to yield the output which is tuned in the multidimensional space. An example
for the activity of a y unit can be seen in Fig. 4 (left). In this case, the circuit is
tuned for an input of 50 spikes. Output activity is highest for a 50 spike packet
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Fig. 4. Output (spike count in output packet) of a one-dimensional Gaussian-like tun-
ing circuit tuned to 50 a spike packet input (left). Output (spike count in output packet)
of the two-dimensional tuning circuit depicted in Fig. 2 tuned to the combination of
two 50 spike packet inputs (right).
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and falls off on both sides. The tuning curve is not completely symmetric but
approximates a Gaussian tuning curve well.

The output of a circuit tuned to the combination of two 50 spike packets as
inputs is shown on the right of Fig. 4. The peak output activity is located at the
(50,50) input pair and the response falls off in a roughly Gaussian (bell-shaped)
fashion for any other input configuration.

2.4 Problems and Future Goals

– The main issue with the circuit of Fig. 2 is how well it can be extended to a
significantly higher number of inputs and dimensions.

– The performance in the softmax configuration should be improved in order
to meet the likely requirements of the recognition model (which are not
stringent however).

– Learning the parameters that determine the Gaussian-like “centers” – that
is the optimal stimulus for the tuning circuit – is an open problem.

– More careful measurements of the time required by the computation and of
the bandwidth of the output activity are needed.

3 Poisson Spike Code Models

In this section we present independent spiking models for the maximum oper-
ation performed by complex V1 cells, and for normalized tuning observed in
simple V1 cells. In both cases, and in the simulations which follow, we assume
that the networks are driven by Poisson distributed spike inputs. For the maxi-
mum circuit, our goal is to output a sequence of spikes that encodes the maximal
level of activity present at the circuit’s inputs. In the case of the tuning oper-
ation, we wish to output a sequence of spikes which encodes some notion of
the similarity between the input activity pattern and a preferred stimulus. We
describe a circuit for which the similarity peaks when the input activity vector
is collinear with the preferred stimulus, and falls off to zero along orthogonal
directions in a Gaussian-like fashion. In the sections that follow, we will make
these ideas more precise.

3.1 Max Circuit Architecture

Neural Dynamics. The maximum circuit design incorporates leaky integrate-
and-fire models of neurons augmented with plausible synapse dynamics and an
absolute refractory period. The choice of a first order linear model for the mem-
brane dynamics was made in order to make large scale simulations involving
many circuits computationally tractable. The maximum operation itself can be
seen as a particular instance of K-winner-take-all behavior, and has been ex-
plored in networks of continuous nonlinear dynamical elements [31, 32, 33], and
to a lesser extent, in networks of “spiking” elements [34, 35]. The use of dynam-
ics which include reset rules, such as integrate-and-fire neurons, makes detailed
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Fig. 5. Maximum circuit architecture (left), and tuning circuit architecture (right),
assuming Poisson distributed inputs. Small circles and bars denote excitatory and
inhibitory connections respectively.

analytical explorations of the behavior of interconnected networks of such el-
ements difficult, and we do not carry out such an analysis here. Instead, we
provide a description of the membrane potential of a single unit as it evolves in
time, explain how individual elements should be connected together and tuned
in order to compute the maximum over the input activities, and finally, show
how multiple copies of circuits can be arranged to match the timing observed in
cortex.

The particular winner-take-all design at the core of the maximum imple-
mentation exploits a balance between self-excitation and, in this case, all-to-
all inhibitory dynamics. The connections are illustrated graphically in Figure 5
(left), where we denote excitatory feedback connections with small circles and
inhibitory connections with bars. For additional computational simplicity, we do
not include sign-changing interneurons in the inhibitory feedback paths.

We denote by VL the neuron’s resting potential, gL the leakage conductance,
and by gj the synaptic conductances. With these definitions, the dynamics of
each cell’s subthreshold membrane potential Vi(t) can be described by:

Cm
dVi

dt
= gL(VL − Vi) +

N∑

j=1

gj(V r
j − Vi) i = 1, ..., N. (6)

The gj = gj(t) are time-varying conductances that depend on activity at the
incoming synapses, while Cm, gL and VL, are constants. The synaptic reversal
potentials V r

j take on one of two constant values V r
j ∈ {Vex, Vinh} depending on

whether the synapse is excitatory (Vex > Vθ) or inhibitory (Vinh < Vθ, Vinh �=
VL). The subthreshold dynamics (6) are combined with a nonlinear reset rule
which stipulates that when the membrane potential Vi(t) reaches the threshold
Vθ, an action potential is fired and the potential is then immediately reset to the
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reset voltage V0 < Vθ. Following reset, an absolute refractory period is simulated
by further suspending the subthreshold dynamics (6) for τabs seconds. Integration
is then resumed with the initial condition Vi(0) = V0.

We can rearrange the subthreshold dynamics (6) into the form

τi
dVi

dt
= V ∞

i − Vi (7)

where

τi =
Cm

gL +
∑

j gj
, and V ∞

i =
gLVL +

∑
j gjV

r
j

gL +
∑

j gj
. (8)

When viewed in this way, it is clear that the presence of time-varying synap-
tic inputs, in contrast to electrical feedback connections, implies that the total
synaptic conductance as well as the membrane time constants τi, must depend
on time via the input activity.

Synapse Dynamics. As an added degree of realism, the synapse conductances
{gi} corresponding to excitatory feed-forward inputs are not scaled versions of
the input spike trains, but are instead modeled as filtered (averaged) approxi-
mations. Given a discrete spike train pi(t), a post-synaptic current profile α(t),
and a constant input conductance multiplier ḡin, synapse integration dynamics
can be modeled as

gi(t) = ḡin(α ∗ pi)(t). (9)

The change in conductance α(t) in response to an incoming spike is modeled
as a decaying exponential with finite initial rise time. While this choice of post-
synaptic conductance response is indeed more realistic than a simple decaying
exponential of the form e−t/τsyn , the finite rise time exponential was ultimately
chosen because it closely approximates the detailed dynamics (4). In the simula-
tions presented in section 3.3, we simply pre-compute the response and perform
a table lookup, rather than simulate additional dynamics online. The particular
parametrization we have chosen models the time course of the conductance as a
difference of two exponentials [36]

α(t) =
1

τd − τr

(
e−t/τd − e−t/τr

)
(10)

where the rise and decay time constants are denoted τr and τd respectively.
Given this description of the conductance, the free parameters were tuned so
that the shape of (10) matched as closely as possible the dynamics (4) given
the parameters introduced in section 2. We find that τr = 0.4ms and τd = 4ms
fits the dynamics for the AMPA-based excitatory response, and τr = 0.2ms
with τd = 5.4ms fits the dynamics for the GABAA-driven inhibitory response.
In the absence of multiple spikes arriving in a short time interval, the channel
dynamics (4) are well approximated by this more familiar “alpha function”3.
3 We will refer Equation (10) as an alpha-function, even though it is not, strictly

speaking, of the form te−t/τ .
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Given the firing rate constraints described above, it is unlikely that multiple
spikes will arrive within a short (e.g. 12.5ms) window.

In the interest of computational expediency, conductance changes for the ex-
citatory inputs can be computed by convolving the kernel (10) with the input
spike trains prior to simulation. Convolution amounts to summation of responses
in the case where a spike arrives before the previous spike’s alpha-function has
decayed to zero. In the case of inhibitory synapses in the feedback paths of the
circuit, however, it is often more convenient to follow a slightly different con-
vention: If a new spike arrives before the previous spike’s alpha function has
decayed to zero, the two need not be added. Instead, the alpha function is “re-
set” to its initial value for that synapse. Resetting can be justified by making the
assumption that an incoming spike causes most of the channels in the vicinity of
the synapse to open, and that if another spike arrives, more than the maximum
number of channels cannot open. Once again, because firing rates are limited
to approximately 100Hz, we can assume that both choices will produce roughly
equivalent behaviors.

With the input conductances computed beforehand, numerical integration of
the system (7) is accomplished by discretizing time into finite steps δt, and
applying an Euler update rule. The conductance response α(t) for inhibitory
spikes that occur during the simulation can be incorporated into the integration
by simply retrieving from a table the particular conductance along the curve (10)
corresponding to the amount of time since the last spike arrived for the synapse
of interest.

Circuit Organization & Simulation. As the stacked “planes” in Figure 5
(left) suggest, we combine multiple redundant copies of the circuit in order to (1)
reliably estimate input activity and (2) compute the maximum within a short
time window. Each individual “copy” of the circuit we have described is defined
to have identical integrate-and-fire parameters, conductances, and architectures.
The external inputs applied to each copy, however, will differ on a spike-by-spike
basis and are not assumed to be synchronized, but will still have identical mean
activities. Thus the outputs of the circuits will also not be synchronized, but will
have identical average activities and mean times to the first spike. The collection
of outputs taken from a group of circuits can then be fed into subsequent stages
so as to enforce the required timing constraints. One can think of a group of
such circuits as a larger meta-circuit capable of delivering an answer in a short
amount of time. In this case, the larger circuit requires K(2N +1) neurons, for K
circuit copies and N inputs. One complex unit in the model [2] thus corresponds
to this same quantity of integrate-and-fire neurons.

The physical cell parameters for the max circuit described in this section,
and simulated in section 3.3, were chosen as follows: leakage conductance gL =
25nS, feedback (self-)excitatory and inhibitory conductances gex = 10gL and
ginh = 15gL, external (excitatory) input conductance gin = 4gL, refractory delay
τref = 8.5ms, inhibitory and excitatory reversal potentials Vinh = −80mV and
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Vinh = 0mV, leakage potential VL = −70mV, reset potential V0 = −70.25mV,
spike threshold potential Vθ = −54mV, membrane capacitance Cm = 0.5nF, and
maximum firing rate Fmax = 100Hz.

3.2 Circuit Architecture for Gaussian-Like Tuning in the Direction
of the Input Vector

Neural Dynamics. In this section we present a circuit which performs nor-
malized tuning: given a preferred stimulus encoded by the strengths of the input
synapses of the circuit, we would like the output activity of the network to peak
when the input activity “vector” is collinear with the preferred stimulus, and fall
off to zero, much like a Gaussian does, when the input and preferred stimulus
vectors move towards orthogonality. In addition, the output activity should be
normalized, in some way, by the total input activity. This normalization can
take on a variety of possible forms, and, depending on its strength, leads to be-
haviors where the output activity of the circuit decreases or remains constant
while the input activity increases, for a given fixed angle between the inputs and
the preferred stimulus. While the tuning circuit presented in section 2 approxi-
mates a multidimensional Gaussian in the input space, the model presented in
this section exhibits the latter aforementioned behavior. The tuning function is
Gaussian-like for the direction of the normalized input vector with respect to a
preferred stimulus, but is not shaped like a Gaussian in the input space because
the output activity does not decrease when the total activity increases for a
fixed angle between the input and the preferred stimulus vectors. Normalization
is still, however, applied so that the total output activity of the circuit does not
increase when input activity increases, but instead remains constant.

We approximate normalized tuning by delivering both divisive, normalizing
inhibition and weighted excitatory signals to units operating in nonlinear regions
of the spike-rate transfer function. We define the spike-rate “transfer function”
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to be the instantaneous output firing rate of a single integrate-and-fire neuron
versus the sum of the instantaneous arrival rates of spikes at the unit’s excitatory
synapses, assuming no additional background input or current applied to the
neuron. This transfer function is of course sensitive to the conductance of the
input synapses, and we illustrate how different synaptic conductances can lead
to different transfer function shapes in Figure 6.

One possible tuning circuit architecture is shown in Figure 5 (right), where
units in the lower layer sum input activity and then inhibit a global pooling unit
which also receives the original input. We take as our desired tuning model the
normalized dot-product formulation described in [2]

y = g

( ∑
j wjx

p
j

k + (
∑

j xq
j)r

)
(11)

where g(·) is a sigmoid nonlinearity, w = (w1, ..., wN )T is the vector of synaptic
strengths, and x = (x1, ..., xN )T is the vector of inputs to the circuit. If the
(integer-valued) exponents in (11) are chosen so that p < qr, then the output y
will peak when the input x is “close” to the preferred stimulus encoded by w,
but will fall off as the total input activity increases while maintaining the same
angle with the preferred stimulus vector. If r = 1 and p ≈ q, then the output
will peak when the input is close to the preferred stimulus, and will remain at
the peak activity level if the total input activity increases (but will not increase
any further as one would observe in the absence of any normalization).

In the spiking model described here, we attempt to roughly approximate expo-
nentiation in the numerator and denominator terms in Equation (11) by choosing
suitable operating points on the spike-rate transfer curves for units computing
xq, and separately, xp. With r set to 1, p ≤ q means that neurons implementing
the denominator in Equation (11) should exhibit locally steeper, more nonlin-
ear transfer functions compared to numerator neurons. In the simulations that
follow in section 3.3, the steepness of the initial rise in the spike-rate transfer
function is controlled by adjusting the conductance of the inputs synapses only,
however we found that even with a denominator conductance much larger than
that of the numerator, the circuit behaves as if p ≈ q with r = 1. In this case, the
normalization compensates for increasing input activity, but not to the extent
that the total output activity begins to decrease, as discussed above: the “shape”
of the tuning function in the input space is not a symmetric, multidimensional
Gaussian as shown in section 2.

Circuit Organization & Simulation. After selecting parameters yielding
suitable operating points and transfer functions, the circuit performs the tuning
function in two feed-forward stages. First, the sum of the input activities is
computed and represented by an output spike train 10 separate times. These
10 outputs are connected via shunting inhibitory synapses to a single pooling
unit which also receives multiple copies of the input. The inputs at the pooling
unit are each assigned specific conductance strengths which together encode a
preferred stimulus. In the second stage of the circuit, the weighted sum of the



Biophysical Models of Neural Computation: Max and Tuning Circuits 179

input activity is combined with the effect of the inhibitory inputs in a divisive
manner, giving normalized tuning at the output of the pooling unit. As before,
multiple copies of the entire circuit are utilized in order to meet realistic timing
requirements. One simple unit (Sn, for n > 1) in the model described by [2],
would therefore correspond to the 10 integrate-and-fire output (pooling) neurons
for each of the 10 circuit copies. In general, each tuning unit requires K(P + 1)
neurons, for K circuit copies and P inhibitory normalization neurons per circuit.

In the simulations presented in Section 3.3,we implement all unitswith integrate
-and-fire neurons with refractory periods, synaptic conductance functions, and nu-
merical simulation methods identical to those described in Section 3.1. We note,
however, that unlike the maximum circuit, the tuning architecture is purely feed-
forward and therefore allows for simplified computer simulation. In particular, the
normalization and pooling components are decoupled and may be and computed
independently, while the effect of the alpha-function on the synaptic conductances
may be computed using convolution (as shown in Equation (9)) before numerical
integration of the integrate-and-fire dynamics.

The physical cell parameters in the tuning circuit were chosen as follows:
leakage conductance gL = 25 × 10−9S, excitatory input conductance gex = 8gL

for the lower row of normalization units and excitatory conductance gex = 4gL

with inhibitory conductance ginh = 20gL for the upper pooling unit, refractory
delay τref = 8.5ms, and inhibitory reversal potential equal to the leak potential
Vinh = VL = −70mV. All other physical parameters were identical to those
described in section 3.1.

3.3 Poisson Spike Code Simulations

Spike Process Model. In the simulations that follow, we use a Poisson dis-
tribution to model the spike arrival process. It is worth mentioning that the
variance of a homogeneous Poisson spike process with rate parameter λ is also
λ, and thus it is possible to occasionally generate biophysically unrealistic in-
stantaneous firing rates in simulation. One advantage of this fact, however, is
that the Poisson model leads to a conservative estimate as to the number of
circuit copies necessary to achieve an accurate max computation within a small
time window (by averaging over multiple circuits); restricting the variance of our
spike processes can only improve simulation performance.

Maximum Circuit Simulations. To simulate the maximum circuit, we ap-
plied as inputs several sets of features returned by the S1 layer of the model
described in [2]. These features were computed by filtering a set of natural im-
ages with oriented edge detectors at different scales, positions and orientations,
and passing the result through a sigmoid nonlinearity. The feature sets ranged
in size from 64 (8x8 patches) to 484 (22x22 patches), while the feature values
were quantized into 4 levels, including “zero”. Given the features, we generated
10 copies of each input by sampling 10 separate Poisson spike input trains with
mean arrival rates proportional to the feature’s value. Thus, for N inputs, for
example, we generated 10N Poisson spike processes, and applied them to each
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Fig. 7. Max circuit time response simulation. (This figure courtesy Tim Masquelier.)

input unit in each circuit copy. With 10 circuit copies, this corresponds to 100N
separate input synapses. To evaluate the performance of the maximum circuit,
we examine output spike rates as well as transient output characteristics (e.g.
time to the first spike).

In Figure 7 we show the time course of the circuit’s response to four 64-
input stimuli in which the true maximum activity was one of the respective
allowed input levels. Each trace represents the combined mean firing rate of
10 circuit copies estimated using a short Gaussian-shaped time window. The
transient response of the circuit can be seen to carry a great deal of information,
with larger input activities evoking earlier and larger responses. Figure 8 depicts
the accuracy of the circuit given 64- and 144-input stimuli, over 2300 different
stimulus instances. Each open circle marks the approximate instantaneous firing
rate produced by each output neuron at a point 20ms following presentation of a
distinct set of inputs. The instantaneous firing rate was estimated by computing
the total output firing rate in the simulation time interval [15ms,25ms], and
dividing by the total number of output neurons (64 or 144 of them, in this case)
for all circuit copies (10 in these simulations). We then arrive at an instantaneous
firing rate per output neuron, where there are N×K outputs if the dimensionality
of the input is N and the number of circuit copies is K. Finally, because the
circuit was presented with stochastic Poisson spike trains with mean spike rate
equal to one of the levels of activity specified by the quantized image features,
it should be noted that there is significant variance in the firing rates actually
delivered to the circuit.

In order to score the accuracy of the maximum circuit, we divided up the range
of the output firing rates into 4 bins that proportionally preserve the division
of the input domain into its 4 levels. Using these bins, we then counted the
number of instances where the output did not fall into the correct output bin,
as determined by the bin of the maximum input. Thus if the output firing rate
falls into the correct corresponding output bin, it is deemed a successful trial.
Over all 2300 trials, only a small number did not meet this criteria: in 98.48%
of the 64-input trials and 98.13% of the 144-input trials, the correct maximum
bin was produced. We have also experimented with larger input sets, of size 256
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Fig. 8. Max simulations with 64 (left) and 144 (right) inputs (over 2300 trials). The
abscissa gives the true, desired activity level, while the ordinate gives the estimated
instantaneous firing rate per output neuron at a point 20ms after stimulus onset. In
all trials the circuit is simulated with Poisson spike inputs so that input activities are
never exactly equal to the ideal discrete levels shown along the x-axis.

and 484, and found that accuracy scales well with the number of inputs. The
slight decrease in accuracy with input dimensionality seen in the above figures
can be explained by the fact that more inputs offer more of an opportunity for
there to be repeated inputs which take on the maximum value. Because the
winner-take-all dynamics involve noisy spike processes rather than continuous
quantities, if there are several inputs close to the maximum value, not all of them
will be suppressed all of the time. This situation can lead to exaggerated spike
rates and results in a response that occasionally falls into a higher level bin than
appropriate.

Tuning Circuit Simulations. In this section we describe experiments which
illustrate the behavior of the tuning circuit shown in Figure 5 (right). In simulat-
ing this circuit, care must be taken to ensure that inputs and outputs maintain
realistic firing rates. This constraint, however, complicates testing the tuning
properties of the circuit because constraints on the activities of the inputs trans-
late into constraints on the way in which we are able to test the circuit given
specific desired angles between the input and the preferred stimulus. In partic-
ular, we would like to choose a set of input activities

{
xj = (xj

i , . . . , x
j
N )T

}J

j=1
that sweep out a range of angles {θ1 = 0, . . . , θJ = π/2} while satisfying

0 ≤ xj
i ≤ Fmax, and

N∑

i=1

xj
i = M (12)

where N is the number of inputs to the circuit, M is a fixed, total level of
activity, Fmax is the maximum allowed firing rate for a single neuron, and J
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Fig. 9. Simulations illustrating scaling (left) and tuning (right) properties of the tuning
circuit shown in Fig. 5 (right), with 10 circuit copies and 64 inputs. Although we have
plotted the circuit response for only positive angles in the right-hand panel, the tuning
profile can be considered Gaussian-like because it is symmetric in the angle.

is the chosen number of input instances that we will apply to the circuit to
test its behavior. The second (normalization) constraint in (12) is imposed when
testing the tuning properties in order to fix the operating point along the scaling

curve. 4 If the total activities changed over the input vectors, then the tun-
ing properties would change, and responses for different angles would not be
directly comparable. Conversely, when testing the scaling properties of the tun-
ing circuit, the angle between the inputs and the preferred stimulus vector must
be fixed while varying the total activity over a chosen range.

To select vectors for testing the tuning behavior of the circuit, we set the
first input vector in a set of inputs equal to the preferred stimulus, x0 = w,
and then generate a sequence of J vectors that successively drift away from
collinearity with the weight vector by applying the following sampling process:
At each iteration t, we begin by selecting two random components from x(t−1),
x

(t−1)
u and x

(t−1)
v . Given a small but fixed adjustment amount Δ, we generate

the new vector x(t) by applying the following updates:

x
(t)
i = x

(t−1)
i , i �= u, v (13a)

x(t)
u = x(t−1)

u + Δ (13b)

x(t)
v = x(t−1)

v − Δ (13c)

If a component falls outside of the range 0 ≤ xi ≤ Fmax, then the candidate
vector is rejected and a new one is resampled. The preferred stimulus was chosen
4 We stress however that normalized inputs are not required during ordinary operation

of the circuit; we only normalize the total activity here to evaluate tuning vs. input
angle while controlling for overall input activity.
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randomly, but fixed for the duration of the analysis. The above procedure works
well for finding vectors that slowly travel from collinear to angles near π/4 with
respect to the weight vector when using the convention that we always take the
smallest positive solution θ to θ = cos−1(z) for z ≥ 0. 5. To generate inputs
near orthogonality, we searched for a vector v⊥w by solving the constrained
optimization problem

v = arg min
x

{
cos−1

(
wT x

‖w‖‖x‖

)
− π

2

}2

subject to the constraints (12), and again using the convention that we select the
smallest positive angle satisfying θ = cos−1(z). We then applied the sampling
procedure (13) to v and generated a sequence of inputs whose angles with the
preferred stimulus drifted from orthogonal to approximately π/4. Finally, the
scalar components of the activity vectors found above were used as mean arrival
rates to sample Poisson spike input trains that were then applied to the circuit
during simulation. Vectors for the scaling simulation were generated by fixing
the angle to be collinear with the preferred stimulus for all test inputs, and
simply varying the length of the test vector over a range which ensured that
the individual activities did not exceed the maximum firing rate. In order to
evaluate the performance of the circuit over a wide range of conditions, we did
not constrain the scalar input vector components or Poisson arrival rates to take
on one of the 4 allowed values represented in the model [2].

In Figure 9 we show the behavior of the circuit with fixed input angle over a
range of activities (left panel), and with fixed activity over a range of input angles
(right panel). For fixed input activities, it is clear that the circuit exhibits an
appropriate fall-off in output activity as the input moves away from the preferred
stimulus in angle. We have shown only the positive angles corresponding to each
response, however the tuning curve is symmetric for negative angles as well, and
thus approximates a Gaussian.

If the circuit is performing a normalized dot-product, as opposed to the canon-
ical dot-product, then regardless of the magnitude of the input, and for a fixed
angle, the response should either decrease or stay roughly constant depending
on the choice of the exponents p, q and r in Equation (11). The left-hand panel
in Figure 9 verifies that this is approximately the case over a wide range of input
activities: when the average input firing rate is in between 5 and 20Hz, the output
firing rate decreases slightly. Between 20 and 40Hz the output remains constant
on average. Beyond 40Hz, the operating points of the neurons in the circuit
become shifted into a regime where the divisive normalization no longer over-
compensates for the “length” of the input, and we see a proportional increase in

5 Normalized random vectors with positive uniformly distributed components form an
absolute angle (modulo 2π) near π/4 with the optimal stimulus on average, and will
rarely form angles near π/2 or 0 radians. For this reason, we sample input vectors
starting at 0 radians moving to π/4, and then from π/2 back to π/4.
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the output firing rate with respect to the input firing rate. Whether tuning in
the higher levels of visual cortex takes the shape of a multi-dimensional Gaus-
sian or not is still, however, under discussion. Several researchers have identified
and modeled cells exhibiting a wide range of contrast normalization and tuning
characteristics, including units whose output activity decreases or remains con-
stant as a function of input activity [37, 38].

In all simulations, we assumed 10 circuit copies, and 10 input copies, 64 inputs,
and took as “output” the sum of the average spike rates of the 10 circuit outputs
over the first 50ms of the simulation. The dynamics were integrated using Euler
step sizes δ = 0.1ms.

3.4 Problems and Future Goals

– The tuning circuit presented above may be made more flexible and possibly
configured to behave like a true Gaussian function in the input space through
a more careful evaluation of the trade-off between conductances in neurons
implementing the numerator and denominator of Equation (11).

– The resolution of the output and the time delay from input presentation
to stable outputs in both circuits may be possibly improved by adding ad-
ditional circuit copies and adjusting the integrate-and-fire membrane time
constants (subject to biophysical constraints).

– The potential role of feedback in the tuning circuit should be explored. It is
likely that feedback connections can be used to modulate the shape of the
Gaussian-like tuning function by sharpening neural responses, and (sepa-
rately) might facilitate normalization if used in a gain-control configuration.

– Learning the parameters that determine the Gaussian-like “centers” – that
is the optimal stimulus for the tuning circuit – is also an open problem in
this case.

– More careful measurements of the time required by the computation and of
the bandwidth of the output activity are needed.

4 Discussion

We presented two different sets of circuits which implement the maximum and
tuning operations under two different coding schemes. The circuits serve as a
proof of concept that these computations can be performed by spiking neural
circuits in the cortex.

We introduced a coding scheme in section 2 that is compatible with the spon-
taneous and evoked firing rates observed in rat barrel cortex and presented a
canonical microcircuit that is able to perform both the max and the tuning op-
erations, depending on different values for its synaptic weights. This not only
argues for the plausibility of the model of object recognition presented in [2],
but also provides support for the idea of a canonical microcircuit present in
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multiple (at least sensory) cortical areas [20]. The main architecture of the circuit
follows the observation of monosynaptic excitation combined with disynaptic
inhibition found in layer IV of primary sensory areas. Although this connectivity
has mostly been investigated in the thalamo-cortical circuit, it is conceivable
that higher cortical areas might follow the same architecture, even though they
receive their inputs from other cortical areas instead of thalamic nuclei. Both
the max and tuning configurations of the presented microcircuit exhibit trial-to-
trial variability. Whether this variability is feasible for high-level computational
models such as [2] needs to be investigated, however, it appears to be compatible
with the variability of neurons in cortex. More stringent characterization of the
variability in both cases is needed in order to quantitatively compare models and
experimental data.

Under the assumption that the peak bandwidth for communication between
visual areas is limited to approximately 2 bits of information over time intervals
of approximatively 10-20 ms, the maximum architecture described in section 3.1
is capable of accommodating large numbers of inputs while maintaining high
accuracy. Because the circuit was designed to operate given Poisson distributed
inputs, it is relatively robust to noise in the form of spike addition, deletion, and
timing jitter. The use of multiple redundant circuit copies is a critical feature
that facilitates computation which satisfies biophysical timing and resolution
constraints. Thus, several circuits may be connected together in series, as would
be required by the model in [2], while maintaining realistic timing properties.
The tuning circuit presented in section 3.2 was shown to have the desired tuning
and normalization characteristics, and can also scale to accommodate large num-
bers of inputs. As in the case of the max circuit, multiple tuning circuit copies
were utilized in order to satisfy the stringent timing and resolution constraints
imposed by the neuroscience of object recognition.

There are several important assumptions underlying the circuits presented in
this paper that must be considered when attempting to connect spiking artificial
circuits to circuits in cortex. The winner-take-all configuration of the max circuit
in section 3.1 requires all-to-all inhibition between units within a circuit copy, as
well as some mechanism for self-excitation. Chemical positive feedback loops are
probably more likely to be found than autapses, if this circuit is implemented
in cortex. All-to-all inhibitory connectivity is an idealization that simplifies nu-
merical and theoretical analyses, but is less likely to be found in the brain than,
for example, dense but random connectivity. The winner-take-all computation
is, however, thought to be ubiquitous in the brain, possibly underlying some as-
pects of attention and decision making. Indeed, there are several network designs
that exhibit winner-take-all behavior, including networks with a single global in-
hibitory neuron instead of all-to-all inhibition [39]. It is therefore likely that
the all-to-all requirement in this max circuit (section 3.1) can be relaxed, while
maintaining the desired performance; the circuit we have presented relies on
winner-take-all computations, but does not critically depend on the particular
instantiation of winner-take-all shown in Figure 5.
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In the tuning circuit discussed in section 3.2, divisive, “shunting” inhibition
was chosen as the normalization mechanism, while the selection of an operating
point in a nonlinear region of the units’ spike-rate transfer function was used
to approximate the effect of the exponents in the normalized dot-product (11).
Although several alternatives exist for both division and multiplication in spik-
ing neural networks, we believe the choices we have made are among the most
plausible in light of the design constraints. If one adopts the reasonable position
that evolution has led to solutions which minimize both energy consumption and
real-estate in the brain, the architecture discussed in section 3.2 can be seen to
minimize the number of units necessary to accomplish normalization and expo-
nentiation. It could also be that single cells are capable of performing normalized
tuning using intrinsic mechanisms, in which case the number of cells in a cortical
implementation is likely to be smaller than the number used in our circuit of
simplistic integrate-and-fire units.

In order to improve the match with physiological data, we plan to extend
our models to be more faithful to the morphology, biophysical properties and
connectivity of different specific subtypes of cortical neurons in layers IV and
II/III of somatosensory and visual cortices, utilizing the limited quantitative
data available from other researchers [3, 4] and our own recordings.

In order to decide which of the presented models and variations, if any, best
describes biophysical reality, new experiments are needed to help distinguish
between the alternatives. It would be interesting to change the timing of the
presented stimuli to test the temporal precision that is needed for the maximum
and tuning effects to occur, and what kind of behavior can be observed outside
of that precision window. In addition, experiments should try to extend from
two to three or even more inputs (stimuli). This is difficult for visual stimuli
because of the small receptive field sizes of the cells under investigation but
it would help to tease apart different possible mechanisms as their behavior
for more than two inputs can be significantly different. The rat vibrissae and
barrel cortex system provides a suitable preparation for this task since it is
much easier to stimulate more than two vibrissae at the same time. Finally, it
is quite possible, despite the general skepticism of cortical physiologists, that
the two operations described here may be performed by circuits of mostly non-
spiking neurons, as proposed in [2]. Such models may need to be reconsidered
and improved.
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