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Abstract—We introduce a novel data-driven order reduction
method for nonlinear control systems, drawing on recent progress
in machine learning and statistical dimensionality reduction. The
method rests on the assumption that the nonlinear system behaves
linearly when lifted into a high (or infinite) dimensional feature
space where balanced truncation may be carried out implicitly.
This leads to a nonlinear reduction map which can be combined
with a representation of the system belonging to a reproducing
kernel Hilbert space to give a closed, reduced order dynamical
system which captures the essential input-output characteristics
of the original model. Empirical simulations illustrating the
approach are also provided.

I. INTRODUCTION

Model reduction of controlled dynamical systems has been a
long standing, and as yet, unsettled challenge in control theory.
The benefits are clear: a low dimensional approximation of a
high dimensional system can be manipulated with a simpler
controller, and can be simulated at lower computational cost.
A complex, high dimensional system may even be replaced
by a simpler model all together leading to significant cost
savings, as in circuit design, while the “important variables” of
a system might shed light on underlying physical or biological
processes. Reduction of linear dynamical systems has been
treated with some success to date. As we describe in more
detail below, model reduction in the linear case proceeds by
reducing the dimension of the system with an eye towards
preserving its essential input-output behavior, a notion directly
related to “balancing” observability and controllability of the
system. The nonlinear picture, however, is considerably more
involved.

In this paper we propose a scheme for balanced model-
order reduction of general, nonlinear control systems. A key,
and to our knowledge, novel point of departure from the
literature on nonlinear model reduction is that our approach
marries approximation and dimensionality reduction methods
known to the machine learning and statistics communities with
existing ideas in linear and nonlinear control. In particular, we
apply a method similar to kernel PCA as well as function
learning in Reproducing Kernel Hilbert Spaces (RKHS) to
the problem of balanced model reduction. Working in RKHS
provides a convenient, general functional-analytical framework
for theoretical understanding as well as a ready source of
existing results and error estimates. The approach presented

here is also strongly empirical, in that observability and con-
trollability, and in some cases the dynamics of the nonlinear
system are estimated from simulated or measured trajectories.
This emphasis on the empirical makes our approach broadly
applicable, as the method can be applied without having to
tailor anything to the particular form of the dynamics.

The approach we propose begins by constructing empirical
estimates of the observability and controllability Gramians in
a high (or possibly infinite) dimensional feature space. The
Gramians are simultaneously diagonalized in order to identify
directions which, in the feature space, are both the most
observable and the most controllable. The assumption that
a nonlinear system behaves linearly when lifted to a feature
space is far more reasonable than assuming linearity in the
original space, and then carrying out the linear theory hoping
for the best. Working in the high dimensional feature space
allows one to perform linear operations on a representation
of the system’s state and output which can capture strong
nonlinearities. Therefore a system which is not model re-
ducible using existing methods, may become reducible when
mapped into such a nonlinear feature space. This situation
closely parallels the problem of linear separability in data
classification: A dataset which is not linearly separable might
be easily separated when mapped into a nonlinear feature
space. The decision boundary is linear in this feature space,
but is nonlinear in the original data space.

Nonlinear reduction of the state space already opens the
door to the design of simpler controllers, but is only half of
the picture. One would also like to be able to write a closed, re-
duced dynamical system whose input-output behavior closely
captures that of the original system. This problem is the focus
of the second half of our paper, where we again exploit helpful
properties of RKHS in order to provide such a closed system.

The paper is organized as follows. In the next section
we provide the relevant background for model reduction and
balancing. We then adapt and extend balancing techniques
described in the background to the current RKHS setting in
Section III. Section IV then proposes a method for determining
a closed, reduced nonlinear control system in light of the
reduction map described in Section III. Finally, Section V pro-
vides experiments illustrating an application of the proposed
methods to a specific nonlinear system.



II. BACKGROUND

Several approaches have been proposed for the reduction
of linear control systems in view of control, but few exist for
finite or infinite-dimensional controlled nonlinear dynamical
systems. For linear systems the pioneering “Input- Output
balancing” approach proposed by B.C. Moore observes that
the important states are the ones that are both easy to reach and
that generate a lot of energy at the output. If a large amount
of energy is required to reach a certain state but the same
state yields a small output energy, the state is unimportant
for the input-output behavior of the system. The goal is then
to find the states that are both the most controllable and
the most observable. One way to determine such states is
to find a change of coordinates where the controllability and
observability Gramians (which can be viewed as a measure
of the controllability and the observability of the system)
are equal and diagonal. States that are difficult to reach and
that don’t significantly affect the output are then ignored
or truncated. A system expressed in the coordinates where
each state is equally controllable and observable is called its
balanced realization.

A proposal for generalizing this approach to nonlinear
control systems was advanced by J. Scherpen [20], where
suitably defined controllability and observability energy func-
tions reduce to Gramians in the linear case. In general, to
find the balanced realization of a system one needs to solve
a set of Hamilton-Jacobi and Lyapunov equations (as we will
discuss below). Moore [15] proposed an alternative, data-based
approach for balancing in the linear case. This method uses
samples of the impulse response of a linear system to construct
empirical controllability and observability Gramians which
are then balanced and truncated using Principal Components
Analysis (PCA, or POD). This data-driven strategy was then
extended to nonlinear control systems with a stable linear
approximation by Lall et al. [11], by effectively applying
Moore’s method to a nonlinear system by way of the Galerkin
projection. Despite the fact that the balancing theory under-
pinning their approach assumes a linear system, Lall and
colleagues were able to effectively reduce some nonlinear
systems.

Phillips [18] et al. has also studied reduction of nonlinear
circuit models in the case of linear but unbalanced coordinate
transformations and found that approximation using a poly-
nomial RKHS could afford computational advantages. Gray
and Verriest mention in [6] that studying algebraically defined
Gramian operators in RKHS may provide advantageous ap-
proximation properties, though the idea is not further explored.
Finally, Coifman et al. [3] discuss reduction of an uncontrolled
stochastic Langevin system. There, eigenfunctions of a combi-
natorial Laplacian, built from samples of trajectories, provide
a set of reduction coordinates but does not provide a reduced
system. This method is related to kernel principal components
(KPCA) using a Gaussian kernel, however reduction in this
study is carried out on a simplified linear system outside the
context of control.

In the following section we review balancing of linear and
nonlinear systems as introduced in [15] and [20].

A. Balancing of Linear Systems

Consider a linear control system

ẋ = Fx+Gu,
y = Hx,

, (1)

where (F,G) is controllable, (F,H) is observable and F is
Hurwitz. We define the controllability and the observability
Gramians as, respectively,

Wc =
∫∞

0
eFtGG>eF>t dt,

Wo =
∫∞

0
eF>tH>HeFt dt.

These two matrices can be viewed as a measure of the
controllability and the observability of the system [15]. For
instance, consider the past energy [20], Lc(x0), defined as the
minimal energy required to reach x0 from 0 in infinite time

Lc(x0) = inf
u∈L2(−∞,0),

x(−∞)=0,x(0)=x0

1
2

∫ 0

−∞
||u(t)||2 dt, (2)

and the future energy [20], Lo(x0), defined as the output
energy generated by releasing the system from its initial state
x(t0) = x0, and zero input u(t) = 0 for t ≥ 0, i.e.

Lo(x0) =
1
2

∫ ∞
0

||y(t)||2 dt, (3)

for x(t0) = x0 and u(t) = 0, t ≥ 0. In the linear case, it can be
shown that Lc(x0) = 1

2x
>
0W

−1
c x0, and Lo(x0) = 1

2x
>
0Wox0.

The columns of Wc span the controllable subspace while the
nullspace of Wo coincides with the unobservable subspace. As
such, Wc and Wo (or their estimates) are the key ingredients
in many model reduction techniques. It is also well known
that Wc and Wo satisfy the Lyapunov equations [15]

FWc +WcF
>= −GG>,

F>Wo +WoF = −H>H.
Several methods have been developed to solve these equations
directly [12], [13].

The idea behind balancing is to find a representation where
the system’s observable and controllable subspaces are aligned
so that reduction, if possible, consists of eliminating uncontrol-
lable states which are also the least observable. More formally,
we would like to find a new coordinate system such that

Wc = Wo = Σ = diag{σ1, · · · , σn},

where σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. If (F,G) is controllable
and (F,H) is observable, then there exists a transformation
such that the state space expressed in the transformed co-
ordinates (TFT−1, TG,HT−1) is balanced and TWcT

> =
T−>WoT

−1 = Σ. Typically one looks for a gap in the singular
values {σi} for guidance as to where truncation should occur.
If we see that there is a k such that σk � σk+1, then the states
most responsible for governing the input-output relationship of
the system are (x1, · · · , xk) while (xk+1, . . . , xn) are assumed
to make negligible contributions.



Although several methods exist for computing T [12], [13],
the general idea is to compute the Cholesky decomposition
of Wo so that Wo = ZZ>, and form the SVD UΣ2U> of
Z>WcZ. Then T is given by T = Σ

1
2U>Z−1. We also note

that the problem of finding the coordinate change T can be
seen as an optimization problem [1] of the form

min
T

trace[TWcT
∗ + T−∗WoT

−1].

B. Balancing of Nonlinear Systems

In the nonlinear case, the energy functions Lc and Lo in
(2) and (3) are obtained by solving both a Lyapunov and a
Hamilton-Jacobi equation. Here we follow the development
of Scherpen [20]. Consider the nonlinear system{

ẋ = f(x) +
∑m

i=1 gi(x)ui,
y = h(x), (4)

with x ∈ Rn, u ∈ Rm, y ∈ Rp, f(0) = 0, gi(0) = 0 for
1 ≤ i ≤ m, and h(0) = 0. Moreover, assume the following
Hypothesis.
Hypothesis H: The linearization of (4) around the origin is
controllable, observable and F = ∂f

∂x |x=0 is asymptotically
stable.

Theorem 2.1: [20] If the origin is an asymptotically stable
equilibrium of f(x) on a neighborhood W of the origin, then
for all x ∈W , Lo(x) is the unique smooth solution of

∂Lo

∂x
(x)f(x) +

1
2
h>(x)h(x) = 0, Lo(0) = 0 (5)

under the assumption that (5) has a smooth solution on W .
Furthermore for all x ∈ W , Lc(x) is the unique smooth
solution of

∂Lc

∂x
(x)f(x)+

1
2
∂Lc

∂x
(x)g(x)g>(x)

∂>Lc

∂x
(x) = 0, Lc(0) = 0

(6)
under the assumption that (6) has a smooth solution L̄c on W
and that the origin is an asymptotically stable equilibrium of
−(f(x) + g(x)g>(x)∂L̄c

∂x (x)) on W .
With the controllability and the observability functions on
hand, the input-normal/output-diagonal realization of sys-
tem (4) can be computed by way of a coordinate transfor-
mation. More precisely,

Theorem 2.2: [20] Consider system (4) under Hypothesis
H and the assumptions in Theorem 2.1. Then, there exists a
neighborhood W of the origin and coordinate transformation
x = ϕ(z) on W converting the energy functions into the form

Lc(ϕ(z)) =
1
2
z>z,

Lo(ϕ(z)) =
1
2

n∑
i=1

z2
i σi(zi)2,

where σ1(x) ≥ σ2(x) ≥ · · · ≥ σn(x). The functions σi(·) are
called Hankel singular value functions.
Analogous to the linear case, the system’s states can be sorted
in order of importance by sorting the singular value functions,
and reduction proceeds by removing the least important states.

In the above framework for balancing of nonlinear systems,
one needs to solve (or numerically evaluate) the PDEs (5), (6)
and compute the coordinate change x = ϕ(z), however there
are no systematic methods or tools for solving these prob-
lems. Various approximate solutions based on Taylor series
expansions have been proposed [9], [8], [5]. Newman [16]
introduces a statistical approximation based on exciting the
system with white Gaussian noise and then computing the
balancing transformation using an algorithm from differential
topology. As mentioned earlier, an essentially linear empirical
approach was proposed in [11]. In this paper, we combine as-
pects of both data-driven approaches and analytic approaches
by carrying out balancing in a suitable RKHS.

III. EMPIRICAL BALANCING OF NONLINEAR SYSTEMS IN
RKHS

We consider a general nonlinear system of the form{
ẋ = f(x, u)
y = h(x) (7)

with x ∈ Rn, u ∈ Rm, y ∈ Rp, f(0, 0) = 0, and h(0) = 0.
Let R(x0) = {x′ ∈ Rn : ∃u ∈ L∞(R,Rm) and ∃T ∈
[0,∞) such that x(0) = x0 and x(T ) = x′} be
the reachable set from the initial condition x(0) = x0. We
assume that the system is zero-state observable, and that the
linearization of (7) around the origin is controllable. We also
assume that the origin of ẋ = f(x, 0) is asymptotically stable.

We treat the problem of estimating the observability and
controllability Gramians as one of estimating an integral
operator from data in a reproducing kernel Hilbert space
(RKHS) [2]. Our approach hinges on the key modeling as-
sumption that the nonlinear dynamical system is linear in
an appropriate high (or possibly infinite) dimensional lifted
feature space. Covariance operators in this feature space and
their empirical estimates are the objects of primary importance
and contain the information needed to perform model reduc-
tion. In particular, the (linear) observability and controllability
Gramians are estimated and diagonalized in the feature space,
but capture nonlinearities in the original state space. The
reduction approach we propose adapts ideas from kernel PCA
(KPCA) [21] and is driven by a set of simulated or sampled
system trajectories, extending and generalizing the work of
Moore [15] and Lall et al. [11].

A. Definitions
In the development below we lift state vectors of the system

into a reproducing kernel Hilbert space [2], H, endowed with
a symmetric positive definite kernel function K : X ×X → R
which we assume here to be continuous and bounded by
κ = supx∈X

√
K(x, x) < ∞. In particular, we make use of

the following important properties: For all f ∈ H, f(x) =
〈f,Kx〉H, where Kx := K(x, ·). This is the reproducing
property. Second, to any RKHS we can associate a feature
map Φ : X → F satisfying 〈Φ(x),Φ(x′)〉H = K(x, x′). For
example, we can take Φ(x) := Kx in which case F = H –
the “feature space” is the RKHS. We will further assume that
H is always separable.



B. Empirical Gramians

Following [15], we estimate the controllability Gramian by
exciting each coordinate of the input with impulses while
setting x0 = 0. One can also further excite using rotations
of impulses as suggested in [11], however for simplicity
we consider only the original signals proposed in [15]. Let
ui(t) = δ(t)ei be the i-th excitation signal, and let xi(t) be
the corresponding response of the system. Form the matrix
X(t) =

[
x1(t) · · · xm(t)

]
∈ Rn×m, so that X(t) is seen as a

data matrix with column observations given by the respective
responses xi(t). Then Wc ∈ Rn×n is given by

Wc =
1
m

∫ ∞
0

X(t)X(t)>.

We can approximate this integral by sampling the matrix
function X(t) within a finite time interval [0, T ] assuming
the regular partition {ti}Ni=1, ti = (T/N)i. This leads to the
empirical controllability Gramian

Ŵc =
T

mN

N∑
i=1

X(ti)X(ti)>.

As described in [15], the observability Gramian is estimated
by fixing u(t) = 0, setting x0 = ei for i = 1, . . . , n, and
measuring the corresponding system output responses yi(t).
As before, assemble the responses into a matrix Y (t) =
[y1(t) · · · yn(t)] ∈ Rp×n. The observability Gramian Wo ∈
Rn×n and its empirical counterpart Ŵo are given by

Wo =
1
p

∫ ∞
0

Y (t)>Y (t) , Ŵo =
T

pN

N∑
i=1

Ỹ (ti)Ỹ (ti)>

where Ỹ (t) = Y (t)>. The matrix Ỹ (ti) ∈ Rn×p can be
thought of as a data matrix with column observations

dj(ti) =
(
y1

j (ti), . . . , yn
j (ti)

)>∈ Rn, j = 1, . . . , p, (8)

so that dj(ti) corresponds to the response at time ti of the
single output coordinate j to each of the (separate) initial
conditions x0 = ek, k = 1, . . . , n. This convention will lead
to greater clarity in the steps that follows.

C. Kernel PCA

Kernel PCA [21] generalizes linear PCA by carrying out
PCA in a high dimensional feature space defined by a feature
map Φ : Rn → F . Taking the feature map Φ(x) = Kx and
given the set of data x := {xi}Ni=1 ∈ Rn, we can consider PCA
in the feature space by simply working with the covariance of
the mapped vectors,

Cx =
1
N

N∑
i=1

Φ(xi)⊗ Φ(xi), (9)

where Φ(xi) ⊗ Φ(xi) = 〈Φ(xi), ·〉Φ(xi) denotes the tensor
product between two vectors in H. We will assume the data
are centered in the feature space so that

∑
i Φ(xi) = 0. If not,

data may be centered according to the prescription in [21].
The principal subspaces are computed by diagonalizing Cx,

however as is shown in [21], one can equivalently form the
matrix K ∈ RN×N of kernel products (K)ij = K(xi, xj) for
i, j = 1, . . . , N , and solve the eigenproblem Kα = Nλα.
If Cxvi = λivi, then we have that vi = Ψαi where Ψ :=(
Φ(x1) · · · Φ(xN )

)
, and the non-zero eigenvalues of K and

Cx coincide. The eigenvectors αi of K are then normalized
so that the eigenvectors vi of Cx have unit norm in the feature
space, leading to the condition ‖αi‖2 = λ−1

i . Assuming this
normalization convention, sort the eigenvectors according to
the magnitudes of the corresponding eigenvalues in descending
order, and form the matrix Aq =

[
α1 · · · αq

]
, 1 ≤ q ≤

min(n,N). Similarly, form the matrix Vq =
[
v1 · · · vq

]
, 1 ≤

q ≤ n of sorted eigenvectors of Cx. The first q principal
components of a vector x = Φ(x̃) in the feature space are
then given by V >q x. It can be shown however (see [21]) that
principal components in the feature space can be computed
in the original space with kernels using the map Π(x) :=
A>q k(x), where k(x) =

(
K(x, x1), . . . ,K(x, xN )

)>
.

D. Model Order Reduction Map

The method we propose consists, in essence, of collecting
samples and then performing a process similar to “simulta-
neous principal components analysis” on the controllability
and observability Gramian estimates in the (same) RKHS. As
mentioned above, given a choice of the kernel K defining
a RKHS H, principal components in the feature space can
be computed implicitly in the original input space using K.
Because we will find non-orthogonal coordinates in the feature
space in which the Gramians become simultaneously diagonal,
the process is not strictly speaking PCA, and the favorable
properties associated with an orthonormal basis are no longer
available. We will, however, continue to refer to the process
of diagonalizing a covariance matrix as (K)PCA.

Turning to the controllability Gramian (the case of the
observability Gramian is analogous), first note that Ŵc can
be viewed as the sample covariance of a collection of N ·m
vectors, scaled by T :

Ŵc =
T

mN

N∑
i=1

X(ti)X(ti)>=
T

mN

N∑
i=1

m∑
j=1

xj(ti)xj(ti)>.

Thus we can form the controllability kernel matrix Kc ∈
RNm×Nm of kernel products (Kc)ij = K(xi, xj) for i, j =
1, . . . , Nm in order to carry out PCA in the feature space,
where we have re-indexed the set of vectors {xk(t`)} to
use a single linear index. Similarly, we can compute the
observability kernel matrix Ko ∈ RNp×Np consisting of the
pairwise kernel products of the collection of data vectors
described in (8). Ordinarily, Nm,Np � n and Kc,Ko will
be rank deficient.

We assume here for simplicity that the number of input
excitation signals m is equal to the dimension of the output p
so that the number of samples N taken from the output and
state trajectories can be the same, leading to kernel matrices
Kc and Ko of the same size. If one adopts the set of input
excitations {ui(t)} as above, then an alternative although more



restrictive assumption can be that the number of inputs to the
system is equal to the number of outputs. Then the pair Kc,Ko

is simultaneously diagonalized by taking the (reduced) SVD of
K

1/2
c KoK

1/2
c so that K1/2

c KoK
1/2
c = UΣ2U>. Conjugation

by T = Σ1/2U>
√
K†c diagonalizes Kc and conjugation by

T−> =
√

Σ†U>K1/2
c diagonalizes Ko, where X† denotes

the pseudoinverse of X . Finally, the order of the model
is reduced by discarding small eigenvalues {Σii}ni=q+1, and
projecting onto the subspace associated with the first q < n
largest eigenvalues. This leads to the state-space reduction map
Π : Rn → Rq given by

Π(x) = T>q kc(x), x ∈ Rn (10)

where

kc(x) :=
(
K(x, x1(t1)), . . . ,K(x, xm(tN ))

)>
. (11)

IV. CLOSED DYNAMICS OF THE REDUCED SYSTEM

Given the nonlinear state space reduction map Π : Rn →
Rq , a remaining challenge is to construct a corresponding
(reduced) dynamical system on the reduced state space which
well approximates the input-output behavior of the original
system on the original state space. Setting xr = Π(x) and
applying the chain rule,

ẋr =
(
JΠ(x)f(x, u)

)∣∣
x=Π−1(xr)

. (12)

However we are faced with the difficulty that the map Π is not
in general injective (even if q = n), and moreover one cannot
guarantee that an arbitrary point in the RKHS has a non-
empty preimage under Φ [14]. We propose an approximation
scheme to get around this difficulty: The dynamics f will
be approximated by an element of an RKHS defined on the
reduced state space. When f is assumed to be known explicitly
it can be approximated to a high degree of accuracy. An
approximate, least-squares notion of “Π−1” will be given to
first or second order via a Taylor series expansion, but only
where it is strictly needed – and at the last possible moment
– so that a first or second order approximation will not be
as crude as one might suppose. We will also consider, as
an alternative, a direct approximation of JΠ(Π−1(xr)) which
takes into account further properties of the reproducing kernel
as well as the fact that the Jacobian is to be evaluated at
x = Π−1(xr) in particular. In both cases, the important ability
of the map Π to capture strong nonlinearities will not be
significantly diminished.

A. Representation of the dynamics in RKHS

The vector-valued map f : Rn × Rm → Rn can be
approximated by a composing a set of n regression functions
(one for each coordinate) f̂i : Rq×m → R in an RKHS,
with the reduction map Π. It is reasonable to expect that
this approximation will be better than directly computing
f(Π̂−1(xr), u) using, for instance, a Taylor expansion notion
of “Π−1”, which may ignore important nonlinearities at a stage
where crude approximations must be avoided.

Let x̃ = Π(x) denote a reduced state variable, and con-
catenate the input examples x̃j = Π(xj) ∈ Rq, uj ∈ Rm so
that zj = (x̃j , uj) ∈ Rq×m, and {(fi(xj , uj), zj)}`j=1 is a set
of input-output training pairs describing the i-th coordinate
of the map (x̃, u) 7→ f(x, u). The training examples should
characterize “typical” behaviors of the system, and can even
re-use those trajectories simulated in response to impulses for
estimating the Gramians above. We will seek the function
f̂i ∈ H which minimizes∑̀

j=1

(
f̂i(zj)− fi(xj , uj)

)2 + λi‖f̂i‖2H

where λi here is a regularization parameter. We have chosen
the square loss, however other suitable loss functions may be
used. It can be shown [22] that in this case f̂i takes the form
f̂i(z) =

∑`
j=1 c

i
jK

f (z, zj), i = 1, . . . , n, where Kf defines
the RKHS Hf (and is unrelated to K used to estimate the
Gramians). Note that although our notation takes the RKHS for
each coordinate function to be the same, in general this need
not be true: different kernels may be chosen for each function.
Here the {cij} comprise a set of coefficients learned using the
regularized least squares (RLS) algorithm. The kernel family
and any hyper-parameters can be chosen by cross-validation.
For notational convenience we will further define the vector-
valued empirical feature map(

kf (x̃, u)
)
i

:= Kf
(
(x̃, u), zi

)
for i = 1, . . . , `. In this notation f̂i

(
Π(x), u

)
= c>i kf (x̃, u)

where (ci)j = cij .
A broad class of systems seen in the literature [20] are

also characterized by separable dynamics of the form ẋ =
f(x) +

∑m
i=1 gi(x)ui. In this case one need only estimate

the functions f and gi from examples {(Π(xj), f(xj))}j and
{(Π(xj), g(xj))}j .

B. Approximation of the Jacobian Contribution

We turn to approximating the component JΠ

(
Π−1(xr)

)
appearing in Equation (12).

1) Inverse-Taylor Expansion: A simple solution is to com-
pute a low-order Taylor expansion of Π and then invert it
using the Moore-Penrose pseudoinverse to obtain the ap-
proximation. For example, consider the first order expansion
Π(x) ≈ Π(a) + JΠ(a)(x − a). Then we can approximate
Π−1(xr) (in the first-order, least-norm sense) as

Π̂−1(xr) :=
(
JΠ(a)

)†(xr −Π(a)) + a. (13)

We may start with a = x0, but periodically update the
expansion in different regions of the dynamics if desired. A
good expansion point could be the estimated preimage of xr(t)
returned by the algorithm proposed in [10].

2) Exploiting Kernel Properties: For certain choices of the
kernel K defining the Gramian feature space H, one can ex-
ploit the fact that Kx and its derivative bear a special relation-
ship, and potentially improve the estimate for JΠ(Π−1(xr)).
Perhaps the most commonly used off-the-shelf kernel families



are the polynomial and Gaussian families. For any two kernels
with hyperparameters p and q (respectively) in one of these
classes, we have that Kp = (Kq)p/q . We’ll consider the
polynomial kernel of degree d, Kd(x, y) := (1 + 〈x, y〉)d

in particular; the Gaussian case can be derived using similar
reasoning. For a polynomial kernel we have that

∂Kd(x, y)
∂x

= dKd−1(x, y)y>= d
(
Kd(x, y)

)d−1
d y>.

Recalling that Kd(x, y) = 〈Φ(x),Φ(y)〉H and xr = Π(x) =
V >q Φ(x), if Π was invertible then we would have

∂Kd(x, y)
∂x

∣∣∣∣
x=Π−1(xr)

= d
〈
(Φ ◦Π−1)(xr),Φ(y)

〉d−1
d y>.

The map Π is not injective however, and in addition the fibers
of Φ may be potentially empty, so we must settle for an
approximation. It is reasonable then to define (Φ ◦ Π−1)(xr)
as the solution to the convex optimization problem

min
z∈H

‖z‖H
subj. to

∥∥V >q z − xr

∥∥
Rk = 0.

(14)

If a point z ∈ H has a pre-image in Rn this definition
is consistent with composing Φ with the formal definition
Φ−1(z) = {x ∈ Rn | Φ(x) = z} and noting that in this
case Π ◦ Φ−1 = V >q (Φ ◦ Φ−1) = V >q z. Furthermore, a
trajectory xr(t) of the closed dynamical system on the reduced
statespace need not (and may not) have a counterpart in the
original statespace by virtue of the way in which “Π−1” is used
in our formulation of the reduction map and corresponding
reduced dynamical system.

One will recognize that the solution z∗ to (14) is just the
Moore-Penrose pseudoinverse z∗ = (V >q )†xr. Inserting this
solution into the feature map representation of a kernel K
gives the following definition for K(Π−1(xr), y):

K(Π−1(xr), y) =
〈
(Φ ◦Π−1)(xr),Φ(y)

〉
H

=
〈
(V >q )†xr,Φ(y)

〉
H =

〈
xr, V

†
q Φ(y)

〉
Rk

=
〈
xr, (V >q Vq)−1V >q Φ(y)

〉
=
〈
xr, (V >q Vq)−1Π(y)

〉
=
〈
xr, (T>q KcTq)−1Π(y)

〉
=
〈
xr, (T>q TqΣq)−1Π(y)

〉
.

Substituting into the derivative for a polynomial kernel K =
Kd gives

∂Kd(x, y)
∂x

∣∣∣∣
x=Π−1(xr)

= d
〈
xr, (T>q TqΣq)−1Π(y)

〉d−1
d y>

which immediately gives an expression for JΠ(Π−1(xr)).
Note that this approximation is global in the sense that the
q × q matrix inverse (T>q TqΣq)−1 need only be computed
once; no updating is required during simulation of the closed
system.

C. Reduced System Dynamics

Given an estimate f̂
(
Π(x), u

)
of f(x, u) in the RKHS Hf

and a notion of JΠ

(
Π−1(xr)

)
from above, we can write down

a closed dynamical system on the reduced statespace. We have

ẋr ≈
(
JΠ(x)f̂(Π(x), u)

)∣∣∣
x=Π−1(xr)

≈
(
JΠ(x)

)∣∣
x=Π−1(xr)

C>kf (xr, u)

≈ T>q Jk

(
Π−1(xr)

)
C>kf (xr, u) (15)

where C is a matrix with the vectors ci as its rows, and
Jk is the Jacobian of the empirical feature map defined in
Equation (11). Here the expression Jk

(
Π−1(xr)

)
should be

interpreted as notation for either of the Jacobian approxima-
tions suggested in Section IV-B.

Equation (15) is seen to give a closed nonlinear control
system expressed solely in terms of the reduced variable
xr ∈ Rq: {

ẋr = T>q Jk

(
Π̂−1(xr)

)
C>kf (xr, u)

y = ĥ(xr)

where the map ĥ ◦Π modeling the output function h : Rn →
Rp is estimated as described immediately below. Although
the “true” reduced system does not actually exist due to non-
injectivity of the feature map Φ, in many situations one can
expect that the above system will capture the essential input-
output behavior of the original system. We leave a precise
analysis of the error in the approximations appearing in (15)
to future work.

D. Outputs of the Reduced System

Analogous to the case of the dynamics f , we are faced with
two possibilities for approximating y = h

(
Π−1(xr)

)
. We can

apply the Taylor approximation Π̂−1, or as in Section IV-A
we can estimate a map (ĥ ◦ Π) : Rn → Rp, xr 7→ y
from the reduced state space to the output space directly,
using RKHS methods. Given samples {Π(xj), yj}`j=1, each
coordinate function

(
ĥi

)p
i=1

is given in the familiar form
ĥi(Π(x)) =

∑`
j=1 b

i
jK

h
(
Π(x),Π(xj)

)
, where Kh is the

kernel chosen to define the RKHS, and may be different for
each coordinate. It should be noted that just given the state
space reduction map Π, one can immediately compare the
output of the system defined by ĥ(xr) to the original system
without defining a closed dynamics as above. In fact with Π
and ĥ one can design a simpler controller which takes as input
the reduced state variable xr, but controls the original system.

V. EXPERIMENTS

We demonstrate an application of our method to a 7-
dimensional nonlinear system with one dimensional input and
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Fig. 1. (Left) Simulated output trajectories for the original and reduced (2-dimensional) system. (Right) Top Hankel singular values (zeros
omitted).

output appearing in [17] (Example 3.2, pg. 54):

ẋ1 = −x3
1 + u ẋ2 = −x3

2 − x2
1x2 + 3x1x

2
2 − u

ẋ3 = −x3
3 + x5 + u ẋ4 = −x3

4 + x1 − x2 + x3 + 2u

ẋ5 = x1x2x3 − x3
5 + u ẋ6 = x5 − x3

6 − x3
5 + 2u

ẋ7 = −2x3
6 + 2x5 − x7 − x3

5 + 4u

y = x1 − x2
2 + x3 + x4x3 + x5 − 2x6 + 2x7

Impulse and initial-condition responses of the system were
simulated as described above, and 800 samples equally spaced
in the time interval [0, 5s] were sampled to build the kernel
matrices Kc and Ko using the third degree polynomial kernel
K(x, y) = (1 + 〈x, y〉)3. Recall that these kernel matrices,
are the inner product counterparts to the empirical Gramians.
Examples of Kc and Ko for this system are shown in Figure 2.
We imposed a small amount of regularization when computing
the balancing transformation T , taking the Cholesky decom-
position of Kc + 0.001 · I instead of Kc. Figure 1 (right
pane) shows the Hankel singular values Σ = TKcT

> for
this problem on a log scale. One can see that perhaps the
first two components ought to capture most of the system’s
behavior. Thus the reduction map Π was defined by taking
only the eigenvectors (scaled columns of T ) corresponding to
the largest two Hankel singular values, giving a reduced state
space of dimension two.

Next, a map from the reduced variable xr to ẋ was estimated
following Section IV-A. The control input was chosen to be
a 10hz square wave, and 1000 samples from the simulated
system in the interval [0, 5s] were mapped down using Π
and then used to solve the (n) RLS regression problems, one
for each state variable, again using a third degree polynomial
kernel. All initial conditions were set to zero. The desired
outputs (dependent variable examples) used to learn f̂ were
taken to be the true f evaluated at the samples from the
simulated state trajectory. We also added a bias dimension of
1’s to the data to account for any offset, and used a fast leave-
one-out cross-validation (LOOCV) computation [19] to select
the optimal regularization parameter. Two remarks are in order.
The above dynamics can in fact be represented explicitly and

exactly in a 3rd degree polynomial RKHS; only monomials
up to degree 3 appear in the dynamics. Second, the control
input is decoupled from the state. Both of these facts can be
used to obtain an improved reduced model, however we did
not make use of these special properties and instead applied
the simplest version of the techniques described above which
assume no special structure.

We followed a similar process to learn the output function
y = ĥ(xr). Here we used a 10Hz square wave control input,
zero initial conditions and 700 samples in the interval [0, 5s].
For this function the Gaussian kernel K(x, y) = exp(−γ‖x−
y‖22) was used to demonstrate that our method does not rely on
any particular match between the form of the dynamics and the
type of kernel. The scale hyperparameter γ was chosen to be
the average distance between the training examples. We again
used LOOCV to select the RLS regularization parameter.

Finally, the closed system was simulated as described above
using x0 = 0 and a control input different from those
used to learn the dynamics and output functions: u(t) =
1
2

(
sin(2π3t)+sq(2π5t−π/2)

)
where sq(·) denotes the square

wave function. This input is shown at the top of Figure 1 (left
panel). The Taylor series approximation for Π was done once
about x0 and was not updated further. The simulated outputs
ŷ(t) of the closed reduced system as well as the output y(t)
of the original system are plotted at the bottom in Figure 1
(left panel). One can see that, even for a significantly different
input, the two dimensional reduced system closely captures
the original system. The main source of error is seen to be
over- and under-shoot near the square wave transients. This
error can be further reduced by simulating the system for
different sorts of inputs (and/or frequencies) and including the
collected samples in the training sets used to learn Π, f̂ and ĥ.
Indeed, we have had some success driving example systems
with random uniform input in some cases.

VI. CONCLUSION

In this paper we introduced a new model reduction method
for nonlinear control systems. The method assumes that the
nonlinear system is approximately linear in a high dimensional
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Fig. 2. Plots of the kernel matrices encoding controllability properties (left) and observability properties (right) of the system.

feature space, and carries out linear balanced truncation in
that space. This leads to a nonlinear reduction map, which
we suggest can be combined with representations of the
dynamics and output functions by elements of an RKHS to
give a closed reduced order dynamical system which captures
the input-output characteristics of the original system. We
then demonstrated an application of our technique to a 7-
dimensional system and simulated the original and reduced
models for comparison, showing that the approach proposed
here can yield good low-order nonlinear reductions of strongly
nonlinear control systems. We believe that techniques well
known to the machine learning and statistics communities
can offer much to control and dynamical systems research,
and many further directions remain, including reduction of
unstable systems and structure preserving systems.
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