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Goals

Given a stochastic decision making problem, i.e.

planning / reinforcement learning

stochastic control

exploit multiscale structure, in order to:

find a solution efficiently

localize computation

improve conditioning

systematize knowledge transfer (see paper).
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Cartoon

A multiscale planning problem: get from x to , with min. effort.

actions : {left,right,up,down}; P(action fails) > 0; Markov.
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Cartoon - Hierarchical Decomposition

Localize computation by decomposing into small, independent
sub-problems:
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Cartoon - Conditioning

Improve conditioning:
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Cartoon - Multiscale Transfer Learning

Identify transfer opportunities, encode knowledge, transfer
knowledge:
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Background: Discrete-Time Markov Decision Processes

MDP: a tuple (S,A, P,R,Γ) consisting of:

A state space S (finite)

An action (or “control”) set A (finite)

For s, s′ ∈ S, a ∈ A, a transition probability tensor P (s, a, s′)

Reward function R(s, a, s′)

Collection of discount factors Γ(s, a, s′) ∈ (0, 1)

P(A): set of all discrete probability distributions on A.

A stationary stochastic policy π : S → P(A) is a function
mapping states into distributions over the actions.

A policy (control law) specifies how to behave in the environment.
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The Markov Chain P π

Consider the stochastic state sequence (st)t≥0 given by choosing
controls at ∼ π(st−1).

(st)t≥0 is a homogeneous Markov chain with transition law

P π(s, s′) := Ea∼π(s)[P (s, a, s′)]
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MDP: Discounted Infinite-Horizon Value Functions

A value function V π : S → R assigns to each state s the
expected sum of discounted rewards collected over an infinite
horizon by running the policy π starting in s.

V π(s) = E [R(s0, a1, s1)]

+ E

[ ∞∑
t=1

{
t−1∏
τ=0

Γ(sτ , aτ+1, sτ+1)

}
R(st, at+1, st+1)

∣∣∣ s0 = s

]

The expectation is taken over all sequences of state-action pairs
{(st, at)}t≥1,with at ∼ π(st−1).
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MDP: Discounted Infinite-Horizon Value Functions

Lemma

V π(s) =
∑
s′,a

P (s, a, s′)π(s, a)
[
R(s, a, s′)+Γ(s, a, s′)V π(s′)

]
, s ∈ S.

In matrix-vector form,

V π =
(
I − (Γ ◦ P )π

)−1
r

where r := (P ◦R)π1.

The matrix
(
I − (Γ ◦ P )π

)−1
will be referred to as the potential

operator.
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MDP: Optimality

Goal is to find a policy (plan) that maximizes reward, given any
starting state:

Optimal Solution

π∗ := arg sup
π∈Π

V π

V ∗ := V π∗

Π: Stochastic, stationary, Markov policies.
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MDP: Solution Algorithms

Solving with off the shelf dynamic programming based methods:

is expensive,

scales poorly.

Example: Solve a sequence of |S| × |S| linear systems of the form

V πk =
(
I − (Γ ◦ P )πk

)−1
rπk , k = 0, 1, . . .
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Multiscale Markov Decision Processes

Solving a problem with a multiscale MDP hierarchy consists of
the following steps:

Step 1 Partition the state-space into subsets of states (“clusters”)
connected via “bottleneck” states.

Step 2 Compress or homogenize the MDP into another, smaller
and coarser MDP, whose state space is the set of bottlenecks,
and whose actions are given by following certain policies
within clusters (“subtasks”).

Repeat steps above with the compressed MDP as input, until
desired number of compression steps, obtaining a hierarchy of
MDPs.

Step 3 Solve the hierarchy of MDPs from the top-down (coarse to
fine) by pushing solutions of coarse MDPs down to finer
MDPs.
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Multiscale Markov Decision Processes

MMDP Goals

Localize computation: decompose a complex task into a
hierarchy of simpler sub-tasks.

Improve conditioning:

solve small “fast mixing” problems
precondition/shape with coarse solution

Systematize knowledge transfer
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Step (1): Statespace Partitioning

Example: Recursive Spectral Partitioning

1 Set P πtel = (1− η)P π + ηn−111>, for some small, positive η.

2 Find the invariant distribution µ satisfying (P πtel)
>µ = µ.

3 Let Φ = diag(µ) and compute the symmetrized Laplacian for
directed graphs (Chung, ’05):

L = Φ− 1
2

(
ΦP π + (P π)>Φ

)
4 Find low-conductance cuts from K smallest nontrivial

eigenvectors of L.

5 Repeat on resulting subgraphs.

Other possibilities exist: local heat flux, evolving sets, “betweenness”,...

Note: Partitioning/bottlenecks depend on π. Can be the diffusion policy

or can encode problem-specific goal information (e.g. reward).
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Statespace Partitioning: Clusters

Bπ: Bottleneck states resulting from cuts, plus absorbing states.

Partitioning of {S \ Bπ} is given by S/∼, under

si ∼ sj , if si, sj /∈ Bπ and there is a path from si to sj

not passing through any b ∈ Bπ.

A cluster is an equivalence class [s] plus any bottleneck states
P π-connected to states in the class.

interior:
◦
c:= [s]

boundary: ∂c := bottlenecks attached to [s]

Clusters of G = (S, P π) only connect to each other via bottlenecks.
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Cartoon: Coarse Statespace Graphs

Level: 3

→

Level: 2

→
Level: 1
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Step (2): Multiscale Compression

Given a policy πc on cluster c, consider the Markov chain (Xt)t≥0

with transition matrix P πcc , P restricted to c along πc.

Define the hitting times of ∂c:

Tm = inf{t > Tm−1 | Xt ∈ ∂c}, m = 1, 2, . . .

with T0 = inf{t ≥ 0 | Xt ∈ ∂c}. (Ps(Tm <∞) = 1,∀s ∈ c,m)

Intuition

Compression: summarize what happens between successive
hitting times.

Computations are all local (one cluster at a time)...
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Multiscale Compression: Coarse MDP

A homogenized MDP consists of the tuple (S̃, Ã, P̃ , R̃, Γ̃).

There are a few ways to summarize the fine scale MC:

analytically (e.g. mean-field approx.), if the model (or an
estimate) is known;

by Monte-Carlo simulations/exploration;

combinations of the two.
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Multiscale Compression: Coarse Statespace

A homogenized MDP consists of the tuple (S̃, Ã, P̃ , R̃, Γ̃).

Statespace S̃: The coarse scale statespace S̃ is the set of
bottleneck states B for the fine scale.

Note that S̃ ⊂ S, and we can expect |S̃| � |S|.
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Multiscale Compression: Coarse Actions

A homogenized MDP consists of the tuple (S̃, Ã, P̃ , R̃, Γ̃):

Action set Ã: A coarse action invoked from b ∈ S̃ = B
consists of executing a given fine scale policy πc ∈ πc within
the fine scale cluster c, starting from b ∈ ∂c (at a time that
we may reset to 0), until the first positive time at which a
bottleneck state in ∂c is hit.
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Multiscale Compression: Coarse Transition Kernel

A homogenized MDP consists of the tuple (S̃, Ã, P̃ , R̃, Γ̃):

Coarse scale transition probabilities P̃ (s, a, s′): If a ∈ Ã is
an action executing the policy πc ∈ πc, then P̃ (s, a, s′) is
defined as the probability that the Markov chain P πcc started
from s ∈ S̃, hits s′ ∈ S̃ before hitting any other bottleneck.
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Multiscale Compression: Coarse Transition Kernel

If P or an estimate of P is known:

Proposition

Let a be the coarse action corresponding to executing a policy πc
in cluster c. Then

P̃ (s, a, s′) = Hs,s′ , for all s, s′ ∈ ∂c,

where H is the minimal non-negative solution, for each s′ ∈ ∂c, to
the linear system

Hs,s′ = P πcc (s, s′) +
∑
s′′∈◦c

P πcc (s, s′′)Hs′′,s′ , s ∈ c, s′ ∈ ∂c .
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Multiscale Compression: Coarse Rewards

A homogenized MDP consists of the tuple (S̃, Ã, P̃ , R̃, Γ̃):

Coarse scale rewards R̃(s, a, s′): The coarse reward
R̃(s, a, s′) is defined to be the sum of discounted rewards
collected along trajectories of the (fine) Markov chain
associated to coarse action a, which start at s ∈ S̃ and end by
hitting s′ ∈ S̃ before hitting any other bottleneck.
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Multiscale Compression: Coarse Discount Factors

A homogenized MDP consists of the tuple (S̃, Ã, P̃ , R̃, Γ̃):

Coarse scale discount factors Γ̃(s, a, s′): The coarse
discount factor Γ̃(s, a, s′) is the product of the discounts
applied to rewards along trajectories of the Markov chain P πcc

associated to a action a ∈ Ã, starting at s ∈ S̃ and ending at
s′ ∈ S̃.
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Multiscale Compression: Mean-field Approximations

Given stopping times 0 ≤ T < T ′ <∞ (a.s.):

∆T ′
T :=

T ′−1∏
t=T

Γ
(
Xt, at+1, Xt+1

)
RT
′

T := R(XT , aT+1, XT+1) +

T ′−1∑
t=T+1

∆t
TR
(
Xt, at+1, Xt+1

)
Approximate RT1T0 ,∆

T1
T0

by the conditional expectations:

E[RT10 | X0 = s,XT1 = s′], E[∆T1
0 | X0 = s,XT1 = s′].

⇒ Linear systems.

⇒ Total cost is at most: O
(
|∂c|| ◦c |3 + |∂c|2| ◦c |

)
per cluster.

Proof: Doob-like h-transforms + strong Markov property.
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Multiscale MDPs

Consider a multiscale hierarchy of MDPs (MMDP) defined in this
way:

The MMDP is consistent in the mean across scales.

Each scale is an independent, deterministic MDP, that can be
solved using any algorithm.

Coarse MDPs are small.

Clusters may be interpreted as sub-tasks, or macro-actions.

Example coarse policies...
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Multiscale Solution of MDPs - Coarse Policies
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Multiscale Solution of MDPs - Coarse Policies
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Multiscale Solution of MDPs - Coarse Policies
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Step (3): Multiscale Solution of MDPs

General Idea

Alternate:

(i) Update fine solution on clusters independently given coarse
solution (update interiors).

(ii) Update coarse solution given fine solution (update boundary).

Different solution algorithms for solving a pair of coarse/fine MDPs
are obtained by iterating over different paths in this flow graph.
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Multiscale Solution of MDPs: Interior Updates

Local fine scale update on c given coarse solution Vcoarse:

For Example: Solve a (Poisson) BVP

Let (Xt)t≥0 ∼ P πcc . We would like to compute

V (s) := E
[
RT0 + ∆T

0 Vcoarse(XT ) | X0 = s
]
, s ∈◦c

where T := inf{n ≥ 0 | Xn ∈ ∂c} is the first passage time of the
boundary:

V (s) =


Vcoarse(s) if s ∈ ∂c∑
s′∈c,a′∈A

Pc(s, a, s
′)πc(s, a)

[
R(s, a, s′) + Γ(s, a, s′)V (s′)

]
if s ∈◦c

V (s) is unique and bounded under mild boundary reachability
assumptions.

Each BVP is independent of the others given Vcoarse.
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Multiscale Solution of MDPs: Boundary Update

Boundary update on B given V :

Local averaging. For s ∈ B,

Vcoarse(s)←
∑
s′∼s,a

P (s, a, s′)π(s, a)
(
R(s, a, s′)+Γ(s, a, s′)V (s′)

)
Value determination

Recompression with respect to a regularized, greedy policy
corresponding to current fine V .
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Multiscale Solution of MDPs: An Algorithm

Combining these steps,

A Two-Scale Iteration

Compress the fine MDP. Solve the coarse MDP.

1 Solve local boundary value problems, given current π on
interior, V on boundary.

2 Update the policy.

3 Update boundary by local averaging, given current π, V .

4 Repeat from (1).

Jake Bouvrie Multiscale Homogenization of MDPs



Multiscale Solution of MDPs: Convergence

This particular algorithm is a form of asynchronous modified policy
iteration.

Theorem

Fix any initial fine-scale (π0, V
0). For an appropriate number of

bottleneck updates per iteration,

N > logγ̄
1
2

with γ̄ := maxs,a,s′
{

Γ(s, a, s′)1[P (s,a,s′)>0]

}
, the alternating

interior-boundary policy iteration algorithm satisfies

lim
k→∞

sup
s∈S
|V ∗(s)− V k(s)| → 0

and hence converges to the optimal fine scale policy π∗.
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Multiscale Solution of MDPs: Complexity

If at a scale j there are rj clusters of roughly equal size, and nj
states, the solution of the MDP at that scale may be computed in
time O

(
rj(nj/rj)

3
)
.

If rj = nj/C and nj = n/Cj (with n the size of the original state
space), then the computation time across log n scales is
O
(
n log n

)
.
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Transfer Learning (Briefly)

Given a pair of problems (MMDP(1),MMDP(2)), the first of which
is solved, transfer to the second.

1 Match sub-tasks at any scale.

2 Transfer a policy, value function, or potential operator between
clusters.

3 Use transferred data as an initial conditions to solve for remainder
of MMDP(2).
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Example: Continuous Control Task
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Summary

Overarching themes:

Multiscale as a unifying, organizational principle:

decomposition of tasks into sub-tasks
each scale (MDP) may be considered independently of the
others; is consistent with others.

Computational efficiency

localization
conditioning

Tight coupling between structure discovery, learning, and planning

Transfer: MMDPs support multiscale transfer of sub-task solutions
between related problems.
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