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Abstract

Over the past two decades several hierarchical learning models have been developed
and applied to a diverse range of practical tasks with much success. Little is known,
however, as to why such models work as well as they do. Indeed, most are difficult to
analyze, and cannot be easily characterized using the established tools from statistical
learning theory.

In this thesis, we study hierarchical learning architectures from two complemen-
tary perspectives: one theoretical and the other empirical. The theoretical component
of the thesis centers on a mathematical framework describing a general family of hier-
archical learning architectures. The primary object of interest is a recursively defined
feature map, and its associated kernel. The class of models we consider exploit the
fact that data in a wide variety of problems satisfy a decomposability property. Par-
alleling the primate visual cortex, hierarchies are assembled from alternating filtering
and pooling stages that build progressively invariant representations which are simul-
taneously selective for increasingly complex stimuli.

A goal of central importance in the study of hierarchical architectures and the
cortex alike, is that of understanding quantitatively the tradeoff between invariance
and selectivity, and how invariance and selectivity contribute towards providing an
improved representation useful for learning from data. A reasonable expectation is
that an unsupervised hierarchical representation will positively impact the sample
complexity of a corresponding supervised learning task. We therefore analyze in-
variance and discrimination properties that emerge in particular instances of layered
models described within our framework. A group-theoretic analysis leads to a concise
set of conditions which must be met to establish invariance, as well as a constructive
prescription for meeting those conditions. An information-theoretic analysis is then
undertaken and seen as a means by which to characterize a model’s discrimination
properties.

The empirical component of the thesis experimentally evaluates key assumptions
built into the mathematical framework. In the case of images, we present simula-
tions which support the hypothesis that layered architectures can reduce the sample
complexity of a non-trivial learning problem. In the domain of speech, we describe a
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localized analysis technique that leads to a noise-robust representation. The result-
ing biologically-motivated features are found to outperform traditional methods on a
standard phonetic classification task in both clean and noisy conditions.

Thesis Supervisor: Tomaso Poggio
Title: Eugene McDermott Professor in the Brain Sciences
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Chapter 1

Introduction

In the context of human learning, Chomsky’s poverty of the stimulus argument cap-
tures the notion that biological organisms can learn complex concepts and tasks from
extraordinarily small empirical samples. The fact that a child can acquire a visual
object concept from a single, possibly unlabeled, example is strong evidence for pre-
existing cortical mechanisms engineered to facilitate such efficient learning. Indeed, it
has been hypothesized that the hierarchically organized circuits found in the human
brain facilitate robust learning from few examples via the discovery of invariances,
while promoting circuit modularity and reuse of redundant sub-circuits, leading to
greater energy and space efficiency. While the hypothesis linking learning ability and
computational organization is both convenient and intuitively compelling, no solid
theoretical foundation supports such a connection. Little is known as to how exactly
the architectures found in cortex achieve efficient learning and invariance to complex
transformations. Classical results in statistical learning theory have shown only that
a continuous function can be approximated from an (infinite) empirical sample to an
arbitrary degree of accuracy with a single “layer” of computational elements.

From a learning theory perspective, we argue that decomposability of the data
is a general principle that allows one to learn good data representations for a wide
variety of problems. The class of hierarchical models we consider exploit this property
by aggregating simple parts into complex patterns. Alternating filtering and pooling
stages are the key components of the hierarchy, building progressively invariant repre-
sentations which are simultaneously selective for increasingly complex stimuli. A goal
of central importance in the study of hierarchical architectures and the mammalian
visual cortex alike is that of understanding quantitatively the tradeoff between invari-
ance and selectivity, and how invariance and selectivity contribute towards providing
an improved representation useful for learning from data.

This thesis consists of both theoretical and empirical components. The theoretical
aspect draws inspiration in part from the observation that learning in hierarchies is a
topic that has received little attention in the learning theory literature, and is yet a
key step towards a deeper understanding of the brain. Our work seeks to establish a
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theoretical foundation explaining recent models designed on the basis of anatomical
and physiological data describing the primate visual cortex [96, 94]. We attempt to
formalize the basic hierarchy of computations underlying visual information process-
ing in the brain by abstracting away from such “engineered” models the elements
we believe to be essential to understanding learning in hierarchies from an abstract,
mathematical perspective. Within this abstract formalism, we conduct a theoreti-
cal analysis uncovering discrimination and invariance properties primarily using tools
from functional analysis, group theory, and information theory. In the course of our
exploration, the role of unsupervised learning is clearly identified and opportunities
for integrating techniques exploiting geometry of the data or sparse coding ideas are
highlighted. As a whole, this analysis takes a step towards establishing a rigorous
understanding of learning in hierarchies.

The empirical contribution of the thesis follows from a belief that the study of
two sensory domains in particular – vision, and the representation and recognition
of speech – can provide a uniquely concrete grasp on the relevant theoretical and
practical dimensions of the problem of learning in hierarchies. A large part of the
empirical component of the thesis therefore centers on the representation and recog-
nition of speech using a hierarchical architecture. This work evaluates experimentally
important assumptions built into the above hierarchical learning framework. We
adopt the notion of a localized spectro-temporal encoding of speech utterances, and
consider speech recognition applications in the presence of noise. Using a representa-
tion expressed in terms of a sparse, local 2D-DCT basis, we identify spectro-temporal
modulation patterns important for distinguishing among classes of phonemes. Exper-
iments achieving state-of-the-art phonetic classification results are given in support
of the approach. Lastly, an algorithm for reconstructing a time-domain signal from
modified short-time magnitude-only Fourier spectra is described. Modification of the
STFT magnitude is a common technique in speech analysis, however commensurate
modification of the phase component is a significant and often insurmountable chal-
lenge. If the STFT includes sufficient redundancy due to analysis window overlap,
then it is typically the case that a high quality time-domain signal can be recon-
structed from magnitude-only spectra.

The speech-related work in this thesis parallels the theoretical component in that
it shares the notion of a localized and layered, parts-based analysis such as that
occurring in the early stages of the visual and auditory cortices, and in recent com-
putational models of the ventral visual stream. It also complements the theory in the
sense that underlying assumptions built into the abstract formalism are evaluated in
the context of a difficult, real-world learning task.

The remainder of this Chapter is organized as follows. We first provide some mo-
tivation for considering hierarchical learning architectures over shallow alternatives.
We then briefly survey the related literature and, finally, end with a concise listing of
the contributions and overall organization of the thesis.
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Figure 1-1: Empirical sample complexities of an 8-category image classification task
using two and three layer hierarchical models. Training set sizes are the number of
labeled examples per class.

1.1 Why Hierarchies?

Why should hierarchies be preferred over shallow alternatives, and why should we seek
to understand empirically successful deep hierarchical models? We offer a compilation
of observations motivating the use of hierarchical architectures in learning, beginning
with a purely empirical, didactic example in Figure 1-1. In this experiment, we
have applied two and three layer “derived kernels” introduced in Chapter 2 towards
solving a supervised, 8-class handwritten digit (numerals 2 through 9) classification
task. The derived kernel provides a hierarchical notion of similarity, and forms the
basis for a simple one-nearest-neighbor (1-NN) classification rule whereby the label of
an unseen test point is given the label of the most similar labeled training example.
Here the corresponding feature map (also see Chapter 2) serves to provide a non-task
specific, unsupervised representation for the data that is expected to provide improved
performance in the context of a supervised learning problem. We also provide for
comparison the performance obtained using the Euclidean distance between the pixels
of two images.

The Figure gives classification accuracy averaged over 50 trials, as the number
of labeled training examples is varied for each of the three classifiers. Thus, we can
choose a given horizontal slice and compare the estimated sample complexity of the
learning task given each of the models. We find, for example, that in order to obtain
65% accuracy the 2-layer derived kernel based classifier needs about 11 examples
per class, while the 3-layer derived kernel based classifier requires only 5 examples.
Why does the 3-layer architecture lead to a representation that apparently halves the
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training set size when compared to the 2-layer case? One can see that there is perhaps
something interesting underlying this phenomenon, and the example provides much
motivation for studying the issue more closely. It is this and other related questions
that we seek to address.

In particular,

• Biological organisms can learn complex concepts and tasks from small empirical
samples. How can we emulate this remarkable ability in machines? There is
evidence that the areas of cortex responsible for processing both auditory data
and visual scenes share architectural commonalities, while it has been argued
that both language and vision could be the most promising windows into human
intelligence.

• No solid theoretical foundation supports the connection between generalization
ability and computational organization. Can we cast and understand learning
in hierarchies using tools from statistical learning theory?

• Hierarchically organized circuits in the human brain exploit circuit modular-
ity and reuse general sub-circuits in order to economize on space and energy
consumption. In a hierarchical model, lower layers might include dictionaries
of features that are general and yet applicable in the context of many specific
classification tasks.

• Hierarchical models are ideally suited to domains and tasks which decompose
into parts, such as those based on naturally occurring phenomena.

• Hierarchies can be used to incorporate particular, pre-defined invariances in a
straightforward manner, by e.g. the inclusion of pooling, and local transforma-
tions.

• If one doesn’t know how to characterize variation in the data, or even know
what kinds of variation needs to be captured, nonparametric representations
with randomly sampled exemplars identify patterns that have been seen before,
whatever they might be, while maintaining the hierarchy assumption of the
domain.

The success of recent hierarchical models (reviewed in the following section) have
provided a source of motivation, among others, for the work presented in this thesis.
An engineered model, however, is not sufficient to explain what the cortex doing
because interpreting the inner workings and representations of such models can be
extraordinarily difficult in and of itself. We therefore argue that what is needed is
a mathematical theory that can, ideally, explain why a hierarchy solves the problem
and what the optimal parameter values should be. A theory would ultimately lead
to concrete predictions for neuroscience experiments, provide insights into how the
brain computes, and would immediately suggest algorithms which imitate the brain.
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A theory may explain why hierarchical models work as well as they do, and shed light
on the computational reasons for the hierarchical organization of cortex, leading to
potentially significant contributions to outstanding challenges in computer vision and
artificial intelligence, among other fields.

1.2 Literature Survey

In this survey we discuss previous work related to the derived kernel formalism in-
troduced in Chapter 2, as well as work that attempts to address some aspect of the
larger, overarching questions discussed above. We begin with a brief review of the
prior work involving learning in hierarchies. Following deep neural networks and be-
lief networks, we discuss engineered models of visual cortex where we draw particular
attention to the model of Serre et al. [96, 98]. Finally, because our work can be
seen as an unsupervised pre-processing step that can be used to improve supervised
classification, we review distance learning as it has been approached more generally
in the literature.

1.2.1 Deep Neural Networks/Deep Belief Networks

Much work has been done to understand single (hidden) layer neural networks in terms
of statistical learning theory [79, 43]. There is little work that attempts to do the
same for multilayer neural networks with nonlinear activation functions. Bartlett and
Mendelson [8] have derived generalization guarantees using Rademacher complexities
for classes of functions defined by nonlinear multilayer neural networks, however their
work does not connect those classes of functions with the regularization viewpoint
found in the statistical learning theory literature. In the context of regularization,
the neural network community has largely resorted to a handful of effective but little
understood heuristics such as weight decay and pruning techniques [19].

The study of “deep” belief networks (networks with many layers) has enjoyed
much attention in recent years, following the publication of a paper by Hinton and
Salakhutdinov [49], rekindling interest within the machine learning community. Al-
though the notion of a deep architecture was not new, Hinton and Salakhutdinov
provided a novel training algorithm that finally enabled good solutions to be realized.
Prior to this work, deep neural networks trained with standard backpropagation al-
gorithms would slowly converge to poor local minimums for most practical problems.
Hinton and Salakhutdinov go on to demonstrate that deep autoencoders can provide
excellent classification performance for handwritten digits and human faces. Little is
known however, as to why deep networks work well, and why or when particular ar-
chitectural choices (number of layers, number of units per layer, etc.) lead to optimal
performance.

The relevant work involving deep architectures since [49] can be roughly divided
into two categories: empirical applications and algorithms on the one hand, and
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theoretical attempts to understand deep networks on the other. The majority of the
literature to date is applied in nature, and dwells on efficient algorithms for training
and inference in deep models [61, 12], as well as empirical experiments in specific
application domains [12, 83, 62, 66]. We will nevertheless focus almost exclusively
on the more theoretical literature as it is most relevant to the work described in the
thesis.

A recent position paper due to LeCun and Bengio [64] puts forth a series of
arguments demonstrating the advantages of deep architectures. Boolean function
learning is considered first, and although the case of boolean functions (such as the
d-bit parity function) does support the use of deep networks, it is not clear how much
such examples demonstrate about practical problems involving the approximation of
functions far more complex than boolean products or other discrete examples.

LeCun and Bengio go on to consider particular problems where a Gaussian kernel
SVM would ostensibly require more examples than a multi-layer architecture. How-
ever the argument they present highlights a problem which lies in the fact that the
Gaussian variance parameter, in the particular case of the SVM algorithm, is fixed
at all knots. We believe that this argument cannot be used to demonstrate that one
layer of computations (whatever they may be) is inferior to multiple layers: one could
consider a single layer of radial basis functions with different bandwidths (see “Gen-
eralized RBF Networks” in [78]). A comparison between architectures independent of
the particular implementation algorithms (while certainly difficult) would give much
stronger conclusions. Although LeCun and Bengio make a commendable set of ar-
guments for deep networks, their work is limited to special examples and does not
provide a rigorous justification; the informal arguments are intuitively appealing but
do not constitute a theory.

Finally, in recent work by LeRoux and Bengio [92], open questions concerning the
expressive power of deep belief networks are stated but not answered. The authors
do find that the performance of a two-layer network is limited by the representational
ability of the first layer, thereby suggesting that a larger first layer is preferable.
LeRoux and Bengio go on to surmise that the extra layers primarily contribute by
providing better generalization (for a fixed sample size), rather than adding represen-
tational power per se.

1.2.2 Distance Metric Learning

The hierarchical formalism we discuss in later chapters seeks to provide a natural
similarity concept. Although the construction of this similarity metric is unsuper-
vised and non-task specific, it can subsequently be used to solve supervised learning
tasks when viewed as a preprocessing step. From this perspective our work can be
connected to the literature on distance metric learning, where an “intelligent” simi-
larity/distance measure is learned and then later used in a supervised classification
algorithm. A portion of the research in this field attempts to learn a suitable metric
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from only relative comparisons between the data [112], however we assume that the
data themselves are available and will not discuss relative comparison methods.

Several recent attempts [7, 24, 101] have been made to construct a distance based
on ideas related to PCA, and can in fact be summarized as “anti-PCA”: the goal is
to learn a projection of the data under which variance along coordinates with a large
amount of within-class scatter is eliminated. Recent work due to Maurer [69, 70]
extends this intuition to the case of general linear operators on reproducing kernel
Hilbert spaces, and gives generalization bounds and optimization algorithms. In
this work, a Hilbert-space valued stochastic process is considered. Variation of the
derivative under the projector to be learned is minimized, while variance of the process
is maximized. What is particularly interesting about this approach is that it presents
a formal notion of invariance by asserting that successive pairs of images in, for
example, a video sequence, should be “close”, while frames separated by greater
amount of time ought to be “far” according to a ground-truth oracle. Maurer goes
on to show that learning a similarity metric suitable for a given task can at times
transfer to other tasks.

While the work on distance learning to date highlights promising theoretical av-
enues, it does not address the advantages or disadvantages of learning distances with
a hierarchical modeling assumption.

1.2.3 Hierarchical Models of Visual Cortex

The process of object recognition in the visual cortex (the “what” pathway) begins
in the low-level primary area V 1 [52] and proceeds in a roughly bottom-up fashion
through areas V2 and V4, terminating in inferotemporal cortex (IT). Afterwards,
information from IT travels to prefrontal areas (PFC) and plays a role in perception,
memory, planning, and action.

Numerous models retaining varying degrees of faithfulness to neurobiology have
been proposed [40, 117, 71, 87, 113, 109, 2, 118, 120]. A recurring theme in these
efforts is the repeated pooling of simple, local detector outputs, in analogy to simple
and complex cells in primary visual cortex. Most of the research on neurobiological
models does not simulate such networks down to the level of spikes, although [109]
is a notable exception. The overarching goal of these investigations is to capture the
essential computational components underlying the visual system by modeling and
simulating information processing in the early stages of the primate visual cortex. In
doing so, a central concern is that of finding a suitable trade off between simplicity
and biological detail. Much of this work is therefore computational in nature, and
seeks to reproduce the abilities of the cortex, rather than directly mathematically
characterize those abilities.

Several attempts have been made to abstract information processing in the visual
cortex, and construct a probabilistic picture. This approach takes a step away from
biological realism and moves towards a more analytically tractable setting where the
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tools of probability calculus and Bayesian inference can be applied. The perspec-
tive taken by Lee and Mumford [67] in particular formalizes earlier ideas [85, 84]
concerning the exchange and propagation of information between early layers of the
ventral visual hierarchy and the rest of the visual system. In a noteworthy depar-
ture from much of the neurobiological modeling literature, Lee and Mumford apply
well-established tools known to the Bayesian statistics community to model top-down
(feedback) as well as bottom-up (feedforward) activity. Backprojections, the authors
argue, serve to reconcile experiential prior beliefs with sensory evidence. Several
subsequent efforts (e.g. [74, 66]) elaborate on this theme, incorporating for example
sparse overcomplete dictionaries at each layer following the observation that there are
far more cells in V1 than strictly necessary to represent information collected at the
retina. The Bayesian formalism underlying the argument that hierarchies facilitate
the integration of priors (nodes at higher layers in the network) and bottom-up ob-
servations (lower layers) is attractive. However, the majority of these efforts focus on
(1) engineering practically useful systems and (2) modeling information processing in
the brain in computationally tractable terms. Finally, another noteworthy effort is
that of Yu and Slotine [120], where a simplified model paralleling [98] is described in
clean terms by a hierarchy of wavelets, lending additional interpretability in terms of
standard notions in signal processing.

The work we have discussed, however, does not directly attempt to compare hier-
archies to single layer architectures, or attempt to mathematically analyze the con-
nection between model architecture and invariance, discrimination, or generalization.

The CBCL Model

In this thesis, particular emphasis will be placed on connections to a layered model of
object recognition developed at the Center for Biological and Computational Learn-
ing (CBCL) [96, 98]. This work builds on several previous efforts which describe the
neurobiology of the visual cortex [52, 77, 50, 14], and bears a resemblance to exist-
ing deep recognition models in the computer vision community (e.g. [65]). We will
refer to this model as the “CBCL model”. A central theme found in this family of
models is the use of Hubel and Wiesel’s simple and complex cell ideas [52]. In the
visual cortex, features are computed by simple (“S”) units by looking for the occur-
rence of a preferred stimulus specific to the unit in a region of the input (“receptive
field”). Translation invariance is then explicitly built into the processing pathway by
way of complex (“C”) units which pool over localized simple units. The alternating
simple-complex filtering/pooling process is repeated, building increasingly invariant
representations which are simultaneously selective for increasingly complex stimuli.
In a computer implementation, the final representation can then be presented to a
supervised learning algorithm.

The model [96] is initially trained using unsupervised techniques on non-specific
natural images, compiling a “universal dictionary” of features at each layer. Each
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feature constitutes a computational unit, which is said to be tuned to a specific pre-
ferred stimulus. A set of features are computed by simple units at each layer, where
the preferred stimuli are derived from randomly sampled patches of the natural im-
ages [96]. Varying degrees of translation and scale invariance are explicitly built into
the model by way of complex-like units which pool over localized simple units using
the max operation. The alternating simple-complex filtering/pooling process is re-
peated up to three times, and the final representation is then tapped and fed into
a supervised learning algorithm. Various experiments have shown that although the
feature dictionaries are generic, performance on specific, supervised image catego-
rization tasks is typically competitive with respect to other state-of-the-art computer
vision systems [96, 99, 75].

What sets the CBCL model apart from prior work, is that it was designed with
much guidance from the neuroscience, neurophysiology and psychophysics literature,
and has been shown to account for a range of recent anatomical and physiological
data [87, 97, 96]. In particular, “recordings” from the model have revealed units
which predict in some cases and mimic in others properties of cells in V1, V4, IT
and PFC [39]. The model has also been shown to reproduce (see Figure 4.17 in [96])
human performance on a set of rapid categorization tasks [111, 110, 114, 91, 6]). The
combination of empirical success and lack of interpretability of this particular model
provided the initial impetus for the theoretical work exploring learning in hierarchies
we present in the thesis.

1.3 Contributions and Organization of the Thesis

We summarize the main contributions of the thesis in order by Chapter.

Chapter 2: Towards a Theory of Hierarchical Learning
This chapter contains the central results of the thesis. We formalize the basic

hierarchy of computations underlying information processing in the visual cortex by
abstracting away the elements essential to understanding learning in hierarchies from
a mathematical perspective. In doing so, we establish both feature map and kernel
based recurrence relations, and decompose a given layer’s output into distinct filtering
and pooling steps. We then show that different initial “mother” kernel choices induce
global invariance in the final output of the model. In particular, we find that under
mild assumptions our feature map can be made invariant to rotations and reflections
in the case of images, and for strings, is reversal invariant.

We also evaluate whether a hierarchy can discriminate well by characterizing the
equivalence classes of inputs in the context of 1-D strings, for a natural instance
of the model. The role of templates and unsupervised learning is also addressed,
and we describe how a given probability measure over natural images can induce a
measure on patches of images, from which one might sample an empirical dictionary
of templates. Extensions are then given, outlining a procedure for incorporating
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additional feature maps at each layer. These feature maps may be based on, for
example, PCA, Laplacian Eigenmaps [9], or other techniques.

We then give an efficient algorithm for computing the neural response, with com-
plexity linear in the number of layers. With this algorithm in hand, we consider
the extent to which the mathematical notion of similarity defined by the model cor-
responds to similarity in the way humans view images by conducting experiments
in which the recursively defined kernels are applied to a real-world image classifica-
tion task. We additionally show empirically the effect of varying the most important
model parameters (number of layers and patch sizes), compare the empirical sam-
ple complexities induced by two and three layer representations, and evaluate an
unsupervised template learning procedure.

Chapter 3: Entropy and Discrimination Properties of the Neural Response
Our work in this chapter follows from the observation that parameter choice ques-

tions are often times synonymous with theory questions. We present preliminary
ideas towards answering how many layers is optimal for a given task, and how many
templates should be chosen. We suggest that Shannon entropy is a promising tool
for systematic study of the discrimination ability of a hierarchy given different archi-
tectural choices.

Chapter 4: Group-theoretic Perspectives on Invariance
Here we more closely examine invariance properties of the model using the tools

of group theory. We begin by giving a more general proof of invariance, allowing
for hierarchies involving general pooling functions not limited to the max. We then
make a key observation: one can often endow the transformations of interest with a
group structure, and then dissociate group-related conditions leading to invariance
from conditions related to the architecture (such as restriction, patch sizes, and the
bottom-up propagation of information). We provide a concise set of conditions which
lead to invariance, as well as a constructive prescription for meeting those conditions.
The analysis additionally reveals that orthogonal transformations are the only group
of transformations compatible with our notion of invariance in the neural response. In
the case of hierarchies defined on length n strings, we show that considering reversal
invariance leads to a group of symmetries isomorphic to the well known Dihedral
group Dn describing symmetries of a regular n-sided polygon.

Chapter 5: Localized Spectro-Temporal Cepstral Analysis of Speech
Our speech recognition work follows, first and foremost, from the belief that the

study of the computations supporting speech recognition and production can shed
light on the problem of human intelligence. Aided by recent discoveries in auditory
neuroscience and the availability of new physiological data, we present an algorithm
for noise-robust speech analysis inspired by the early stages of the auditory cortex.
Our algorithm is the most recent within a series of localized analysis techniques [36,
35, 34] which begins with an encoding based on sparse Gabor projections and ends
with a local 2-D DCT representation. The technique can be thought of as imposing
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a form of localized smoothing, and we show that our approach preserves patterns
important for discriminating among classes of phonemes: When applied to a phonetic
classification task, our method achieved state of the art results in clean conditions, and
showed marked improvement in a range of noisy conditions as compared to alternative
features.

This work can be interpreted as a simplified case of the first layer of the CBCL
model applied to spectrograms. In this setting, scale invariance is not incorporated,
and the “S1” filters are low-order 2D-DCT basis functions rather than Gabors. In a
separate study [89], we evaluated the performance of one instance of the CBCL model
on a related phonetic classification task and found that the first layer’s features alone
often led to the best classification performance. In light of this evidence, and in the
interest of computational efficiency, we do not iterate the 2D-DCT analysis.

Chapter 6: Signal Reconstruction from STFT Magnitude
In this Chapter, we introduce a novel a phase-retrieval algorithm for recovering a

time-domain signal from magnitude-only STFT spectra. The algorithm responds to
the need to reconstruct a time-domain signal from a modified STFT magnitude, when
no corresponding phase component exists. Our particular application was originally
that of inter-voice speech morphing. Given the same utterance produced by two
different speakers, an inter-voice speech morph is a perceptually smooth sequence
of transformations from one signal towards the other, and is controlled by a single
mixing parameter. Within the context of this application, a “morphed” magnitude
spectrum was used to reconstruct an audio utterance. Our algorithm was evaluated
and later compared to other methods in the literature in a master’s thesis co-authored
by M. Jensen and S. Nielsen [53], and was found to give superior results in some cases.

Chapter 7: Concluding Discussion
We conclude with a brief discussion comparing the hierarchical learning framework

described in Chapter 2 to other deep learning architectures in the literature, princi-
pally deep belief networks. We argue that a key aspect of our model is the interplay
between invariance and discrimination, and reiterate the need to present hierarchical
learning in a language that is amenable to mathematical analysis. Finally, we pro-
vide answers to commonly raised criticisms involving the hierarchical formalism we
introduced an analyzed in earlier chapters. The criticisms we have chosen to address
concern both the motivation and technical details underlying the neural response.
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Chapter 2

Towards a Theory of Hierarchical
Learning

This chapter includes joint work and text previously appearing in [105].

2.1 Introduction

The goal of this chapter is to define a distance function on a space of images which
reflects how humans see the images. The distance between two images corresponds to
how similar they appear to an observer. Most learning algorithms critically depend on
a suitably defined similarity measure, though the theory of learning so far provides
no general rule to choose such a similarity measure [115, 28, 93, 29]. In practice,
problem specific metrics are often used [100]. It is natural, however, to ask whether
there are general principles which might allow one to learn data representations for
a variety of problems. In this Chapter we argue that such a principle can be a
decomposability property which is satisfied in many domains: we will assume the data
to be composed of a hierarchy of parts, and propose a natural image representation,
the neural response, motivated by the neuroscience of the visual cortex. The derived
kernel is the inner product defined by the neural response and can be used as a
similarity measure.

The definition of the neural response and derived kernel is based on a recursion
which defines a hierarchy of local kernels, and can be interpreted as a multi-layer
architecture where layers are associated with increasing spatial scales. At each layer,
(local) derived kernels are built by recursively pooling over previously defined local
kernels. Here, pooling is accomplished by taking a max over a set of transforma-
tions, although other forms of pooling are possible. This model has a key semantic
component: a system of templates which link the mathematical development to real
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world problems. In the case of images, derived kernels consider sub-patches of im-
ages at intermediate layers and whole images at the last layer. Similarly, in the case
of derived kernels defined on strings, kernels at some m-th layer act on sub-strings.
From a learning theory perspective the construction of the derived kernel amounts
to an unsupervised learning step and the kernel can ultimately be used to solve su-
pervised as well as unsupervised tasks. The motivating idea is that the unsupervised
preprocessing will reduce the sample complexity of a corresponding supervised task.

The work in this chapter sets the stage for further developments towards a the-
ory of vision. We consider two complementary directions, one empirical, the other
mathematical. The empirical involves numerical experiments starting with databases
coming from real world situations. The goal is to test (with various algorithmic pa-
rameters) how the similarity derived here is consistent with real world experience. In
vision, to what extent does the mathematical similarity correspond to similarity in the
way humans view images? In Section 2.6 we show the results of some experimental
work towards this end. On the purely mathematical side, the problem is to examine
how closely the output response characterizes the input. In other words, does the
neural response discriminate well? In the case of strings, it is shown in Theorem 2.4.1
that if the architecture is rich enough and there are sufficient templates (“neurons”)
then the neural response is indeed discriminative (up-to reversal and “checkerboard”
patterns). Note that in this unsupervised context, discrimination refers to the ability
to distinguish images of distinct objects in the real world. We show under quite mild
assumptions that the neural response is invariant under rotations, and for strings, is
reversal invariant. We additionally suggest that the Shannon entropy is a promising
tool for obtaining a systematic picture. An elaborated development of these ideas is
presented in Chapter 3.

The use of deep learning architectures to obtain complex data representations has
recently received considerable interest in machine learning, see for example [49, 65, 66].
Hierarchical parts-based descriptions date back to [40], and have become common in
computer vision [71, 65, 118, 31, 63, 98]. The principle of decomposability of the input
data is also at the heart of several Bayesian techniques [42, 67]. Our work also seeks to
establish a theoretical foundation for recent models designed on the basis of anatom-
ical and physiological data describing the primate visual cortex [40, 65, 87, 98, 96].
These models quantitatively account for a host of psychophysical and physiological
data, and provide human-level performance on tasks involving rapid categorization
of complex imagery [95, 98, 96]. The development proposed here considerably gen-
eralizes and simplifies such models, while preserving many of their key aspects. We
argue that the analytical picture achieved by working with derived kernels allows for
deeper and more revealing analyses of hierarchical learning systems. Indeed, the hi-
erarchical organization of such models – and of the cortex itself – remains a challenge
for learning theory as most “learning algorithms”, as described in [80], correspond to
one-layer architectures. Our hope is to ultimately achieve a theory that may explain
why such models work as well as they do, and give computational reasons for the
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hierarchical organization of the cortex.
The chapter is organized as follows. We begin by introducing the definitions of

the neural response and derived kernel in Section 2.2. We study invariance properties
of the neural response in Section 2.3 and analyze discrimination properties in a one-
dimensional setting in Section 2.4. In Section 2.5 we suggest that Shannon entropy
can be used to understand the discrimination properties of the neural response. We
conclude with experiments in Section 2.6. Finally, in a brief postscript we establish
detailed connections with the model in [98] and identify a key difference with the
basic framework developed in this chapter.

2.2 The Derived Kernel and Neural Response

The derived kernel can be thought of as a notion of similarity on spaces of functions
on patches and can be defined via a recursion of kernels acting on spaces of functions
on sub-patches. Before giving a formal description we present a few preliminary
concepts.

2.2.1 Preliminaries

The ingredients needed to define the derived kernel consist of:

• an architecture defined by a finite number of nested patches (for example sub-
domains of the square Sq ⊂ R2),

• a set of transformations from a patch to the next larger one,

• a suitable family of function spaces defined on each patch,

• a set of templates which connect the mathematical model to a real world setting.

We first give the definition of the derived kernel in the case of an architecture
composed of three layers of patches u, v and Sq in R2, with u ⊂ v ⊂ Sq, that we
assume to be square, centered and axis aligned (see Figure 2-1). We further assume
that we are given a function space on Sq, denoted by Im(Sq), as well as the function
spaces Im(u), Im(v) defined on subpatches u, v, respectively. Functions are assumed
to take values in [0, 1], and can be interpreted as grey scale images when working
with a vision problem for example. Next, we assume a set Hu of transformations that
are maps from the smallest patch to the next larger patch h : u → v, and similarly
Hv with h : v → Sq. The sets of transformations are assumed to be finite and in this
work are limited to translations; see remarks in Section 2.2.2. Finally, we are given
template sets Tu ⊂ Im(u) and Tv ⊂ Im(v), assumed here to be finite and endowed
with the uniform probability measure.

The following fundamental assumption relates function spaces and transformation
spaces.
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Figure 2-1: Nested patch domains.

Axiom. f ◦h : u→ [0, 1] is in Im(u) if f ∈ Im(v) and h ∈ Hu. Similarly f ◦h : v →
[0, 1] is in Im(v) if f ∈ Im(Sq) and h ∈ Hv.

We briefly recall the general definition of a reproducing kernel [3]. Given some set
X, we say that a function K : X×X → R is a reproducing kernel if it is a symmetric
and positive definite kernel, i.e.

n∑
i,j=1

αiαjK(xi, xj) ≥ 0

for any n ∈ N, x1, . . . , xn ∈ X and α1, . . . , αn ∈ R. In this work we deal with inner
product kernels which are known to be an instance of reproducing kernels.

In the following we always assume K(x, x) 6= 0 for all x ∈ X and denote with K̂
kernels normalized according to

K̂(x, x′) =
K(x, x′)√

K(x, x)K(x′, x′)
. (2.1)

Clearly in this case K̂ is a reproducing kernel and K̂(x, x) ≡ 1 for all x ∈ X. The ker-
nel normalization avoids distortions traveling up the hierarchy, and provides a more
interpretable as well as comparable quantity.

2.2.2 The Derived Kernel

Given the above objects, we can describe the construction of the derived kernel in
a bottom-up fashion. The process starts with some normalized initial reproducing
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kernel on Im(u) × Im(u) denoted by K̂u(f, g) that we assume to be non-negative
valued. For example, one could choose the usual inner product in the space of square
integrable functions on u,

Ku(f, g) =
∫
u
f(x)g(x)dx.

Next, we define a central object of study, the neural response of f at t:

Nv(f)(t) = max
h∈H

K̂u(f ◦ h, t), (2.2)

where f ∈ Im(v), t ∈ Tu and H = Hu. The neural response of f is a map Nv(f) : Tu →
[0, 1] and is well defined in light of the Axiom. By denoting with |Tu| the cardinality
of the template set Tu, we can interpret the neural response as a vector in R|Tu|
with coordinates Nv(f)(t), with t ∈ Tu. It is then natural to define the corresponding
inner product on R|Tu| as 〈·, ·〉L2(Tu) – the L2 inner product with respect to the uniform
measure 1

|Tu|
∑
t∈Tu δt, where we denote by δt the Dirac measure. If the initial kernel is

taken to be the inner product, then one can compare this process, for each template,
to taking the maximum of a normalized cross-correlation without centering.

We note that invariance to transformation is enforced by pooling over transforma-
tions via the max, where as additional selectivity for a transformation can be achieved
by including in the template set Tu transformed versions of the templates.

The derived kernel on Im(v)× Im(v) is then defined as

Kv(f, g) =
〈
Nv(f), Nv(g)

〉
L2(Tu)

, (2.3)

and can be normalized according to (2.1) to obtain the kernel K̂v. The kernel Kv

can be interpreted as the correlation in the pattern of similarities to templates at the
previous layer.

We now repeat the process by defining the second layer neural response as

NSq(f)(t) = max
h∈H

K̂v(f ◦ h, t), (2.4)

where in this case f ∈ Im(Sq), t ∈ Tv and H = Hv. The new derived kernel is now
on Im(Sq)× Im(Sq), and is given by

KSq(f, g) =
〈
NSq(f), NSq(g)

〉
L2(Tv)

, (2.5)

where 〈·, ·〉L2(Tv) is the L2 inner product with respect to the uniform measure 1
|Tv |

∑
t∈Tv δt.

As before, we normalize KSq to obtain the final derived kernel K̂Sq.

The above construction can be easily generalized to an n layer architecture given
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by sub-patches v1 ⊂ v2 ⊂ · · · ⊂ vn = Sq. In this case we use the notation Kn = Kvn

and similarly Hn = Hvn , Tn = Tvn . The definition is given formally using induction.

Definition 2.2.1 (Derived Kernel). Given a non-negative valued, normalized, initial
reproducing kernel K̂1, the m-layer derived kernel K̂m, for m = 2, . . . , n, is obtained
by normalizing

Km(f, g) =
〈
Nm(f), Nm(g)

〉
L2(Tm−1)

where
Nm(f)(t) = max

h∈H
K̂m−1(f ◦ h, t), t ∈ Tm−1

with H = Hm−1.

One can also define a family of kernels on elements of Im(Sq) similar to the
derived kernel defined above, but with global rather than local pooling at the top
most layer. Although a derived kernel architecture can be constructed to match
any global pooling kernel with an appropriate choice of patches, defining a set of
global kernels given a derived kernel architecture first, is more natural. The global
pooling kernel is most useful when seen as an alternative kernel defined on patches
corresponding to a predefined derived kernel. In this sense, the global pooling kernels
describe a bottom-up processing flow which is halted at some intermediate layer, and
subjected to global pooling rather than further localized pooling.

Definition 2.2.2 (Global Pooling Kernel). For m = 2, . . . , n, let HG
m−1 be sets of

transformations h : vm−1 → Sq mapping patches to Sq. The family {Ĝm : Im(Sq)×
Im(Sq)→ [0, 1]}nm=2 of “global pooling” kernels is obtained by normalizing

Gm(f, g) =
〈
NG
m(f), NG

m(g)
〉
L2(Tm−1)

where
NG
m(f)(t) = max

h∈H
K̂m−1(f ◦ h, t), t ∈ Tm−1

with H = HG
m−1.

The definition is identical to that of Definition 2.2.1 up to the penultimate layer,
except the final layer is modified to include transformations of the form h : vm−1 → Sq
with m ≤ n. If m = n then global pooling coincides with the usual range of the
max operation appearing in Definition 2.2.1, and the two definitions are equivalent:
Ĝn = K̂n. Note that the global pooling kernel Gm is not recursively defined in terms
of the global pooling kernel Gm−1.

We add some remarks.

Remarks

• Examples of transformations are translations, scalings and rotations. Combin-
ing the first two, we have transformations of the form h = hβhα, hα(x) = αx
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Figure 2-2: A transformation “restricts” an image to a specific patch.

and hβ(x′) = x′ + β, where α ∈ R and β ∈ R2 is such that hβhα(u) ⊂ v.
The transformations are embeddings of u in v and of v in Sq. In the vision
interpretation, a translation h can be thought of as moving the image over the
“receptive field” v: see Figure 2-2.

• To make sense of the normalization (2.1) we rule out the functions such that
K(f, f) is zero. This condition is quite natural in the context of images since
for K(f, f) to be zero, the neural responses of f would have to be identically
zero at all possible templates by definition, in which case one “can’t see the
image”.

• In the following, we say that some function g ∈ Im(vm−1) is a patch of a function
f ∈ Im(vm), or simply a function patch of f , if g = f ◦ h for some h ∈ Hm−1. If
f is an image, we call g an image patch, if f is a string, we call g a substring.

• The derived kernel naturally defines a derived distance d on the space of images
via the equation

d2(f, g) = K̂(f, f) + K̂(g, g)− 2K̂(f, g) = 2
(
1− K̂(f, g)

)
. (2.6)

where we used the fact that normalization implies K̂(f, f) = 1 for all f . Clearly,
as the kernel “similarity” approaches its maximum value of 1, the distance goes
to 0.

• The choice of the “max” as the pooling operation is natural and conforms to
the model in [96]. An interesting problem would be to explore the properties
induced by different pooling operations.
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• Although we draw on the example of vision as an interpretation of our model,
the setting is general and is not limited to strings or images.

• One might also consider “input-dependent” architectures, wherein a preliminary
preprocessing of the input data determines the patch sizes. For example, in the
case of text analysis one might choose patches of size equal to a word, pair of
words, and so on, after examining a representative segment of the language in
question.

In the following section, we discuss in more detail the nature of the function spaces
and the templates, as well as the interplay between the two.

2.2.3 Probability on Function Spaces and Templates

We assume Im(Sq) is a probability space with a “mother” probability measure ρ.
This brings the model to bear on a real world setting. We discuss an interpretation in
the case of vision. The probability measure ρ can be interpreted as the frequency of
images observed by a baby in the first months of life. The templates will then be the
most frequent images and in turn these images could correspond to the neurons at
various stages of the visual cortex. This gives some motivation for the term “neural
response”. We now discuss how the mother probability measure ρ iteratively defines
probability measures on function spaces on smaller patches. This eventually gives
insight into how we can collect templates, and suggests that they can be best obtained
by randomly sampling patches from the function space Im(Sq).

For the sake of simplicity we describe the case of a three layer architecture u ⊂
v ⊂ Sq, but the same reasoning holds for an architecture with an arbitrary number
of layers. We start by describing how to define a probability measure on Im(v). Let
the transformation space H = Hv be a probability space with a measure ρH , and
consider the product space Im(Sq)×H endowed with a probability measure P that is
the product measure given by the probability measure ρ on Im(Sq) and the probability
measure ρH on H. Then we can consider the map π = πv : Im(Sq) × H → Im(v)
mapping (f, h) to f ◦ h. This map is well defined given the Axiom. If Im(v) is
a measurable space we can endow it with the pushforward measure ρv = P ◦ π−1

(whose support is typically a proper subset of Im(v)).
At this point we can naturally think of the template space Tv as an i.i.d. sample

from ρv, endowed with the associated empirical measure.
We can proceed in a similar way at the lower layer. If the transformation space

Hu is a probability space with measure ρHu , then we can consider the product space
Im(v) × Hu endowed with a probability measure Pu = ρv × ρHu , with ρv defined as
above. The map πu : Im(v) × Hu → Im(u) is again well defined due to the Axiom,
and if Im(u) is a measurable space, then we can endow it with the pushforward
measure ρu = Pu ◦ π−1

u . Similarly, the template space Tu can then be thought of as
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sampled according to ρu and endowed with the corresponding empirical measure. As
mentioned before, in the case of several layers one continues by a similar construction.

The above discussion highlights how the definition of the templates as well as
the other operations involved in the construction of the derived kernels are purely
unsupervised; the resulting kernel can eventually be used to solve supervised as well
as unsupervised tasks.

2.2.4 The Normalized Neural Response

In this section we focus on the concept of (normalized) neural response which is as
primary as that of the derived kernel. The normalized neural response at f , denoted
by N̂(f), is simply N̂(f) = N(f)/‖N(f)‖L2(T ), where we drop subscripts to indicate
that the statement holds for any layer m within an architecture, with m − 1 the
previous layer.

The normalized neural response provides a natural representation for any function
f . At the top layer, each input function is mapped into an output representation
which is the corresponding neural response

f ∈ Im(Sq)︸ ︷︷ ︸
input

7−→ N̂Sq(f) ∈ L2(T ) = R|T |︸ ︷︷ ︸
output

,

with T = Tn−1. For the time being we consider the space of neural responses to be
L2, however more generally one could consider Lp spaces in order to, for example,
promote sparsity in the obtained representation. The coordinates of the output are
simply the normalized neural responses N̂(f)(t) of f at each given t in the template
set T and have a natural interpretation as the outputs of neurons responding to
specific patterns. Clearly,

K̂(f, g) =
〈
N̂(f), N̂(g)

〉
L2(T )

. (2.7)

A map satisfying the above condition is referred to as a feature map in the language
of kernel methods [93]. A natural distance d between two input functions f, g is also
defined in terms of the Euclidean distance between the corresponding normalized
neural responses:

d2(f, g) = ‖N̂(f)− N̂(g)‖2
L2(T ) = 2

(
1− 〈N̂(f), N̂(g)〉L2(T )

)
, (2.8)

where we used the fact that the neural responses are normalized. Note that the above
distance function is a restatement of (2.6). The following simple properties follow:

• If K̂(f, g) = 1, then N̂(f) = N̂(g) as can be easily shown using (2.7) and (2.8).

• If K̂(f, g) = 1, then for all z, K̂(f, z) = K̂(g, z), as shown by the previous
property and the fact that 〈N̂(f), N̂(z)〉L2(T ) = 〈N̂(g), N̂(z)〉L2(T ).
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The neural response at a given layer can be expressed in terms of the neural
responses at the previous layer via the following coordinate-wise definition:

NSq(f)(t) = max
h∈H

〈
N̂v(f ◦ h), N̂v(t)

〉
L2(T ′)

, t ∈ T

with H = Hv, T
′ = Tu and T = Tv. Similarly, we can rewrite the above definition

using the more compact notation

NSq(f) = max
h∈H

{
ΠvN̂v(f ◦ h)

}
, (2.9)

where the max operation is assumed to apply component-wise, and we have intro-
duced the operator Πv : L2(Tu)→ L2(Tv) defined by

(ΠvF )(t) =
〈
N̂v(t), F

〉
L2(Tu)

for F ∈ L2(Tu), t ∈ Tv. The above reasoning can be generalized to any layer in any
given architecture so that we can always give a self consistent, recursive definition
of normalized neural responses. From a computational standpoint it is useful to
note that the operator Πv can be seen as a |Tv| × |Tu| matrix so that each step in
the recursion amounts to matrix-vector multiplications followed by max operations.
Each row of the matrix Πv is the (normalized) neural response of a template t ∈ Tv,
so that an individual entry of the matrix is then

(Πv)t,t′ = N̂v(t)(t
′)

with t ∈ Tv and t′ ∈ Tu. This perspective highlights the following key points:

• The Π matrices do not depend on the input, and are purely unsupervised com-
ponents.

• The compact description shown in Equation (2.9) makes clear the action of the
hierarchy as alternating pooling and filtering steps realized by the max and Π
operators, respectively. The max enforces invariance, while the Π operators
incorporate unsupervised learning.

• This perspective also identifies a clear way to integrate more sophisticated un-
supervised learning techniques. By choosing an alternate basis on which we
express the action of Π, one can immediately apply a range of established tech-
niques in the context of a multiscale, hierarchical architecture. We discuss this
and related ideas in more detail in the next Section.
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2.2.5 Extensions: Feedback, Generalized Pooling, and Fea-
ture Maps

The basic development described in the previous sections can be extended in sev-
eral ways. In particular one can consider more general pooling functions and more
sophisticated procedures for defining the feature maps at each layer. A generalized
architecture involving arbitrary feature maps at each layer can be described by the
following diagram. Examples of different feature maps Φ and pooling operations are

K̂1 K̂2 . . . K̂n−1 K̂n

K̃1

Φ1
?

pool -

K̃2

Φ2
?

pool
-

. . . K̃n−1

Φn−1
?

pool -

Figure 2-3: General feature maps can be defined at each layer.

given below.
For a generalized architecture as shown in Figure 2-3, compact recursive definitions

for the “generalized” neural response and derived kernel can be given.

Definition 2.2.3 (Generalized Derived Kernels). Given the feature maps Φm : L2(Tm−1)→
Fm, 2 ≤ m ≤ n, and a non-negative valued, normalized, initial reproducing kernel
K̃1, the m-layer derived kernel K̂m, for m = 2, . . . , n, is obtained by normalizing

Km(f, g) :=
〈
Ñm(f), Ñm(g)

〉
L2(Tm−1)

,

and the m-layer generalized derived kernel K̃m, for m = 2, . . . , n, is given by

K̃m(f, g) :=

〈
(Φm ◦ Ñm)(f), (Φm ◦ Ñm)(g)

〉
Fm∥∥∥(Φm ◦ Ñm)(f)

∥∥∥
Fm

∥∥∥(Φm ◦ Ñm)(g)
∥∥∥
Fm

where
Ñm(f)(t) = max

h∈Hm−1

K̃m−1(f ◦ h, t) (2.10)

for f ∈ Im(vm), t ∈ Tm−1.

Attention and Top-down Contextual Priors

As above, consider the case where the transformations spaces Hi are endowed with
a probability measure ρHi . The measures ρHi mark a natural entry point for incor-
porating notions of attention and contextual priors. Such a measure can be used to
force the template sampling mechanism to explore particular regions of an image.
For example, we might take ρHi so that the center of the patch is most likely to
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be sampled, analogous to foveation in vision. The measure ρH may also be used to
incorporate attention like mechanisms, whereby prior information guides the search
to interesting parts of an image.

We may consider a process whereby an initial, coarse classification pass decides
where to look in more detail in an image, and adjusts what we are looking for. Refining
the search for an object of interest could be accomplished by adjusting ρH and by
adjusting ρv, the measure on images. By biasing the template dictionaries towards
more specific categories, one can expect that better detection rates might be realized.

General Pooling functions

The pooling operation in the definition of the neural response can be generalized by
considering different (positive) functionals acting on functions on H. Indeed for a
fixed function f ∈ Im(vm) and a template t ∈ Tm−1 we can consider the following
positive real valued function on H = Hm−1 defined by

F (h) = Ff,t = K̂m−1(f ◦ h, t).

If K̂ and hence F are sufficiently regular and in particular F ∈ Lp(H, ρH), different
pooling operations can be defined by considering Lp norms of F .

The original definition of the neural response simply uses the uniform norm in
L∞(H), ‖F‖∞ = suph∈H F (h), where the supremum is always achieved if H is finite.
Another natural choice is the L1 norm,

∫
H F (h)dρH(h), which corresponds to an

average. More generally one can consider ‖F‖p = (
∫
H F (h)pdρH(h))1/p . The neural

response for an arbitrary pooling function is then given by

N(f)(t) = Ψ(F ), with F (h) = K̂m−1(f ◦ h, t)

where F : H → R+. We will show in Chapter 4 that some of the analysis in following
sections will extend to this more general setting, and does not depend on the pooling
function.

Learning Templates

The definition of the derived kernel can be modified to define alternative feature maps
while preserving the same architecture. See Figure 2-3. We illustrate the case of a
canonical feature map associated to the Mercer expansion of the derived kernel at
one layer.

Recall from Section 2.2.3 that each space Im(v) is endowed with a probability
measure ρv. At any layer we can consider the integral operator L

K̂v
: L2(Im(v), ρv)→
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L2(Im(v), ρv) defined by

L
K̂v
F (f) =

∫
Im(v)

K̂v(f, g)F (g)dρv(g)

whose spectrum we denote by (σj, φj)
p
j=1, with p ≤ ∞. In practice, the measure ρv

can be replaced by the empirical measure underlying the corresponding template set
T . We can then consider the map Φ : Im(v)→ `2 such that

f 7→ Φ(f) =
(√

σ1φ1(f),
√
σ1φ2(f), . . . ,

√
σNφN(f)

)
,

where N < p. Recalling the Mercer expansion of a kernel, one can see that the above
feature map corresponds to replacing the derived kernel with a truncated derived
kernel

K̂(f, g) =
p∑
j=1

σjφj(f)φj(g) 7→ K̃(f, g) =
N∑
j=1

σjφj(f)φj(g). (2.11)

We evaluate this particular feature map experimentally in Section 2.6 below.
It is important to recognize that the above reasoning can be extended to many

other feature maps, incorporating, for example, geometric information (manifold
learning) or sparsity constraints (sparse coding).

Truncation Error Estimates

Finally, we note that, for any bounded, measurable reproducing kernel K : X ×X →
R, the spectrum of LK must be summable:

∑∞
j=1 σj < ∞. Let KN denote the the

N -term truncated expansion of K, as in Equation (2.11). One may make a crude but
informative estimate of the truncation error

‖LK − LKN‖

by observing that the sequence {σj}j must decay faster than j−1. Indeed,

‖LK − LKN‖ = sup
‖F‖L2(Im(v),ρv)=1

√√√√ ∞∑
j=N+1

σ2
j |〈F, φj〉K |2

≤ Tr[LK − LKN ]

=
∞∑

j=N+1

σj ≤
∞∑

j=N+1

j−(1+ε)

for some small ε > 0. Thus for even small choices of N , the truncation error will not
be large.
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2.3 Invariance of the Neural Response

In this section we discuss invariance of the (normalized) neural response to some set of
transformations R = {r | r : v → v}, where invariance is defined as N̂(f) = N̂(f ◦ r)
(or equivalently K̂n(f ◦ r, f) = 1).

We consider a general n-layer architecture and denote by r ∈ R the transforma-
tions whose domain (and range) are clear from the context. The following important
assumption relates the transformations R and the translations H associated to an
arbitrary layer:

Assumption 2.3.1. Fix any r ∈ R. Then for each h ∈ H, there exists a unique
h′ ∈ H such that the relation

r ◦ h = h′ ◦ r (2.12)

holds true, and the map h 7→ h′ is surjective.

Note that r on the left hand side of Equation (2.12) maps vm+1 to itself, while on
the right hand side r maps vm to itself.

In the case of vision for example, we can think of R as reflections and H as
translations so that f ◦ h is an image patch obtained by restricting an image f to
a receptive field. The assumption says that reflecting an image and then taking a
restriction is equivalent to first taking a (different) restriction and then reflecting the
resulting image patch. In this section we give examples where the assumption holds.
Examples in the case of strings are given in the next section.

Given the above assumption for all layers, we can state the following result.

Proposition 2.3.1. If the initial kernel satisfies K̂1(f, f ◦ r) = 1 for all r ∈ R,
f ∈ Im(v1), then

N̂m(f) = N̂m(f ◦ r),

for all r ∈ R, f ∈ Im(vm) and m ≤ n.

Proof. We proceed by induction. The base case is true by assumption. The inductive
hypothesis is that K̂m−1(u, u◦r) = 1 for any u ∈ Im(vm−1). Thus for all t ∈ T = Tm−1

and for H = Hm−1, we have that

Nm(f ◦ r)(t) = max
h∈H

K̂m−1(f ◦ r ◦ h, t)

= max
h′∈H

K̂m−1(f ◦ h′ ◦ r, t)

= max
h′∈H

K̂m−1(f ◦ h′, t)

= Nm(f)(t),

where the second equality follows from Assumption 2.3.1 and the third follows from
the inductive hypothesis.
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The following result is then immediate:

Corollary 2.3.1. Let Q, U be two families of transformations satisfying Assump-
tion 2.3.1 and such that K̂1 is invariant to Q, U . If R = {r = q ◦ u | q ∈ Q, u ∈ U},
then

N̂m(f) = N̂m(f ◦ r)

for all r ∈ R, f ∈ Im(vm) and m ≤ n.

Proof. The proof follows noting that for all m ≤ n,

N̂m(f ◦ r) = N̂m(f ◦ q ◦ u) = N̂m(f ◦ q) = N̂m(f).

2.3.1 Invariance in Generalized Architectures

We note that Proposition 2.3.1 is quite general, and extends in two important ways.

Invariance and General Pooling. As we will show in Section 4.2.1 of Chapter 4,
Proposition 2.3.1 holds generally for arbitrary pooling functions, and does not depend
on the particular choice of the max.

Invariance and Arbitrary Feature Maps. If K̂m is replaced by K̃m by choosing a
suitable feature map Φm : L2(Tm−1)→ Fm, as described in Section 2.2.5 above, then
Proposition 2.3.1 still holds as long as K̃1(f, f ◦r) = 1. The following Corollary shows
that Proposition 2.3.1 holds for generalized architectures as described in Section 2.2.5.

Corollary 2.3.2. If for all r ∈ R, f ∈ Im(v1), the initial kernel K̃1(f, f ◦ r) = 1,
then

Ñm(f) = Ñm(f ◦ r),

for all r ∈ R, f ∈ Im(vm) and m ≤ n.

Proof. In the proof of Proposition 2.3.1, we used the obvious fact that invariance
of Nm implies invariance of the kernel K̂m(f, g). Here, it remains to be shown that
invariance of Ñm implies invariance of K̃m. Then we may use an inductive hypothesis
paralleling that of Proposition 2.3.1, and the proof in the present setting is the same
as that of Proposition 2.3.1, mutatis mutandis.

As before, the base case is true by assumption, so Ñ2 is invariant. We would like
to modify the inductive hypothesis of Proposition 2.3.1 to say that K̃m−1(f ◦r, f) = 1.
Since Ñm−1 is invariant, by the inductive hypothesis local to this Corollary,

Φm−1

(
Ñm−1(f ◦ r)

)
= Φm−1

(
Ñm−1(f)

)
,

and we see that invariance of Ñm−1 leads to invariance of K̃m−1.
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2.3.2 Invariance Example: Reflections and Rotations

We next discuss invariance of the neural response under reflections and rotations.
Consider patches which are discs in R2. Let

Ref = {ref = refθ | θ ∈ [0, 2π)}

be the set of coordinate reflections about lines passing through the origin at angle
θ, and let Rot denote the space of coordinate rotations about the origin. Then the
following result holds true.

Corollary 2.3.3. If the spaces H at all layers contain all possible translations and
K̂1(f, f ◦ ref) = 1, for all ref ∈ Ref , f ∈ Im(v1), then

N̂m(f) = N̂m(f ◦ ref),

for all ref ∈ Ref , f ∈ Im(vm) with m ≤ n. Moreover under the same assumptions

N̂m(f) = N̂m(f ◦ rot),

for all rot ∈ Rot, f ∈ Im(vm) with m ≤ n.

Proof. We first show that Assumption 2.3.1 holds. Each translation is simply ha(x) =
x + a, and since the space of transformations contains all translations, Assump-
tion 2.3.1 holds taking h = ha, r = refθ and h′ = ha′ , with a′ = refθ(a). Since the ini-
tial kernel K̂1 is invariant under reflections, Proposition 2.3.1 implies K̂m(f, f◦ref) = 1
for all ref ∈ Ref , f ∈ Im(vm), with m ≤ n.

Rotational invariance follows recalling that any rotation can be obtained out of
two reflections using the formula rot(2(θ − φ)) = refθ ◦ refφ, so that we can apply
directly Corollary 2.3.1.

We add the following remark.

Remark 2.3.1. Although the above proof assumes all translations for simplicity, the
assumption on the spaces H can be relaxed. Defining the circle

H̃a = {hz | z = ref(a), ref ∈ Ref} ,

it suffices to assume that,

If ha ∈ H, then H̃a ⊆ H. (2.13)

The next section discusses the case of one dimensional strings.
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2.4 Analysis in a One Dimensional Case

We specialize the derived kernel model to a case of one-dimensional strings of length
n (“n-strings”). An n-string is a function from an index set {1, . . . , n} to some finite
alphabet S. We build a derived kernel in this setting by considering patches that are
sets of indices vm = {1, . . . , `m}, m ≤ n (with `m < `m+1) and function spaces Im(vm)
comprised of functions taking values in S rather than in [0, 1]. We always assume
that the first layer consists of single characters, v1 = S, and consider the initial kernel

K̂1(f, g) =

1 if f = g,

0 otherwise
,

where f, g ∈ S.
In the following we often consider an exhaustive architecture in which patches differ

in size by only one character so that vm = {1, . . . ,m}, and the function (string) spaces
are Im(vm) = Sm, for m = 1, . . . , n. In this case, the template sets are Tm = Sm, for
m = 1, . . . , n, and the transformations are taken to be all possible translations. Note
that the transformation spaces H = Hm at each layer m, contain only two elements

H =
{
h1, h2

}
,

with h1(j) = j and h2(j) = j+1. For example, if f is an n-string and H = Hn−1, then
f ◦ h1 and f ◦ h2 are the substrings obtained from the first and last n− 1 characters
in f , respectively. Thus, the n-layer neural response of f at some n − 1-string t is
simply

Nn(f)(t) = max
{
K̂n−1(f ◦ h1, t), K̂n−1(f ◦ h2, t)

}
.

We now introduce a few additional definitions useful for discussing and manipu-
lating strings.

Definition 2.4.1 (Reversal). The reversal r of patches of size m ≤ n is given by

r(j) = m− j + 1, j = 1, . . . ,m.

In the development that follows, we adopt the notation f ∼ g, if f = g or f = g ◦ r.
Finally, we introduce a pair of general concepts not necessarily limited to strings.

Definition 2.4.2 (Occurrence). Let f ∈ Im(Sq). We say that t ∈ Im(vn−1) occurs
in f if

Nn(f)(t) = 1.

where H = Hn−1.

Note that the above definition naturally extends to any layer m in the architecture,
replacing Sq with vm and vn−1 with vm−1.

45



Definition 2.4.3 (Distinguishing Template). Let f, g ∈ Im(Sq) and t ∈ Im(vn−1).
We say that t distinguishes f and g if and only if it occurs in f but not in g, or in g
but not in f . We call such a t a distinguishing template for f and g.

In the next subsection we discuss properties of the derived kernel in the context
of strings.

2.4.1 Discrimination Properties

We begin by considering an architecture of patches of arbitrary size and show that
the neural response is invariant to reversal. We then present a result describing
discrimination properties of the derived kernel.

Corollary 2.4.1. If the spaces H at all layers contain all possible translations then

K̂m(f, f ◦ r) = 1,

for all f ∈ Im(vm) with m ≤ n.

Proof. We first show that Assumption 2.3.1 holds. Let u ⊂ v be any two layers where
Im(v) contains m-strings and Im(u) contains `-strings, with ` < m. Every translation
h : u→ v is given by hi : (1, . . . , `) 7→ (i, . . . , i+ `− 1), for 1 ≤ i ≤ m− `+ 1. Then
Assumption 2.3.1 holds taking h = hi, and h′ = hϕ(i), where ϕ : (1, . . . ,m− `+ 1)→
(1, . . . ,m− ` + 1) is defined by ϕ(i) = m− `− i + 2. Using the fact that the initial
kernel is invariant to reversal, Proposition 2.3.1 then ensures that K̂v(f, f ◦r) = 1.

The following remark is analogous to Remark 2.3.1.

Remark 2.4.1. Inspecting the above proof one can see that the assumption on the
spaces H can be relaxed. It suffices to assume that

If hi ∈ H, then hϕ(i) ∈ H. (2.14)

with the definition ϕ(i) = m− `− i+ 2.

We now ask whether two strings having the same (normalized) neural response
are indeed the same strings up to a reversal and/or a checkerboard pattern for odd
length strings. We consider this question in the context of the exhaustive architecture
described at the beginning of Section 2.4.

Theorem 2.4.1. Consider the exhaustive architecture where vm = {1, . . . ,m}, the
template sets are Tm = Im(vm) = Sm, for m = 1, . . . , n and the transformations are
all possible translations. If f, g are n-strings and K̂n(f, g) = 1 then f ∼ g or f, g are
the “checkerboard” pattern: f = ababa · · · , g = babab · · · , with f and g odd length
strings, and a, b arbitrary but distinct characters in the alphabet.
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The theorem has the following interpretation: the derived kernel is discriminating
if enough layers and enough templates are assumed. In a more general architecture,
however, we might expect to have larger classes of patterns mapping to the same
neural response.

To prove the above theorem, we make use of the following preliminary but impor-
tant result.

Lemma 2.4.1. Let f, g ∈ Im(vm) with m ≤ n. If K̂m(f, g) = 1, then all function
patches of f at layer m− 1 occur in g and vice versa.

Proof. We prove the Lemma assuming that a function patch t̄ of f distinguishes f
from g, and then showing that under this assumption K̂m(f, g) cannot equal 1.

Since t̄ occurs in f but does not occur in g, by Definition 2.4.2,

Nm(g)(t̄) < 1 and Nm(f)(t̄) = 1. (2.15)

Now, let t′ be any function subpatch of g at layer m− 1, then

Nm(g)(t′) = 1 and Nm(f)(t′) ≤ 1, (2.16)

where the last inequality follows since t′ might or might not occur in f .
Now since K̂m(f, g) = 1 and recalling that by definition K̂m is obtained normalizing

Km(f, g) =
〈
Nm(f), Nm(g)

〉
L2(Tm−1)

, we have that Nm(f), Nm(g) must be collinear.

That is,
Nm(f)(t) = c ·Nm(g)(t), t ∈ Tm−1 (2.17)

for some constant c.
Combining this requirement with conditions (2.15),(2.16) we find that

Nm(f)(t̄) = cNm(g)(t̄) ⇒ c > 1

Nm(f)(t′) = cNm(g)(t′) ⇒ c ≤ 1.

Thus, there is no such c and K̂m(f, g) cannot equal 1. Similarly, by interchanging the
roles of f and g above we reach the conclusion that if there is a function patch in g
which does not occur in f , then K̂m(f, g) again cannot equal 1.

We can now prove Theorem 2.4.1 by induction.

Proof. The statement holds trivially for K̂1 by definition. The remainder of the proof
is divided into three steps.

Step 1). We first note that since K̂n(f, g) = 1 then Lemma 2.4.1 says that both
n− 1 strings in f occur in g and vice versa. Denoting with s1 (s2) the first (second)
n− 1-substring in an n-string s, we can express this as

K̂n−1(f1, g1) = 1 or K̂n−1(f1, g2) = 1
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and
K̂n−1(f2, g1) = 1 or K̂n−1(f2, g2) = 1,

and another set of similar conditions interchanging f and g. When u, v are odd-
length strings then we write u ./ v if u ∼ v or if u, v are the checkerboard pattern
(but not both). When u, v are even-length strings then u ./ v is simply u ∼ v.
The inductive hypothesis is that K̂n−1(α, β) = 1 implies α ./ β, so that the above
conditions translate into a large number of relationships between the substrings in f
and g given by combinations of the following 4 predicates:

a) f1 ./ g1

b) f1 ./ g2

c) f2 ./ g1

d) f2 ./ g2.

Step 2). The next step is to show that the number of relationships we need to
consider can be drastically reduced. In fact the statement “both n − 1 strings in f
occur in g and vice versa” can be formalized as

(a+ b+ ab)(c+ d+ cd)(a+ c+ ac)(b+ d+ bd), (2.18)

denoting logical exclusive OR with a “+” and AND by juxtaposition. The above ex-
pression corresponds to a total of 81 possible relationships among the n−1-substrings.
Any product of conditions involving repeated predicates may be simplified by discard-
ing duplicates. Doing so in the expansion of (2.18), we are left with only seven distinct
cases:

{abcd, abc, abd, acd, ad, bc, bcd}.

We claim that, for products involving more than two predicates, considering only
two of the conditions will be enough to derive f ∼ g or f, g checkerboard. If more
than two conditions are present, they only serve to further constrain the structure of
the strings or change a checkerboard pattern into a reversal equivalence, but cannot
change an equivalence to a non-equivalence or a checkerboard to any other non-
equivalent pattern.

Step 3). The final step is to consider the cases ad and bc (since one or the other
can be found in each of the 7 cases above) and show that this is in fact sufficient to
prove the proposition.
Let f = a1a2 · · · an and g = b1b2 · · · bn, and denote the checkerboard condition by
f � g.
Case ad:f1 ./ g1 ∧ f2 ./ g2

There are nine subcases to consider,

(f1 = g1 ∨ f1 = r(g1) ∨ f1 � g1) ∧ (f2 = g2 ∨ f2 = r(g2) ∨ f2 � g2)
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however for n odd the n−1 substrings cannot be checkerboard and only the first four
cases below are valid.

1. f1 = g1 ∧ f2 = g2: The conditions give immediate equality, f = g.

2. f1 = g1 ∧ f2 = r(g2): The first condition says that the strings are equal every-
where except the last character, while the second says that the last character
in f is b2. So if b2 = bn, then f = g. The conditions taken together also imply
that bi = bn−i+2, i = 2, . . . , n − 1 because g1 overlaps with g2 by definition. So
we indeed have that b2 = bn, and thus f = g.

3. f1 = r(g1) ∧ f2 = g2: Symmetric to the previous case.

4. f1 = r(g1) ∧ f2 = r(g2): The first condition says that f = bn−1 · · · b1an and the
second gives f = a1bn · · · b2. Thus we have that a1 = bn−1, an = b2 and bi = bi+2

for i = 1, . . . , n − 2. The last relation implies that g has two symbols which
alternate. Furthermore, we see that if n is even, then f = g. But for n odd, f
is a one character circular shift of g, and thus f, g are checkerboard.

5. f1 = g1 ∧ f2 � g2: The checkerboard condition gives that f = a1a2a3a2a3 · · · a2

and g = b1a3a2a3a2 · · · a3. Then f1 = g1 gives that a2 = a3 and a1 = b1 so
f = g.

6. f1 = r(g1) ∧ f2 � g2: The first condition imposes a1 = a2 = a3 and b1 = a3 on
the checkerboard structure, giving f = g and both strings comprised of a single
repeated character.

7. f1 � g1 ∧ f2 � g2: The first condition imposes a1 = a3 and b1 = a2 on the
structure given by the second checkerboard condition, thus f = a3a2a3 · · · a2,
g = a2a3a2 · · · a3, and f = r(g).

8. f1 � g1 ∧ f2 = g2: Symmetric to the case f1 = g1 ∧ f2 � g2.

9. f1 � g1 ∧ f2 = r(g2): Symmetric to the case f1 = r(g1) ∧ f2 � g2.

Case bc:f1 ./ g2 ∧ f2 ./ g1

There are again nine subcases to consider:

(f1 = g2 ∨ f1 = r(g2) ∨ f1 � g2) ∧ (f2 = g1 ∨ f2 = r(g1) ∨ f2 � g1).

But suppose for the moment g′ = b1 · · · bn and we let g = r(g′) = bn · · · b1. Then
every subcase is the same as one of the subcases considered above for the case ad,
only starting with the reversal of string g. For example, f1 = g2 here means that
f1 = bn−1 · · · b1 = r(g′1). When n is even, note that f1 � g2 ⇔ f1 � r(g′1) ⇔ f1 � g′1,
where the last relation follows from the fact that reversal does not effect an odd-length
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alternating sequence. Returning to the ordering g = b1 · · · bn, each subcase here again
gives either f = g, f = r(g) or, if n is odd, f, g are possibly checkerboard.

Gathering the case analyses above, we have that K̂m(f, g) = 1 =⇒ f ∼ g (m
even) or f ./ g (m odd).

2.4.2 Discrimination and Global Pooling Kernels

The following Proposition extends Lemma 2.4.1 to all layers, and will be used to
investigate the discrimination properties of the global pooling kernels. In the analysis
that follows, we again consider the exhaustive architecture setting.

Proposition 2.4.1. We consider the exhaustive architecture described in Theorem 2.4.1.
Let f, g be n-strings. If K̂n(f, g) = 1, then all substrings of all lengths in f occur in
g, and all substrings of all lengths in g occur in f .

Proof. The proof is by induction, from the top-down. Every length n − 2 substring
of f may be expressed as

sn−2
f = f ◦ hn−1

in−1
◦ hn−2

in−2

for some (possibly non-unique) choice of in−1, in−2 ∈ {1, 2}. From Lemma 2.4.1, we
know that K̂n(f, g) = 1 implies the two substrings of length n − 1 in f occur in g,
and vice versa. Thus for every sn−2

f , one can choose a jn−1 ∈ {1, 2} such that

K̂n−1(f ◦ hn−1
in−1

, g ◦ hn−1
jn−1

) = 1. (2.19)

Setting f ′ = f ◦ hn−1
in−1

and g′ = g ◦ hn−1
jn−1

and applying Lemma 2.4.1 to (2.19) tells us
that all n−2 strings in f ′ occur in g′ and vice versa. Therefore, there is a jn−2 ∈ {1, 2}
such that

K̂n−2(sn−2
f , g ◦ hn−1

jn−1
◦ hn−2

jn−2
) = 1.

This proves that if K̂n(f, g) = 1, every n − 2 string in f occurs in g. Similarly,
interchanging the roles of f and g above shows that every n− 2 string in g must also
occur in f .

Proceeding downwards, let every length k substring of f be expressed as skf =

f ◦ hn−1
in−1
◦ · · · ◦ hkik , for k = 1, . . . , n − 3. Applying the reasoning above inductively,

for each substring skf we can choose a set of indices jn−1, . . . , jk+1 such that

K̂k+1(f ◦ hn−1
in−1
◦ · · · ◦ hk+1

ik+1
, g ◦ hn−1

jn−1
◦ · · · ◦ hk+1

jk+1
) = 1

at which point Lemma 2.4.1 tells us that there is a jk such that

K̂k(s
k
f , g ◦ hn−1

jn−1
◦ · · · ◦ hkjk) = 1.

Thus all substrings of all lengths in f occur in g, and interchanging the roles of f and
g above, all substrings of all lengths in g occur in f .
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Finally, we evaluate the discrimination properties of the global pooling kernels
defined in Definition 2.2.2. In particular, the following Proposition reveals that if an
exhaustive architecture derived kernel claims that two strings are the same, then one
can replace any upper layer with a global pooling layer, and find that the hierarchy
would still view the two strings as the same.

Proposition 2.4.2. If K̂n(f, g) = 1, then Ĝm(f, g) = 1 for 1 < m ≤ n.

Proof. From Proposition 2.4.1, K̂n(f, g) = 1 implies that all substrings in f occur in
g and vice versa. Thus for every substring f ◦ hm−1 (with hm−1 ∈ HG

m−1) appearing

in the definition of Gm, there is an h′ ∈ HG
m−1 such that K̂m−1(f ◦ hm−1, g ◦ h′) = 1.

Similarly, for every substring g ◦ hm−1 appearing in the definition of Gm, there is an
h
′′ ∈ HG

m−1 such that K̂m−1(f ◦ h′′ , g ◦ hm−1) = 1. So we must have that for every
t ∈ Tm−1,

max
hm−1∈HG

m−1

K̂m−1(f ◦ hm−1, t) = max
hm−1∈HG

m−1

K̂m−1(g ◦ hm−1, t). (2.20)

Here every H is finite, and one can see that the “arguments” to each of the max
operations are the same, only in a possibly different order. Since the max is invariant
to permutations of its arguments, the two quantities above are equal. With the
equality (2.20) holding for all t ∈ Tm−1, we necessarily have that Gm(f, g) = 1 for
m = 1, . . . , n− 1.

2.5 Entropy of the Neural response

We suggest that the concept of Shannon entropy [27] can provide a systematic way to
assess the discrimination properties of the neural response, quantifying the role played
by the number of layers (or the number of templates).1 This motivates introducing
a few definitions, and recalling some elementary facts from information theory. We
sketch here the main ideas, but defer a more elaborated treatment to Chapter 3.

Consider any two layers corresponding to patches u ⊂ v. The space of functions
Im(v) is assumed to be a probability space with measure ρv. The neural response is
then a map N̂v : Im(v)→ L2(T ) = R|T | with T = Tu. Let us think of N̂v as a random
variable and assume that

E
[
N̂v(f)(t)

]
= 0

for all t ∈ Tu (or perhaps better, set the median to be zero). Next, consider the set O
of orthants in R|T |. Each orthant is identified by a sequence o = (εi)

|T |
i=1 with εi = ±1

for all i. We define the map N̂∗v : Im(v)→ O by

N̂∗v (f) =
(
sign(N̂v(f)(t))

)
t∈Tu

1Conversations with David McAllester and Greg Shakhnarovich were useful for this section.
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and denote by N̂∗∗v ρv the corresponding push-forward measure on O. Although re-
placing the neural response with its signs destroys information, such relaxations can
give insights by simplifying a complex situation.

We next introduce the Shannon entropies relative to the measures ρv and N̂∗∗v ρv.
If we assume the space of images to be finite Im(v) = {f1, . . . , fp}, the measure ρv
reduces to the probability mass function {p1, . . . , pd} = {ρv(f1), . . . , ρv(fd)}. In this
case the entropy of the measure ρv is

S(ρv) =
∑
i

pi log
1

p i

and similarly

S(N̂∗∗v ρv) =
∑
o∈O

qo log
1

q o
,

where qo = (N̂∗∗v ρv)(o) is explicitly given by

(N̂∗∗v ρv)(o) = ρv

({
f ∈ Im(v) |

(
sign(N̂v(f)(t))

)
t∈Tu

= o
})

.

When Im(v) is not finite we define the entropy S(ρv) by considering a partition
π = {πi}i of Im(v) into measurable subsets. In this case the entropy of ρv (given the
partition π) is

Sπ(ρv) =
∑
i

ρv(πi) log
1

ρv(πi)
.

One can define the entropy of the original neural response (without thresholding) in
a similar fashion, taking a partition of the range of N̂v.

Comparing S(ρv) to S(N̂∗∗v ρv), we can assess the discriminative power of the
neural response and quantify the amount of information about the function space
that is retained by the neural response. The following inequality, related to the so
called data processing inequality, serves as a useful starting point:

S(ρv) ≥ S(N̂∗∗v ρv).

It is then interesting to quantify the discrepancy

S(ρv)− S(N̂∗∗v ρv),

which is the loss of information induced by the neural response. Since the inequality
holds with equality when the map N̂∗v is one-to-one, this question is related to asking
whether the neural response is injective (see Theorem 2.4.1).
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2.5.1 Short Appendix to Section 2.5

We briefly discuss how the development in the previous section relates to standard
concepts (and notation) found in information theory [27]. Let (Ω, P ) be a proba-
bility space and X a measurable map into some measurable space X . Denote by
ρ = X∗(P ) the push-forward measure on X associated to X. We consider discrete
random variables, i.e. X = {x1, . . . , xd} is a finite set. In this case the push-forward
measure reduces to the probability mass function over the elements in X and we let
{p1, . . . , pd} = {ρ(x1), . . . , ρ(xd)}. Then the entropy H of X is defined as

H(X) =
d∑
i=1

pi log
1

p i
.

Connections with the previous section are readily established when Im(v) is a
finite set. In this case we can define a (discrete) random variable X = F with
values in X = Im(v) = {f1, . . . , fd} and domain in some probability space (Ω, P )
such that P is the pullback measure associated to the measure ρv on Im(v). Then
{p1, . . . , pd} = {ρv(f1), . . . , ρv(fd)}, and

S(ρv) ≡ H(F ).

Moreover we can consider a second random variable Y defined as N∗v ◦ F so that

S(N∗∗v ρv) ≡ H(N∗v ◦ F ).

2.6 Empirical Analysis

The work described thus far was largely motivated by a desire to understand the
empirical success of the model in [98, 96] when applied to numerous real-world recog-
nition problems. The simplified setting we consider in this work trades complexity
and faithfulness to biology for a more controlled, analytically tractable framework. It
is therefore important to verify empirically that we have kept what might have been
responsible for the success of the model in [98, 96], and this is the central goal of
the current section. We first describe an efficient algorithm for computing the neural
response, followed by a set of empirical experiments in which we apply the derived
kernel to a handwritten digit classification task.

2.6.1 Algorithm and Computational Complexity

A direct implementation of the architecture following the recursive definition of the
derived kernel leads to an algorithm that appears to be exponential in the number
of layers. However, a “bottom-up” algorithm which is linear in the number of layers
can be obtained by consolidating and reordering the computations.
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Input:f ∈ Im(Sq), N̂m(t),∀t ∈ Tm, 1 ≤ m ≤ n− 1
Output: N̂n(f)(t)
for m = 1 to n− 1 do

for h ∈ Hg
m do

for t ∈ Tm do
if m = 1 then

Sm(h, t) = K̂1(f ◦ h, t)
else

Sm(h, t) =
∑
t′∈Tm−1

Ĉm−1(h, t′)N̂m(t)(t′)

end

end

end
for h ∈ Hg

m+1 do
for t ∈ Tm do

Cm(h, t) = maxh′∈Hm Sm(h ◦ h′, t)
end

end

Ĉm = NORMALIZE(Cm)
end

Return N̂n(f)(t) = Ĉn−1(h, t), with h ∈ Hg
n, t ∈ Tn−1

Algorithm 1: Neural response algorithm.

Consider a set of global transformations, where the range is always the entire
image domain vn = Sq rather than the next larger patch. We define such global
transformations recursively, setting

Hg
m = {h : vm → Sq | h = h′ ◦ h′′, with h′ ∈ Hg

m+1, h
′′ ∈ Hm},

for any 1 ≤ m ≤ n− 1 where Hg
n contains only the identity {I : Sq → Sq}.

If we assume the neural responses of the templates are pre-computed, then the
procedure computing the neural response of any given image f ∈ Im(Sq) is given by
Algorithm 1. Note that in the Algorithm Cm(h, t) corresponds to the neural response
Nm+1(f ◦ h)(t), with h ∈ Hg

m+1, t ∈ Tm. The sub-routine NORMALIZE simply
returns the normalized neural response of f .

We estimate the computational cost of the algorithm. Ignoring the cost of nor-
malization and of pre-computing the neural responses of the templates, the number
of required operations is given by

τ =
n−1∑
m=1

(
|Hg

m||Tm||Tm−1|+ |Hg
m+1||Hm||Tm|

)
(2.21)
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where we denote for notational convenience the cost of computing the initial kernel by
|T0|. The above equation shows that the algorithm is linear in the number of layers.

2.6.2 Experiments

In this section we discuss simulations in which derived kernels are compared to an L2

pixel distance baseline in the context of a handwritten digit classification task. Given
a small labeled set of images, we use the 1-nearest neighbor (1-NN) classification rule:
an unlabeled test example is given the label of the closest training example under the
specified distance.

An outline of this section is as follows: We compare a 3-layer architecture to a
2-layer architecture over a range of choices for the patch sizes u and v, and see that
for the digit recognition task, there is an optimal architecture. We show that three
layers can be better than two layers, and that both architectures improve upon the L2

baseline. We then illustrate the behavior of the 3-layer derived kernel as compared
to the baseline by presenting matrices of pairwise derived distances (as defined in
Equation (2.6)) and pairwise L2 distances. The block structure that typifies these
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Figure 2-6: Matrices of pairwise 3-Layer derived distances (left) and L2 distances
(right) for the set of 240 images from the database. Each group of 30 rows/columns
correspond to images of the digits 2 through 9, in left-right and top-bottom order.

matrices argues graphically that the derived kernels are separating the different classes
of images. We next impose a range of artificial translations on the sets of train and
test images and find that the derived kernels are robust to large translations while the
L2 distance deteriorates rapidly with even small translations. A set of experiments
are then presented in which we study the empirical sample complexity of the digit
classification task for different architectures used as an unsupervised pre-processing
step. It is found that increasing the number of layers leads to a significantly reduced
sample complexity. Finally, we study the effect of taking low-rank approximations to
the Π matrices at each layer, as suggested by the development in Section 2.2.5.

In all experiments we have used Sq = 28 × 28 pixel grayscale images randomly
selected from the MNIST dataset of handwritten digits [65]. We consider eight classes
of images: 2s through 9s. The digits in this dataset include a small amount of
natural translation, rotation, scaling, shearing and other deformations – as one might
expect to find in a corpus containing the handwriting of human subjects. Our labeled
image sets contain 5 examples per class, while the out-of-sample test sets contain 30
examples per class. Classification accuracies using the 1-NN classifier are averaged
over 50 random test sets, holding the training and template sets fixed. As in the
preceding mathematical analysis, the transformations H are restricted to translations.

The template sets are constructed by randomly extracting 500 image patches (of
size u and/or v) from images which are not used in the train or test sets. For the
digits dataset, templates of size 10×10 pixels are large enough to include semi-circles
and distinct stroke intersections, while larger templates, closer to 20× 20, are seen to
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include nearly full digits where more discriminative structure is present.
In Figures 2-4 and 2-5 we show the effect of different patch size selections on

classification accuracy. For this particular task, it is clear that the optimal size for
patch u is 12×12 pixels for both two and three layer hierarchies. That accuracy levels
off for large choices in the case of the 2-layer architecture suggests that the 2-layer
derived kernel is approximating a simple local template matching strategy [38]. It
is clear, however, from Figure 2-5 that an additional layer can improve on such a
strategy, and that further position invariance, in the form of 8 pixels of translation
(since v = 20 × 20 and Sq = 28 × 28) at the last stage, can boost performance. In
the experiments that follow, we assume architectures that use the best patch sizes as
determined by classification accuracy in Figures 2-4 and 2-5: u = 12×12, v = 20×20.
In practice, the patch size parameters can be chosen via cross validation or on a
separate validation set distinct from the test set.

Figure 2-6 illustrates graphically the discrimination ability of the derived kernels
when applied to pairs of digits. On the left we show 3-layer derived distances, while
the L2 distances on the raw image intensities are provided for comparison on the
right. Both matrices are symmetric. The derived distances are computed from derived
kernels using Equation (2.6). Each group of 30 rows/columns correspond to images
of the digits 2 through 9, in left-right and top-bottom order. Off diagonal blocks
correspond to distances between different classes, while blocks on the diagonal are
within-class measurements. In both figures, we have rescaled the range of the original
distances to fall in the interval [0, 1] in order to improve contrast and readability. For
both distances the ideal pattern corresponds to a block diagonal structure with 30×30
blocks of zeros, and ones everywhere else. Comparing the two matrices, it is clear
that the L2 baseline tends to confuse different classes more often than the 3-layer
derived kernel. For example, classes 6 and 8 (corresponding to handwritten 7s and
9s) are frequently confused by the L2 distance.
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Translation Invariance and the Hierarchical Assumption

The experiments discussed up to this point were conducted using a dataset of images
that have been registered so that the digits appear approximately in the center of
the visual field. Thus the increase in performance when going from 2 to 3 layers
validates our assumption that objects particular to the task at hand are hierarchically
organized, and can be decomposed into parts and parts of parts, and so on. A second
aspect of the neural response architecture that warrants empirical confirmation is
that of invariance to transformations accounted for in the hierarchy. In particular,
translations.

To further explore the translation invariance of the derived kernel, we subjected
the labeled and unlabeled sets of images to translations ranging from 0 to 10 pixels
in one of 8 randomly chosen directions. Figure 2-7 gives classification accuracies for
each of the image translations in the case of 3- and 2-layer derived kernels as well
as for the L2 baseline. As would be expected, the derived kernels are better able to
accommodate image translations than L2 on the whole, and classification accuracy
decays more gracefully in the derived kernel cases as we increase the size of the
translation. In addition, the 3-layer derived kernel is seen to generally outperform
the 2-layer derived kernel for translations up to approximately 20% of the field of
view. For very large translations, however, a single layer remains more robust than
the particular 2-layer architecture we have simulated. We suspect that this is because
large translations cause portions of the digits to be clipped off the edge of the image,
whereas templates used by two-layer architectures describe nearly all regions of a
class of digits. Lack of a digit part could thus undermine the descriptive advantage
of the 3-layer architecture over the 2-layer hierarchy.

Sample Complexity

In Figure 2-8 we show the results of an experiment in which we have applied two and
three layer derived kernels towards solving the same supervised, 8-class handwritten
digit classification task described above, with 3-pixels of artificial translation applied
to the images. The patch sizes were the optimal settings found above, while the tem-
plate sets were again of size 500 for all layers. There were 30 random test images per
class for scoring accuracy in each of 50 random trials per training set size evaluation.
An L2 baseline is also given for comparison.

The Figure shows the average classification accuracy as the number of labeled
training examples is varied for each of the three 1-NN classifiers. Thus, we can
choose a given horizontal slice and compare the estimated sample complexity of the
learning task given each of the models. We find, for example, that in order to obtain
65% accuracy the 2-layer derived kernel based classifier needs about 11 examples per
class, while the 3-layer derived kernel based classifier requires only 5 examples. The
overall behavior confirms that, (1) the hierarchical assumption holds for this task,
and (2) in terms of sample complexity, two layers is better than none, and three is
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better than two. Although the result of this experiment cannot say anything about
sample complexity and hierarchical architectures in general, we believe it provides
much motivation for studying the issue more closely.

Layer-wise Low-rank Approximations

Lastly, we consider classification experiments in which we adopt low-rank approxima-
tions to the integral operators associated to derived kernels at each layer, as described
in Section 2.2.5. Figure 2-9 shows the corresponding accuracy for the classification
task described above when taking different numbers of components in the approxi-
mation at all layers. Although we originally took 500 templates at each layer, the
experiments show that only 20-25 components gives similar accuracy as the full rank
case. The computational advantage of working with such an approximation is sub-
stantial. The fact that so few components suffice also suggests smarter rejection-like
sampling techniques for selecting the templates, as well as other possible algorithms
for adapting the templates to a specific task in a data-driven fashion.

On the whole the above experiments confirm that the derived kernels are robust
to translations, and provide empirical evidence supporting the claim that the neural
response includes mechanisms which can exploit the hierarchical structure of the
physical world.
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Figure 2-9: Experiments illustrating classification accuracy with low rank approxi-
mations to the integral operator associated with the derived kernel.

2.7 Postscript: The Derived Kernel and Visual

Cortex

Here we establish an exact connection between the neural response and the model of
Serre et al. [96, 98, 94]. We consider an architecture comprised of S1, C1, S2, C2 layers
as in the model illustrated in Figure 2-10. Consider the patches u ⊂ v ⊂ w ⊂ Sq and
corresponding function spaces Im(u), Im(v), Im(w), Im(Sq) and transformation sets
Hu = Hu,v, Hv = Hv,w, Hw = Hw,Sq. In contrast to the development in the previous
sections, we here utilize only the template spaces Tu ⊂ Im(u) and Tw ⊂ Im(w). As
will be made clear below, the derived kernel Kv on Im(v) is extended to a kernel Kw

on Im(w) that eventually defines the next neural response.
S1 and C1 units. Processing steps corresponding to S1 and C1 cells can be defined
as follows. Given an initial kernel Ku, let

NS1(f ◦ h)(t) = Ku(f ◦ h, t) (2.22)

with f ∈ Im(v), h ∈ Hu and t ∈ Tu. Then NS1(f ◦ h)(t) corresponds to the response
of an S1 cell with template t and receptive field h ◦u. The operations underlying the
definition of S1 can be thought of as “normalized convolutions”.

The neural response is given by

NC1(f)(t) = max
h∈H
{NS1(f ◦ h)(t)} (2.23)

with f ∈ Im(v), H = Hu and t ∈ Tu so that NC1 : Im(v) → R|Tu|. Then NC1(f)(t)
corresponds to the response of a C1 cell with template t and receptive field corre-
sponding to v.
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Figure 2-10: The model of Serre et al [98]. We consider here the layers up to C2.
(Modified from [96]; original provided courtesy T. Serre)

The derived kernel at layer v is defined as usual as

Kv(f, g) = 〈NC1(f), NC1(g)〉L2(Tu),

with f, g ∈ Im(v).
The kernel Kv is then extended to the layer w by

Kw(f, g) =
∑
h∈Hv

Kv(f ◦ h, g ◦ h) (2.24)

with f, g ∈ Im(w).

S1 and C1 units. The operations corresponding to S2 and C2 cells can now be
defined as follows.
Consider

NS2(f ◦ h)(t) = Kw(f ◦ h, t), (2.25)

with f ∈ Im(Sq), h ∈ Hw and t ∈ Tw. Then NS2(f ◦h)(t) corresponds to the response
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of an S2 cell with template t and with receptive field h ◦ w for h ∈ Hw. Now let

NC2(f)(t) = max
h∈H
{NS2(f ◦ h)(t)} (2.26)

with f ∈ Im(Sq), H = Hw and t ∈ Tw so that NC2 : Im(Sq)→ R|Tw|. Then NC2(f)(t)
corresponds to the response of a C2 cell with template t and with receptive field
corresponding to Sq. The derived kernel on whole images is simply

KSq(f, g) = 〈NC2(f), NC2(g)〉L2(Tw)

We add three remarks.

• We can identify the role of S and C units by splitting the definition of the
neural response into two stages, where “convolution” steps (2.22) and (2.25)
correspond to S units, and are followed by max operations (2.23) and (2.26)
corresponding to C units.

• A key difference between the model in [98] and the development in this chapter
is the “extension” step (2.24). The model proposed here corresponds to v = w
and is not completely faithful to the model in [98, 96] or to the commonly
accepted view of physiology. However, S2 cells could have the same receptive
field of C1 cells and C2 cells could be the equivalent of V 4 cells. Thus the
known physiology may not be inconsistent.

• Another difference lies in the kernel used in the convolution step. For sake of
clarity in the above discussion we did not introduce normalization. In the model
by [98] the kernels Kw, KSq are used either to define normalized dot products
or as input to a Gaussian radial basis function. The former case corresponds to
replacing Kw, KSq by K̂w, K̂Sq. The latter case corresponds to considering

G(f, g) = e−γd
2(f,g),

where we used the (derived) distance

d2(f, g) = K(f, f)− 2K(f, g) +K(g, g),

with K = Kw or K = KSq.
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Chapter 3

Discrimination and Entropy of the
Neural Response

This chapter includes joint work with Stephen Smale, Lorenzo Rosasco and
Gregory Shakhnarovich.

3.1 Introduction

In the previous Chapter, we defined a distance function on a space of images which
reflects how humans see the images. In this case, the distance between two images
corresponds to how similar they appear to an observer. We proposed in particular a
natural image representation, the neural response, motivated by the neuroscience of
the visual cortex. The “derived kernel” is the inner product defined by the neural
response and can be used as a similarity measure. A crucial question is that of the
trade-off between invariance and discrimination properties of the neural response. We
earlier suggested that Shannon entropy is a useful concept towards understanding this
question.

Here we substantiate the use of Shannon entropy [27] to study discrimination prop-
erties of the neural response. The approach sheds light on natural questions that arise
in an analysis of the neural response: How should one choose the patch sizes? How
many layers are appropriate for a given task? How many templates should be sam-
pled? How do architectural choices induce invariance and discrimination properties?
These are important and involved questions of broad significance. In this Chapter,
we suggest a promising means of clarifying the picture in simplified situations that
can be potentially extended to more general settings and ultimately provide answers
to the questions posed above.

This Chapter is organized as follows. In Section 3.2 we begin by briefly recalling
the definitions of the neural response, derived kernel, and Shannon entropy of the
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neural response. In Section 3.3 we then study discrimination properties in terms
of information-theoretic quantities in the case of two and three layer architectures
defined on strings. Finally, we provide in Section 3.4 remarks which derive intuition
from the preceding development and provide additional insight into the outstanding
questions above.

3.2 Background

We first briefly recall the definition of the neural response. The definition is based
on a recursion which defines a hierarchy of local kernels, and can be interpreted as a
multi-layer architecture.

3.2.1 Neural Response

Consider an n layer architecture given by sub-patches v1 ⊂ v2 ⊂ · · · ⊂ vn = Sq. We
use the notation Kn = Kvn and similarly Hn = Hvn , Tn = Tvn . Given a kernel K, we

define a normalized kernel via K̂(x, y) = K(x, y)/
√
K(x, x)K(y, y).

Definition 3.2.1. Given a normalized, non-negative valued initial reproducing kernel
K̂1, the m layer derived kernel K̂m, for m = 2, . . . , n, is obtained by normalizing

Km(f, g) = 〈Nm(f), Nm(g)〉L2(Tm−1)

where
Nm(f)(t) = max

h∈H
K̂m−1(f ◦ h, t), t ∈ Tm−1

with H = Hm−1.

From the above definition we see that, the neural response is a map

f ∈ Im(Sq)︸ ︷︷ ︸
input

7−→ N̂Sq(f) ∈ L2(T ) = R|T |︸ ︷︷ ︸
output

,

with T = Tm−1 and we let N̂m denote the normalized neural response given by N̂m =
Nm/‖Nm‖L2(T ). We can now define a thresholded variant of the neural response, along
with the induced pushforward measure on the space of orthants. In the discussion
that follows, we will study the entropy of this pushforward measure as well as that of
the natural measure on the space of images.

3.2.2 Thresholded Neural Response

Denote by O the set of orthants in L2(Tm−1) = R|Tm−1| identified by sequences of the

form o = (εi)
|T |
i=1 with εi ∈ {0, 1} for all i. If we assume that E[N̂m(f)(t)] = 0, then
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the map N̂∗m : Im(vm)→ O can be defined by

N̂∗m(f) :=
(
Θ(N̂m(f)(t))

)
t∈Tm−1

where Θ(x) = 1 when x > 0 and is 0 otherwise. From this point on, we assume
normalization and drop hats in the notation. Finally, we denote by N∗∗ρ the push-
forward measure induced by N∗, that is

N∗∗ρ(A) = ρ
({
f ∈ Im(Sq) | Nv(f) ∈ A

})
,

for any measurable set A ⊂ L2(Tm−1).

3.2.3 Shannon Entropy of the Neural Response

We introduce the Shannon entropies relative to the measures ρv and N∗∗v ρv. Con-
sider the space of images Im(v) = {f1, . . . , fd} to be finite. Then ρv reduces to
{p1, . . . , pd} = {ρv(f1), . . . , ρv(fd)}. In this case the entropy of the measure ρv is

S(ρv) =
∑
i

pi log
1

p i

and similarly,

S(N∗∗v ρv) =
∑
o∈O

qo log
1

q o
.

where qo = (N∗∗v ρv)(o) is explicitly given by

(N∗∗v ρv)(o) = ρv
({
f ∈ Im(v) |

(
Θ(Nv(f)(t))

)
t∈|T |

= o
})
.

If Im(v) is not finite we can define the entropy S(ρv) associated to ρv by considering
a partition π = {πi}i of Im(v) into measurable subsets. The entropy of ρv given the
partition π is then given by

Sπ(ρv) =
∑
i

ρv(πi) log
1

ρv(πi)
.

One can define the entropy of the original, non-thresholded neural response in a
similar fashion, taking a partition of the range of N̂v.

The key quantity we’ll need to assess the discriminative power of the neural re-
sponse Nv is the discrepancy

∆S = S(ρv)− S(N∗∗v ρv).
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It is easy to see that
S(ρv) ≥ S(N∗∗v ρv) (3.1)

so that ∆S ≥ 0. The discrepancy is zero if N∗ is one to one (see remark below).
Conversely, we achieve greater invariance when the discrimination ability decreases
and ∆S increases towards S(ρv).

We add two remarks.

Remark 3.2.1. Let X, Y be two random variables. We briefly recall the derivation
of the inequality (3.1), which we write here as S(Y ) ≤ S(X). We use two facts:
(a) S(X, Y ) = S(X) if Y = f(X) with f deterministic, and (b) S(X, Y ) ≥ S(Y )
in general. To prove (a), write P (Y = y,X = x) = p(Y = y|X = x)P (X = x) =
δ(y, f(x))P (X = x), and we sum over all y = x in the definition of the joint entropy
S(X, Y ).

Remark 3.2.2. Consider, for example, the finite partition π = {πo}o∈O on the space
of images induced by N∗v , with

πo =
{
f ∈ Im(v) |

(
Θ(Nv(f)(t))

)
t∈|T |

= o
}
.

We might also consider only the support of ρv, which could be much smaller than
Im(v), and define a similar partition of this subset as

πo =
{
f ∈ supp ρv |

(
Θ(Nv(f)(t))

)
t∈|T |

= o
}
,

with π = {πo | πo 6= ∅}. One can then define a measure on this partition and
corresponding notion of entropy.

3.3 Shannon Entropy of the Neural Response on

Strings

Let A be an alphabet of k distinct letters so that |A| = k. Consider three layers
u ⊂ v ⊂ w, where Im(u) = A, Im(v) = Am and Im(w) = An, with 1 < m < n. The
kernel Ku = K̂u on single characters is simply, Ku(f, g) = 1, if f = g and 0 otherwise.
The template sets are Tu = A and Tv = Am.

3.3.1 Explicit Expressions for N and K

We specialize the definitions of the neural response and derived kernel in the case of
strings.
The neural response at layer v is defined by

Nv(f)(t) = max
h∈Hu

{
K̂u(f ◦ h, t)

}
,
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and is a map Nv : Am → {0, 1}k. The norm of the neural response is

‖N̂v(f)‖ =: a(f) = # distinct letters in f.

From the definition of the derived kernel we have that

Kv(f, g) =: a(f, g) = # distinct letters common to f and g.

The normalized kernel can then be written as

K̂v(f, g) =
a(f, g)

(a(f)a(g))1/2
.

The neural response at layer w then satisfies

Nw(f)(t) =
e(f, t)

a(t)1/2
,

with

e(f, t) := max
h∈Hv

a(f ◦ h, t)
a(f ◦ h)1/2

.

This is the maximum fraction of distinct letters in m-substrings of f that are shared
by t. Finally the derived kernel at layer w satisfies

K̂w(f, g) =

∑
t∈Tv

e(f,t)e(g,t)
a(t)∑

t∈Tv
e(f,t)2

a(t)

∑
t∈Tv

e(q,t)2

a(t)

.

We are interested in knowing whether the neural response is injective up to reversal
and checkerboard. If N∗v is injective, then the inequality (3.1) holds with equality.
We can consider N∗v as acting on the set of equivalence classes of Im(v) defined
by the strings and their reversals, and if n is odd, a checkerboard when applicable
(see previous Chapter for a discussion concerning the checkerboard pattern). Here
injectivity of N∗v is with respect to the action on equivalence classes. The following
result is easy to prove.

Proposition 3.3.1. N∗v is injective if and only if Im(v) contains strings of length 2.

3.3.2 Orthant Occupancy

We consider a 2-layer architecture and let k = |A| > m. As before, Im(v) contains
strings of length m, and Im(u) contains single characters. The number of non-empty
orthants is

m∑
`=1

(
k

`

)
.
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The “all zero” orthant is always empty (strings must use at least one letter in the
alphabet). Let Op denote the set of orthants corresponding to strings of p < m
distinct letters, that is

Op =
{
o ∈ O |

k∑
i=1

εi = p
}
.

Let λo(p,m) denote the number of strings mapped into the orthant o ∈ Op. Then

λo(p,m) = kmqo.

If the measure ρv is uniform then λo(p,m) is the same for all o ∈ Op and we drop the
subscript on λ. In the uniform case we have the following recursive formula

λ(p,m) = pm −
p−1∑
j=1

(
p

j

)
λ(j,m),

with λ(1,m) = 1.
We now give an explicit expression for the discrepancy S(ρv)− S(N∗∗v ρv). If ρv is

uniform
S(ρv) = m log k.

With a little algebra we have that

S(N∗∗v ρv) = −
m∑
j

(
k

j

)
λ(j,m)

km
log

λ(j,m)

km

= −
m∑
j

(
k

j

)
λ(j,m)

km
log λ(j,m) + log km︸ ︷︷ ︸

S(ρv)

m∑
j

(
k

j

)
λ(j,m)

km︸ ︷︷ ︸
=1

,

and we obtain the following explicit expression for the discrepancy

∆S = S(ρv)− S(N∗∗v ρv) =
m∑
j

(
k

j

)
λ(j,m)

km
log λ(j,m).

This quantity can be seen as a weighted average, writing ∆S =
∑m
j bj log λ(j,m) and

noting that
∑
j bj = 1.
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Non-recursive Occupancy Formula (2-layer Case)

Alternatively, we can use multinomial coefficients to describe the number of m-strings
mapped into the

(
k
p

)
orthants with exactly p < m ones as follows:

λ(p,m) =
∑

r1,...,rp

(
m

r1, . . . , rp

)
= p!S(m, p)

=
p∑
t=1

(−1)p+t
(
p

t

)
tm

where the first summation is taken over all sequences of positive integer indices
r1, . . . , rp such that

∑p
i=1 ri = m. The number of terms in this summation is the

number of p-part compositions of m1 and is given by
(
m−1
p−1

)
. The S(m, p) are Stir-

ling numbers of the second kind 2, and the final equality follows from direct ap-
plication of Stirling’s Identity. Note that since S(m, 1) = 1, we can verify that
λ(1,m) = S(m, 1) = 1.

From the multinomial theorem, we also have that

∑
{ri≥0:r1+···+rp=m}

(
m

r1, . . . , rp

)
= (1 + · · ·+ 1)m = pm =

p∑
k=1

λ(k,m)

which checks with the previous recursive definition.

3.4 Remarks

We add some remarks concerning the application of the above ideas towards un-
derstanding the role of the patch sizes and layers in inducing discrimination and
invariance properties.

• In a 3-layer network, u ⊂ v ⊂ w, N∗w(f)(t) → 1 in probability as n → ∞,
for all t ∈ Tv, with Tv exhaustive and f ∼ ρw with ρw uniform. As the string
f gets infinitely long, then the probability we find a given template in that
string goes to 1. Note that the rate is very slow: for example, there are (k−1)n

possible strings which do not include a given letter which would appear in many
templates.

• The above also implies that the entropy S(N∗∗w ρw) → 0 as n → ∞ since all
images f are mapped to the orthant of all ones.

1A p-part composition of m is a solution to m = r1 + · · ·+ rp consisting of positive integers.
2S(m, p) counts the number of ways one can partition sets of size m into p nonempty subsets.
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• Consider a 3 layer architecture: u = Str(1) ⊂ v = Str(m) ⊂ w = Str(n) with n
fixed, all translations, and exhaustive template sets.

Question: Which choice of m maximizes S(N∗∗w ρw)? For large m most of the
probability will concentrate near the “sparse” orthants – the orthants charac-
terized by many zeros– because the probability of finding a long template in f
is low. For small m, most of the probability mass will fall in the orthants with
many ones – where a large number of templates match pieces of f . In both
cases, the entropy is low because the number of orthants with few 1’s or few 0’s
is small. For some intermediate choice of m, the entropy should be maximized
as the probability mass becomes distributed over the many orthants which are
neither mostly zeros nor mostly ones. (consider the fact that

(
a
a/2

)
�

(
a
1

)
or(

a
a−1

)
), where a is a positive even integer)

In this Chapter, we have shown the possibility of mathematically analyzing the
discriminatory power of the neural response in simple cases, via entropy. It is our
hope that the methods suggested here can be extended and ultimately leveraged
to understand in concrete terms how parametric and architectural choices influence
discrimination and invariance properties.

70



Chapter 4

Group-Theoretic Perspectives on
Invariance

A goal of central importance in the study of hierarchical models for object recognition
– and indeed the mammalian visual cortex – is that of understanding quantitatively
the invariance-selectivity tradeoff, and how invariance and discrimination properties
contribute towards providing an improved representation useful for learning from
data. In this Chapter we provide a general group-theoretic framework for character-
izing and understanding invariance in a family of hierarchical models. We show that
by taking an algebraic perspective, one can provide a unified set of conditions which
must be met to establish invariance, as well as a constructive prescription for meeting
those conditions. Analyses in specific cases of particular relevance to computer vision
and text processing are given, yielding insight into how and when invariance can be
achieved. We find that the minimal sets of transformations intrinsic to the hierarchi-
cal model needed to support a particular invariance can be clearly described, thereby
encouraging efficient computational implementations.

4.1 Introduction

Several models of object recognition drawing inspiration from visual cortex have been
developed over the past few decades [40, 71, 65, 118, 98, 96], and have enjoyed sub-
stantial empirical success. A central theme found in this family of models is the
use of Hubel and Wiesel’s simple and complex cell ideas [52]. In the primary visual
cortex, features are computed by simple units by looking for the occurrence of a pre-
ferred stimulus in a region of the input (“receptive field”). Translation invariance is
then explicitly built into the processing pathway by way of complex units which pool
locally over simple units. The alternating simple-complex filtering/pooling process
is repeated, building increasingly invariant representations which are simultaneously
selective for increasingly complex stimuli.

A goal of central importance in the study of hierarchical architectures and the
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visual cortex alike is that of understanding quantitatively this invariance-selectivity
tradeoff, and how invariance and selectivity contribute towards providing an improved
representation useful for learning from examples.

In Chapter 2, we established a framework which makes possible a more precise
characterization of the operation of hierarchical models via the study of invariance
and discrimination properties. However we studied invariance in an implicit, rather
than constructive, fashion. Two specific cases were analyzed: invariance with respect
to image rotations and string reversals, and the analysis was tailored to the particular
setting. In this Chapter, we reinterpret and extend the invariance analysis in Chap-
ter 2 using a group-theoretic language, towards clarifying and unifying the general
properties necessary for invariance in a family of hierarchical, multi-scale models. We
show that by systematically applying algebraic tools, one can provide a concise set
of conditions which must be met to establish invariance, as well as a constructive
prescription for meeting those conditions. We additionally find that when one im-
poses the mild requirement that the transformations of interest have group structure,
a broad class of hierarchical models can only be invariant to orthogonal transforma-
tions. This result suggests that common architectures found in the literature might
need to be rethought and modified so as to allow for broader invariance possibili-
ties. Finally, we show that the proposed framework automatically points the way to
efficient computational implementations of invariant models.

The Chapter is organized as follows. We very briefly recall important definitions
from Chapter 2. Next, we extend the framework in Chapter 2 to a more general
setting allowing for arbitrary pooling functions, and give a proof for invariance of the
corresponding family of hierarchical feature maps. This contribution is key because
it shows that several results in Chapter 2 do not depend on the fact that the max was
used. We then establish a group-theoretic framework for characterizing invariance
in hierarchical models expressed in terms of the generalized set of objects defined
here. Within this framework, we turn to the problem of invariance in two specific
domains of practical relevance: images and text strings. Finally, we conclude with a
few remarks summarizing the contributions and relevance of our work. The reader
is assumed to be familiar with introductory concepts in group theory. An excellent
reference is [4].

4.2 Invariance of a Hierarchical Feature Map

We first review important definitions and concepts concerning the neural response
map presented in Chapter 2, drawing attention to the conditions needed for the
neural response to be invariant with respect to a family of arbitrary transformations.
We then generalize the neural response map to allow for arbitrary pooling functions
and adapt the previously presented proof of invariance. In this more general setting,
we are able to describe for a broad range of hierarchical models (including a class
of convolutional neural networks), necessary conditions for invariance to a set of
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transformations.
First define a system of patches associated to successive layers v1 ⊂ v2 ⊂ · · · ⊂ vn,

with vn the size of the full input, and spaces of functions on the patches Im(vi). In
many cases it will only be necessary to work with arbitrary successive pairs of patches,
in which case we will denote by u the smaller patch, and v the next larger patch. Next,
denote by h ∈ Hi the translation functions h : vi → vi+1, for all i = 1, . . . , n − 1.
To each layer we also associate a dictionary of templates, Ti ⊆ Im(vi), typically
constructed by randomly sampling from an appropriate probability measure. We will
discuss also transformations r ∈ Ri with r : vi → vi for all i = 1, . . . , n, but rule
out the degenerate transformations h or r which map their entire domain to a single
point. When it is necessary to identify transformations defined on a specific domain
v, we will use the notation rv : v → v.

We note that these definitions alone immediately constrain the possible transfor-
mations one can consider: All h ∈ Hi cannot be surjective, and therefore cannot be
bijective. If Hi contains only translations, then clearly every h ∈ Hi is injective. And
if the patches {vi}i are finite, then every r ∈ Ri, for i = 1, . . . , n must be either
bijective, or neither injective nor surjective.

The neural response Nm(f) and associated derived kernel K̂m are defined as fol-
lows.

Definition 4.2.1. Given a non-negative valued, normalized, initial reproducing ker-
nel K̂1, the m-layer derived kernel K̂m, for m = 2, . . . , n, is obtained by normalizing

Km(f, g) = 〈Nm(f), Nm(g)〉L2(Tm−1)

where
Nm(f)(t) = max

h∈H
K̂m−1(f ◦ h, t), t ∈ Tm−1

with H = Hm−1.

Here normalization is given by K̂(f, g) = K(f, g)/
√
K(f, f)K(g, g). Note that the

neural response decomposes the input into a hierarchy of parts, analyzing subregions
at different scales. The neural response and derived kernels describe in compact,
abstract terms the core operations built into the many related hierarchical models of
object recognition cited above. The reader is encouraged to consult Chapter 2 for a
more detailed discussion.

4.2.1 Generalized Pooling and Invariance

We next provide a generalized proof of invariance of a family of hierarchical feature
maps, where the properties we derive do not depend on the choice of the pooling
function. A crucial component is the following modified invariance Assumption. This
condition applies regardless of whether the transformationsRi exhibit group structure
or not.

73



Assumption 4.2.1. Fix any r ∈ R. There exists a surjective map π : H → H
satisfying

rv ◦ h = π(h) ◦ ru (4.1)

for all h ∈ H.

We will show that given the above assumption, invariance of the neural response
can be established for general pooling functions of which the max is one particular
choice. We first consider the case where H is assumed to be neither finite nor count-
able, and then from this picture show that the more familiar case of finite H can also
be described.

We first assume that H ⊂ H, where H is the set of all possible appropriately
defined translations, and H is an unordered subset. Let B(R) denote the Borel
algebra of R. As in Assumption 4.2.1, we define π : H → H to be a surjection,
and let Ψ : B(R++) → R++ be a pooling function defined for Borel sets B ∈ B(R)
consisting of only positive elements. Given a positive functional F acting on H, we
define the set F (H) ∈ B(R) as

F (H) = {F [h] | h ∈ H}.

Note that since π is surjective, π(H) = H, and therefore (F ◦ π)(H) = F (H).
With these definitions in hand, we can define a more general “neural response” as

follows. For H = Hm−1 and all t ∈ T = Tm−1, let the neural response be given by

Nm(f)(t) = (Ψ ◦ F )(H)

where
F [h] = K̂m−1(f ◦ h, t).

We can now give a proof of invariance of the neural response, assuming a general
pooling function Ψ.

Proposition 4.2.1. Given any function Ψ : B(R++) → R++, if the initial kernel
satisfies K̂1(f, f ◦ r) = 1 for all r ∈ R, f ∈ Im(v1), then

N̂m(f) = N̂m(f ◦ r),

for all r ∈ R, f ∈ Im(vm) and m ≤ n.

Proof. The proof is by induction. The base case is true by assumption. The inductive
hypothesis is that K̂m−1(u, u ◦ r) = 1 for any u ∈ Im(vm−1). This means that
F (H ◦ r) = F (H). Assumption 4.2.1 states that r ◦H = π(H)◦ r = H ◦ r. Combining
the inductive hypothesis and the Assumption, we see that Nm(f ◦ r)(t) = (Ψ ◦F )(r ◦
H) = (Ψ ◦ F )(H ◦ r) = (Ψ ◦ F )(H) = Nm(f)(t) .
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We give a few practical examples of the pooling function Ψ.
Maximum: The original neural response is recovered setting

Ψ(B) = supB .

Averaging: We can consider an averaging model by setting

Ψ(B) =
∫
x∈B

xdµ

where a natural choice of the measure µ is the push-forward measure ρH ◦F−1 induced
by the given measure on H, ρH . If H is a finite sample drawn from ρH , then setting
B = F (H) we can consider the empirical measure µ = 1

|B|
∑
b∈B δb, where δb is the

Dirac measure centered on b. In this case

Ψ(B) =
∫
x∈B

xdµ = 1
|B|

∑
b∈B

b.

Other Norms: We may consider other norms, such as the weighted Lp family,

Ψ(B) =
(∫

x∈B
w(x)|x|pdµ

)1/p

,

where w(x) is a positive weight function.
Symmetric Polynomials: If B = {bi}Ni , one can consider pooling functions which
are symmetric polynomials in N variables. A potentially useful polynomial is

Ψ(B) =
N∏
i=1

N∏
j=i+1

|bi − bj|α.

This pooling function can be interpreted as preferring a sparse pattern of responses
in the pooling region. If the template is a strong match (as defined by K) in two or
more areas, Ψ will be small, whereas strong activation in one area and nowhere else
leads to a comparatively large output. The precise fall off with increasing numbers
of strong activations can be controlled via the (positive) parameter α.

4.3 A Group-Theoretic Invariance Framework

This section establishes general definitions and conditions needed to formalize a group-
theoretic concept of invariance. The development presented here seeks to separate
requirements for invariance stemming from the organization and technical definitions
of the neural response, from requirements which come from group-related conditions
applicable to the set of transformations and translations under consideration.

Recalling that the neural response is defined on an appropriate space of functions,

75



denote by S the set on which image functions are defined, and let G be a group.
The set S could contain, for example, points in R2 (in the case of 2D graphics) or
positive integer indices (the case of strings). Because it will be necessary to translate
in S, it is assumed that an appropriate notion of addition between the elements of S
is given. We will be concerned only with invariance to domain transformations, and
so consider a suitable (left) action of G on S defined by A : G × S → S. Given an
element g ∈ G, the notation Ag : S → S will be utilized. Since A is a group action,
by definition it satisfies (Ag ◦ Ag′)(x) = Agg′(x) for all x ∈ S and all g, g′ ∈ G. An
explicit characterization of A is dependent on the particular setting.

Assumption 4.2.1 requires that rv ◦ h = h′ ◦ ru for h, h′ ∈ H and r ∈ R, with
the map h 7→ h′ onto. We can formalize this condition in group theoretic terms,
and consider an arbitrary pair of successive layers with associated patch sizes u and
v. Recall that the definition of the neural response involves the “built-in” transla-
tion/restriction functions h : u→ v with u ⊂ v ⊂ S. The restriction behavior of the
translations in H, however, poses a difficulty vis. inverse elements in a group. To get
around this difficulty, we decompose the h ∈ H into a composition of two functions:
the action of a translation and an inclusion. Denote by T the group of translations
appropriate for the domain of interest S. Note that although we assume the specific
case of translations here, the set of built-in operations may more generally contain
other kinds of transformations. We assume, however, that T is abelian.

We begin by writing ha : u→ v and connect the translation behavior of the h ∈ H
to the group T by defining an injective map from translation parameters to group
elements:

S → T

a 7→ ta.
(4.2)

Note that although T is defined to be a group, S need not have group structure.
Next, define ιu : u ↪→ v to be the canonical inclusion of u into v. Then for ha : u→ v
with ha ∈ H, a ∈ S, x ∈ u, we can write ha = Ata ◦ ιu where it is assumed that the
action A is defined borrowing addition from S such that Ata(x) = x + a. The above
dissociation of domain transformation from restriction is subtle but important.

We make an additional assumption that the transformations with respect to which
invariance is considered are elements of a group, and denote this group by the symbol
R. As in the case of translations, we assume that for every r ∈ R, there is a unique
corresponding element ρ ∈ R whose action satisfies Aρu(x) = ru(x) and Aρv(x) =
rv(x), for all x ∈ S. Here, to each group element ρ ∈ R we implicitly associate two
elements ρu, ρv ∈ Ruv, where ρu and ρv are transformations built from ρ, but which
may be different in the context of an action defined on u or v. The group Ruv is the
smallest group generated by the elements {ρv, ρu | ρ ∈ R}. The distinction between
ρ, ρu and ρv will become clear in the case of feature maps defined on functions whose
domain is a finite set (such as strings). We will abuse notation and denote by r both
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elements of R and corresponding elements in R.
We would next like to define an action for a single group G so that compositions of

particular group elements’ actions are equivalent to the action of some other element
by way of associativity. This can be accomplished by forming the semidirect product

G = T oR (4.3)

where T is assumed to be normal in G, and T ∩ R = {1}. Note that although this
construction precludes R from containing the transformations in T , allowing R to
contain translations is an uninteresting case. The resulting group G is easily shown
to be isomorphic to a group with normal subgroup T and subgroup R where each
element may be written in the form g = tr for t ∈ T, r ∈ R. Other instances of
built-in transformations beyond simple translations need only satisfy the condition
that T is a normal, abelian subgroup of G.

Define the injection τ : H → T by ha 7→ ta, where a is a parameter characterizing
the translation ha. Then we can define T̃ = τ(Hu) ⊆ T as the set of group elements
associated with a layer (at scale u) of the neural response map. Substituting h =
ha, h

′ = hb, and denoting by r the element of R corresponding to a transformation in
R, the condition rv ◦ h = h′ ◦ ru for some h′ ∈ H can now be expressed as

Arv ◦ Ata ◦ ιu = Atb ◦ ιu ◦ Aru ◦ ιu (4.4)

for some tb ∈ T̃ .
Our goal is to describe compositions of transformations r ∈ R and translations

ta ∈ T̃ . However on the right hand side of Equation (4.4) the translation Atb is
separated from the transformation Aru by the inclusion ιu so we will therefore need
to introduce an additional condition on R: we require that if x ∈ u, then Aru(x) ∈ u
for all r ∈ R. The precise implications of this constraint will be explored below.

One can now see that if the above requirement is satisfied, then the condition (4.4)
reduces to verifying that Arv ◦ Ata = Atb ◦ Aru , and that the map ta 7→ tb is onto.
Applying the associativity property of the action A, we can express this equality in
clear group-theoretic terms as the following. Given any r ∈ R,

rvT̃ = T̃ ru . (4.5)

This is a purely algebraic requirement concerning the groups R and T , distinct from
the restriction related conditions involving the patches u and v. The requirements
above combine to capture the content of Assumption 4.2.1, but in a way that clearly
separates group related invariance conditions from constraints due to restriction and
the nested nature of an architecture’s patch domains.

The above discussion can be summarized in the form of a concise definition that
can be applied to establish invariance of the neural response feature maps Nm(f),
2 ≤ m ≤ n with respect to a set of transformations. Let R̃ ⊆ G be the set of
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transformations for which we would like to prove invariance, corresponding to R.

Definition 4.3.1 (Compatible Sets). The subsets R̃ ⊂ G and T̃ ⊂ T are compatible
if all of the following conditions hold:

1. For each r ∈ R̃, rvT̃ = T̃ ru. When ru = rv for all r ∈ R, this means that
normalizer of T̃ in R̃ is R̃.

2. Left transformations rv never take a point in v outside of v, and right transfor-
mations ru never take a point in u/v outside of u/v (respectively):

imArv ◦ ιv ⊆ v, imAru ◦ ιu ⊆ u, imAru ◦ ιv ⊆ v,

for all r ∈ R̃.

3. Translations never take a point in u outside of v:

imAt ◦ ιu ⊆ v

for all t ∈ T̃ .

The final condition above has been added to ensure that the set of translations
T̃ satisfy the implicit assumption that the hierarchy’s translations h ∈ H are maps
which respect the definition h : u→ v.

If R̃ and T̃ are compatible, then given r ∈ R̃ and t ∈ T̃ ,

f ◦ Arv ◦ At ◦ ιu = f ◦ At′ ◦ Aru ◦ ιu (4.6)

for some t′ ∈ T̃ , with f ∈ Im(v) and u ⊂ v ⊂ S. In addition, the induced map
π : H → H sending h to h′ is surjective. As will become clear in the following section,
the tools available to us from group theory will provide insight into the structure of
compatible sets.

4.3.1 Orbits and Compatible Sets

Suppose we assume that R̃ is a group, and ask for the smallest compatible T̃ . We
will show that the only way to satisfy Condition (1) in Definition 4.3.1 is to require
that T̃ be a union of R̃-orbits, under the action

(t, r) 7→ rvtr
−1
u (4.7)

for t ∈ T , r ∈ R̃. This perspective is particularly illuminating because it will eventu-
ally allow us to view conjugation by a transformation r as a permutation of T̃ , thereby
establishing surjectivity of the map π defined in Assumption 4.2.1. For computational
reasons, viewing T̃ as a union of orbits is also convenient.

If rv = ru = r, then the action (4.7) is exactly conjugation and the R̃-orbit of a
translation t ∈ T is the conjugacy class CR̃(t) = {rtr−1 | r ∈ R̃}. Orbits of this form
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are also equivalence classes under the relation s ∼ s′ if s′ ∈ CR̃(s), and we will require
T̃ to be partitioned by the conjugacy classes induced by R̃.

The following Proposition shows that, given set of candidate translations in H,
we can construct a set of translations compatible with R̃ by requiring T̃ to be a union
of R̃-orbits under the action of conjugation.

Proposition 4.3.1. Let Γ ⊆ T be a given set of translations, and assume the follow-
ing: (1) G ∼= T o R, (2) For each r ∈ R, r = ru = rv, (3) R̃ is a subgroup of R.
Then Condition (1) of Definition 4.3.1 is satisfied if and only if T̃ can be expressed
as a union of orbits of the form

T̃ =
⋃
t∈Γ

CR̃(t) . (4.8)

Proof. We first show that for T̃ of the form above, Condition (1) of Definition 4.3.1
is satisfied. Combining the first two assumptions, we have for all t ∈ T , r ∈ R̃ that
rvtr

−1
u = rtr−1 ∈ T . Then for each r ∈ R̃,

rvT̃ r
−1
u = rT̃ r−1 = r

(⋃
t∈Γ

CR̃(t)

)
r−1 = r

(⋃
t∈Γ

{r̃tr̃−1 ∈ T | r̃ ∈ R̃}
)
r−1

=
⋃
t∈Γ

{rr̃tr̃−1r−1 ∈ T | r̃ ∈ R̃} =
⋃
t∈Γ

{r′tr′−1 ∈ T | r′ ∈ R̃} = T̃

where the last equality follows since r′ ≡ rr̃ ∈ R̃, and gG = G for any group G and
g ∈ G because gG ⊆ G combined with the fact that Gg−1 ⊆ G ⇒ Gg−1g ⊆ Gg ⇒
G ⊆ Gg giving gG = G. So the condition is verified. Suppose now that Condition
(1) is satisfied, but T̃ is not a union of orbits for the action of conjugation. Then
there is a t′ ∈ T̃ such that t′ cannot be expressed as t′ = rtr−1 for some t ∈ T̃ . Hence
rT̃ r−1 ⊂ T̃ . But this contradicts the assumption that Condition (1) is satisfied, so T̃
must be of the form shown in Equation (4.8).

An interpretation of the above Proposition, is that when T̃ is a union of R̃-orbits,
conjugation by r can be seen as a permutation of T̃ . In general, a given T̃ may be
decomposed into several such orbits and the conjugation action of R̃ on T̃ may not
necessarily be transitive.

Conversely, suppose we fix T̃ ⊆ T , and attempt to characterize a non-trivial R̃
such that each (r, t) ∈ T̃ × R̃ satisfies Condition (1) of Definition 4.3.1. Consider
conjugation by elements of R̃ on the subset T̃ . The orbit of T̃ for this operation is
{rT̃ r−1 | r ∈ R̃}. We would like the orbit of T̃ to be itself naturally, and so one
can define R̃ to be composed of elements taken from the stabilizer (normalizer) of T̃ :
R̃ ⊆ NR(T̃ ) = {r ∈ R | rT̃ r−1 = T̃}. Once again, conjugation by r can be seen as a
permutation on T̃ .
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4.4 Analysis of Specific Invariances

We continue with specific examples relevant to image processing and text analysis.

4.4.1 Isometries of the Plane

Consider the case where G is the group M of planar isometries, u ⊂ v ⊂ S = R2, and
H involves translations in the plane. Let O2 be the group of orthogonal operators,
and let ta ∈ T denote a translation represented by the vector a ∈ R2. In this section
we assume the standard basis and work with matrix representations of G when it is
convenient.

We first need that T CM , a property that will be useful when verifying Condition
(1) of Definition 4.3.1. Indeed, from the First Isomorphism Theorem [4], the quotient
space M/T is isomorphic to O2, giving the following commutative diagram:

M
π- O2

M/T

φ

?
π̃

-

where the isomorphism π̃ : M/T → O2 is given by π̃(mT ) = π(m) and φ(m) =
mT . We recall that the kernel of a group homomorphism π : G → G′ is a normal
subgroup of G, and that normal subgroups N of G are invariant under the operation
of conjugation by elements g of G. That is, gNg−1 = N for all g ∈ G. With this
picture in mind, the following Lemma establishes that T CM , and further shows that
M is isomorphic to T oR with R = O2, and T a normal subgroup of M .

Lemma 4.4.1. For each m ∈M , ta ∈ T ,

mta = tbm

for some unique element tb ∈ T .

Proof. The group of isometries of the plane is generated by translations and orthogo-
nal operators, so we can write an element m ∈M as m = tvϕ. Now define the homo-
morphism π : M → O2, sending tvϕ 7→ ϕ. Clearly T is the kernel of π and is therefore
a normal subgroup of M . Furthermore, M = T oO2. So we have that, for all m ∈M ,
mtam

−1 = tb, for some element tb ∈ T . Denote by ϕ(v) the operation of ϕ ∈ O2 on a
vector v ∈ R2 given by the standard matrix representation R : O2 → GL2(R) of O2.
Then ϕta = tbϕ with b = ϕ(a) since ϕ ◦ ta(x) = ϕ(x+ a) = ϕ(x) + ϕ(a) = tbϕ(x). So
for arbitrary isometries m, we have that

mtam
−1 = (tvϕ)ta(ϕ

−1t−v) = tvtbϕϕ
−1t−v = tb,
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where b = ϕ(a). Since the operation of ϕ is bijective, b is unique, and mTm−1 = T
for all m ∈M .

We are now in a position to verify the Conditions of Definition 4.3.1 for the case
of planar isometries.

Proposition 4.4.1. Let H be the set of translations associated to an arbitrary layer
of the hierarchical feature map and define the injective map τ : H → T by ha 7→ ta,
where a is a parameter characterizing the translation. Set Γ = {τ(h) | h ∈ H}. Take
G = M ∼= T oO2 as above. The sets

R̃ = O2, T̃ =
⋃
t∈Γ

CR̃(t)

are compatible.

Proof. We first note that in the present setting, for all r ∈ R, r = ru = rv. In addition,
Lemma 4.4.1 says that for all t ∈ T , r ∈ O2, rtr−1 ∈ T . We can therefore apply
Proposition 4.3.1 to verify Condition (1) in Definition 4.3.1 for the choice of T̃ above.
Since R̃ is comprised of orthogonal operators, Condition (2) is immediately satisfied.
Condition (3) requires that for every ta ∈ T̃ , the magnitude of the translation vector
a must be limited so that x+a ∈ v for any x ∈ u. We assume that every ha ∈ H never
takes a point in u outside of v by definition. Then since T̃ is constructed as the union
of conjugacy classes corresponding to the elements of H, every t′ ∈ T̃ can be seen as
a rotation and/or reflection of some point in v, and Condition (3) is satisfied.

Example 4.4.1. If we choose the group of rotations of the plane by setting R̃ =
SO2 CO2, then the orbits OR̃(a) are circles of radius ‖a‖. See Figure 4-1. Therefore
rotation invariance is possible as long as the set T̃ includes translations to all points
along the circle of radius a, for each element ta ∈ T̃ . A similar argument can be made
for reflection invariance, since any rotation can be built out of the composition of two
reflections.

Example 4.4.2. Analogous to the previous choice of the rotation group SO2, we may
also consider finite cyclical groups Cn describing rotations for θ = 2π/n. In this case
the construction of an appropriate set of translations T̃ is the same, and we include
suitable conjugacy classes with respect to the group Cn.

Proposition 4.4.2. Assume that the input spaces {Im(vi)}n−1
i=1 are endowed with a

norm inherited from Im(vn) by restriction. Then at all layers, the group of orthogonal
operators O2 is the only group of transformations to which the neural response can be
invariant.

Proof. Let R denote a group of transformations to which we would like the neural
response to be invariant. If the action of a transformation r ∈ R on elements of vi
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vi

vi+1

ta OR~(tc)

OR~(tb)

OR~(ta)

tb

tc

Figure 4-1: Example illustrating construction of an appropriate H. Suppose H ini-
tially contains the translations Γ = {ha, hb, hc}. Then to be invariant to rotations,
the condition on H is that H must also include translations defined by the R̃-orbits
OR̃(ta), OR̃(tb) and OR̃(tc). In this example R̃ = SO2, and the orbits are translations
to points lying on a circle in the plane.

increases the length of those elements, then Condition (2) of Definition 4.3.1 would
be violated. So members of R must either decrease length or leave it unchanged.
Suppose r ∈ R decreases the length of elements on which it acts by a factor c ∈ [0, 1),
so that ‖Ar(x)‖ = c‖x‖. Condition (1) says that for every t ∈ T̃ , we must be able
to write t = rt′r−1 for some t′ ∈ T̃ . Choose tv = arg maxτ∈T̃ ‖Aτ (0)‖, the largest
magnitude translation. Then t = rt′r−1 ⇒ t′ = r−1tvr = tr−1(v). But ‖At′(0)‖ =

c−1‖v‖ > ‖v‖ = ‖Atv(0)‖, so t′ is not an element of T̃ and Condition (1) cannot be
satisfied for this r. Therefore, we have that the action of r ∈ R on elements of vi, for
all i, must preserve lengths. The group of transformations which preserve lengths is
the orthogonal group O2.

The following Corollary is immediate:

Corollary 4.4.1. The neural response cannot be scale invariant, even if K1 is.

Example 4.4.3. Consider a simple convolutional neural network consisting of two
layers, one filter at the first convolution layer, and downsampling at the second layer
defined by summation over all distinct k × k blocks. The results above say that if
the filter kernel is rotation invariant, the output representation (after downsampling)
is invariant to global rotation of the input image. Convolution implies the choice
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K1(f, g) = 〈f, g〉L2. We require that the convolution filter t is invariant: t ◦ r = t
for all r ∈ Rot. In this case, K1(f ◦ r, t) = K1(f, t ◦ r−1) = K1(f, t), so we have
invariance of the initial kernel in the sense that K1 is always applied to an image
patch and an invariant template.

4.4.2 Strings, Reflections, and Finite Groups

We next consider the case of finite length strings defined on a finite alphabet. Al-
though the definitions in Chapter 2 applicable to 1-dimensional strings are expressed
in terms of maps between sets of indices, one of the advantages group theory provides
in this setting is that we need not work with permutation representations. Indeed, we
may equivalently work with group elements which act on strings as abstract objects,
leading to a cleaner development.

The definition of the neural response given in Chapter 2 involves translating an
analysis window over the length of a given string. Clearly translations over a finite
string do not constitute a group as the law of composition is not closed in this case.
We will get around this difficulty by considering closed words formed by joining the
free ends of a string. Following the case of circular data where arbitrary translations
are allowed, we will then consider the original setting described in Chapter 2 in which
strings are finite non-circular objects.

Taking a geometric standpoint sheds light on groups of transformations applicable
to strings. In particular, one can interpret the operation of the translations in H as
a circular shift of a string followed by truncation outside of a fixed window. The
cyclic group of circular shifts of an n-string is readily seen to be isomorphic to the
group of rotations of an n-sided regular polygon. Similarly, reversal of an n-string is
isomorphic to reflection of an n-sided polygon, and describes a cyclic group of order
two. As in Equation (4.3), we can combine rotation and reflection via a semidirect
product

Dn
∼= Cn o C2 (4.9)

where Ck denotes the cyclic group of order k. The resulting product group has a
familiar presentation. Let t, r be the generators of the group, with r corresponding
to reflection (reversal), and t corresponding to a rotation by angle 2π/n (leftward
circular shift by one character). Then the group of symmetries of a closed n-string is
described by the relations

Dn = 〈t, r | tn, r2
v, rvtrvt〉. (4.10)

These relations can be seen as describing the ways in which an n-string can be left
unchanged. The first says that circularly shifting an n-string n times gives us back the
original string. The second says that reflecting twice gives back the original string,
and the third says that left-shifting then reflecting is the same as reflecting and then
right-shifting. In describing exhaustively the symmetries of an n-string, we have
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described exactly the dihedral group Dn of symmetries of an n-sided regular polygon.
As manipulations of a closed n-string and an n-sided polygon are isomorphic, we will
use geometric concepts and terminology to establish invariance of the neural response
defined on strings with respect to reversal. In the following discussion we will abuse
notation and at times denote by u and v the largest index associated with the patches
u and v.

In the case of reflections of strings, ru is quite distinct from rv. The latter re-
flection, rv, is the usual reflection of an v-sided regular polygon, whereas we would
like ru to reflect a smaller u-sided polygon. To build a group out of such operations,
however, we will need to ensure that ru and rv both apply in the context of v-sided
polygons. We extend Aru to v by defining ru to be the composition of two operations:
one which reflects the u portion of a string and leaves the rest fixed, and another
which reflects the remaining (v− u)-substring while leaving the u-substring fixed. In
this case, one will notice that ru can be written in terms of rotations and the usual
reflection rv:

ru = rvt
−u = turv . (4.11)

This also implies that for any x ∈ T ,

{rxr−1 | r ∈ 〈rv〉} = {rxr−1 | r ∈ 〈rv, ru〉},

where we have used the fact that T is abelian, and assume the relations in Equa-
tion (4.10).

We can now make an educated guess as to the form of T̃ by starting with Condition
(1) of Definition 4.3.1 and applying the relations appearing in Equation (4.10). Given
x ∈ T̃ , a reasonable requirement is that there must exist an x′ ∈ T̃ such that rvx =
x′ru. In this case

x′ = rvxru = rvxrvt
−u = x−1rvrvt

−u = x−1t−u, (4.12)

where the second equality follows from Equation (4.11), and the remaining equalities
follow from the relations (4.10). The following Proposition confirms that this choice
of T̃ is compatible with the reflection subgroup of G = Dv, and closely parallels
Proposition 4.4.1.

Proposition 4.4.3. Let H be the set of translations associated to an arbitrary layer
of the hierarchical feature map and define the injective map τ : H → T by ha 7→ ta,
where a is a parameter characterizing the translation. Set Γ = {τ(h) | h ∈ H}. Take
G = Dn

∼= T oR, with T = Cn = 〈t〉 and R = C2 = {r, 1}. The sets

R̃ = R, T̃ = Γ ∪ Γ−1t−u

are compatible.

Proof. Equation (4.11) gives that for x ∈ T , rvxr
−1
u = rvxt

ur−1
v . By construction,
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T C G, so for x ∈ T , rvxr
−1
v ∈ T . Since xtu is of course an element of T , we thus

have that rvxr
−1
u ∈ T . Equation (4.12) together with the relation ru = r−1

u shows
that x−1t−u = rvxru = rvxr

−1
u . Therefore

T̃ =
⋃
x∈Γ

{x, x−1t−u} =
⋃
x∈Γ

{rvxr−1
u | r ∈ {r, 1}} =

⋃
x∈Γ

{rvxtur−1
v | r ∈ R̃} =

⋃
x∈Γ′

CR̃(x),

(4.13)
where Γ′ = Γtu. Thus T̃ is a seen as a union of R̃-orbits with r′ = r′v = r′u, r

′ ∈ R̃,
and we can apply Proposition 4.3.1 with Γ′ to confirm that Condition (1) is satisfied.

To confirm Conditions (2) and (3), one can consider permutation representations
of ru, rv and t ∈ T̃ acting on v. Viewed as permutations, we necessarily have that
Aru(u) = u,Aru(v) = v, Arv(v) = v and At(u) ⊂ v.

One may also consider non-closed strings, as in Chapter 2, in which case substrings
which would wrap around the edges are disallowed. However Proposition 4.4.3 in fact
points to the minimum T̃ for reversals in this scenario as well, noticing that the set
of allowed translations is the same set above but with a few illegal elements removed.
If we again take length u substrings of length v strings, this reduced set of legal
transformations in fact describe the symmetries of a regular (v− u+ 1)-gon. We can
thus apply Proposition 4.4.3 working with the Dihedral group G = Dv−u+1 to settle
the case of non-closed strings.

4.5 Conclusion

We have shown that the tools offered by group theory can be profitably applied
towards understanding invariance properties of a broad class of deep, hierarchical
models. If one knows in advance the group to which a model should be invariant,
then the translations which must be built into the hierarchy can be described. In
the case of images, we showed that the only group to which a model in the class of
interest can be invariant is the group of planar orthogonal operators.
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Chapter 5

Localized Spectro-Temporal
Cepstral Analysis of Speech

Portions of this chapter appeared in [17], and are Copyright c©2008 IEEE.
Reprinted, with permission, from Proc. IEEE International Conference on
Acoustics, Speech, and Signal Processing. The work described here is joint
with Tony Ezzat.

The work in this chapter focuses on the representation and recognition of speech
using a hierarchical architecture, and is mainly empirical in nature. The results we
describe evaluate experimentally important assumptions built into the hierarchical
learning framework described in the preceding chapters, and is motivated by the suc-
cess of existing hierarchical models of visual cortex. In particular, this work parallels
the theoretical component of the thesis in that it shares the notion of a localized and
layered analysis such as that occurring in the early stages of the visual and auditory
cortices. It also complements the theory in the sense that underlying assumptions
built into the abstract formalism are evaluated in the context of a difficult, real-world
learning task.

More specifically, our speech feature analysis technique is based on a localized
spectro-temporal cepstral analysis. We proceed by extracting localized 2D patches
from the spectrogram and project onto a 2D discrete cosine (2D-DCT) basis. For each
time frame, a speech feature vector is then formed by concatenating low-order 2D-
DCT coefficients from the set of corresponding patches. We argue that our framework
has significant advantages over standard one-dimensional MFCC features. In partic-
ular, we find that our features are more robust to noise, and better capture temporal
modulations important for recognizing plosive sounds. We evaluate the performance
of the proposed features on a TIMIT classification task in clean, pink, and babble
noise conditions, and show that our feature analysis outperforms traditional features
based on MFCCs.
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5.1 Introduction

Most state-of-the-art speech recognition systems today use some form of MEL-scale
frequency cepstral coefficients (MFCCs) as their acoustic feature representation. MFCCs
are computed in three major processing steps: first, a short-time Fourier transform
(STFT) is computed from a time waveform. Then, over each spectral slice, a bank
of triangular filters spaced according to the MEL-frequency scale is applied. Finally,
a 1-D discrete cosine transform (1D-DCT) is applied to each filtered frame, and only
the first N coefficients are kept. This process effectively retains only the smooth
envelope profile from each spectral slice, reduces the dimensionality of each temporal
frame, and decorrelates the features.

Although MFCCs have become a mainstay of ASR systems, machines still sig-
nificantly under-perform humans in both noise-free and noisy conditions [68]. In
the work presented here, we turn to recent studies of the mammalian auditory cor-
tex [10, 23, 86, 108] in an attempt to bring machine performance towards that of
humans via biologically-inspired feature analyses of speech. These neurophysiological
studies reveal that cortical cells in the auditory pathway have two important prop-
erties which are distinctly not captured by standard MFCC features, and which we
will explore in this work.

Firstly, rather than being tuned to purely spectral modulations, the receptive
fields of cortical cells are instead tuned to both spectral and temporal modulations.
In particular, auditory cells are tuned to modulations with long temporal extent, on
the order of 50-200ms [23, 108]. In contrast, MFCC features are tuned only to spectral
modulations: each 1D DCT basis may be viewed as a matched filter that responds
strongly when the spectral slice it is applied to contains the spectral modulation
encoded by the basis. MFCC coefficients thus indicate the degree to which certain
spectral modulations are present in each spectral slice. The augmentation of MFCCs
with ∆ and ∆∆ features clearly incorporates more temporal information, but this is
not equivalent to building a feature set with explicit tuning to particular temporal
modulations (or joint spectro-temporal modulations for that matter). Furthermore,
the addition of ∆ and ∆∆ features creates a temporal extent of only 30-50ms, which
is still far shorter than the duration of temporal sensitivities found in cortical cells.

Secondly, the above neurophysiological studies further show that cortical cells are
tuned to localized spectro-temporal patterns: the spectral span of auditory cortical
neurons is typically 1-2 octaves [23, 108]. In contrast, MFCC features have a global
frequency span, in the sense that the spectral modulation “templates” being matched
to the slice span the entire frequency range. One immediate disadvantage of the
global nature of MFCCs is that it reduces noise-robustness: addition of noise in a
small subband affects the entire representation.

Motivated by these findings, we propose a new speech feature representation which
is localized in the time-frequency plane, and is explicitly tuned to spectro-temporal
modulations: we extract small overlapping 2D spectro-temporal patches from the
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spectrogram, project those patches onto a 2D discrete cosine basis, and retain only
the low-order 2D-DCT coefficients. The 2D-DCT basis forms a biologically-plausible
matched filter set with the explicit joint spectro-temporal tuning we seek. Further-
more, by localizing the representation of the spectral envelope, we develop a feature
set that is robust to additive noise.

In Section 5.3, we describe in detail the localized spectro-temporal analysis frame-
work and provide examples illustrating the structure that the proposed patch-based
2D-DCT features capture. Then in Section 5.4, we describe a specific application of
our method to phonetic classification on the TIMIT corpus [59] in clean conditions.
Section 5.5 follows on the clean experiments to present classification performance in
pink and babble noise conditions. In both cases we compare the 2D-DCT features to
two strong sets of MFCC-based baseline features. In Section 5.6, we propose several
possible extensions to our analysis framework, and present preliminary classification
error rates in a multiscale analysis setting. Finally, in Section 5.7 we discuss the ex-
perimental results, place our work within the larger ASR context, and conclude with
a list of future directions and open problems.

5.2 Background

A large number of researchers have recently explored novel speech feature represen-
tations in an effort to improve the performance of speech recognizers, but to the best
of our knowledge none of these features have combined localization, sensitivity to
spectro-temporal modulations, and low dimensionality.

Hermansky [47, 106] and Bourlard [15] have used localized sub-band features for
speech recognition, but their features were purely spectral and failed to capture tem-
poral information. Subsequently, through their TRAP-TANDEM framework, Her-
mansky, Morgan and collaborators [48, 47, 21] explored the use of long but thin
temporal slices of critical-band energies for recognition, however these features lack
joint spectro-temporal sensitivity. Kajarekar et al. [55] found that both spectral and
temporal analyses performed in sequential order outperformed joint spectro-temporal
features within a linear discriminant framework, however we have found joint 2D-DCT
features to outperform combinations of purely spectral or temporal features. Atlas
and Shamma [5, 107] also explored temporal modulation sensitivity by computing a
1D-FFT of the critical band energies from a spectrogram. These features too lack
joint and localized spectro-temporal modulation sensitivity. Zhu and Alwan [121] use
the 2D-DCT to compress a block of MFCCs, however this approach still suffers from
the shortcomings of global MFCCs. Kitamura et al. [56], take a global 2D-FFT of a
MEL-scale spectrogram, and discard various low-frequency bands from the resulting
magnitude. This approach does not provide any joint spectro-temporal localization,
and cannot be interpreted as capturing meaningful configurations of specific spectro-
temporal modulation patterns. It is the localized analysis in our method, and the fact
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that we seek to encode spatial configurations of important spectro-temporal modula-
tions, that critically differentiates our approach from much of the previous work.

A large fraction of the noise-robust speech recognition literature has traditionally
centered on either front-end post-processing of standard features [73, 22, 32] or mod-
ifying recognizer model parameters to compensate for train/test noise mismatch [33],
rather than the design of inherently noise-robust features. (see [104, 103] for a de-
tailed review). Povey and collaborators [81] have however described a framework for
estimating robust features from distorted cepstral coefficients that are typically added
to the standard features, while other authors have proposed variations on standard
MFCCs that provide additional robustness in mismatched conditions. Cui et al. [30]
apply peak isolation and RASTA filtering to MFCCs in speech (versus non-speech)
segments, while Burges et al. [20] attempt to learn the dimensionality reduction step
from the data. In all cases, however, the robust features are neither localized nor
spectro-temporal.

Perhaps the closest work to ours is that of Shamma and colleagues [23, 72], and the
work of Kleinschmidt, Gelbart, and collaborators [57, 58]. In [23] the authors apply
localized complex filters that produce both magnitude and phase information for the
purpose of speech vs. non-speech detection. The latter group applied data-optimized
Gabor filters to blocks of MEL-scale spectra with 23 frequency bins, and then present
ASR results when Gabor features augment other features. Our work builds on upon
both of these efforts, and demonstrates an important point which we believe has not
been made strongly enough in these previous works: that a simple set of localized 2D-
DCT features (in this case, “bar-like” detectors faithful to the auditory neuroscience)
is on its own powerful enough to achieve state-of-the-art performance on a difficult
phonetic discrimination task.

5.3 2-D Cepstral Analysis of Speech

5.3.1 Spectro-Temporal Patch Extraction

The first step of our 2D cepstral speech analysis technique is to convert a given speech
signal into a narrow-band spectrogram S(f, t). Each utterance is first STFT-analyzed
in the usual manner using a Hamming window with an associated time extent, frame
rate, and zero-padding factor (we provide exact values for these parameters in Sec-
tion 5.4). Additionally, we retain only the log magnitude of the resulting STFT, and
normalize it to have zero mean and unit variance. Note that we limit our analysis
to a linear frequency scale, deferring MEL-scale (logarithmic) frequency analysis to
future work.

Then, at every grid point (i, j) in the spectrogram, we extract a patch Pij(f, t) of
size df and width dt. The height df and width dt of the local patch are important
analysis parameters: they must be large enough to be able to resolve the underlying
spectro-temporal components in the patch, but small enough so that the underlying
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Figure 5-1: The 16 DCT bases for a patch of size 8x8 pixels. The first row of bases
capture temporal modulations, while the first column captures spectral modulations.
Checkerboard basis functions help model spectro-temporal noise.

signal is stationary. Additional analysis parameters are the 2D window hop-sizes in
time ∆i and frequency ∆j, which control the degree of overlap between neighboring
patches. Finally, we pre-multiply the patch with a 2D Hamming window WH(f, t) in
order to reduce border effects during subsequent patch processing.

5.3.2 2D Discrete Cosine Transform and Coefficient Trunca-
tion

After patch extraction, a 2-D discrete cosine transform (2D-DCT) is applied to each
windowed patch P (f, t) to produce a set of DCT coefficients B(Ω, ω). The definition
of the 2-D DCT for an input patch P (f, t) of size F -by-T is given by

B(Ω, ω) = A
F−1∑
f=0

T−1∑
t=0

P (f, t) cos
π(2f + 1)Ω

2F
cos

π(2t+ 1)ω

2T
(5.1)

where 0 ≤ Ω ≤ F − 1, 0 ≤ ω ≤ T − 1, and A is a scaling factor whose value we omit
for simplicity.

Shown in Figure 5-1 are 16 representative DCT bases for a patch of size 8x8 pixels.
The basis functions in the first column respond to “horizontal” speech phenomena
such as harmonics and formants. The basis functions in the first row respond to “ver-
tical” speech phenomena such as plosive edges. Finally, the remaining checkerboard
bases capture spectro-temporal noise patterns and contribute to cancelation effects
that facilitate energy localization within the patch.

The 2D-DCT projects each patch onto a set of orthogonal, separable cosine basis
functions that respond to “horizontal” speech phenomena such as harmonics and
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Figure 5-2: Left two columns: Original spectrogram patches, followed by the corre-
sponding 2D-DCT. Middle 2 columns: Patches reconstructed from low-order DCT
coefficients followed by the low-order DCT coefficients retained for reconstruction.
Last 2 columns: Retained low-order 2D-DCT basis functions.

formants, “vertical” speech phenomena such as plosive edges, and more complex
spectro-temporal noise patterns. In the rightmost two columns of Figure 5-2 we show
the six low-order 2D-DCT basis functions used in our analysis. The top-left basis is
everywhere uniform.

Shown in Figure 5-2 in the first column are representative harmonic (top), plosive
(middle), and noise (bottom) patches from a spectrogram, along with their respective
2D-DCT coefficients in the second column. As expected, horizontal harmonic edges in
a patch strongly activate coefficients in the first column of the corresponding DCT,
and vertical plosive phenomena activate DCT coefficients in the first row. Noise
phenomena, with more high frequency components than the previous two examples,
has energy that is distributed among most of the DCT coefficients.

The last step of our analysis consists of truncating the 2D-DCT and retaining
only the low-order coefficients for each patch. The effect of doing this is also shown in
Figure 5-2: original patches in the first column are reconstructed in the third column
using only the low-order 3× 5 block of DCT coefficients (4th column). Keeping only
the low-order DCT coefficients is equivalent to representing each patch with a smooth
spectro-temporal envelope. We further illustrate this concept in Figure 5-3, where the
original spectrogram displayed on the left is reconstructed on the right from low-order
patch 2D-DCT coefficients. The individually reconstructed patches are overlap-added
together to assemble the full spectrogram. In this example, we have used analysis
windows of size 780Hz by 57ms shifted in steps of 156Hz in frequency and 10ms in
time.

Smoothing via two-dimensional DCT truncation is analogous to smoothing via
truncation of 1D-DCT coefficients in MFCC analysis of speech. However, because the
DCT in the proposed methodology is two-dimensional and localized in the spectro-
temporal plane, the analysis still retains important information about the spectro-
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Figure 5-3: Left: Original spectrogram. Right: Resulting spectrogram after retaining
only low-order DCT coefficients per patch, and applying overlap-add reconstruction.

temporal evolution of the envelope. For this reason, 2D-DCT features are particularly
well suited to modeling plosive phonetic sounds. Additionally, because the envelope
representation is localized, the 2D-DCT features are more robust to noise.

5.4 Clean Speech TIMIT Experiments

The above 2D-DCT analysis was applied towards extracting features for phonetic
classification on the TIMIT corpus [59], and compared to MFCC-based features used
by Clarkson and Moreno [25], and the best single set of features proposed by Halber-
stadt and Glass in [45]. The latter feature set is the best baseline that we are aware
of. We divided TIMIT into standard train and test sets following the convention
in [90, 45]. The 2D-DCT analysis is performed using both wideband and narrowband
spectrograms for comparison.

In the following section we describe the TIMIT classification task, followed by
a description of the particular instance of the proposed spectro-temporal analysis
method that we have used for phonetic classification. We then describe the two sets
of baseline comparison features, the classification framework, and finally, present a
comparison of the classification results for stops, vowels, and on the full task (all
phonemes).

5.4.1 TIMIT Corpus

We divided TIMIT into standard train and test sets following the convention in [90,
45], resulting in a training set consisting of 140,225 examples drawn from 462 speakers
and 3,696 utterances, and a test set consisting of 7215 examples drawn from 24 speak-
ers and 192 utterances. After ignoring glottal stops (’q’ tokens), the 60 remaining
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phonetic classes are later mapped to 39 categories after training but before scoring,
also following standard practices for this task.

5.4.2 Spectrogram Pre-processing

TIMIT utterances are first normalized and subjected to a pre-emphasis filter. We
then compute spectrograms using 32 sample (2ms) hops, 1024-point FFTs and 300
sample (18.75ms) Hamming windows or 150 sample (9.375ms) windows for narrow-
and wide-band conditions respectively. We then take the log-magnitude of the result-
ing spectrum and normalize to give a global utterance mean of zero and unit variance.
Utterances are broken up in time according to the labeled phonetic boundaries and
enlarged by an additional 30ms on either side of each phoneme so as to include coar-
ticulatory phenomena. Each resulting independent phoneme is then truncated at
6.23kHz (400 frequency bins), while a copy of the bottom 25 low-frequency bins is
reflected, for all time, about the 0Hz edge and appended. Because we later apply
local 2D-DCTs to Hamming windowed regions of the spectrogram, reflection is done
to avoid artificially down-weighting low frequency bins near the edge of the image.

5.4.3 2D-DCT Patch Processing and Coefficient Truncation

We first compute a sliding localized two-dimensional DCT over the phoneme’s spec-
trogram. While many reasonable window and step sizes exist, we have found that,
for the narrowband STFT parameters above, good results are obtained with 780Hz
by 56.75ms (or 50 by 20 bin) Hamming windowed 2D analysis regions with a 390Hz
(25-bin) frequency step-size and a 4ms (2-bin) time step-size. For wideband STFT
conditions, good results are obtained with 623Hz by 107.375ms (or 40 by 50 bin)
Hamming windowed 2D analysis regions with identical step sizes in time and fre-
quency as in the narrowband case. The 2D-DCT is computed with 2x oversampling
in both time and frequency. We have found that performance does not critically de-
pend on the precise window and step size choices above. To avoid implicit overfitting,
evaluation of performance for different parameter choices was done using the TIMIT
development set proposed by [45], while the final evaluations shown below were done
on the core test set.

For each 2D analysis region, we save only the 6 lowest-order 2D-DCT coefficients
corresponding to the upper left 3 × 3 triangle in the DCT image. These coefficients
collectively encode only the patch’s DC offset, two low spatial frequency horizonal
and vertical basis components, and one “checkerboard” basis component. Saving six
coefficients per patch at the above resolution smooths out any remaining harmonic
structure, leaving only the spectro-temporal envelope. This behavior coincides with
the goal of MFCCs and other common low-dimensional representations: to eliminate
most within-class variation. Operating on patches with limited time-frequency extent,
however, allows one to smooth away irrelevant variation while preserving discrimina-
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(2) Average over 5 temporal regions, including 30ms before and after the phoneme.
(3) Collapse into one 510-dimensional feature vector, and add log duration of the phoneme.

Figure 5-4: Feature vector construction, after [45].

tory macro structure that is lost when applying any global smoothing technique (as
is done with MFCCs). In the case of stops, for example, preserving the overall dis-
tribution of energy in the time-frequency plane is critical for classification.

5.4.4 Feature Vector Construction

The previous step provides a vector of 6 features for each patch taken from the
phoneme. We modify the approach of [45] in order to compute a fixed length feature
vector from the variable number of 2D-DCT coefficients representing a given phoneme;
this particular construction was found (in [45]) to work well for the MFCC-based
features computed therein. If the 6-dimensional vectors are collected and arranged in
a relative order corresponding to the time-frequency centers of the respective analysis
windows, we are left with a 3D matrix of coefficients per phoneme example: S(i, j, k)
where i indexes time, j indexes frequency, and k is the DCT coefficient index. The
number of time bins will of course vary across phonemes. We therefore divide up the
time axis of the 3D matrix of coefficients into five segments, and average over time
within each segment. See Figure 5-4. The time bins corresponding to the 30ms of
additional signal added before and after the phoneme give the first and last segments,
while the bins falling within the phoneme itself are divided up in 3:4:3 proportion
to give the middle 3 segments. All coefficients across the five averaged segments
(contributing 17 patches × 6 coefficients = 102 features each) are then pooled and
concatenated into a single 510-dimensional vector. Lastly, the log-duration of the
phoneme is added to give the final 511-element feature vector. Prior to classification,
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the training and test datasets are whitened with the principal components derived
from the training set.

5.4.5 MFCC-Based Baseline Comparison Features

We compare our features to two other TIMIT MFCC-based baseline feature sets: the
“S2” feature-set proposed by Halberstadt & Glass [45] and the features described
by Clarkson & Moreno [25]. We will refer to these feature sets as “HA” and “CM”
respectively. In both cases, the resulting datasets are whitened with PCA.

The HA feature set is constructed by computing 12 MFCCs from each frame of the
spectrogram (30ms Hamming windowed segments every 5ms). Temporal averages are
taken over the five non-overlapping segments described above to obtain a fixed-length
feature vector. A log-duration feature is again added, resulting in 61-dimensional
feature vectors. The HA feature set has been used to get the best single-classifier
TIMIT result [90] that we are aware of.

Clarkson & Moreno’s features are similar to Halberstadt’s: 13 MFCCs are com-
puted for each spectrogram frame (25.5ms Hamming windows every 10ms). However,
∆ and ∆∆ features are also computed, giving classical 39-dimensional feature vectors
for each frame. The time axis is again divided up into five segments, but the two
regions including spectra before and after the phoneme are 40ms wide and are cen-
tered at the beginning and end of the phoneme. A log-duration feature is also added,
resulting in 196 dimensional feature vectors.

5.4.6 Classification Framework

All-vs-all (AVA) classification with linear regularized least-squares (RLS) classifiers [88]
was performed on the resulting datasets. Linear RLS classification allows for efficient
selection of the regularization parameter via leave-one-out cross validation. We have
found empirically that AVA multiclass training consistently outperforms one-vs-all
for the TIMIT task. We include for comparison results on the full TIMIT task using
second-order polynomial SVMs with 5-fold cross-validated selection of the regulariza-
tion parameter. Training time for the nonlinear SVMs was approximately an order
of magnitude slower than linear RLS. Our ultimate goal, however, is to illustrate the
strength of localized spectro-temporal features even in the absence of excessive tuning
of the classifier stage.

5.4.7 Clean Speech Results

In Table 5.1 we show linear RLS classification error rates for the proposed localized
2D-DCT features (for both narrow- “NB” and wide-band “WB” spectrograms) as
compared to the two sets of baseline features described above. We show results on
the full TIMIT task, and additionally, when training and testing on subsets consisting
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Features Stops Vowels All Dims
CM 29.66 37.59 28.30 196
HA 27.91 37.80 25.60 61

2D-DCT-NB 23.53 37.33 24.93 511
2D-DCT-WB 25.53 36.69 24.37 511

2D-DCT-NB/SVM2 21.37

Table 5.1: Percent error rates for the three sets of features when training/testing
on stops only, vowels only, or on all phonemes from clean utterances. Our features
are denoted “2D-DCT”. Dimensionality of the feature vectors are given in the last
column. “NB” and “WB” denote narrowband and wideband conditions respectively.

of just the vowels or just the stops. The full task consists of training on 60 classes
(140225 train, 7215 test examples) and then mapping to 39 classes for scoring, while
the stops task consists of 6 phonetic classes (16134 train, 799 test examples) and the
vowel task consists of 20 classes (45572 train, 2341 test examples). No post-mapping
is done prior to scoring in the case of the the vowels and stops experiments.

In all cases, the localized 2D-DCT features outperform the MFCC-based baseline
features. Wideband spectrograms with longer temporal analysis extents are seen to
give better performance than narrowband spectrograms with shorter extents in all
experiments excepting the stops only evaluation. However in the case of stops in
particular, the 2D-DCT features provide substantial improvement over traditional
MFCCs. Because the DCT analysis is spectro-temporal and includes explicit bases
encoding vertical and horizontal spatial gratings, the 2D-DCT features capture the
strong vertical “edges” present in stops and other plosives. The last row of Table 5.1
shows performance when using nonlinear SVM classifiers, and confirms that 2D-DCT
features still exhibit the reduction in error that one would expect when moving to
more complex classifiers.

5.5 Noisy Speech TIMIT Experiments

The classification performance of localized 2D-DCT features was also evaluated in
the presence of both pink and babble noise. We describe the construction of the
noise-contaminated datasets, present phonetic classification results, and in pink-noise
conditions provide a comparison with HA [45] and CM [25] features (described in
Section 5.4.5). The HA error rates were originally presented in Rifkin et al. [90],
and are reproduced here. The authors of [90], do not provide performance in babble-
noise. In all experiments, training is done on clean speech while testing is done on
noisy speech.
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5.5.1 Noisy Dataset Construction

Pink noise corrupted TIMIT utterances at 20dB,10dB, and 0dB SNR were obtained
from the authors of [90] so that experiments could be performed under the exact
same noise mixing conditions. In [90], a single 235 second segment of noise from
the NOISEX-92 dataset was used to artificially corrupt the test set speech. Random
contiguous snippets from this master segment were added to each utterance with an
amplitude chosen to satisfy the desired global SNR. Because TIMIT recordings do not
include long pauses, local SNR matching is largely unnecessary. Similarly, we con-
structed babble-noise corrupted TIMIT utterances by following the same procedure
while using a 235 second segment of babble-noise, also from the NOISEX-92 dataset.
In both cases, spectra and features were then extracted from the noisy utterances in
a manner identical to that described in Section 5.4.

5.5.2 Noisy Speech Results

In Table 5.2 we show percent error rates for the full TIMIT phonetic classification
task, comparing the HA and CM feature sets to the proposed localized 2D-DCT
features when using linear RLS classifiers with an all-vs-all multiclass scheme (denoted
“RLS1”). A second order polynomial RLS classifier (denoted “HA-RLS2”) is also
given in [90], and we include those results here for comparison. The first four feature
set/classifier combinations involve pink-noise corrupted utterances.

In the presence of even weak pink noise (e.g. 20dB SNR), 2D-DCT features
with simple linear classifiers outperform HA features. As the signal to noise ratio is
decreased, the performance advantage remains significant. As shown in the sixth and
seventh row of Table 5.2, we observe a relative reduction in error of approximately 10-
25% when using localized 2D-DCT features over the MFCC-based HA features with
an identical classification stage. Despite the fact that the CM feature set combines
MFCCs with traditional ∆ and ∆∆ features, both the DCT and HA features far
outperform Clarkson’s CM features. In the last two rows of Table 5.2 (marked with
a “B”), we show classification error in babble noise. Although babble noise is usually
considered a more challenging condition for speech recognizers, for this particular
task we observe only a modest increase in error above the error in pink-noise when
using the proposed 2D-DCT features. The longer temporal extents of the patches
and 2D-DCT templates in the “WB” case are also seen to give improved performance
in babble noise.

In clean conditions, the second-order polynomial classifier with HA features (marked
“HA-RLS2”) outperforms linear classifiers with any of the feature sets. However this
is not entirely surprising; the authors of [90] explicitly lift the 61 original HA fea-
tures into 1830-dimensional second-order feature vectors. In the presence of noise,
however, the 2D-DCT features outperform all the other classifier/feature set com-
binations. In [90], a comparison is made between RLS1, RLS2, and a GMM based
classifier from [45], all trained on HA features, and it is argued that RLS classifiers
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Features Clean 20dB 10dB 0dB
CM-RLS1 28.30 61.68 79.67 91.78
HA-RLS1 25.60 41.34 63.12 80.03
HA-RLS2 20.93 33.79 57.42 77.80

2D-DCT-NB/RLS1 24.93 32.53 48.16 71.93
2D-DCT-WB/RLS1 24.37 32.36 47.79 72.75

1-(2DDCT-NB/HA) (RLS1) 2.62 21.31 23.71 10.12
1-(2DDCT-WB/HA) (RLS1) 4.80 21.72 24.29 9.10

2D-DCT-NB/RLS1 (B) 24.93 38.99 59.76 77.28
2D-DCT-WB/RLS1 (B) 24.37 37.73 57.30 75.05

Table 5.2: Train clean, test noisy experiments: Percent error rates on the full TIMIT
test set for several signal-to-noise ratios and feature sets. The final two rows, marked
with a “B”, gives error rates in babble-noise; all other experiments involve pink-noise.

give excellent noise-robustness over generative models. We note that because every
experiment shown in Table 5.2 utilized RLS classifiers, the additional noise-robustness
is due entirely to the feature set.

5.6 Extensions

Several immediate extensions of the above 2D-DCT analysis are possible for improving
classification and recognition accuracy. We provide a brief look at one promising
possibility: embedding the localized 2D-DCT analysis in a multi-scale framework.

5.6.1 Multiscale 2D-DCT

The 2D-DCT is, ultimately, a dimensionality reduction step applied to a localized
time-frequency analysis region. The analysis window, or alternatively, the spectro-
gram, can be resized so as to encode discriminative features and latent structure
existing at different fundamental scales.

We present preliminary classification experiments in which we have kept the spec-
trogram resolution fixed while varying the size of the analysis window. The number
of DCT coefficients retained remains constant, regardless of the size of the analysis
window, so that the image patch is always projected onto scaled versions of the same
2D-DCT bases. For the experiments that follow, we have defined three scales. “Scale
1” refers to the canonical scale mentioned in Section 5.4: 780Hz by 56.75ms windows,
with step sizes 390Hz and 4ms in frequency and time respectively. “Scale 2” uses a
window width and step size in frequency twice that of Scale 1, and a window width
1.5 times as wide as Scale 1 in time, with the same time step size (1560Hz by 76.75ms
with 780Hz and 4ms steps). “Scale 3” uses a window width and step size in frequency
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Features Scale 1 Scale 2 Scale 3
Scale 1 24.93 24.53 24.32
Scale 2 25.41 24.50
Scale 3 26.92

Features Error
Scale 1+2+3 24.13

Table 5.3: Multiscale experiments: Percent error rates on the full, clean-speech
TIMIT task when using features derived from different image scales. Entry posi-
tion in the top three rows denotes that feature vectors were a concatenation of the
corresponding row and column scales. The bottom row gives the error when all three
scales are combined.

twice that of Scale 2, and a window width 1.3 times as wide as Scale 2 in time, with
the same time step size (3120Hz by 96.75ms windows, with 1560Hz and 4ms steps).
The final dimensionalities of the feature vectors were 511, 271, and 151 for scales 1
through 3 respectively.

In Table 5.3 we give error rates on the full, clean-speech TIMIT task described
in Section 5.4 when using features from the three scales. The first three rows show
error rates when features from the corresponding row/column pairs of scales were
concatenated, while the final row gives the error-rate with features from all three
scales combined. In all cases, speech waveforms, spectra and feature vectors were
computed as described in section 5.4, with the exception that both the size of the
2D-DCT analysis windows and the step-sizes were varied.

It can be seen that, each time lower-resolution scales are combined with higher
ones, the total error on the test set decreases by 0.4%. This corresponds to 29
additional correct classifications, every time a scale is added. While an additional
0.8% may seem small, we note that at 24 or 25% error, additional improvement for
TIMIT is typically hard to come by: most recent results on this dataset are within 1%
of each other. It should also be noted that many of the class confusions at this point
are between ambiguous instances of phonemes easily confused by human listeners.

5.7 Discussion

The biologically inspired feature analysis presented in this Chapter consisted of two
main steps: (1) Extraction of localized spectro-temporal patches, and (2) low-dimensional
spectro-temporal tuning using the 2D-DCT. A localized encoding and extraction of
structure in the time-frequency plane faithfully preserves the general distribution of
energy, and retains critical discriminatory information. In Table 5.1 we showed that
discrimination among phonemes with strong temporal modulation, such as plosives
and stop consonants, was better with local 2D-DCT features than with the two sets
of “global” MFCC-based baseline features. The elimination of within-class variabil-
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ity was controlled by the number of DCT coefficients retained, leading to a localized
smoothing effect. Traditional cepstral analysis, while admittedly lower dimensional
in many cases than the proposed features, tends to over-smooth in frequency and
ignore important dynamics of the spectro-temporal envelope.

In pink-noise corrupted speech, local 2D-DCT features provide substantial addi-
tional noise-robustness beyond the baseline MFCC features as measured by classi-
fication accuracy on the TIMIT corpus. We also found that the localized 2D-DCT
analysis outperforms classical MFCCs augmented with delta and acceleration fea-
tures. Although this feature set is not the strongest of the two baselines, the com-
parison shows that even features incorporating more temporal information per frame
is not sufficient; both time and frequency localization is necessary. On the whole, the
phoneme classification experiments presented above show that the method is viable,
outperforming a state-of-the-art baseline in clean and noisy conditions.

In the case of phonetic classification, harmonics are deliberately smoothed out.
Speaker recognition applications, however, might rely on detailed harmonic structure
responsible for defining the perceptual quality of a given speaker. Lower-resolution
analysis windows and more DCT coefficients could be chosen in such cases.

5.7.1 Future Work

While phonetic classification gives some indication of the capability of the features
presented in this Chapter, we acknowledge that further experimentation with a recog-
nition task would provide a more meaningful assessment for the ASR community. In
our analysis, we have worked with linear spectrograms. The effect of MEL-scale anal-
ysis or logarithmic warping, however, is not yet known within the context of 2D-DCT
features. We believe it would be profitable to more carefully investigate other multi-
resolution versions of the core notion of a localized spectro-temporal analysis, as well
as the possibility of using an iterated hierarchical analysis framework [98], more in
line with the primary and belt auditory areas of the human brain.

As mentioned earlier, the ability of human listeners to understand speech in the
presence of noise and/or other competing speakers far surpasses that of any ma-
chine recognition system. At the same time, recent advances in our understanding
of the mammalian auditory pathway [23, 86, 10] suggest novel, biologically-inspired
approaches to automatic speech recognition that we expect will revitalize the field
and push machine performance out of the current local minimum. Two overarching
design themes found in both visual and auditory areas of the neocortex are (1) local-
ized spectro-temporal/visuo-spatial receptive fields, and (2) multi-layer hierarchical
analysis: the work described here has mainly attempted to incorporate ideas from
the former, and has investigated only in a limited sense the latter.
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Chapter 6

Speech Reconstruction from STFT
Magnitude Spectra

Portions of this chapter appeared in [16].

In this chapter, we present an algorithm for reconstructing a time-domain sig-
nal from the magnitude of a short-time Fourier transform (STFT). In contrast to
existing algorithms based on alternating projections, we offer a novel approach in-
volving numerical root-finding combined with explicit smoothness assumptions. Our
technique produces high-quality reconstructions that have lower signal-to-noise ra-
tios when compared to other existing algorithms. If there is little redundancy in
the given STFT, in particular, the algorithm can produce signals which also sound
significantly better perceptually, as compared to existing work. Our algorithm was re-
cently shown to compare favorably with other techniques in an independent, detailed
comparison [53].

6.1 Introduction

Reconstruction of a time-domain signal from only the magnitude of the short-time
Fourier transform (STFT) is a common problem in speech and signal processing.
Many applications, including time-scale modification, speech morphing, and spectral
signal enhancement involve manipulating the STFT magnitude, but do not clearly
specify how to adjust the phase component of the STFT in order to invert back into
the time domain. Indeed, for many STFT magnitude modifications, a valid inverse
of the STFT does not exist and a reasonable guess must be made instead.

In this Chapter, we present an algorithm for reconstruction of a time-domain
signal from the STFT magnitude, modified or otherwise. In contrast to existing algo-
rithms based on alternating projections, our technique applies numerical root-finding
combined with explicit smoothness assumptions to give high-quality reconstructions.
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We have found that imposing smoothness at several stages of the algorithm is the
critical component responsible for estimating good signals. Formulating the recon-
struction problem in terms of non-linear systems of equations serves as a convenient
vehicle for the inclusion of smoothness constraints in a straightforward manner. Our
method produces results that appear to be perceptually superior to the algorithms
due to Griffin and Lim [44] and Achan et al. [1], particularly when there is little
overlap between STFT analysis windows.

In section 6.2 we give an overview of the signal reconstruction problem, and in
section 6.3 we introduce the root-finding framework we have used to find solutions
to this problem. Section 6.4 presents the smoothness constraints we have chosen to
impose, followed by a description of the algorithm itself. In section 6.5 we compare
the performance of our technique to Griffin and Lim’s method over a range of STFT
window overlaps. Finally, in section 6.6 we offer concluding remarks.

6.2 Overview of the Phaseless Signal Reconstruc-

tion Problem

If the zeros of the Z-transform of a signal lie either entirely inside or outside the
unit circle, then the signal’s phase may be uniquely related to its magnitude via the
Hilbert transform [82]. In the case of finite speech or music signals, however, such a
condition on the zeros does not ordinarily hold. Under some conditions, mixed-phase
signals can be recovered to within a scale factor from only magnitude or phase [46],
and can be uniquely specified from the signed-magnitude [51]. But the conditions
required in [46] are restrictive, while retaining any phase-information, albeit even a
single bit, is not possible for many common spectrogram modifications.

In this work, we will focus on reconstruction from magnitude spectra only. Gener-
ally, we would like to take a signal, manipulate its magnitude, and from the modified
spectra be able to estimate the best possible corresponding time-domain sequence. In
the absence of any modifications, we would hope to retrieve the original time-domain
signal from the magnitude. If only the Discrete Fourier Transform (DFT) magnitude
of a signal is provided, then we must make additional a priori assumptions in order
to guess the corresponding signal. This is a common problem in several fields, such
as x-ray crystallography, electron diffraction, and remote sensing [37]. If, however,
we work with the short-time Fourier transform (STFT), accurate reconstruction is
often possible without a priori assumptions or constraints. Given a suitable length N
windowing function w(n), we can define the STFT by sliding the signal x(n) through
the window and taking the K-point DFT:

S(ωk, `) =
N−1∑
n=0

x(n+ `)w(n)e−jωkn (6.1)
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where the DFT frequency bins are ωk = 2πk
NT
, k = 0, . . . , K − 1 given sampling rate

fs = 1/T . Because both the magnitude |S(ωk, `)| and phase ejφ(ωk,`) of the STFT
contain information about the amplitude and phase of the original signal, throwing
away the STFT phase does not mean that we have entirely eliminated the original
phase of x(n) [26].

Several algorithms have been proposed to estimate a signal from the STFT mag-
nitude. Achan et al. [1] introduced a generative approach for speech signals that
infers a time-domain signal from a model trained on a specific speaker or class of
speakers. Griffin and Lim [44] apply an iterative technique similar in spirit to an
earlier algorithm advanced by Fienup [37]. While it is difficult to analyze the conver-
gence and uniqueness properties of Fienup’s algorithm, Griffin and Lim’s approach
employs alternating convex projections between the time-domain and the STFT do-
main that have been shown to monotonically decrease the squared error between the
given STFT magnitude and the magnitude of an estimated time-domain signal. In
the process, the algorithm thus produces an estimate of the STFT phase. Nawab et
al. [76] proposed a sequential algorithm which reconstructs a signal from its spectral
magnitude by extrapolating from the autocorrelation functions of each short-time
segment, however the approach places sparseness restrictions on the signal and re-
quires that the first h samples of the signal be known, where h is the STFT window
hop size. The algorithm presented herein requires neither samples of the signal to be
reconstructed, nor does it place constraints on the number of consecutive zeros that
can appear in the reconstruction.

6.3 Signal Reconstruction as a Root-Finding Prob-

lem

Griffin and Lim’s algorithm attempts to estimate a signal that is consistent with a
given spectrogram by inverting the full STFT at each iteration. Alternatively, we
can analyze consistency on a column-wise basis, where the spectrogram |S(ωk, `)| is
viewed as a matrix with frequency spanning the rows, and time the columns. Given a
single column `0 from the magnitude of the STFT, we wish to determine the segment
of signal x̃(n) = x(n+ `0)w(n) that satisfies the system of equations given by (6.1):

|S(ωk, `0)| =
∣∣∣∣∣
N−1∑
n=0

x̃(n)e−jωkn
∣∣∣∣∣ , k = 0, . . . , K − 1. (6.2)

In the discussion that follows, we will abbreviate the above system with the notation
|Fx̃| = m, where F is the K × N Fourier matrix, and m ≥ 0 is the given spectro-
gram column. Note that although (6.2) appears to be a system of K equations in
N unknowns as it is written, the Fourier magnitude is an even-symmetric function
because we allow only real-valued time-domain signals. Thus we really only have K/2
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linearly independent equations, and 2x oversampling in the DFT is needed to make
the system square. In practice we set K = 2N when computing the original STFT,
and solve for x̃ using only half of the desired magnitude vector m and a truncated
Fourier matrix F . Finally, if we rearrange (6.2) to get G(x̃) ≡ |Fx̃| −m = 0, x̃ is seen
as a root of the function G : RN → RN so that estimating the signal is equivalent to
solving a numerical root-finding problem.

It should be noted, however, that there are almost always an infinite number of
possible roots x̃ satisfying |Fx̃| −m = 0, since we can at best match just the magni-
tude spectra m. Writing Fx̃ = Dm in terms of the phasor matrix D = diag(ejφ(ωk)),
the phases φ(ωk) need only satisfy the condition Im{F−1Dm} = 0. Which root the
iteration actually returns will strongly depend on the initial condition x̃0.

6.3.1 Solution of non-square systems of nonlinear equations

As we will discuss below, our algorithm involves solving for only a subset of the
samples in a segment of the signal, while holding the remaining points fixed. One way
to solve a system of p nonlinear equations in q unknowns when p > q is to formulate
the task as a locally linear least-squares problem. In particular, given a system of
equations f(x) = 0, suppose that we choose the objective function 1

2
‖f(x)‖2

2, and
linearize f(x) via a Taylor expansion about the point xk. Defining the Jacobian
Jij(x) = ∂fi

∂xj
, we have

f̃(x) = f(xk) + J(xk)(x− xk). (6.3)

After substituting f̃(x) into our original objective we arrive at the linear minimization
problem

xk+1 = argmin
x∈Rq

{f(xk)
Tf(xk) + 2(x− xk)TJ(xk)

Tf(xk)

+ (x− xk)TJ(xk)
TJ(xk)(x− xk)}.

(6.4)

Taking the derivative and setting it equal to zero gives a recursive definition for the
next point in terms of the current one:

xk+1 = xk −
(
J(xk)

TJ(xk)
)−1

J(xk)
Tf(xk). (6.5)

Given an initial guess x0, equation (6.5) is seen as the classic Gauss-Newton method
[13] for the solution of nonlinear least-squares problems.

In practice, one rarely provides closed form expressions for the Jacobian, nor
do we want to directly evaluate all p2 partial derivatives. In fact, for the system
|Fx̃| −m = 0, the derivative d|z|

dz
, which shows up in the chain of derivatives needed

to compute the Jacobian, does not exist as the function f(z) = |z| is not analytic
in the complex plane. We therefore use a variant of Broyden’s method [18] in order
efficiently compute a numerical approximation to the Jacobian during the course of
the iteration (6.5).

106



6.4 Incremental Reconstruction with Regulariza-

tion

If the STFT (6.1) is computed with overlapping windows, as is often the case, we
can exploit this redundancy in order to estimate a signal from the spectrogram. Both
Griffin and Lim’s algorithm and the algorithm presented here utilize the constraints on
the signal imposed by the overlapping regions when estimating a sequence consistent
with the given STFT magnitude. While Griffin and Lim encode these constraints in
the form of intersecting convex sets, we recast redundancy in the STFT as the first of
two smoothness constraints. The second constraint imposes smoothness over a single
segment only. Combining these constraints, we construct an initial guess x̃0 for the
current signal segment that can be expected to lead to a good final reconstruction via
the iteration (6.5). This process effectively “biases” the root-finding process towards
an appropriate solution.

We additionally assume positivity in the reconstruction, in order to eliminate phase
sign errors. This constraint requires only that we either add a constant factor to the
DC elements of the spectrogram before applying the algorithm, or simply work with
a non-negative version of the original signal.

6.4.1 Smoothness Across Segments

By definition, in the region of overlap the window of signal corresponding to the i-th
and (i+ 1)-th columns of the spectrogram must be the same. If we choose to recover
only individual windows x̃ of the signal at a time by solving (6.2), then the above
statement implies that the i-th piece of signal ought to factor into the computation
of the (i+ 1)-th window of signal. This feedback process can be thought of as a form
of regularization: the current window of signal must look something like the previous
one. The structure of the STFT tells us that the segments must not change too much
from one time instant to the next. If the amount of overlap between adjacent windows
is greater, then there is a better chance that this assumption will hold.

6.4.2 Smoothness Within Segments

Overlap constraints provide a good deal of information about x(n), however there are
still many possible candidate solutions x̂(n) that satisfy the overlap conditions but
do not give back anything near the original signal (when it is known). This problem
is amplified when the STFT step size h is large. Therefore, in order to further bias
the search for a solution towards a good one, we make an additional smoothness
assumption in the region of the window where there is no overlap with the previous
segment.

In this region, we must form a reasonable guess as to what the signal might look
like when constructing an initial condition x̃0 for the iterative root-finding procedure.
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We explore two smooth possibilities in the non-overlapping region: linear extrapola-
tion from a leading or trailing subset of the known overlap points, or zero-order hold
extrapolation from the last overlap point. Smoothness can be quantified for both of
these methods by examining the energy in the first and second derivatives of a signal
constructed by concatenating the “fixed” values with the h extrapolated points. If,
in the linear extrapolation case, we find the energy over the entire signal in the first
derivative to be E1, and in the second derivative to be E2, then it must be true that
for zero-order hold with the same fixed portion of the signal, the resulting signal xz(n)
will have energies

‖Dxz(n)‖2 ≤ E1, and ‖D2xz(n)‖2 ≥ E2 (6.6)

where D and D2 denote first and second discrete derivative operators respectively.
Linear extrapolation therefore reduces energy in the second derivative, while zero-
order hold continuation will give lower energy in the first derivative. Empirically
we have found that linear-extrapolation is preferable when the STFT step size h is
small compared to the window size (10% of the window width or less), while zero-
order hold yields improved results when h is large. Eventually, linear extrapolation
may well produce samples far from the known values as we extrapolate away from
the known region of the signal. Thus a mixture of the two methods is yet another
possibility, where we might extrapolate for a small number of points relative to the
window size and sampling rate, and then hold the final value for the remainder of the
extrapolation interval.

We impose one final constraint on each segment. After the root-finding iteration
has converged to a solution, we set the mean of the result to the value specified by
the DC term of the length N segment’s Fourier magnitude, |S(ω = 0, `0)|/N .

6.4.3 Incremental Signal Reconstruction: Forward-Backward
Recursions

The algorithm proceeds by stepping through the STFT magnitude, column by col-
umn, first in the forward direction, and then heading backwards. At each segment, a
window of signal is estimated and written to a buffer at a position corresponding to
that window’s position in the original signal. In the forward direction, smoothness
across segments is incorporated when computing a recursive solution to (6.2) for win-
dow (i + 1), by explicitly fixing points in the region of overlap with window i to the
shared values in the solution returned for that segment. Going backwards, we instead
fix the overlapping values for segment i to those previously given by segment (i+ 1).
The very first window of signal in the forward pass is computed from an initial guess
x̃0 comprised of random values drawn from the uniform distribution U [0, 1]. The first
backwards pass window is computed from the last forward solution. The full recon-
struction is then assembled by overlap-adding the individual time-domain segments
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Estimation of successive segments of the time-domain signal: Forward Recursion

Estimation of successive segments of the time-domain signal: Backward Recursion
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Figure 6-1: Illustration of the forward-backward recursions as applied to an example
utterance.
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x̃0 = rand(U [0, 1])
for all spectrogram columns mi, i = 1, . . . , L− 1 do
· Compute the h elements of x̃0 by extrapolating from the last p
overlapping points in x̃i

· Let x̃ol be the N − h points in x̃i that will overlap with x̃i+1

· Compute the solution x̂ to |Fx̃i+1| −mi+1 = 0 using the Gauss-Newton
iteration with initial condition x̃0, while holding the overlap points in x̃i+1

fixed so that x̃i+1 = [x̃Tol x̂
T ]T

· Set x̃i+1 = x̃i+1 - mean[x̃i+1 ] + mi+1(0)/N
end
· Repeat the previous loop in the reverse direction, over all spectrogram
columns mi, i = L, . . . , 1, extrapolating in the opposite direction with
x̃i−1 = [x̂T x̃Tol]

T where x̃ol are the points in x̃i−1 that overlap with segment x̃i.
· Reconstruct x(n) by overlap-adding the segments {x̃i}Li=1

Algorithm 2: Incremental Signal Reconstruction Algorithm

according to the original STFT hop size. We illustrate the process as applied to an
example utterance in Figure 6-1.

The forward pass can be thought of as computing an initial estimate of the signal
using previously computed segments for guidance. The backward pass then back-
propagates information and constraints accumulated in the forward pass, and can be
seen to effectively “repair” errors incurred during the forward computations. Empir-
ically, it is often the case that the first few reconstructions in the forward pass tend
to be error prone, due to a lingering influence from the random initial starting point
used to launch the algorithm. However, the smoothness constraints we have described
quickly guide the roots towards the desired signal values.

Although we have thus far discussed only interactions between adjacent segments
of the signal, for STFT hop sizes h < N a given segment will both constrain, and be
constrained by, many other segments in a columnar region of the spectrogram. Each
window of signal can be thought of as a node within a (cyclic, reachable) network,
across which constraints may propagate in any direction. In this framework, recover-
ing the full signal x(n) is akin to finding an equilibrium point where all the constraints
are satisfied simultaneously. It is possible that a dynamical systems perspective can
be used to describe the behavior of this algorithm.

Finally, we have found that repeating the algorithm on a spectrogram derived
from a time-reversed version of the original signal can reduce the reconstruction error
further. Specifically, averaging the results under the normal and reversed conditions
often times will give a SIR lower than either of the individual reconstructions alone.

A concise summary of our algorithm is given in Algorithm 2, where we have
assumed that the size K×L spectrogram has been computed with windows of length
N and hop sizes h.
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Example: Speech Reconstruction
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error: original
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14.7kHz sampling rate, male speaker: “Hi”. 100 sample rectangular STFT window,
60 sample hop size (40% overlap), 200 FFT bins per window.

Figure 6-2: Reconstruction of a short segment of speech using the proposed algorithm,
proceeding over the time-domain signal from left to right, and then backwards from
right to left. Traces are shown for only a subset of the iterations. Note that the
reconstruction improves after both the forward and backward passes.
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6.5 Experiments

We compared the proposed algorithm to Griffin and Lim’s technique on both speech
and music signals. In order to better balance the computation times of the two
methods, our algorithm was applied only once to the signals and we did not in-
clude the time-reversed solution. We additionally applied a mixture of extrapolation
techniques when forming the initial root-finding guess. A linear model was fit to
the leading/trailing p = min(20, N − h) points, and extrapolated for 5 points. The
remaining unknown points in the non-overlapping region were set to the last extrapo-
lated point. The success of our algorithm does not critically depend on these choices.
Griffin and Lim’s algorithm was passed uniformly distributed random initial phase
guesses ri ∼ U(0, 1), and was run until the relative decrease in `2 error between the
STFT magnitude of the reconstruction and the given magnitude was less than 0.1%.
We separately evaluated Griffin and Lim when given both strictly positive signals
and zero-mean signals. For both methods, positivity was enforced by working with
spectrograms derived from the target signal x′(n) = x(n)−minm[x(m)], rather than
x(n) itself.

The speech signals we attempted to reconstruct consisted of a male speaker and
a female speaker uttering the phrase “Hi Jane”, while the music sample consisted
of a percussive drum loop with no other instruments or vocals. The latter example
is representative of a class of signals that tends to be more difficult to recover due
to abrupt, non-smooth transitions and noisy crashes which dominate the structure
of the signal. The signals varied in length from 0.75s to 2.2s, were all sampled at
14.7kHz, and were normalized uniformly. In each experiment, we used a 100 sample
(6.8ms) square (boxcar) window and 200 FFT bins. The STFT hop size, however, was
systematically varied from 10% to 90% of the window width in steps of 10 samples.
We then compared the power signal-to-noise ratio (SNR) between the original signal
xo and the reconstruction xr for each STFT hop size, where

SNR = 20 log10

(
‖xo‖2

‖xo − xr‖2

)
(dB). (6.7)

While we have found that both methods are stable with respect to initial conditions,
the experiments were nevertheless repeated several times. An graphical illustration
of the reconstruction process is shown in Figure 6-2. Note that the backwards pass
“repairs” errors left behind by the initial forward pass. An error detail after two
passes is also shown.

We show the averaged performance, over 200 trials, on the male and female speech
samples for both algorithms as a function of STFT hop size in the top two panes of
Figure 6-3, where the trace denoted “incremental” corresponds to our technique.
Comparison for the percussive drum loop can be seen in the bottom pane of 6-3. It
can be seen that our algorithm consistently outperforms Griffin and Lim’s algorithm
as measured by SNR over the full range of hop sizes. In the male speech case for
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example, at approximately h = 30 positivity of the input signal affects Griffin and
Lim’s performance. Overall, it is evident that our technique degrades more gracefully
as redundancy in the STFT is reduced.

While these results are encouraging, Griffin and Lim’s algorithm can give percep-
tually good results even though the SNR is poor. Often times this can be attributed
to inaudible sign errors in the reconstruction, particularly for small hop sizes. With
larger hop sizes, we have observed that the error is mainly due to poor reconstruction
and significant distortion can be heard. For this reason, it is important to compare
the perceptual quality of the two algorithms. In most cases our algorithm is perceptu-
ally better over the full range of hop sizes, and the distinction is greater as the STFT
analysis window size is increased (while maintaining similar hop sizes as a percentage
of window width).

For small STFT hop sizes our algorithm can require more computation time than
the Griffin-Lim algorithm, depending on the number of iterations needed to meet
the Griffin-Lim convergence criteria. Otherwise, the two algorithms are generally
comparable in running-time.

6.6 Conclusion

The algorithm we have presented typically achieves greater signal-to-noise ratios than
existing reconstruction techniques, and the perceptual improvement for speech and
music signals is particularly noticeable when there is less redundancy in the STFT.

In designing the algorithm, we imposed several time-domain regularization con-
straints: (1) We exploited the overlap constraints inherent in the structure of the
STFT explicitly and enforced smoothness across windows of the signal. (2) We en-
forced smoothness within an individual segment by extrapolating in the region where
samples were unknown. And, (3) we propagated these constraints throughout the
entire signal by applying the smoothness assumptions recursively in both forward
and backward directions. We then incorporated these time-domain constraints into
a root-finding problem in the frequency domain. Collectively, the constraints can be
thought of as biasing the spectral root-finding procedure at each segment towards
smooth solutions that are shown to be highly accurate when the true values of the
signal are available for comparison.
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Figure 6-3: Algorithm performance (dB) vs. STFT hop size for a 100 sample analysis
window, as applied (in top-to-bottom order) to male speech, female speech, and a
drum loop.
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Chapter 7

Conclusion

We have described a mathematical formalism for analyzing hierarchical learning, em-
phasizing by way of a theoretical analysis of the neural response map, the interplay
between architecture, invariance, and discrimination. We then showed, via experi-
ments involving applications in vision and speech, that hierarchical learning machines
can be advantageous, and warrant further exploration. The contents of this thesis
should be seen as a step towards answering important questions concerning the sam-
ple complexity of hierarchical architectures and task-specific learning with general
systems exploiting decomposability of the data. More specifically, we have sought to
answer the following questions:

• When and why is a “deep” architecture preferred, and how does the architecture
induce invariance and discrimination properties?

• For tasks that can be decomposed into a hierarchy of parts, how can we show
that a supervised classifier trained using a hierarchical feature map will gener-
alize better than an non-hierarchical/parts-based alternative?

• Can we understand and cast learning in hierarchies using tools from statistical
learning theory?

• What can we understand about the cortex by studying computation with hier-
archies abstractly and mathematically?

In attempting to shed light on these issues, we have raised and left open many more
important research possibilities and there is much future work to consider. In partic-
ular,

• How can we choose the optimal number of layers?

• How do other architectural choices influence discrimination and invariance prop-
erties?

• What is the best way to learn the templates?
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• What are the advantanges/disadvantages to different choices of the pooling
function?

• A stability analysis of the neural response, with respect to perceptually in-
significant changes (e.g. changes in background texture), and with respect to
distractor objects and clutter.

• Integration of feedback via top-down contextual priors and notions of atten-
tion (possibly integrated via measures on transformations ρHi , as discussed in
Chapter 2).

In the section that follows we compare and contrast the neural response/derived
kernel framework, and one of the most common deep learning approaches found in
the literature. We then provide an itemized list of answers to common criticisms of
the framework proposed in Chapter 2.

7.1 Existing Deep Learning Techniques and the

Neural Response: A Comparison

Derived kernels are defined with the goal of understanding when and why deep net-
works can outperform traditional single-layer alternatives while building on the estab-
lished tools offered by statistical learning theory. At the same time, derived kernels
do not sacrifice elements important for good performance in exchange for analytical
tractability, as confirmed by our empirical simulations investigating sample complex-
ity in practical settings. As we have argued in the Introduction, much of the work
involving deep architectures to date is biased towards applications, and computational
expediency. Indeed, relatively little is understood about deep belief networks from a
theory perspective because the existing models are difficult to analyze formally.

We first list broad similarities between derived kernels and deep networks, then
the major differences, and finally give a more formal comparison between the two.

7.1.1 Similarities

From a practical standpoint the different hierarchical architectures share several im-
mediate similarities. The derived kernel architecture is similar to a deep belief network
(DBN) and could be made even more similar if the stage of unsupervised learning
were to be modified. We elaborate on this point below. Obvious similarities include
the following:

• They are both hierarchical and deep (several layers).

• They are both feedforward at run time (once the unsupervised learning is done).

• They both have a stage of unsupervised learning, which proceeds layer by layer.
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7.1.2 Differences

There are also several distinct differences worth highlighting:

• The neural response is designed to directly incorporate operations to build in-
variance to certain transformations of the input such as translations. There
is generally no such explicit property in other deep learning models, though
LeCun and colleagues have attempted to incorporate explicit invariances in his
convolutional neural network variants [65, 102], and recent work due to Lee et
al. [66] incorporates translation invariance.

• Deep learning networks are often described in probabilistic terms, in particular
when a Restricted Boltzmann Machine (RBM) is used to pre-train pairs layers.
They are in this case undirected graphical models. Derived kernel networks are
not described in probabilistic terms but in a functional analytic language.

• The unsupervised learning stage for each pair of layers in a DBN model typically
uses an autoencoder (reconstruction-based) approach. In the simplest derived
kernel setting, there is a stage (at each layer) of unsupervised learning of the
templates which can be described as a Monte Carlo estimate of a continuous
encoding operator. This learning stage could of course be more sophisticated
(see below).

• There is no formal theory describing in mathematical terms the various deep
learning architectures. We believe such a body of formal definitions to be the
key to finding sharp theoretical results.

7.1.3 Technical Considerations

Because derived kernels and many deep belief networks are mathematically formulated
in significantly different terms, one must make quantitative comparisons with care.
We can, however, make a clear distinction between the ways in which both models
incorporate (unsupervised) learning. We briefly review the important objects arising
in both deep networks and derived kernels so as to provide a more specific, technical
comparison.

In the following discussion, we use x to denote inputs in the case of neural net-
works, and f in the case of the neural response. The variable f can be thought of as
either a function or a vector.

Deep Autoencoding Neural Networks

We review learning in deep networks built from autoencoders, and consider the case
of an autoencoder parameterized as a multi-layer perceptron. There are many vari-
ations in the literature, however we believe this picture to be simpler (while no less
general) than networks comprised of Restricted Boltzmann Machines (e.g. as in [49])
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because the layerwise pre-training can be done with gradient descent, and the objec-
tive function can be easily interpreted. For a given encoder/decoder pair of layers
mapping the variables x→ y → z, we can describe the model as

y = σ(W1x+ b1)

z = σ(W2y + b2)

where x ∈ Rn is an input vector, z ∈ Rn is the output, W1 is the (r × n) encoding
weight matrix, W2 is the (n × r) decoding matrix, and b1,b2 are bias vectors. We
denote by σ(z) = (1 + e−z)−1 the sigmoid activation nonlinearity acting component-
wise on a vector. Typically the data is passed through a “bottleneck” [49, 11], in which
case r is chosen smaller than n. A commonly occurring variant of the autoencoding
building block fixes W2 = WT

1 for pre-training. During the pre-training phase as
described by Hinton & Salakhutdinov [49], the network can be trained to reconstruct
in a least-squares sense a set of input data {xi}i, leading to the following cost function

E(W1,W2,b1,b2) =
∑
i

‖zi − xi‖2
2.

This cost is then minimized with respect to the weights and biases W1,W2,b1,b2

via backpropagation. Other cost functions, such as reconstruction cross-entropy, have
also been used [116], however we consider the above setting to be more canonical. If
the activation function σ is chosen to be linear, this network will learn something
similar to PCA [49].

Generally, many heuristics are involved in the non-convex optimization. A deep
network is trained by first training the outer pair of layers as above. The next pair
of nested layers, one step inwards, is trained similarly but using the output of the
previous layer as the input data to be reconstructed, and the process repeats for as
long as required. The size of the weight matrices at the inner layers are again chosen
by the user, but must be compatible with the other layers to which they connect.
Finally, after pre-training of each pair is complete, the network is “unrolled” into
one deep encoder/decoder structure, and a final polishing phase of light training is
applied to the entire model (often using a supervised criterion).

The Derived Kernel Encoding Operator

In the derived kernel framework, learning proceeds in a markedly different man-
ner. Recall from Chapter 2 that the neural response has a self consistent definition,
whereby the neural response at a given layer can be expressed in terms of the neural
responses at the previous layer

NSq(f)(t) = max
h∈H

〈
N̂v(f ◦ h), N̂v(t)

〉
L2(T ′)

, t ∈ T
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with H = Hv, T
′ = Tu and T = Tv. It is both instructive and revealing to recast this

definition in vector notation as

NSq(f) =


maxh∈H

〈
N̂v(f ◦ h), N̂v(t1)

〉
L2(T ′)

...

maxh∈H
〈
N̂v(f ◦ h), N̂v(t|T |)

〉
L2(T ′)



= max
h∈H



← N̂v(t1) →

...

← N̂v(t|T |) →

 N̂v(f ◦ h)


=: max

h∈H

{
ΠvN̂v(f ◦ h)

}
where the max operation is assumed to apply elementwise. The important object
here is the encoding operator Πv : L2(Tu)→ L2(Tv), defined by

(ΠvF )(t) = 〈N̂v(t), F 〉L2(Tu)

for F ∈ L2(Tu), t ∈ Tv. The operator Πv is seen here as a |Tv|× |Tu| matrix: each row
of the matrix Πv is the (normalized) neural response of a template t ∈ Tv, so that

(Πv)t,t′ = N̂v(t)(t
′)

with t ∈ Tv and t′ ∈ Tu. The template t could be a patch of a natural image, sampled
according to its natural probability. This perspective highlights the action of the
hierarchy as alternating pooling and filtering steps, realized by the max and the Π
operator respectively. Note in particular, that the Π operator does not depend on the
input f .

Learning with derived kernels can be integrated in two main ways: (1) via the
selection of the templates, and/or (2) via the Π operators.

Comparison

A key aspect of our approach is the interplay between invariance and discrimination.
Both properties are “built-in” to the hierarchy. This corresponds to two main oper-
ations: pooling and filtering. The latter is where unsupervised learning takes place.
This aspect highlights a point of distinction between our work and that of the deep
learning literature, and we elaborate on these themes.

• In our setting, the architecture itself is motivated by a desire to (1) impose
invariance and (2) exploit the hierarchical organization of the physical world. In
most deep networks, with the notable exception of convolutional neural networks
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and to a limited extent the work of [66], the architecture does not play such an
active role. Indeed, the user must settle on an architecture with little guidance
other than end-to-end experimental validation on a development set of data.

• A key learning process in our setting is that of learning the Π operators at each
layer of the derived kernel hierarchy, in correspondence with learning the W
matrices at each layer of the deep autoencoder above. However, this picture
ignores the fact that in the neural response we consider a collection of local
encodings over which we pool via the max. In contrast, the W matrices above
can be seen as global quantities since typically all to all connectivity is imposed
between layers of an autoencoder neural network. The advantage of local, mul-
tiscale principles has been demonstrated in, e.g. the case of wavelet analysis of
images and audio signals.

• The simplest way to define a new Π operator is by choosing a representation
on a suitable basis. For example, via PCA, by diagonalizing the Π matrices
initially given as encodings of the templates. This loosely parallels the case
where the autoencoder neural network above realizes PCA when σ(·) is linear.
However we again caution that in our framework we learn multiple localized
representations at different scales explicitly. It is these local encoding operators
that are diagonalized, so that the resulting principal components do not corre-
spond to the global components one obtains with classical PCA applied to the
entire input object.

• More interesting choices of the Π operators may be made, reflecting the ge-
ometry or topology of the data, or including ideas from sparse coding. For
example, Π could be represented in terms of the eigenfunctions of the Lapla-
cian. Moreover, our approach is not restricted to representations derived from
a reconstruction-based criteria, and includes e.g. distance metric learning.

• Template selection at different scales in a derived kernel architecture is another
place where learning occurs. While the W encoding/decoding matrices are rela-
tively unconstrained in autoencoders, the default Π matrices are determined by
template encodings. Rather than random sampling, the templates may them-
selves be chosen using methods motivated by geometric or sparse approximation
ideas (as above).

7.1.4 Remarks

We summarize in the form of several remarks the advantages of the derived kernel
formalism which further distinguish our approach from the deep learning literature.

• There is little work attempting to understand hierarchical learning in terms of
the well established tools of statistical learning theory. Our framework makes
this sort of an analysis accessible because the primary objects of interest are
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kernels and operators on Hilbert spaces of functions. Extending the existing
theory to the multi-layer case is an important open problem.

• Deep networks are very general learning machines, however theoretical under-
standing has only been obtained in restricted settings such as Boolean function
learning [11, 64]. We believe our framework will allow analysis of hierarchies
within the context of a broader class of problems.

• Deep belief networks do not provide a way for the modeler to easily incorporate
domain knowledge, or exploit important aspects of the data in a direct way.
For example, deep belief networks may or may not discover through training a
way to leverage geometry of the data. On the other hand, the derived kernel
framework provides an explicit avenue for incorporating particular data repre-
sentations (by a choice of Π) which can exploit geometry, topology, or other
aspects important to the modeler. Sparsity and geometry are ubiquitous con-
cepts in machine learning, and yet are apparently either incompatible with or
difficult to incorporate into most existing hierarchical models (see e.g. [119]).
The derived kernel framework allows one to integrate these concepts in a nat-
ural way without incurring significant additional computational complexity, or
loss of algorithmic simplicity.

• In deep networks, if invariance to isometric transformations is desired, one needs
to either hope that one has enough training data and a suitably flexible archi-
tecture to discover the invariance, or needs to design a specialized network and
re-derive the training rules. The objective may also exhibit an increased sus-
ceptibility to local minima. In the case of derived distances, one needs only
to choose a suitable, invariant mother kernel and the desired invariance will
propagate throughout the network automatically. Alternatively, one may also
simply add further transformations to the pooling sets Hm associated with each
layer.

7.2 Answers to Criticisms of the Neural Response

Framework

We attempt to give answers to criticisms of the derived kernel work presented in
Chapter 2. The discussion is organized in a Question and Answer format.

• The analysis you’ve presented seems particular. How does this apply to any
other setting? There is currently little work attempting to formalize learning in
hierarchies. The neural response model, while simple, represents a first step in
this direction, where we have fixed some basic rules of the game. Although our
analysis considers 2-D images and strings with particular architectural config-
urations, we believe that our results make constructive statements about gen-
eral properties such as invariance and discrimination ability. The framework
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we’ve discussed also shares some commonalities with wavelets, where an initial
“mother kernel” is iterated over by applying a recursive definition involving do-
mains of increasing size. As was the case in the development of wavelets, the
construction of a derived kernel itself is important. This perspective places our
work within the context of an established and more familiar body of research.

• Why do you use the max? It’s going to make the mathematics difficult. While
the max operation is more difficult to work with mathematically, it allows for
a richer set of models as compared to a simple average, and contributes to-
wards preventing the layered architecture from collapsing into a simple linear
operation. The max was also originally used in the CBCL model, and there
is evidence supporting its presence in the brain [60, 41]. We have also shown
that the max induces equivalence classes of inputs, thereby facilitating invari-
ant models. Intuitively, the notion that we take as the output of a filtering
step the best match over a set of templates is compelling, and parallels winner-
take-all behavior found in dynamical models of neural networks. We prefer to
work with this particular source of nonlinearity rather than another, perhaps
equally challenging but unmotivated, choice. Finally, as shown in Section 4.2.1
of Chapter 4, several important invariance results described in Chapter 2 extend
to arbitrary pooling functions beyond the max.

• How can you enforce invariance of the initial kernel? That global invariances
can come from a collection of local invariances is somewhat surprising. Recall
that you need only enforce invariance locally, at the lowest level of the hierarchy.
Representing patches of images, for example, as histograms, would allow for
rotation and reflection invariance. Spin-images [54], is another example of a
local rotationally invariant feature, computed by summing the energy in annuli
about a point in the gradient image.

• It seems that sampling random templates is naive. Choosing the templates in
an optimal sense is a problem that is most often dependent on the particular
task at hand. In order to provide the most general sort of results, we did not
want to assume any particular domain or restrict the input to any particular
class of stimuli; we need only assume the existence of a measure ρ through
which one may view and sample the world. Template selection is an open (and
involved) problem that could also include learning techniques which exploit data
geometry, topology and/or sparsity, as discussed in Section 2.2.5 of Chapter 2.
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