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Abstract

We discuss the derivation and implementation of convolutional neural networks,
followed by an extension which allows one to learn sparse combinations of fea-
ture maps. The derivation we present is specific to two-dimensional data and
convolutions, but can be extended without much additional effort to an arbitrary
number of dimensions. Throughout the discussion, we emphasize efficiency of
the implementation, and give small snippets of MATLAB code to accompany the
equations.

1 Introduction

This document discusses the derivation and implementation of convolutional neural networks
(CNNs) [3, 4], followed by a few straightforward extensions. Convolutional neural networks in-
volve many more connections than weights; the architecture itself realizes a form of regularization.
In addition, a convolutional network automatically provides some degree of translation invariance.
This particular kind of neural network assumes that we wish to learn filters, in a data-driven fash-
ion, as a means to extract features describing the inputs. The derivation we present is specific to
two-dimensional data and convolutions, but can be extended without much additional effort to an
arbitrary number of dimensions.

We begin with a description of classical backpropagation in fully connected networks, followed by a
derivation of the backpropagation updates for the filtering and subsampling layers in a 2D convolu-
tional neural network. Throughout the discussion, we emphasize efficiency of the implementation,
and give small snippets of MATLAB code to accompany the equations. The importance of writing
efficient code when it comes to CNNs cannot be overstated. We then turn to the topic of learning
how to combine feature maps from previous layers automatically, and consider in particular, learning
sparse combinations of feature maps.

Disclaimer: This rough note could contain errors, exaggerations, and false claims.

2 Vanilla Back-propagation Through Fully Connected Networks

In typical convolutional neural networks you might find in the literature, the early analysis consists of
alternating convolution and sub-sampling operations, while the last stage of the architecture consists
of a generic multi-layer network: the last few layers (closest to the outputs) will be fully connected
1-dimensional layers. When you’re ready to pass the final 2D feature maps as inputs to the fully
connected 1-D network, it is often convenient to just concatenate all the features present in all the
output maps into one long input vector, and we’re back to vanilla backpropagation. The standard
backprop algorithm will be described before going onto specializing the algorithm to the case of
convolutional networks (see e.g. [1] for more details).



2.1 Feedforward Pass

In the derivation that follows, we will consider the squared-error loss function. For a multiclass
problem with c classes and N training examples, this error is given by

EN =
1

2

N∑
n=1

c∑
k=1

(tnk − ynk )2.

Here tnk is the k-th dimension of the n-th pattern’s corresponding target (label), and ynk is similarly
the value of the k-th output layer unit in response to the n-th input pattern. For multiclass classifi-
cation problems, the targets will typically be organized as a “one-of-c” code where the k-th element
of tn is positive if the pattern xn belongs to class k. The rest of the entries of tn will be either zero
or negative depending on the choice of your output activation function (to be discussed below).

Because the error over the whole dataset is just a sum over the individual errors on each pattern, we
will consider backpropagation with respect to a single pattern, say the n-th one:

En =
1

2

c∑
k=1

(tnk − ynk )2 =
1

2
‖tn − yn‖22. (1)

With ordinary fully connected layers, we can compute the derivatives of E with respect to the net-
work weights using backpropagation rules of the following form. Let ` denote the current layer,
with the output layer designated to be layer L and the input “layer” designated to be layer 1. Define
the output of this layer to be

x` = f(u`), with u` = W`x`−1 + b` (2)

where the output activation function f(·) is commonly chosen to be the logistic (sigmoid) function
f(x) = (1 + e−βx)−1 or the hyperbolic tangent function f(x) = a tanh(bx). The logistic function
maps [−∞,+∞] → [0, 1], while the hyperbolic tangent maps [−∞,+∞] → [−a,+a]. Therefore
while the outputs of the hyperbolic tangent function will typically be near zero, the outputs of a
sigmoid will be non-zero on average. However, normalizing your training data to have mean 0 and
variance 1 along the features can often improve convergence during gradient descent [5]. With a
normalized dataset, the hyperbolic tangent function is thus preferrable. LeCun recommends a =
1.7159 and b = 2/3, so that the point of maximum nonlinearity occurs at f(±1) = ±1 and will thus
avoid saturation during training if the desired training targets are normalized to take on the values
±1 [5].

2.2 Backpropagation Pass

The “errors” which we propagate backwards through the network can be thought of as “sensitivities”
of each unit with respect to perturbations of the bias1. That is to say,

∂E

∂b
=
∂E

∂u

∂u

∂b
= δ (3)

since in this case ∂u
∂b = 1. So the bias sensitivity and the derivative of the error with respect to a

unit’s total input is equivalent. It is this derivative that is backpropagated from higher layers to lower
layers, using the following recurrence relation:

δ` = (W `+1)T δ`+1 ◦ f ′(u`) (4)

where “◦” denotes element-wise multiplication. For the error function (1), the sensitivities for the
output layer neurons will take a slightly different form:

δL = f ′(uL) ◦ (yn − tn).

Finally, the delta rule for updating a weight assigned to a given neuron is just a copy of the inputs
to that neuron, scaled by the neuron’s delta. In vector form, this is computed as an outer product

1This nifty interpretation is due to Sebastian Seung



between the vector of inputs (which are the outputs from the previous layer) and the vector of
sensitivities:

∂E

∂W`
= δ`(x`−1)T (5)

∆W` = −η ∂E

∂W`
(6)

with analogous expressions for the bias update given by (3). In practice there is often a learning rate
parameter ηij specific to each weight (W)ij .

3 Convolutional Neural Networks

Typically convolutional layers are interspersed with sub-sampling layers to reduce computation time
and to gradually build up further spatial and configural invariance. A small sub-sampling factor is
desirable however in order to maintain specificity at the same time. Of course, this idea is not new,
but the concept is both simple and powerful. The mammalian visual cortex and models thereof [12,
8, 7] draw heavily on these themes, and auditory neuroscience has revealed in the past ten years
or so that these same design paradigms can be found in the primary and belt auditory areas of the
cortex in a number of different animals [6, 11, 9]. Hierarchical analysis and learning architectures
may yet be the key to success in the auditory domain.

3.1 Convolution Layers

Let’s move forward with deriving the backpropagation updates for convolutional layers in a network.
At a convolution layer, the previous layer’s feature maps are convolved with learnable kernels and
put through the activation function to form the output feature map. Each output map may combine
convolutions with multiple input maps. In general, we have that

x`j = f

(∑
i∈Mj

x`−1i ∗ k`ij + b`j

)
,

whereMj represents a selection of input maps, and the convolution is of the “valid” border handling
type when implemented in MATLAB. Some common choices of input maps include all-pairs or all-
triplets, but we will discuss how one might learn combinations below. Each output map is given an
additive bias b, however for a particular output map, the input maps will be convolved with distinct
kernels. That is to say, if output map j and map k both sum over input map i, then the kernels
applied to map i are different for output maps j and k.

3.1.1 Computing the Gradients

We assume that each convolution layer ` is followed by a downsampling layer `+1. The backpropa-
gation algorithm says that in order to compute the sensitivity for a unit at layer `, we should first sum
over the next layer’s sensitivies corresponding to units that are connected to the node of interest in
the current layer `, and multiply each of those connections by the associated weights defined at layer
` + 1. We then multiply this quantity by the derivative of the activation function evaluated at the
current layer’s pre-activation inputs, u. In the case of a convolutional layer followed by a downsam-
pling layer, one pixel in the next layer’s associated sensitivity map δ corresponds to a block of pixels
in the convolutional layer’s output map. Thus each unit in a map at layer ` connects to only one unit
in the corresponding map at layer ` + 1. To compute the sensitivities at layer ` efficiently, we can
upsample the downsampling layer’s sensitivity map to make it the same size as the convolutional
layer’s map and then just multiply the upsampled sensitivity map from layer `+1 with the activation
derivative map at layer ` element-wise. The “weights” defined at a downsampling layer map are all
equal to β (a constant, see section 3.2), so we just scale the previous step’s result by β to finish the
computation of δ`. We can repeat the same computation for each map j in the convolutional layer,
pairing it with the corresponding map in the subsampling layer:

δ`j = β`+1
j

(
f ′(u`j) ◦ up(δ`+1

j )
)



where up(·) denotes an upsampling operation that simply tiles each pixel in the input horizontally
and vertically n times in the output if the subsampling layer subsamples by a factor of n. As we
will discuss below, one possible way to implement this function efficiently is to use the Kronecker
product:

up(x) ≡ x⊗ 1n×n.

Now that we have the sensitivities for a given map, we can immediately compute the bias gradient
by simply summing over all the entries in δ`j :

∂E

∂bj
=
∑
u,v

(δ`j)uv.

Finally, the gradients for the kernel weights are computed using backpropagation, except in this case
the same weights are shared across many connections. We’ll therefore sum the gradients for a given
weight over all the connections that mention this weight, just as we did for the bias term:

∂E

∂k`ij
=
∑
u,v

(δ`j)uv(p
`−1
i )uv (7)

where (p`−1i )uv is the patch in x`−1i that was multiplied elementwise by k`ij during convolution
in order to compute the element at (u, v) in the output convolution map x`j . At first glance it may
appear that we need to painstakingly keep track of which patches in the input map correspond to
which pixels in the output map (and its corresponding map of sensitivities), but equation (7) can be
implemented in a single line of MATLAB using convolution over the valid region of overlap:

∂E

∂k`ij
= rot180(conv2(x`−1i , rot180(δ`j),

′valid′)).

Here we rotate the δ image in order to perform cross-correlation rather than convolution, and rotate
the output back so that when we perform convolution in the feed-forward pass, the kernel will have
the expected orientation.

3.2 Sub-sampling Layers

A subsampling layer produces downsampled versions of the input maps. If there are N input maps,
then there will be exactly N output maps, although the output maps will be smaller. More formally,

x`j = f
(
β`j down(x`−1j ) + b`j

)
,

where down(·) represents a sub-sampling function. Typically this function will sum over each
distinct n-by-n block in the input image so that the output image is n-times smaller along both
spatial dimensions. Each output map is given its own multiplicative bias β and an additive bias b.
We can also simply throw away every other sample in the image [10].2

3.2.1 Computing the Gradients

The difficulty here lies in computing the sensitivity maps. One we’ve got them, the only learnable
parameters we need to update are the bias parameters β and b. We will assume that the subsampling
layers, are surrounded above and below by convolution layers. If the layer following the subsampling
layer is a fully connected layer, then the sensitivity maps for the subsampling layer can be computed
with the vanilla backpropagation equations introduced in section 2.

When we tried to compute the gradient of a kernel in section 3.1.1, we had to figure out which patch
in the input corresponded to a given pixel in the output map. Here, we must figure out which patch
in the current layer’s sensitivity map corresponds to a given pixel in the next layer’s sensitivity map
in order to apply a delta recursion that looks something like equation (4). Of course, the weights

2Patrice Simard’s “pulling” vs “pushing” appears to be unnecessary if you use conv with zero padding to
compute the sensitivities and gradients.



multiplying the connections between the input patch and the output pixel are exactly the weights of
the (rotated) convolution kernel. This is again efficiently implemented using convolution:

δ`j = f ′(u`j) ◦
∑

i∈M`+1
j

conv2
(
δ`+1
j , rot180(k`+1

ij ), ′full′
)

= f ′(u`j) ◦ conv2
(
δ`+1
j , rot180

( ∑
i∈M`+1

j

k`+1
ij

)
, ′full′

) (8)

where M `+1
j denotes the collection of maps at the next (higher) layer (` + 1) which receive input

from subsampling layer map j at layer `. In general, if a subsampling layer ouput map projects
to multiple maps at the next layer, you’ll need to sum over the convolutions with each kernel that
filters the given subsampling map to compute its sensitivity. As before, we rotate the kernel to make
the convolution function perform cross-correlation. Notice that in this case, however, we require
the “full” convolution border handling, to borrow again from MATLAB’s nomenclature. This small
difference lets us deal with the border cases easily and efficiently, where the number of inputs to
a unit at layer ` + 1 is not the full size of the n × n convolution kernel. In those cases, the “full”
convolution will automatically pad the missing inputs with zeros.

At this point we’re ready to compute the gradients for b and β. The additive bias is again just the
sum over the elements of the sensitivity map:

∂E

∂bj
=
∑
u,v

(δ`j)uv.

The multiplicative bias β will of course involve the original down-sampled map computed at the
current layer during the feedforward pass. For this reason, it is advantageous to save these maps
during the feedforward computation, so we don’t have to recompute them during backpropagation.
Let’s define

d`j = down(x`−1j ).

Then the gradient for β is given by
∂E

∂βj
=
∑
u,v

(δ`j ◦ d`j)uv.

3.3 Learning Combinations of Feature Maps

Often times, it is advantageous to provide an output map that involves a sum over several convo-
lutions of different input maps. In the literature, the input maps that are combined to form a given
output map are typically chosen by hand. We can, however, attempt to learn such combinations
during training. Let αij denote the weight given to input map i when forming output map j. Then
output map j is given by

x`j = f

(
Nin∑
i=1

αij(x
`−1
i ∗ k`i) + b`j

)
,

subject to the constraints ∑
i

αij = 1, and 0 ≤ αij ≤ 1.

These constraints can be enforced by setting the αij variables equal to the softmax over a set of
unconstrained, underlying weights cij :

αij =
exp(cij)∑
k exp(ckj)

.

Because each set of weights cij for fixed j are independent of all other such sets for any other j, we
can consider the updates for a single map and drop the subscript j. Each map is updated in the same
way, except with different j indices.

The derivative of the softmax function is given by
∂αk
∂ci

= δkiαi − αiαk (9)



(where here δ is used as the Kronecker delta), while the derivative of (1) with respect to the αi
variables at layer ` is

∂E

∂αi
=
∂E

∂u`
∂u`

∂αi
=
∑
u,v

(
δ` ◦ (x`−1i ∗ k`i)

)
uv
.

Here, δ` is the sensitivity map corresponding to an output map with inputs u. Again, the convolution
is the “valid” type so that the result will match the size of the sensitivity map. We can now use the
chain rule to compute the gradients of the error function (1) with respect to the underlying weights
ci:

∂E

∂ci
=
∑
k

∂E

∂αk

∂αk
∂ci

(10)

= αi

(
∂E

∂αi
−
∑
k

∂E

∂αk
αk

)
. (11)

3.3.1 Enforcing Sparse Combinations

We can also try to impose sparseness constraints on the distribution of weights αi for a given map
by adding a regularization penalty Ω(α) to the final error function. In doing so, we’ll encourage
some of the weights to go to zero. In that case, only a few input maps would contribute significantly
to a given output map, as opposed to all of them. Let’s write the error for a single pattern as

Ẽn = En + λ
∑
i,j

|(α)ij | (12)

and find the contribution of the regularization term to the gradient for the weights ci. The user-
defined parameter λ controls the tradeoff between minimizing the fit of the network to the training
data, and ensuring that the weights mentioned in the regularization term are small according to the
1-norm. We will again consider only the weights αi for a given output map and drop the subscript
j. First, we need that

∂Ω

∂αi
= λ sign(αi) (13)

everywhere except at the origin. Combining this result with (9) will allow us to derive the contribu-
tion:

∂Ω

∂ci
=
∑
k

∂Ω

∂αk

∂αk
∂ci

(14)

= λ

(
|αi| − αi

∑
k

|αk|
)
. (15)

The final gradients for the weights ci when using the penalized error function (12) can be computed
using (14) and (10):

∂Ẽn

∂ci
=
∂En

∂ci
+
∂Ω

∂ci
.

3.4 Making it Fast with MATLAB

In a network with alternating sub-sampling and convolution layers the main computational bottle-
necks are:

1. During the feedforward pass: downsampling the convolutional layer’s output maps
2. During backpropagation: upsampling of a higher sub-sampling layer’s delta’s to match the

size of the lower convolutional layer’s output maps.
3. Application of the sigmoid and it’s derivative.

Performing the convolutions during both the feedforward and backproagation stages are also compu-
tational bottlenecks of course, but assuming the 2D convolution routine is efficiently implemented,
there isn’t much we can do about it.



One might be tempted however to use MATLAB’s built-in image processing routines to handle
the up- and down-sampling operations. For up-sampling, imresize will do the job, but with
significant overhead. A faster alternative is to use the Kronecker product function kron, with the
matrix to be upsampled, and a matrix of ones. This can be an order of magnitude faster. When
it comes to the down-sampling step during the feedforward pass, imresize does not provide the
option to downsample by summing over distinct n-by-n blocks. The “nearest-neighbor” method
will replace a block of pixels by only one of the original pixels in the block. An alternative is to
apply blkproc to each distinct block, or some combination of im2col and colfilt. While
both of these options only computes what’s necessary and nothing more, repeated calls to the user-
defined block-processing function imposes significant overhead. A much faster alternative in this
case is to convolve the image with a matrix of ones, and then simply take every-other entry using
standard indexing (i.e. y=x(1:2:end,1:2:end)). Although convolution in this case actually
computes four times as many outputs (assuming 2x downsampling) as we really need, this method
is still (empirically) an order of magnitude or so faster than the previously mentioned approaches.

Most authors, it seems, implement the sigmoid activation function and it’s derivative using inline
function definitions. At the time of this writing, “inline” MATLAB function definitions are not
at all like C macros, and take a huge of amount of time to evaluate. Thus, it is often worth it to
simply replace all references to f and f ′ with the actual code. There is of course a tradeoff between
optimizing your code and maintaining readability.

4 Practical Training Issues (Incomplete)

4.1 Batch vs. Online Updates

Stochastic descent vs. batch learning.

4.2 Learning Rates

LeCun’s stochastic online method (diagonal approx to the hessian). Is it worth it? Viren’s idea: at
least have a different rate for each layer, because gradients at the lower layers are smaller and less
reliable. LeCun makes similar statements in [5].

4.3 Choice of Error Function

Squared error (MLE), vs. cross-entropy. The latter can be more effective for some classification
tasks [2].

4.4 Checking Your Work with Finite-Differences

Finite-differences can be an indispensable tool when it comes time to verify that you’ve got your
backpropagation imeplementation (or derivation) correct. It is remarkably easy to make many mis-
takes and still have a network that appears to be learning something. Checking the gradients your
code produces against finite difference estimates is one way to make sure you don’t have any errors:

For a single input pattern, estimate the gradients using second-order finite differences

∂E

∂wi
≈ E(wi + ε)− E(wi − ε)

2ε

and check against the gradients your backpropagation code is returning. Epsilon should be small, but
not too small to cause numerical precision problems. Something like ε = 10−8 could be ok. Note
that using finite differences to train the network is wildly inefficient (i.e. O(W 2) for W weights in
the network); the O(W ) speed advantage of backpropagation is well worth the hassle.
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