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Abstract— The method of Mirror Descent (MD), originally
proposed by Nemirovski and Yudin in the late 1970s, has
recently seen a major resurgence in the fields of large-scale
optimization and machine learning. In a nutshell, MD is a
primal-dual method that can be adapted to the geometry of the
optimization problem at hand through the choice of a suitable
strongly convex potential function. We study a stochastic,
continuous-time variant of MD performed by a network of
coupled noisy agents (processors). The overall dynamics is
described by a system of stochastic differential equations,
coupled linearly through the network Laplacian. We address
the impact of the network topology (encoded in the spectrum of
the Laplacian) on the speed of convergence of the “mean-field”
component to the optimum. We show that this convergence
is particularly rapid whenever the potential function can be
chosen in such a way that the resulting mean-field dynamics in
the dual space follows an Ornstein–Uhlenbeck process.

I. INTRODUCTION

Large-scale optimization problems, involving anywhere up
to millions of variables, are becoming ubiquitous in control,
machine learning, communications, signal/image processing,
and other areas of science and engineering. This development
has highlighted the importance of structure in the problem
formulation as an enabler of efficiently implementable opti-
mization schemes. In particular, most of the recent progress
in the above-mentioned fields can be traced to the recognition
that many (if not all) optimization problems of interest can
be cast as convex programs of the form

min{f(x) : x ∈ X}

where the objective function f : Rn → R is convex, and the
problem domain X ⊆ Rn is a closed convex set. Thus, in
principle, one can take advantage of powerful polynomial-
time convex programming schemes, such as interior-point
methods [1]. However, the per-iteration computational com-
plexity of such methods scales nonlinearly with the problem
dimension n, at least as O(n2) and typically as O(n3),
unless the problem at hand has a very “nice” (e.g., sparse)
structure [1]. This unfortunate feature of “fancy” convex
programming methods rules out their use whenever n is
already on the order of tens of thousands. In this large-scale

M. Raginsky is with the Department of Electrical and Computer Engi-
neering and the Coordinated Science Laboratory, University of Illinois at
Urbana–Champaign, Urbana, IL 61801, USA; maxim@illinois.edu.
Research supported by NSF under grant CCF–1017564.

J. Bouvrie is with the Department of Mathematics, Duke University,
Durham, NC 27708, USA; jvb@math.duke.edu. JB acknowledges
support under contracts FA8650-11-1-7150 SUB#7-3130298 (DARPA),
SUB#113054 G002745 (Washington State U.) and IIS-08-03293 (NSF), all
to M. Maggioni.

regime, simpler iterative methods with linear per-iteration
complexity become more attractive.

Perhaps the simplest and the best-known of such methods
is projected subgradient descent [2], [3], which starts with
some initial point x0 ∈ X and iteratively generates the points

xk+1 = ΠX (xk − γkf ′(xk)) , (1)

where {γk}∞k=0 is a sequence of positive step sizes, f ′(xk)
is an arbitrary subgradient1 of f at xk ∈ X, and ΠX is the
Euclidean projection onto X, i.e., ΠX(y) = arg minx∈X{‖y−
x‖2} where ‖ · ‖2 denotes the Euclidean (`2) norm on Rn.
Provided this projection is efficiently computable, the above
method is easy to implement. However, its main drawback is
slow convergence. For instance, when X is compact and the
objective f is Lipschitz on X with constant L, the updates
{xk} generated by (1) with properly tuned step sizes satisfy

f(xk)−min
x∈X

f(x) ≤ const · LDX√
k
, (2)

where DX , supx,x′∈X ‖x − x′‖2 is the `2 diameter of X.
Moreover, this rate of convergence cannot be improved [5].
Thus, when X is an `2 ball, its diameter [and hence the
convergence rate in (2)] is independent of n; however, in the
case of a cube (`∞ ball) X = [−1, 1]n, we have DX = 2

√
n,

so the convergence rate deteriorates as n grows.
This phenomenon is due to the fact that the subgradient

scheme (1) is inextricably tied to the Euclidean geometry
of Rn through the projection operator ΠX. The so-called
method of Mirror Descent (MD), proposed in the late 1970s
by Nemirovski and Yudin [5] (cf. also [6], [7]) is a substantial
generalization of (1) that can be flexibly tailored to the geom-
etry of X, potentially resulting in a much better dependence
of the rate of convergence on the problem dimension n.
As an example, MD has been applied to a tomographic
reconstruction problem in medical imaging [8], which can
be cast as a convex optimization problem over the standard

simplex in Rn, giving the convergence rate of O
(√

lnn
k

)
and thus outperforming the Euclidean subgradient method (1)
by a factor of

√
n/ lnn. Moreover, MD has been recently

demonstrated to be a “universal” scheme (in the sense
of achieving optimal convergence rates) for online convex
optimization problems arising in machine learning [9].

1A subgradient of a convex function f : Rn → R at a given point x in the
domain of f is any vector g ∈ Rn, such that f(y) ≥ f(x)+ 〈g, x−y〉 for
all y ∈ Rn. The set of all subgradients of f at x is called the subdifferential
of f at x and denoted by ∂f(x) [4].



The original motivation for MD, given by Nemirovski and
Yudin [5], can be roughly summarized as follows. Suppose
that the convex objective function f : Rn → R is smooth,
and consider the gradient flow

dx(t)

dt
= −∇f(x(t)), t ≥ 0 (3)

with some initial condition x(0) ∈ X. Let x∗ ∈ arg minX f
be any minimizer of f on X. It is a well-known fact that
Vt(x

∗) = 1
2‖x(t) − x∗‖22 is a Lyapunov function for (3),

i.e., dVt(x
∗)/ dt ≤ 0 for all t ≥ 0. From this it can be

shown that f(x(t)) → f(x∗) ≡ minx∈X f(x) as t → ∞.
Moreover, the subgradient scheme (1) can be viewed as a
discretization of (3). The main insight behind MD is that it
is possible to proceed in the opposite direction: first choose
an appropriate Lyapunov function for a given X, and then
obtain the corresponding MD recursion as a discretization of
a certain continuous-time process that involves the gradient
of f and has the specified Lyapunov function.

This continuous-time process (described in detail in Sec-
tion II-A) was introduced by Nemirovski and Yudin merely
as a heuristic device for motivating the discrete-time MD
scheme. Indeed, to the best of our knowledge, all studies
of MD to date have dealt with the discrete-time formu-
lation. However, the continuous-time MD dynamics may
be of interest in its own right (e.g., in the context of
control systems [10], or wherever sensor signals and noise
sources may be inherently continuous quantities). Indeed, the
behavior of many discrete-time approaches to cooperative
optimization in the presence of noise may be characterized
by studying continuously perturbed dynamical systems, the
discretizations of which provide practical algorithms.

The objective of the present paper is to study a noisy vari-
ant of continuous-time MD, described by an Itô stochastic
differential equation (SDE) [11]. In particular, we show that
the favorable convergence properties of noiseless continuous-
time MD are adversely affected by the addition of a white-
noise perturbation (we do not consider a small-noise limit
here). This observation then motivates a distributed imple-
mentation of MD by a network of noisy agents (processors),
coupled linearly through the Laplacian of the network graph
[12]. This coupling serves two purposes: (1) it helps reduce
the noise variance; and (2) provided the underlying network
graph is connected, the agents converge to consensus. We
show that this convergence is particularly rapid whenever
the problem structure is such that the “mean field” (i.e.,
the average of the agents’ trajectories) evolves according
to an Ornstein–Uhlenbeck process. Of course, in this linear
regime noise reduction can be achieved simply by averaging
of the agents’ trajectories, without the need for any additional
inter-agent coupling. This coupling, however, leads to a
fully decentralized design: since the agents converge to
consensus, we can track any given agent to obtain an accurate
approximation to the optimum, without having to introduce
a dedicated averaging unit.

A. Notation

For any two vectors v, w ∈ Rn, 〈v, w〉 will denote their
standard (Euclidean) inner product. Given an arbitrary norm
‖ · ‖ on Rn, we will denote by B‖·‖ the corresponding unit
ball, i.e., B‖·‖ , {v ∈ Rn : ‖v‖ ≤ 1}. The dual norm
‖ · ‖∗ is defined by ‖z‖∗ , sup

{
〈z, v〉 : v ∈ B‖·‖

}
. Any

pair of dual norms ‖ · ‖, ‖ · ‖∗ satisfies Hölder’s inequality,
|〈v, z〉| ≤ ‖v‖ · ‖z‖∗. In n dimensions, 1n will stand for the
vector of all ones, while In will be the n×n identity matrix.
We will denote by {Wt} (possibly with additional sub-
and superscripts) the standard one-dimensional Wiener pro-
cess; similarly, {Bt} will denote the standard n-dimensional
Wiener process [11].

II. THE METHOD OF MIRROR DESCENT: PRELIMINARIES

We start by describing the discrete-time implementation
of MD. Let X ⊂ Rn be a compact convex decision set, and
let ‖ · ‖ be an arbitrary norm on Rn. The structure of MD
hinges on the concept of a distance-generating function (also
referred to as the potential function) and its induced Bregman
divergence [13]:

Definition 1 (Distance-generating function). A function ψ :
Rn → R is a distance-generating function (DGF) with
modulus α > 0 w.r.t. ‖ · ‖, provided it has the following
properties:
• It is convex and continuous on X.
• The set X◦ = {x ∈ X : ∂ψ(x) 6= ∅} is convex (in fact,

it always contains the relative interior of X [7]).
• Restricted to X◦, ψ is C1 and strongly convex with

parameter α > 0, i.e., for all x, x′ ∈ X

ψ(x′) ≥ ψ(x) + 〈∇ψ(x), x′ − x〉+
α

2
‖x′ − x‖2.

Definition 2 (Bregman divergence). Let ψ be a DGF on X.
Then the Bregman divergence induced by ψ is the function
Dψ : X× X◦ → R defined by

Dψ(x, x′) , ψ(x)− ψ(x′)− 〈∇ψ(x′), x− x′〉.

As an example, take ψ(x) = 1
2‖x‖

2
2 and any compact and

convex X. Then ψ is a DGF w.r.t. ‖ · ‖2 with α = 1 and
X◦ = X, and Dψ(x, x′) = 1

2‖x− x
′‖22. As another example,

take X = {x ∈ Rn :
∑n
i=1 xi = 1;x � 0}, the unit simplex

in Rn, and let ‖ · ‖ = ‖ · ‖1. Then the (negative) entropy
function ψ(x) =

∑n
i=1 xi lnxi is a DGF w.r.t. ‖ · ‖1 with

α = 1, X◦ = {x ∈ X : x � 0}, and

Dψ(x, x′) = D‖·‖1(x, x′) =

n∑
i=1

xi ln
xi
x′i
,

the relative entropy between x ∈ X and x′ ∈ X◦.
We say that a DGF ψ : X → R is admissible if we can

efficiently compute its Legendre–Fenchel conjugate [4]

ψ∗(z) , max
x∈X
{〈x, z〉 − ψ(x)} .

Given an admissible DGF and a sequence {γk}∞k=0 of
positive step sizes, we can now write down the generic MD
update: starting with some z0 such that ‖∇ψ∗(z0)‖ < ∞



(a good choice is z0 = arg minX ψ), generate the sequence
{xk}∞k=0 via

xk = ∇ψ∗(zk), zk+1 = ∇ψ(xk)− γkf ′(xk). (4)

This structure is what gives the MD method its name: the
current point xk is mapped to its dual-space “mirror image”
zk = ∇ψ(xk), updated to zk+1 by stepping in the direction
of the negative subgradient −f ′(xk), and then mapped back
to xk+1 = ∇ψ∗(zk+1) in the primal space X. The rate of
convergence of MD can then be bounded as follows: Define
the ψ-diameter of X,

Dψ,X , sup
x∈X,x′∈X◦

√
2Dψ(x, x′).

Then, provided f is L-Lipschitz on X w.r.t. ‖·‖, i.e., |f(x)−
f(x′)| ≤ L‖x − x′‖ for all x, x′ ∈ X, the MD updates (4)
with suitably tuned step sizes γk > 0 satisfy

f(xk)−min
x∈X

f(x) ≤ const · Dψ,XL√
αk

,

and this convergence rate is optimal [5]. Thus, if we can find
a suitable DGF ψ, so that D2

ψ,X is either independent of n
or (at least) sublinear in n, then the dimension dependence
of the convergence rate of MD will be better than that of the
Euclidean subgradient descent (1).

A. MD in continuous time

To give the intuition behind MD, Nemirovski and Yudin
[5] focused on the case when the objective function f is
convex and smooth (say, C1), and considered the ODE

dz(t)

dt
= h(z(t)), t ≥ 0 (5)

where h(z) , −∇f(∇ψ∗(z)). [Note that for ψ(x) = 1
2‖x‖

2
2,

(5) reduces to the gradient flow (3).] If we let x(t) =
∇ψ∗(z(t)), then a suitable discretization of (5) gives the
following simplified version of MD:

xk = ∇ψ∗(zk), zk+1 = zk − γkf ′(xk).

Let us assume that the DGF ψ is chosen in such a way that
its conjugate ψ∗ is C1 and that the gradient ∇ψ∗ maps Rn
onto X◦. This will be the case, for example, if ψ is steep,
i.e., if for any sequence {xn} of points in X◦ converging to a
point on the boundary of X, ‖∇ψ(xn)‖ → ∞ as n→∞. (In
fact, when ψ is steep, the gradient mappings ∇ψ : X◦ → R
and ∇ψ∗ : Rn → X◦ are inverses of one another.) We can
now establish the following basic property of (5):

Proposition 1. For any z∗ ∈ Rn such that x∗ = ∇ψ∗(z∗) ∈
arg minX f , define

Vt(z
∗) , ψ∗(z(t))− ψ∗(z∗)− 〈∇ψ∗(z∗), z(t)− z∗〉.

Then Vt(z
∗) is a Lyapunov function for the dynamics (5),

i.e., dVt(z
∗)/dt ≤ 0 along the trajectory {z(t)}t≥0.

Remark 1. Note that Vt(z∗) is itself a Bregman divergence
Dψ∗(z(t), z

∗) induced by ψ∗. Since ψ∗ is convex, Vt(z∗) ≥
0. Moreover, because ψ is steep, Vt(z∗) = Dψ(x∗, x(t)). �

Proof. Direct calculation:

dVt(z)

dt
=

〈
∇ψ∗(z(t))−∇ψ∗(z∗), dz(t)

dt

〉
= 〈x(t)− x∗, h(z(t))〉
= 〈x∗ − x(t),∇f(x(t))〉
≤ f(x∗)− f(x(t)) ≤ 0,

where the fourth step uses the convexity of f , while the one
before uses the fact that x(t) = ∇ψ∗(z(t)) ∈ X.

In fact, we can estimate the rate of convergence:

Proposition 2. For any T > 0,

inf
0≤t≤T

f(x(t))−min
X
f ≤

D2
ψ,X

2T
(6)

and, with xT , 1
T

∫ T
0
x(t) dt,

f(xT )−min
X
f ≤

D2
ψ,X

2T
. (7)

Proof. Starting from dVt(z
∗)/ dt = 〈x∗ − x(t),∇f(x(t))〉,

integrate from t = 0 to t = T :

VT (z∗) = V0(z∗) +

∫ T

0

〈x∗ − x(t),∇f(x(t))〉dt

≤ V0(z∗) +

∫ T

0

[f(x∗)− f(x(t))] dt,

where the second step uses the convexity of f . Now rearrange
and divide by T to get

1

T

∫ T

0

[f(x(t))− f(x∗)] dt ≤ V0(z∗)− VT (z∗)

T
≤
D2
ψ,X

2T
,

where the last step is due to the fact that Vt(z∗) ≥ 0 for all
t ≥ 0, and (cf. Remark 1) that V0(z∗) = Dψ(x∗, x(0)) ≤
D2
ψ,X/2. The bound (6) now follows immediately; (7) is a

consequence of Jensen’s inequality.

III. CONTINUOUS-TIME STOCHASTIC MD

As already pointed out in the Introduction, the continuous-
time dynamics (5) was used in [5] merely to provide intuition
for the discrete-time MD scheme (4). However, given the
superior convergence properties of (5) listed in Proposition 2,
continuous-time implementations of MD may be of interest
in their own right. Motivated by this observation, let us
consider a noisy version of MD, given by the Itô SDE

dZt = h(Zt) dt+ σ dBt, t ≥ 0 (8)

where, as before, h(z) = −∇f(∇ψ∗(z)) for a given C1

convex function f . The corresponding primal-space updates
are given by Xt = ∇ψ∗(Zt). Our assumptions on ψ then
guarantee that Xt ∈ X for all t.

Remark 2. It should be pointed out that (8) is not to be
interpreted as a limiting case of the discrete-time stochastic
approximation scheme

Xk = ∇ψ∗(Zk), Zk+1 = Zk + γ[h(Zk) + σξk],



where {ξk}
i.i.d.∼ N(0, In). This corresponds to the setting in

which the gradient information at each time step is corrupted
by an independent white Gaussian disturbance. By contrast,
the “correct” discretization of (8) is given by

Xk = ∇ψ∗(Zk), Zk+1 = Zk + γh(Zk) +
√
γσξk.

The difference is due to the fact that (8) describes the
situation in which white Gaussian background noise is su-
perimposed upon the noiseless MD dynamics (5). �

Let us analyze the convergence properties of (8). To that end,
we have the following:

Proposition 3. Consider the same setting as in Proposition 1
and assume, moreover, that ψ∗ is C2 and that ‖∆ψ∗‖∞ <
∞, where ∆ = ∇·∇ denotes the Laplace operator acting on
C2(Rn). Then, for any deterministic initial condition Z0 =
z0 and any T > 0 we have

VT (z∗) ≤
D2
ψ,X

2
+

∫ T

0

[
min
X
f − f(Xt)

]
dt

+
σ2T

2
‖∆ψ∗‖∞ + σ

∫ T

0

‖Xt − x∗‖2 dWt. (9)

Remark 3. The uniform boundedness of ∆ψ∗ is not a
very restrictive requirement. Indeed, from the fact that ψ is
strongly convex with constant α, it can be shown that the gra-
dient of ψ∗ is Lipschitz-continuous: ‖∇ψ∗(z)−∇ψ∗(z′)‖ ≤
α−1‖z−z′‖∗ for any z, z′ ∈ Rn [4, Theorem 4.2.1]. Hence,
if ψ∗ is C2, this means that the operator norm of the Hessian
∇2ψ∗ is uniformly bounded. Since ∆ψ∗(z) = Tr∇2ψ∗(z),
the uniform boundedness of ∆ψ∗ follows. �

Proof. By definition,

Vt(z
∗) = ψ∗(Zt)− ψ∗(z∗)− 〈∇ψ∗(z∗), Zt − z∗〉

= ψ∗(Zt)− ψ∗(z∗)− 〈x∗, Zt − z∗〉.

Applying Itô’s formula to the function Zt 7→ ψ∗(Zt), we get

dVt(z
∗) =

[
〈Xt − x∗, h(Zt)〉+

σ2

2
∆ψ∗(Zt)

]
dt

+ σ‖Xt − x‖2 dWt,

where we have used the fact that, for any v ∈ Rn, 〈v,Bt〉 =
‖v‖2Wt in law. Integrating, we obtain

VT (z∗) = V0(z∗) +

∫ T

0

〈Xt − x∗, h(Zt)〉dt

+
σ2

2

∫ T

0

∆ψ∗(Zt) dt+ σ

∫ T

0

‖Xt − x∗‖2 dWt.

(10)

By convexity, minX f = f(x∗) ≥ f(Xt) + 〈∇f(Xt), x
∗ −

Xt〉 = 〈h(Zt), Xt − x∗〉. Using this and the fact that
V0(z∗) ≤ D2

ψ,X/2 in (10), we get (9).

The bound (9) translates into the following estimates:

Proposition 4. Under the same assumptions as above,

E
{

inf
0≤t≤T

f(Xt)−min
X
f

}
≤
D2
ψ,X

2T
+
σ2

2
‖∆ψ∗‖∞

E

{
f

(
1

T

∫ T

0

Xt dt

)
−min

X
f

}
≤
D2
ψ,X

2T
+
σ2

2
‖∆ψ∗‖∞.

Proof. We proceed in the same way as in the proof of
Proposition 2, except that now we also use the fact that
the process {‖Xt − x∗‖2}t≥0 is adapted to the filtration
{σ(Xt : 0 ≤ s ≤ t)}t≥0, so the expectation of the Itô integral
in (9) is zero.

IV. DISTRIBUTED STOCHASTIC MD

Compared to the noiseless set-up, one unpleasant feature
of the noisy MD dynamics (8) is that the value of the
objective f either at the “best” point in {Xt}Tt=0 or at
the time average (1/T )

∫ T
0
Xt dt does not converge to the

minimum value of f as T → ∞; instead, the gap to
optimalitly is bounded from above by a quantity proportional
to the noise variance σ2. Hence, it is of interest to devise a
way to reduce the noise level.

One such way is to introduce redundancy and coupling.
Specifically, consider a network consisting of N agents
(processors) implementing the MD dynamics (8) with the
same objective function f , but with possibly different initial
conditions at t = 0. Since the dynamics in (8) are generally
nonlinear, we cannot expect to reduce the effect of the noise
simply by averaging the agents’ trajectories. However, if the
agents are also coupled to one another, and if the coupling
is sufficiently strong, then they will attempt to converge to
consensus. In this way, the noise variance in the “mean
field” (i.e., the average of the agents’ trajectories) will be
reduced by a factor of N . Moreover, because the agents
are converging to a consensus, we do not need to explicitly
measure and average their trajectories in order to read off
the mean field — we can instead simply track any given
agent, thus achieving a fully decentralized design. (Network
architectures of this sort, implementing noisy gradient flows
with nonlinear saturation effects, can be used to model the
effects of synchronization and redundancy on the learning
and decision-making processes in the brain [14].)

We now set up our model. For i = 1, . . . , N , let {Zit}t≥0
denote the trajectory of the ith agent, described by the SDE

dZit =

h(Zit) +

n∑
j=1

Aij(Z
j
t − Zit)

 dt+ σ dBit.

Here, {B1
t }, . . . , {BNt } are N independent copies of {Bt},

and A = {Aij}Ni,j=1 is an N × N symmetric matrix of
nonnegative coupling weights. If we consider a weighted
undirected graph G = (V,E,A) with V = {1, . . . , N} and
E = {(i, j) : Aij > 0}, and introduce the (unnormalized)
graph Laplacian L , diag(A1N ) − A of G [12], then we
can rewrite the network dynamics more compactly as

dZt = [h(Zt)− (L ⊗ In)Zt] dt+ σ dBt,



where we have defined

Zt =
(
(Z1

t )T, . . . , (ZNt )T
)T

h(Zt) =
(
hT(Z1

t ), . . . , hT(ZNt )
)T

Bt =
(
(B1

t )T, . . . , (BNt )T
)T

and⊗ denotes the Kronecker product of matrices. We assume
throughout that the network graph G is connected. This
implies [12] that the Laplacian L has the eigenvalues

λ1(L ) = 0 < λ1(L ) ≤ λ2(L ) ≤ . . . ≤ λN (L ).

We will denote by λ the smallest nonzero eigenvalue of L .
Given z∗ = ∇ψ∗(x∗) with any x∗ ∈ arg minX f , we are

interested in the evolution of V it (z∗) , Dψ∗(Z
i
t , z
∗) for each

i ∈ {1, . . . , N}. To facilitate the analysis, we follow the
approach of [14] and decompose the trajectory {Zt} into the
mean-field and the fluctuation components. Specifically, let
us define the consensus subspace C = {1N ⊗ z : z ∈ Rn}
of RN ⊗ Rn, and let P , 1

N (1N1T
N ⊗ In) be the linear

projection operator onto C. We define the mean field Zt ∈
Rn and the fluctuation Z̃t ∈ RN ⊗Rn via 1N ⊗Zt = PZt

and Z̃t = (I − P )Zt. (Here, I = IN ⊗ In denotes the
identity matrix on RN ⊗ Rn.) Then Zt = Z̃t + 1N ⊗ Zt,
and

Zt =
1

N

N∑
t=1

Zit , Z̃
i
t = Zit − Zt,

1

N

N∑
i=1

Z̃it = 0, (11)

where Z̃t =
(
(Z̃1

t )T, . . . , (Z̃Nt )T
)T

. We start with the follow-
ing basic lemma:

Lemma 1. Define V t(z∗) , Dψ∗(Zt, z
∗). If ψ is a DGF

w.r.t. a norm ‖ · ‖ with modulus α > 0, then

V it (z∗) ≤ V t(z∗) +
1

2α
‖Z̃it‖2∗ + 〈∇ψ∗(Zt)−∇ψ∗(z∗), Z̃it〉

(12)

and

V t(z
∗) ≤ 1

N

N∑
i=1

V it (z∗) ≤ V t(z∗) +
1

2αN

N∑
i=1

‖Z̃it‖2∗.

(13)

Proof. From definitions, we have

V it (z∗) = ψ∗(Zit)− ψ∗(z∗)− 〈∇ψ∗(z∗), Zit − z〉. (14)

Since ψ is, by hypothesis, strongly convex with parameter
α > 0, the gradient ∇ψ∗ is Lipschitz with constant 1/α [4,
Theorem 4.2.1] (cf. also Remark 3). This, in turn, implies
(cf. Lemma 1.2.3 in [3]), for all z, η ∈ Rn,

ψ∗(z + η) ≤ ψ∗(z) + 〈∇ψ∗(z), η〉+
1

2α
‖η‖2∗. (15)

Because Zit = Z̃it + Zt, we can use (15) to write

ψ∗(Zit) ≤ ψ∗(Zt) + 〈∇ψ∗(Zt), Z̃it〉+
1

2α
‖Z̃it‖2∗

Substituting this into (14) and simplifying, we obtain

V it (z∗) ≤ ψ∗(Zt)− ψ∗(z∗)− 〈∇ψ∗(z∗), Zt − z∗〉︸ ︷︷ ︸
=V t(z∗)

+
1

2α
‖Z̃it‖2∗ + 〈∇ψ∗(Zt)−∇ψ∗(z∗), Z̃it〉,

which is (12). Summing over i and dividing by N gives

1

N

N∑
i=1

V it (z∗) ≤ V t(z∗) +
1

2αN

N∑
i=1

‖Z̃it‖2∗

+

〈
∇ψ∗(Zt)−∇ψ∗(z),

1

n

n∑
i=1

Z̃it

〉

= V t(z
∗) +

1

2αN

N∑
i=1

‖Z̃it‖2∗,

where in the last step we have used (11). This gives the
second inequality in (13). The first inequality follows from
Jensen’s inequality and the convexity of ψ∗.

To apply the lemma, we need to track the evolution of the
mean field Zt and the fluctuations Z̃t. For the former,

dZt = h(Zt) dt+ σ dBt,

where h(Zt) , 1T
NPh(Zt), Bt , 1T

NPBt, and we have
used the fact that 1T

NL = 0 (as an aside, dBt is equal to
(1/
√
N) dBt in law). For the latter,

dZ̃it =
[
h(Zit)− h(Zt)− (Li ⊗ In)Zt

]
dt+ σ dB̃it,

where Li denotes the ith row of L , and dB̃it , dBit −dBt
(which is equal to

√
(N − 1)/N dBt in law). Bounding the

mean-field term V t(z
∗) is relatively easy:

Lemma 2. Under the same assumptions as in Proposition 3,
for any T > 0 we have the bound

V T (z∗) ≤
D2
ψ,X

2
+
σ2T

2N
‖∆ψ∗‖∞

+

∫ T

0

〈∇ψ∗(Zt)− x∗, h(Zt)〉dt

+
σ√
N

∫ T

0

‖∇ψ∗(Zt)− x∗‖2 dWt. (16)

Proof. We follow the same steps as in the proof of Propo-
sition 3. Specifically, Itô’s formula gives

dV t(z
∗) =

[
〈∇ψ∗(Zt)− x∗, h(Zt)〉+

σ2

2N
∆ψ∗(Zt)

]
dt

+
σ√
N
‖∇ψ∗(Zt)− x∗‖2 dWt.

Integrating and upper-bounding the terms involving V 0(z∗)
and ∆ψ∗ as before, we get (16).

By contrast, bounding the squared dual norm ‖Z̃it‖2∗ for
each i ∈ {1, . . . , N} is tricky: in general, the function z 7→
‖z‖2∗ is not differentiable (let alone C2), so we cannot apply
Itô’s formula directly. Instead, to prove the lemma below we
use the fact that ‖z‖2∗ = sup{〈v, z〉2 : v ∈ B‖·‖}. For each



v ∈ Rn, the function v 7→ gv(z) , 〈v, z〉2 is C2. Thus, we
can apply Itô’s lemma to each v separately, and then take
the supremum over B‖·‖.

Lemma 3. For any T > 0

‖Z̃iT ‖2∗ ≤ e−2λT ‖Z̃i0‖2∗ +
σ2D2

‖·‖

8λ

+ 2 sup
v∈B‖·‖

∫ T

0

e2λ(t−T )〈v, Z̃it〉〈v, h(Zit)− h(Zt)〉dt

+ σD‖·‖

√
N − 1

N
sup

v∈B‖·‖

∫ T

0

e2λ(t−T )〈v, Z̃it〉dWt, (17)

where D‖·‖ = 2 sup{‖v‖2 : v ∈ B‖·‖} is the Euclidean (`2)
diameter of B‖·‖.

Remark 4. Since all norms on Rn are equivalent, we could
have simply bounded the squared `2 norm ‖Z̃it‖22 and then
used the fact that (due to norm equivalence) ‖Z̃it‖2∗ ≤
K‖Z̃it‖22 for some K > 0 that depends on ‖ · ‖. However,
the constant K may actually grow with n — for instance, if
‖ · ‖ = ‖ · ‖∞, then ‖ · ‖∗ = ‖ · ‖1 and K = n. �

Proof. For a given v ∈ Rn, let Y iv,t = gv(Z̃
i
t) ≡ 〈v, Z̃it〉2.

Then Itô’s formula gives

dY iv,t = 2〈v, Z̃it〉d〈v, Z̃it〉+
σ2(N − 1)

N
‖v‖22 dt

=

[
2〈v, Z̃it〉〈v, h(Zit)− h(Zt)〉+

σ2(N − 1)

N
‖v‖22

]
dt

− 2〈v, Z̃it〉〈v, (Li ⊗ In)Zt〉dt

+ 2σ

√
N − 1

N
〈v, Z̃it〉‖v‖2 dWt

Let us add 2λY iv,t dt = 2λ〈v, Z̃it〉2 dt to both sides of this
equation. We thus obtain

dY iv,t + 2λY iv,t dt

=

[
2〈v, Z̃it〉〈v, h(Zit)− h(Zt)〉+

σ2(N − 1)

N
‖v‖22

]
dt

2
[
λ〈v, Z̃it〉2 − 〈v, Z̃it〉〈v, (Li ⊗ In)Zt〉

]
dt

+ 2σ

√
N − 1

N
〈v, Z̃it〉‖v‖2 dWt

= e−2λt d
(
Y iv,te

2λt
)
,

where the last step follows from the fact that e2λt dY iv,t +
2λe2λtY iv,t dt is the total Itô derivative of Y iv,te

2λt. Integrat-
ing then gives

Y iv,T = e−2λTY iv,0 +
σ2(N − 1)

2Nλ
(1− e−2λT )‖v‖22

+ 2

∫ T

0

e2λ(t−T )〈v, Z̃it〉〈v, h(Zit)− h(Zt)〉dt

+ 2

∫ T

0

e2λ(t−T )
[
λ〈v, Z̃it〉2 − 〈v, Z̃it〉〈v, (Li ⊗ In)Zt〉

]
dt

+ 2σ

√
N − 1

N
‖v‖2

∫ T

0

e2λ(t−T )〈v, Z̃it〉dWt (18)

Now let w = (eie
T
i ⊗ In)(1N ⊗ v), where ei is the ith

canonical basis vector in RN . Then

〈v, Z̃it〉〈v, (Li ⊗ In)Zt〉 = 〈w, Z̃t〉〈(L ⊗ In)Zt, w〉
= 〈w, Z̃t〉〈(L ⊗ In)Z̃t, w〉
≥ λ〈w, Z̃t〉2

= λ〈v, Z̃it〉2,

where the second step uses the fact that L 1N = 0, and that
Z̃t is orthogonal to any element of the consensus subspace
C. The inequality that follows is due to the fact that λ is the
smallest eigenvalue of L ⊗In on the orthogonal complement
of C. Therefore, the third term in (18) is nonpositive. Using
this fact, together with the definition of ‖·‖∗, we get (17).

In analogy to classical results on the linear agreement
dynamics [12, Ch. 3], Lemma 3 shows the impact of the
network topology on the speed with which the agents reach
consensus, as well as on the size of the squared dual norm of
the fluctuations Z̃it , i = 1, . . . , N . In particular, the density
of the network connections affects the value of the smallest
nonzero eigenvalue (also known as the Fiedler eigenvalue)
of L . For example, if the nonzero entries of A are all equal
to some constant κ > 0, then the value of λ can be as large
as Nκ (when G is the complete graph) or as small as κ
(when G is the star graph). We point out that it is possible
to use quorum sensing [15] to implement an effective all-to-
all connectivity using only a linear number of connections.

V. CASE STUDY: COMPOSITE OBJECTIVES

In order to apply Lemmas 2 and 3, further assumptions
on the structure of the problem are needed. In this section,
we will analyze a certain type of optimization problems,
for which a particularly simple characterization is available.
Specifically, we assume that the objective f is of the form

f(x) = 〈a, x〉+ b+ ψ(x) (19)

where a ∈ Rn, b ∈ R are given, and where ψ is a steep
DGF on X with w.r.t. a norm ‖ · ‖ with modulus α > 0.
Objective functions of this form can arise in many scenarios.
For example, in the context of statistical estimation, given a
large number m of independent samples Y1, . . . , Ym from an
unknown probability distribution on Rk, we may wish to fit
an exponential family model [16] to this set of data. Given
a σ-finite base measure µ on Rk, an exponential family of
distributions is given by densities of the form

px(y) = q(y) exp
{
〈x,T(y)〉 − ψ(x)

}
, x ∈ X

where q is some reference probability density w.r.t. µ, T :
Rk → Rn is a Borel mapping known as the sufficient
statistic, the set

X ,

{
x ∈ Rn :

∫
Rk

q(y)e〈x,T(y)〉µ(dy) < +∞
}

is called the natural parameter space, and the function
ψ(x) = log

∫
Rk q(y)e〈x,T(y)〉µ(dy), x ∈ X is referred to as



the log-partition function. The parameter-fitting problem is
then to minimize the empirical negative log-likelihood

f(x) , − 1

m

m∑
j=1

log px(Yj)

= − 1

m

〈x, m∑
j=1

T(Yj)

〉
+

m∑
j=1

log q(Yj)

+ ψ(x) (20)

over the natural parameter space X. From the theory of
exponential families, we know that the natural parameter
space X is closed and convex, and the log-partition function
ψ is C∞ and steep on X [16]. If, in addition, X is compact
and ψ is strongly convex w.r.t. some norm ‖ · ‖, then the
objective function in (20) is precisely of the form (19).

The very structure of the problem suggests that we should
use the MD method with the DGF ψ. In this case, the
basic Itô SDE describing the MD process is particularly
simple. Indeed, because ψ is steep, the functions ∇ψ and
∇ψ∗ are inverses of each other. From this, we get h(z) =
−∇f(∇ψ∗(z)) = −[a +∇ψ(∇ψ∗(z))] = −(a + z), so we
can write (8) as

dZt = −(a+ Zt) dt+ σ dBt.

This is a Langevin equation whose solution is given by the
n-dimensional Ornstein–Uhlenbeck process

ZT = e−TZ0 − a(1− e−T ) + σ

∫ T

0

et−T dBt

Turning to the distributed N -agent set-up, we write down
the SDEs for the mean field Zt and the fluctuations Z̃t:

dZt = −(a+ Zt) dt+
σ√
N

dBt (21)

dZ̃t = − [(IN + L )⊗ In] Z̃t + σ

√
N − 1

N
dBt. (22)

We can now analyze the behavior of our distributed MD
scheme:

Theorem 1. Let Xt = ∇ψ∗(Zt). Then for any T > 0

V T (z∗) ≤
D2
ψ,X

2
+
σ2T

2N
‖∆ψ∗‖∞

+

∫ T

0

[
f(x∗)− f(Xt)

]
dt

+
σ√
N

∫ T

0

‖Xt − x∗‖2 dBt (23)

and

EV T (z∗) ≤
D2
ψ,X

2
+
σ2T

2N
‖∆ψ∗‖∞

+ E

{∫ T

0

[
f(x∗)− f(Xt)

]
dt

}
(24)

Proof. Since h(z) = −(a+ z), h(Zt) = h(Zt). Hence, for
the second term on the right-hand side of (16) we have

〈∇ψ∗(Zt)− x∗, h(Zt)〉
= 〈∇ψ∗(Zt)− x∗, h(Zt)〉
= −〈∇ψ∗(Zt)− x∗,∇f(∇ψ∗(Zt))〉
= −〈Xt − x∗,∇f(Xt)〉
≤ f(x∗)− f(Xt),

where the last step is by convexity of f . Substituting this into
(16), we get (23). Taking expectations of both sides and using
the fact that the Itô term has mean zero, we get (24).

In order to state our next result pertaining to the squared
dual norm ‖Z̃it‖2∗, we need to introduce the so-called γ2
functional [17]. Let (S, ρ) be a metric space. An admissible
sequence for S is a collection {Sk}k≥0 of finite subsets of
S, such that |S0| = 1 and, for every k ≥ 1, |Sk| = 22

k

. Then
the γ2 functional of (S, ρ) is defined by

γ2(S, ρ) , inf sup
s∈S

∞∑
k=0

2k/2ρ(s, Sk),

where the infimum is over all admissible sequences, and, for
each k, ρ(s, Sk) , infs′∈Sk

ρ(s, s′) is the minimum distance
from s ∈ S to Sk. In particular, we will be interested in the
γ2 functionals of norm balls in Rn. Thus, for a norm ‖·‖, we
will use the shorthand γ2(B‖·‖) for γ2(S, ρ) with S = B‖·‖
and the metric ρ induced by ‖ · ‖. Exact expressions for
the γ2 functional of general convex bodies are not easy to
obtain, but we point out that this quantity is closely related
to entropy numbers. We can now state the following:

Theorem 2. For any T > 0,

‖Z̃iT ‖2∗ ≤ e−2λT ‖Z̃i0‖2∗ +
σ2D2

‖·‖

8λ

+ σD‖·‖

√
N − 1

N
sup

v∈B‖·‖

∫ T

0

e2λ(t−T )〈v, Z̃it〉dWt. (25)

Moreover, there exists a positive constant M > 0 that
depends only on the choice of ‖ · ‖, such that for any
deterministic initial condition Z0 = z0,

E‖Z̃iT ‖2∗ ≤ e−2λT ‖z̃i0‖2∗+
σ2D2

‖·‖

8λ
+MD‖·‖σ

2

√
n

λ
γ2(B‖·‖)

(26)

Proof. Since h(Zit)−h(Zt) = h(Zit)−h(Zt) = Zt−Zit =
−Z̃it , the second term on the right-hand side of (17) is
nonpositive. This gives (25).

We now turn to (26). The challenge is to bound the
expectation of the supremum of the Itô integral

Iv ,
∫ T

0

e2λ(t−T )〈v, Z̃it〉dWt.

in (25) over v ∈ B‖·‖. With a deterministic initial condition
Z0 = z0, Z̃t is a Gaussian process adapted to the natural
filtration {σ(Z̃s : 0 ≤ s ≤ t)}t≥0. Therefore, {Iv :



v ∈ B‖·‖} is a zero-mean Gaussian process indexed by
B‖·‖. Thus, we can utilize the well-known generic chaining
technique [17] for bounding the expectations of suprema of
Gaussian processes. To that end, define the metric

ρ(v, v′) ,
√
E|Iv − Iv′ |2

on B‖·‖. Then (cf. Theorem 2.1 in [17])

E

{
sup

v∈B‖·‖
Iv

}
≤ C0γ2(B‖·‖, ρ),

where C0 > 0 is a universal constant. Now,

ρ(v, v′) =

√√√√E

∣∣∣∣∣
∫ T

0

e2λ(t−T )〈v − v′, Z̃it〉dWt

∣∣∣∣∣
2

=

√
E
∫ T

0

e4λ(t−T )〈v − v′, Z̃it〉2 dt

≤ ‖v − v′‖

√
E
∫ T

0

e4λ(t−T )‖Z̃it‖2∗ dt

≤
√
K‖v − v′‖

√∫ T

0

e4λ(t−T )E‖Z̃it‖22 dt (27)

where the second step is by the Itô isometry, the next step
uses Hölder’s inequality, and the last step uses equivalence
of norms ‖ · ‖∗ and ‖ · ‖2 (cf. Remark 4 for the definition
of the constant K). Since {Z̃t} is an Ornstein–Uhlenbeck
process, cf. (22), we can bound the square root term in (27)
by C1

√
σ2n(N−1)

Nλ ≤ C1

√
σ2n
λ , where the constant C1 > 0

is independent of n, N , T , or σ. This implies that

γ2(B‖·‖, ρ) ≤ C1σ

√
Kn

λ
γ2(B‖·‖).

From this, we get (26) with M = C0C1

√
K.

The above results can then be used to track the evolution
of the time-averaged optimization error (1/T )

∫ T
0

[f(Xi
t) −

minX f ] dt for any i = 1, . . . , N , where Xi
t = ∇ψ∗(Zit) ∈

X. Indeed, from Theorem 1 we have

1

T
E

{∫ T

0

[
f(Xt)−min

X
f

]
dt

}
≤
D2
ψ,X

2T
+
σ2

2N
‖∆ψ∗‖∞

If ψ is Lipschitz with constant L, then

f(Xi
t) ≤ (‖a‖∗ + L)‖Xi

t −Xt‖+ f(Xt)

= (‖a‖∗ + L)‖∇ψ∗(Zit)−∇ψ∗(Zt)‖+ f(Xt)

≤ ‖a‖∗ + L

α
‖Z̃it‖∗ + f(Xt),

where the last step uses the Lipschitz property of ∇ψ∗.

Therefore,

1

T
E

{∫ T

0

[
f(Xi

t)−min
X
f

]
dt

}

≤ ‖a‖∗ + L

αT
E

{∫ T

0

‖Z̃it‖∗ dt

}
+
D2
ψ,X

2T
+
σ2

2N
‖∆ψ∗‖∞

≤ ‖a‖∗ + L

α
√
T

√∫ T

0

E‖Z̃it‖2∗ dt+
D2
ψ,X

2T
+
σ2

2N
‖∆ψ∗‖∞,

where the last step follows after two uses of Jensen’s
inequality. We can now use Theorem 2 to bound the integral
in the last line (details are omitted for lack of space).

VI. CONCLUSION

We have analyzed continuous-time stochastic MD meth-
ods, including a robust decentralized implementation. Our
treatment can be extended in multiple ways, including time-
and agent-dependent objectives. Another important direction
for future work is to tighten the bounds on the squared dual
norm of the fluctuation part of the trajectory.
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