
NOISE ROBUST PHONETIC CLASSIFICATION WITH LINEAR REGULARIZED LEAST
SQUARES AND SECOND-ORDER FEATURES

Ryan Rifkin∗

Honda Research Insitute, USA
Ken Schutte†

MIT CSAIL, USA
Michele Saad‡

AUB, Lebanon

Jake Bouvrie§

MIT CBCL, USA
Jim Glass†

MIT CSAIL, USA

ABSTRACT

We perform phonetic classification with an architecture whose
elements are binary classifiers trained via linear regularized
least squares (RLS). RLS is a simple yet powerful regulariza-
tion algorithm with the desirable property that a good value of
the regularization parameter can be found efficiently by min-
imizing leave-one-out error on the training set. Our system
achieves state-of-the-art single classifier performance on the
TIMIT phonetic classification task, (slightly) beating other
recent systems. We also show that in the presence of addi-
tive noise, our model is much more robust than a well-trained
Gaussian mixture model.

Index Terms— Acoustic noise, Artificial Intelligence,
Speech Analysis, Speech Recognition

1. INTRODUCTION

The primary acoustic modeling technique in automatic speech
recognition is the Gaussian mixture model (GMM), which
represents a probability distribution as a mixture of (usually
diagonal) Gaussians. The GMM is a generative model that
can represent arbitrary distributions given a sufficient number
of Gaussians, and is computationally tractable to train. On
the other hand, in recent years the machine learning commu-
nity has had great success with discriminative models such
as support vector machines (SVMs) [1] and related methods.
The central insight is that estimating a discriminative bound-
ary between regions in which one distribution is larger than
another may be much easier than estimating those distribu-
tions accurately everywhere, and that good performance can
be obtained by concentrating our modelling efforts on finding
this boundary.

∗Honda Research Institute USA, Inc., One Cambridge Center Suite 401,
Cambridge, MA 02142

†MIT CSAIL, 32 Vassar Street, Cambridge, MA 02139
‡The American University of Beirut, P.O. Box 11-3730, Riad El Solh,

Beirut, 1107 2020, Lebanon
§MIT Center For Biological and Computational Learning, Bldg. 46-5155,

77 Massachusetts Avenue, Cambridge, MA 02139

While SVMs give excellent performance on a range of
tasks, training a general nonlinear SVM on n data points will
frequently scale (in practice) as O(n2) or worse in both time
and memory, making them intractable for the large problems
with hundreds of thousands or millions of points arising in
ASR. In this paper, we avoid these problems via the combina-
tion of two techniques: explicitly lifting our low-dimensional
features into a higher dimensional space in which a linear
decision boundary will perform well, and using regularlized
least squares (RLS) [2, 3], a regularization algorithm closely
related to the SVM which allows linear classifiers to be trained
efficiently, with O(n) dependance on the size of the data set.
Using this approach, we are able to tractably train a system
that achieves state-of-the-art performance on TIMIT phonetic
classification. Furthermore, because our system relies only
on decision boundaries and not on posterior probabilities, it is
much more robust than a GMM-based system under additive
noise.

We now outline the remainder of the paper. Section 2
describes our learning architecture: Section 2.1 develops the
RLS algorithm in detail, including the critical issue of param-
eter tuning, Section 2.2 describes our method for construct-
ing nonlinear second-order features, and Section 2.3 explains
how we combine a collection of binary classifiers to make
a multiclass classifier. Section 3 describes experiments on
the TIMIT classification task, where we compare to both a
state-of-the-art GMM system and other more recent systems
on clean data, and to the GMM on noisy data, showing our
system gives excellent performance in all cases. Section 4
places these results in context, suggests future directions, and
compares and contrasts our approach to another recent work
with similar inspirations, the large-margin Gaussian mixture
model [4].

2. LEARNING ARCHITECTURE

2.1. Regularized Linear Least Squares

We are given a data set {(x1, y1), . . . , (xn, yn)} where xi ∈
Rd and yi ∈ R. The xi represent points to be classified, while

the yi are the desired labels. The data points are collected in
a matrix X ∈ Rn×d (note that xt

i is the ith row of X) and the
labels are collected in Y ∈ Rn. The linear regularized least
squares problem is to find a vector w ∈ Rd minimizing

1
2
||Y −Xw||22 +

λ

2
||w||22,

where λ is a positive regularization parameter controlling the
tradeoff between fitting the observations and finding a w with
small norm (i.e., a “smooth” w), and ||v||2 =

√
vtv. This is a

differentiable, convex optimization problem, and straightfor-
ward calculus and linear algebra [3] shows that the optimal w
is given by

w = (XtX + λI)−1XtY.

The regularization parameter λ must be chosen by the user.
Defining w\i to be the hyperplane obtained when we remove
the ith training point and train on the remaining n− 1 points,
it seems reasonable that a good value of λ is one that yields a
small leave-one-out error∑

i

(yi − wt
\ixi)2.

Linear regularized least squares has the remarkable property
that this leave-one-out (LOO) error can be computed quickly,
as we now show. Define the vector Y i ∈ Rn via

Y i
j =

{
yj j 6= i

wt
\ixi j = i

Then w\i “solves” the RLS problem where Y is replaced with
Y i:

min
w∈Rn

1
2

∑
j

(Y i
j − wtxj)2 + λ||w||22

≥ min
w∈Rn

1
2

∑
j 6=i

(Y i
j − wtxj)2 + λ||w||22

=
1
2

∑
j 6=i

(Y i
j − wt

\ixj)2 + λ||w\i||22

=
1
2

∑
j

(Y i
j − wt

\ixj)2 + λ||w\i||22,

where the first equality follows from the definition of w\i and
the final equality follows from the definiton of Y i

i . We have
therefore shown that

w\i = (XtX + λI)−1XtY i.

This formula seems useless, in that it tells us how to get w\i
(which we don’t really care about) if we already know wt

\ixi

(which is what we want), but in fact it can be used to solve
directly for the desired quantity:

(w\i − w)txi =
(
(XtX + λI)−1Xt(Y i − Y)

)t
xi

= (Y i − Y)tX(XtX + λI)−1xi

= (wt
\ixi − yi)xt

i(X
tX + λI)−1xi,

which immediately implies

wt
\ixi =

wtxi − yix
t
i(X

tX + λI)−1xi

1− xt
i(XtX + λI)−1xi

. (1)

We see that we can easily obtain the entire vector of leave-
one-out errors if we can compute the diagonal elements of
the n by n matrix X(XtX + λI)−1Xt.

Define k = min(n, d). In time O(ndk), we can com-
pute the “economy-sized” singular value decomposition [5]
X = USV t, where U ∈ Rn×k, S ∈ Rk×k, V ∈ Rd×k,
U tU = V tV = I , and S is a diagonal matrix with nonnega-
tive singular values on its diagonal. In terms of the SVD,

XtX + λI = V S2V t + λI

= V (S2 + λI)V t + λ(I − V V t)
(XtX + λI)−1Xt = V (S2 + λI)−1SU t

w = V (S2 + λI)−1SU tY

X(XtX + λI)−1Xt = US2(S2 + λI)−1U t

(
X(XtX + λI)−1Xt

)
ii

=
k∑

j=1

U2
ijS

2
jj

S2
jj + λ

The matrix S2+λI is diagonal, so its inverse can be computed
in linear time. For any λ, assuming we have precomputed the
SVD and matrix quantities that do not depend on λ, we can
use the above formulas1 to compute w in O(dk) time, Xw
in O(nd) time, the diagonal entries of (X(XtX +λI)−1Xt)
in O(nk) time, and finally the leave-one-out error in O(n)
time. We see that the total time required to evalute a λ is
O((n + d)k). Therefore, we can rapidly and effectively find
a λ with small LOO error, with the total computation time
being dominated by the time required to compute the SVD,
assuming we try � k different values of λ.

Linear regularized least squares is an instance of Tikhonov
regularization [2, 7], a very general framework for learning
that includes many common algorithms, including support
vector machines. RLS is unique in that the regularization
parameter can be “multiplexed” — we pay about the same
computational costs to find a good λ as we do to solve the
problem for a single λ. That RLS admits an explicit formula
for the LOO values is fairly well-known in the statistics and
machine learning communities, but methods for “multiplex-
ing” λ via matrix decompositions such as the SVD do not
seem to be well-known; further details are available in [6].

2.2. Second-Order Features

The linear RLS algorithm (obviously) produces linear classi-
fiers, but we can choose the feature space in which the classi-
fiers live. In this work, we start with a base set of features, and

1We don’t actually use Equation 1 to compute the LOO error, preferring
a more numerically stable formula (with the same computational costs) that
can be derived with some additional effort; Equation 1 gives correct answers
in exact arithmetic. See [6] for further details.

explicitly lift these features into a higher dimensional space
by taking pairwise products of the features. Conceptually, if
we start with an initial feature vector x ∈ Rd, we first form
x̂ = [1 xt]t, and then take as our new features all entries on or
above the diagonal of the outer product x̂x̂t, reshaped into a
vector in Rd(d+1)/2. (In practice, we use an indexing scheme
to avoid redundant computations).

2.3. Learning Architecture

Given a multiclass data set, we train a binary RLS classifier
for each pair of classes (for c classes, we train c(c − 1)/2
binary classifiers). For each pair of classes i and j (i < j),
we train a binary classifier using the points in class i with
y = 1 and the points in class j with y = −1. Given a new
test point, we threshold the outputs of all the classifiers at 0,
forcing each classifier to make a hard vote for one of the two
classes it was trained on. We then classify the example into
the class that received the most votes. In the case of ties, we
restrict our attention to the k classes that received the most
votes and recount votes from only the k(k − 1)/2 classifiers
on these classes (in the simple case of a two-way tie between
classes i and j, we choose in accord with the i-vs-j classifier).
If a tie remains after this restriction, we pick the class with
the highest prior (most training examples) from among the
classes receiving the most votes.

3. EXPERIMENTS

The described classification technique was applied to pho-
netic classification on the TIMIT corpus using the standard
practices for this task [8, 4]. While 61-class classification is
performed, the hypotheses are mapped to a smaller 39-class
set before scoring. Glottal stops (q) are ignored. Training
was done on the standard NIST training set (462 speakers,
3696 utterances, 140225 tokens), and results are shown on the
standard core test set (24 speakers, 192 utterances, 7215 to-
kens). The 400 utterance development set was not utilized in
the final version of our system. To test the classification per-
formance in noise, pink noise from the NOISEX database [9]
was added to the test set at four signal-to-noise ratios (SNRs):
0, 10, 20, and 30dB. All training was done on clean data.

The features used are the “S2” features from [8]. Short-
time Fourier analysis is done with a 30ms Hamming window
every 5ms. For each frame, we compute 12 Mel-frequency
cepstral coefficients (MFCCs). To get a fixed-length feature
vector for each phonetic segment, the MFCCs are averaged
over five regions: the 30ms before and after the segment, and
three regions within the segment (in 3-4-3 proportion). The
log duration is also included, giving a total of 61 dimensions.
These features are then whitened using a principle component
analysis (PCA) matrix derived from the training set. We also
include for comparison an RLS system that works directly
with the S2 features rather than second-order features.

The baseline system is a regenerated version of the ag-
gregated 4-fold Gaussian mixture model (GMM) used in [8],
which used K-means intitialization and maximum–likelihood
training. The model has a total of 8801 diagonal-covariance
Gaussians for the 60 mixtures (61 classes minus glottal stop).

Classification results on the core test set are shown in Ta-
ble 1. The RLS second-order system (RLS2) results in a
20.93% error rate in clean data, which is a 10.4% relative
reduction in error rate over the baseline GMM. In moderate
noise, the reduction compared to the GMM is even larger. We
note that the RLS1 system, which builds all-pairs linear clas-
sifiers directly on the S2 features, performs worse than the
GMM in clean data, but better under noisy conditions, indi-
cating that the discriminative architecture has a strong ten-
dency to produce more noise robust models.

Clean 30dB 20dB 10dB 0dB
GMM 23.37 29.02 46.03 68.90 85.43
RLS1 25.60 28.21 41.34 63.12 80.03
RLS2 20.93 23.40 33.79 57.42 77.80

1 - RLS2/GMM 10.44 19.37 26.59 16.66 8.93

Table 1. Phonetic classification error rates on the TIMIT
test set. Signal-to-noise ratios indicate levels of additive pink
noise. All numbers are expresed as percentages.

Our results also compare favorably to recently reported
results using hidden conditional random fields [10] and large-
margin Gaussian mixture models [4], who reported error rates
of 21.7% and 21.1%, respectively on the core test set. Finally,
it is worth noting that not all GMMs are created equal —
different feature sets, numbers of clusters, and training tech-
niques all have an effect. For instance, the best GMM result
reported by [10] is 25.9% error, compared to the 23.37% from
our (aggregated) GMMs. We feel that the GMM baseline we
report represents the state-of-the-art for GMM-based classi-
fiers on these features.

4. DISCUSSION

One of the primary advantages of the RLS scheme is its abil-
ity to quickly and effectively set the regularization parameter.
In the experiment described in Section 3, the optimal λ’s re-
turned by the classifiers ranged over 4 orders of magnitude.
In an additional experiment, we forced all the classifiers to
use the average λ value found, and performance declined to
21.6%, which is worse than the large-margin GMM.

Because all the training set sizes in the current work are
moderate, we use the SVD to compute LOO errors on the
second-order features. When the training sets become large
enough that the second-order features for a pair of classes
don’t fit easily in memory, this strategy will not work. How-
ever, it is possible to use instead an eigendecomposition of the

covariance matrix XtX , which is only d by d and can easily
be computed even when X does not fit in core [6]. This ap-
proach has the same asymptotic time complexity as the SVD
approach (dominated by O(nd2) time to compute XtX), but
is much simpler to code (out-of-core SVD routines are not
readily available). In this case, we can still find w rapidly as
a function of λ, but can no longer find leave-one-out values,
and we instead choose a λ that gives good performance on a
held-out development set. Since our hypothesis was that the
dataset was large, keeping a hold-out set is not too burden-
some.

While the RLS system described provides a substantial
gain in accuracy compared to our best GMM system, it is or-
ders of magnitude slower to train, requiring overnight training
on a network of workstations (it is comparable to the GMM at
prediction time). The system is a proof-of-conept prototype,
and there are a number of possibilities for speeding the sys-
tem up. Selecting λ via an eigendecomposition of XtX and a
development set instead of an SVD of X and LOO error to se-
lect λ will be advantageous whenever the training set is much
larger than the number of dimensions. With somewhat more
effort, we could build a hierarchical all-pairs system with a
top level that divides the phonemes into broad manner classes,
reducing the number of classifiers by an order of magnitude.

Recently, Sha and Saul introduced large margin Gaussian
mixture modelling for phonetic classification [4], achieving
excellent performance (21.1% core test error for their best
model). A key element of their approach is that they di-
rectly optimize ellipsoids to separate the classes. They ar-
gue that this has a computational advantage over nonlinear
SVMs. Their optimization is performed over the semidefinite
cone, requiring an iterative solver. For this reason they can-
not quickly search regularization parameters to trade smooth-
ness and fit, as we do here.2 We agree with Sha and Saul
that approaches that make use of the kernel trick will lead to
computational difficulties for large data sets, and instead opt
to build a second-order classifer by explicitly lifting our fea-
tures into a second-order space. Conceptually, while the large
margin GMM fits ellipsoids in the original space by learning
a positive semidefinite matrix, we fit general quadratics in the
original space by learning a linear function in the lifted space.
As a consequence, our individual classifiers can be quickly
solved via RLS and good regularization parameters found. In
addition, our approach trivially decomposes onto a network
of workstations, while the large-margin GMM is formulated
as a single optimization problem over all the Gaussians simul-
taneously, which is more difficult to parallelize.

Another key contrast with the large margin GMM is that
the large margin GMM fits a mixture of ellipsoids for each
class, while we fit a single quadratic for each pair of classes.

2The large margin GMM is a Tikhonov regularization algorithm, mini-
mizing a sum of a data fitting term and a regularizer based on the trace of the
ellipsoids. In their formulation they do not explicitly include a regularization
parameter, implicitly fixing λ = 1.

We are currently investigating models that combine some of
the features of these approaches, fitting multiple quadratics
for each pair of classes. In any case, the present work demon-
strates that requiring ellipsoids is not strictly necessary, and
that a simple RLS architecture that fits arbitrary quadratic
functions can give excellent performance.

5. REFERENCES

[1] Vladimir N. Vapnik, Statistical Learning Theory, John
Wiley & Sons, 1998.

[2] G. Wahba, Spline Models for Observational Data,
vol. 59 of CBMS-NSF Regional Conference Series in
Applied Mathematics, Society for Industrial & Applied
Mathematics, 1990.

[3] R. M. Rifkin, Everything Old Is New Again: A Fresh
Look at Historical Approaches to Machine Learning,
Ph.D. thesis, Massachusetts Institute of Technology,
2002.

[4] F. Sha and L. K. Saul, “Large margin gaussian mixture
modelling for phonetic classification and regression,” in
Proceedings of ICASSP, 2006.

[5] G. H. Golub and C. F. Van Loan, Matrix Computations,
The Johns Hopkins University Press, 3rd edition, 1996.

[6] R. Rifkin and R. Lippert, “What you should know about
matrix decompositions and regularized least squares,”
(2006, in preparation).

[7] T. Evgeniou, M. Pontil, and T. Poggio, “Regularization
networks and support vector machines,” Advanced In
Computational Mathematics, vol. 13, no. 1, pp. 1–50,
2000.

[8] A. Halberstadt and J. Glass, “Heterogeneous measure-
ments and multiple classifiers for speech recognition,”
in Proceedings of ICSLP, 1998.

[9] A. Varga, H. J. M. Steeneken, M. Tomlinson, and
D. Jones, “The noisex-92 study on the effect of addi-
tive noise on automatic speech recognition,” Technical
Report, DRA Speech Research Unit, 1992.

[10] A. Gunawardana, M. Mahajan, A. Acero, and J. C. Platt,
“Hidden conditional random fields for phone classifica-
tion,” in Proceedings of Eurospeech, 2005.

