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Abstract—This paper describes a new approach for informa-
tion fusion in inertial navigation systems. In contrast to the
commonly used filtering techniques, the proposed approach is
based on a non-linear optimization for processing incoming
measurements from the inertial measurement unit (IMU) and
any other available sensors into a navigation solution. A factor
graph formulation is introduced that allows multi-rate, asyn-
chronous, and possibly delayed measurements to be incorporated
in a natural way. This method, based on a recently developed
incremental smoother, automatically determines the number of
states to recompute at each step, effectively acting as an adaptive
fixed-lag smoother. This yields an efficient and general framework
for information fusion, providing nearly-optimal state estimates.
In particular, incoming IMU measurements can be processed in
real time regardless to the size of the graph. The proposed method
is demonstrated in a simulated environment using IMU, GPS
and stereo vision measurements and compared to the optimal
solution obtained by a full non-linear batch optimization and to
a conventional extended Kalman filter (EKF).

Index Terms—Navigation, information fusion, factor graph,
filtering

I. INTRODUCTION

Information fusion in inertial navigation systems is essential
for any practical application. In the past few decades, many re-
search efforts have been devoted to developing navigation aid-
ing methods to eliminate, or at least reduce, the inevitable drift
in pure inertial navigation solution. These methods typically
rely on various sensors, operating at different frequencies, to
correct the inertial navigation solution and also to constrain
future development of navigation errors by correcting the
incoming inertial measurements. While different approaches
for navigation-aiding can be found in the literature, arguably
the most common approach is based on various variants of the
well-known extended Kalman filter (EKF).

Despite the EKF’s reputation as a workhorse, incorporating
measurements from different asynchronous sensors operating
at multiple frequencies is cumbersome, involving redundant
computations or ad-hoc approximations. An augmented state
is typically used to accommodate measurements from multi-
rate sensors, and in order to better incorporate non-linear
measurement models, EKF versions such as the iterated EKF
and unscented EKF, can be applied. However, current state-
of-the-art techniques require updating the whole augmented
state vector each time a measurement arrives, which can
be expensive if the state vector is large. In practice, this

is not always required, since some of the state variables
remain unchanged in certain conditions. Moreover, handling
delayed measurements either involves a special and non-trivial
treatment, or requires a higher resolution of the augmented
state vector. Another alternative is to maintain a buffer of
past navigation solutions. However, such an approach produces
only an approximated solution.

We suggest a factor graph formulation for processing all
available sensor measurements into a navigation solution. A
factor graph [17] is a probabilistic graphical model which,
unlike Bayes nets or Markov Random Fields, is represented by
a bipartite graph comprising of variable and factor nodes. Vari-
able nodes are associated with system states (or parts thereof),
and factors are associated with measurements, and the factor
graph encodes the posterior probability of the states over time,
given all available measurements. Using factor graphs allows
handling different sensors at varying frequencies in a simple
and intuitive manner. In particular, since an IMU measurement
describes the motion between two consecutive time instances,
each IMU measurement introduces a new factor to the factor
graph connecting to the navigation state nodes at those two
time instances. This factor may also be connected to other
nodes used for parameterizing errors in the IMU measurements
(such as bias and scale factor terms). These nodes can be added
at a lower frequency than the navigation nodes. The factor
graph representation also provides plug and play capability, as
new sensors are simply additional sources of factors that get
added to the graph. Likewise, if a sensor becomes unavailable
due to signal loss or sensor fault, the system simply refrains
from adding the associated factors; no special procedure or
coordination is required.

Calculating the full navigation solution over all states can
be performed efficiently using recently-developed incremental
smoothing techniques. While this seems as a computationally
expensive operation, the incremental approach optimizes only
a small part of the nodes in the graph, rendering the pro-
posed approach suitable for high frequency applications. In
particular, processing incoming IMU measurements generates
a simple factor chain. The incremental approach can operate
on this topology extremely efficiently, providing a navigation
solution in real time.

In what follows, we next discuss related work on in-
formation fusion in inertial navigation systems. Section III
introduces the factor graph formulation and presents factors



for some of the common sensors in navigation applications.
The incremental non-linear optimization is then discussed in
Section IV. Simulation results demonstrating the proposed
approach are provided in Section V, while Section VI suggests
concluding remarks.

II. RELATED WORK

Traditional inertial navigation systems are based on the
strapdown mechanism [8], in which IMU measurements are
integrated into a navigation solution. Typically, navigation-
aiding methods apply filtering approaches for fusing measure-
ments from other available sensors with the inertial solution.
The most common are different variants of the EKF. For
example, [3] and [31] consider EKF and unscented Kalman
filter formulations for integrating GPS with inertial navigation,
[25] uses EKF for estimating the pose and the velocity of a
spacecraft based on previously mapped landmarks and [32]
uses EKF for INS in-flight-alignment.

Another approach for information fusion is calculating the
optimal solution based on a non-linear optimization involving
all the unknown variables and using all the available measure-
ments. This approach, also known as bundle adjustment (BA),
is commonly used in the robotics community for solving the
full simultaneous localization and mapping (SLAM) problem
[5, 7, 9, 18, 30]. Recently it has been applied for information
fusion in inertial navigation systems [20, 24]. Mourikis and
Roumeliotis [23, 24] suggested incorporating vision and IMU
measurements using a flexible augmented state vector EKF,
applying a batch BA for handling loop closures and limiting
the effect of linearization errors. In [20], a batch non-linear
optimization formulation is suggested for fusing incoming
IMU, GPS and visual measurements, recovering the robot’s
pose, observed landmarks, as well as IMU biases, camera
calibration and the camera-to-IMU transformation.

Unlike the batch algorithms suggested in [20, 24], the
factor graph formulation allows calculating incremental up-
dates to the non-linear optimization solution. Following a
recently developed method for incremental smoothing [15, 16],
the actual optimization performed with each new incoming
measurement, involves solving only a small portion of the
variables, leaving the rest unchanged. Only variables that are
expected to benefit from the new measurement are updated.

The applied incremental optimization approach is equivalent
to an adaptive fixed-lag smoother (as opposed to the commonly
used fixed-lag smoother [22]), in which the size of the lag is
adjusted according to the actual topology of the graph and
the nature of the incoming measurements. In particular, pro-
cessing IMU measurements can be done extremely efficiently,
thereby allowing operation at a high-frequency. Incorporating
measurements from different, possibly asynchronous, sensors
becomes a matter of connecting the factors defined by these
measurements to the appropriate nodes in the factor graph.
While delayed measurements require special care in filtering
approaches [2, 8, 28, 33], such measurements can be incorpo-
rated into factor graph as easily as any other measurement.

A similar approach has been proposed in [27] for pose
estimation using a square root information fixed-lag smoother
[5], reporting a performance at 20Hz. The current paper
formulates the aided inertial navigation problem in terms of a
factor graph and applies an improved incremental smoothing
technique [16]. The actual optimization uses Lie-algebraic
techniques to account for the involved non-linearities, similarly
to [1, 10, 27]. It is the author’s belief that recent advances
in navigation aiding [14, 19] can be formulated within the
proposed factor graph framework as well.

Although not at the focus of this paper, loop closures can
be handled in the same framework [16] as well.

III. FACTOR GRAPH FORMULATION IN INERTIAL
NAVIGATION SYSTEMS

Instead of understanding the navigational smoothing prob-
lem in conventional terms of matrix operations, we represent
it with a graphical model known as a factor graph [17]. A
factor graph is a bipartite graph G = (F ,X , E) with two types
of nodes: factor nodes fi ∈ F and variable nodes xj ∈ X .
Edges eij ∈ E can exist only between factor nodes and variable
nodes, and are present if and only if the factor fi involves a
variable xj . The factor graph G defines one factorization of
the function f(X ) as:

f(X ) =
∏
i

fi(Xi),

where Xi is the set of all variables xj connected by an edge
to factor fi.

In terms of non-linear least squares optimization, each
factor encodes an error function that should be minimized
by adjusting the estimates of the variables X . The optimal
estimate X̂ is the one that minimizes the error of the entire
graph f(X ).

X̂ = arg min
X

(∏
i

fi(Xi)

)
.

While a factor represents the general concept of an error
function that should be minimized, it is common in the
navigational literature to design a measurement model h(·) that
predicts a sensor measurement given a state estimate. The fac-
tor then captures the error between the predicted measurement
and actual measurement. This is equivalent to measurement
models within the standard EKF context. Assuming a Gaussian
noise model, a measurement factor may be written as:

fi(Xi) = d[hi(Xi)− zi],

where hi(Xi) is the measurement model as a function of the
state variables Xi, zi is the actual measurement value and the
operator d (.) denotes a certain cost function. For a Gaussian
noise distribution this is the squared Mahalanobis distance,
defined as d (e)

∆
= eTΣ−1e, with Σ being the estimated

measurement covariance. Process models can be represented
using factors in a similar manner [5].

Next, we present factor formulations for different measure-
ment models, covering the most common sensors in typical



navigation applications. The considered sensors are IMU,
GPS, and monocular and stereo vision.

A. IMU Measurements
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Figure 1. (a) Factor graph representation for two IMU measurements relating
between the navigation nodes x1, x2 and x3. (b) Factor graph formulation
with navigation and bias nodes. (c) A factor graph with IMU and GPS
measurements operating at different rates. (d) Factor graph representation with
multi-frequency measurements: high-frequency IMU measurements, lower
frequency GPS and stereo vision measurements. Bias nodes are introduced at
a lower frequency than navigation nodes.

The time evolution of the navigation state x, representing
the robot’s position, velocity and orientation, can be con-
ceptually described by the following continuous non-linear
differential equations (cf. Appendix) :

ẋ = hc (x, α, am, ωm) , (1)

where am and ωm are the acceleration and angular velocity of
the robot as measured by the on-board inertial sensors. Also,
α is the calculated model of errors in IMU measurements that
is used for correcting the incoming IMU measurements. This
model of IMU errors is usually estimated in conjunction with
the estimation of the navigation state. Linearization of Eq.
(1) will produce the well known state space representation
with the appropriate Jacobian matrices and a process noise
[8], which is assumed to be zero-mean Gaussian noise.

In general, the time propagation of α can be described
according to some non-linear model of its own: α̇ =
gc (α, x, am, ωm). However, a more practical model for α,
such as random walk, can be described as

α̇ = gc (α) . (2)

Throughout this paper, the term bias vector (or bias node) is
used when referring to α, although in practice it can represent
any model of IMU errors.

A given IMU measurement, zk
.
=
[
aTm ωTm

]T
, connects

the states at two consecuative time instances, denoted by tk
and tk+1. Different numerical schemes, ranging from a simple
Euler integration to high-order Runge-Kutta integration, can
be applied for solving these equations. However, the factor
graph framework allows us to adopt a simple Euler integration
prediction function with an associated integration uncertainty.
The underlying non-linear optimization will adjust individual
state estimates appropriately. The discrete representation of the
continuous formulation (1)-(2) is

xk+1 = h (xk, αk, zk)
αk+1 = g (αk) .

(3)

If desired, the factor graph framework can accommodate more
sophisticated schemes as well.

Each of the equations (3), defines a factor connecting related
nodes in the factor graph: an IMU factor f IMU connecting the
navigation nodes xk, xk+1 and the bias node αk, and a bias
factor f bias connecting the bias nodes αk and αk+1.

The IMU factor for a given IMU measurement zk is
defined as follows. The IMU measurement zk and the current
estimate of xk, αk are used to predict the values for xk+1. The
difference between this prediction and the current estimate of
xk+1 is the error function represented by the factor:

f IMU (xk+1, xk, αk) , d (xk+1 − h (xk, αk, zk)) , (4)

Each of the involved unknown vectors in Eq. (4) are repre-
sented by variable nodes in the factor graph, while the IMU
factor is a factor node connecting these variables. When adding
a new node xk+1 to the graph, a reasonable initial value for
xk+1 is required. This can be taken, for example, from the
prediction h (xk, αk, zk). Figure 1a illustrates a factor graph
with three navigation nodes and two IMU factors.

In a similar manner, the bias factor associated with the
calculated model of IMU errors is given by

f bias (αk+1, αk) , d (αk+1 − g (αk)) (5)

with αk+1 and αk represented in the factor graph as variable
nodes. The equivalent factor graph for IMU and bias factors
is given in Figure 1b.

Since α does not change significantly over short periods
of time, it makes sense to introduce the factor (5) at a
slower rate than the IMU factor (4), which is added to the
factor graph at IMU frequency. Denoting the most recent
bias node by αl, Eq. (5) changes to f bias (xk+1, xk, αl) ,
d (xk+1 − h (xk, αl, zk)), while the IMU factor formulation
(4) is f IMU (xk+1, xk, αl) , d (xk+1 − h (xk, αl, zk)). Such
a scenario is illustrated in Figure 1d.

B. GPS Measurements

GPS measurements are an example for demonstrating how
time-delayed measurements can be easily incorporated into the



factor graph. The GPS measurement equation is given by

zGPSk = hGPS (xl) + nGPS ,

where nGPS is the measurement noise and hGPS is the
measurement function, relating between the measurement
zGPSk to the robot’s position. In the presence of lever-arm,
rotation will be part of the measurement equation as well [8].
GPS measurements are time-delayed since usually tk > tl.
Consequently, the above equation defines a unary factor

fGPS (xl) , d
(
zGPSk − hGPS (xl)

)
,

which is only connected to the node xl. GPS pseudo-range
measurements can be accommodated in a similar manner as
well. Factor graphs with GPS measurements and measure-
ments from other sensors, operating at different rates, are
shown in Figures 1c and 1d.

C. Monocular and Stereo Vision Measurements
Incorporating vision sensors can be done on several lev-

els, depending on the actual measurement equations and the
assumed setup.

Assuming a monocular pinhole camera, the measurement
equation is given by the projection equation [11]

p = K
[
R t

]
X (6)

with p and X being the measured pixels and the coordinates
of the observed 3D landmark, both given in homogeneous
coordinates. The rotation matrix R and the translation vector
t represent the transformation between the camera and the
global frame (i.e. the global pose), and therefore can be
calculated from the current estimate of the navigation node
x at the appropriate time instant. When observing known
landmarks with a calibrated camera, this equation defines a
unary factor on the node x. The much more challenging
problem of observing unknown landmarks, also known as
full SLAM or BA, requires adding the unknown landmarks
into the optimization by including them as nodes in the
factor graph and representing the measured pixels by a bi-
nary factor connecting between the appropriate navigation
and landmark nodes. Alternatively, to avoid including the
unknown landmarks into the optimization, one can use multi-
view constraints [11, 21], such as two-view [6] and three-view
constraints [13], instead of the projection equation (6).

A stereo camera rig is an another commonly used setup.
Assuming a known baseline, it is possible to estimate the
relative transformation between two stereo frames. This can be
formulated as a binary factor connected to navigation nodes
at the time instances of these frames. Denoting this relative
transformation by T∆ and the global poses of the two stereo
cameras by Tk1and Tk2 , calculated based on the current values
of the navigation nodes xk1 and xk2 , the binary factor becomes

fstereo (xk1 , xk2) , d (T∆ − (Tk1 − Tk2)) .

Since visual measurements are usually obtained at a lower
frequency, the size of the fixed-lag is adaptively increased. An
illustration of the interaction between the stereo-vision binary
factor and other factors is shown in Figure 1d.

IV. INCREMENTAL SMOOTHING

Before presenting our approach for incremental smoothing,
which is essential for real-time applications, it is helpful to
first discuss a batch optimization.

A. Batch Optimization

We solve the non-linear optimization problem encoded by
the factor graph by repeated linearization within a standard
Gauss-Newton style non-linear optimizer. Starting from an
initial estimate x0, Gauss-Newton finds an update ∆ from the
linearized system

arg min
∆

J(x0)∆− b(x0), (7)

where J(x0) is the sparse Jacobian matrix at the current
linearization point x0 and b(x0) = f(x0) − z is the residual
given the measurement z. The Jacobian matrix is equivalent to
a linearized version of the factor graph, and its block structure
reflects the structure of the factor graph. After solving equation
(7), the linearization point is updated to the new estimate
x0 + ∆.

In practice, the error functions for the factors defined in the
previous section, such as (4)-(5), as well as all the involved
Jacobians, are calculated using the underlying Lie algebra
structure of the full 6 degree-of-freedom Euclidean motion
in a similar manner to [1, 10, 27, 29].

In the context of an IMU measurement, the Jacobian matri-
ces, calculated for the non-linear optimization process about
the current linearization points, are

∂εx
∂xk+1

,
∂εx
∂xk

,
∂εx
∂αk

for the IMU factor, and

∂εα
∂αk

,
∂εα
∂αk+1

for the bias factor, using Eqs. (4)-(5). In the above equations,
εx , xk+1 − h (xk, αk, zk) and εα , αk+1 − g (αk).

Each linearized factor graph is solved by variable elimina-
tion, equivalent to matrix factorization. Solving for the update
∆ requires factoring the Jacobian matrix into an equivalent up-
per triangular form using techniques such as QR or Cholesky.
Within the factor graph framework, these same calculations are
performed using variable elimination [12]. A variable ordering
is selected and each node is sequentially eliminated from the
graph, forming a node in a chordal Bayes net [26]. A Bayes
net is a directed, acyclic graph that encodes the conditional
densities of each variable. Chordal means that any undirected
loop longer than three nodes has a chord or a short cut. This
chordal Bayes net is equivalent to the upper triangular matrix
that results from matrix factorization, and is used to obtain the
update ∆ by backsubstitution.

While the elimination order is arbitrary and any order will
form an equivalent Bayes net, they may differ significantly
in complexity as measured by their number of edges. The
selection of the elimination order does affect the structure of
the Bayes net and the corresponding amount of computation.



A good elimination order will make use of the natural sparsity
of the system to produce a small number of edges, while a
bad order can yield a fully connected Bayes net. Heuristics do
exist, such as approximate minimum degree [4], that approach
the optimal ordering for generic problems.

B. Incremental Optimization

x1 x2
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x1 x2
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x3
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Figure 2. (a) Bayes net for a factor graph containing navigation nodes
x1,x2 and bias nodes α1, α2 . Assumed elimination order: x1, α1,, x2, α2.
(b) Adding new IMU and bias factors connecting between the nodes x2, α2

and (the new) nodes x3, α3, produces a factor graph shown in Figure 1b.
Incremental inference allows processing only a small part of the Bayes net,
as indicated in red color, regardless to the size of the factor graph.

In the context of the navigation smoothing problem, each
new sensor measurement will generate a new factor in the
graph. This is equivalent to adding a new row (or block-row
in the case of multi-dimensional states) to the measurement
Jacobian of the linearized least-squares problem.

The key insight is that optimization can proceed incre-
mentally because most of the calculations are the same as
in the previous step and can be reused. When using the
algorithm of Section IV-A to recalculate the Bayes net, one
can observe that only a part of the Bayes net is modified
by the new factor. So instead of recalculating everything, we
focus computation on the affected parts of the Bayes net. But
what are the affected parts? That question was answered in the
incremental smoothing algorithm iSAM2 [16] that we apply
here. Informally, a part of the Bayes net is converted back
into a factor graph, the new factor is added, and the resulting
(small) factor graph is re-eliminated. The eliminated Bayes
net is merged with the unchanged parts of the original Bayes
net, creating the same result as a batch solution would obtain.
To deal with non-linear problems efficiently, iSAM2 combines
the incremental updates with selective relinearization.

As long as only sequential IMU measurements are pro-
cessed, the resulting graph (and Bayes net) will have a
chain-like structure, as illustrated in Figures 1a and 1b. The
underlying adaptive fixed-lag smoothing in the incremental
smoothing approach [16], allows processing each new IMU
measurement by optimizing only 4 nodes in the factor graph,
regardless to the actual size of the graph. A sketch of the
different steps in this process is given in Figure 2.

The smoothing lag is automatically adjusted whenever mea-
surements from additional sensors become available. Thus,
all the nodes affected by these measurements are optimized,
yielding a solution that approaches the optimal solution that
would be obtained by a full smoother.

V. RESULTS

The proposed method was examined in a simulated envi-
ronment using measurements from several sensors operating
at different rates. A ground truth trajectory was created,
simulating a flight of an aerial vehicle at a 40 m/s velocity
and a constant height of 200 meter above mean ground level.
The trajectory consists of several segments of straight and level
flight and maneuvers, as shown in Figure 3a.

Based on the ground truth trajectory, ideal IMU measure-
ments were generated at 100 Hz, while taking into account
Earth’s rotation and changes in the gravity vector (cf. Ap-
pendix). These measurements were corrupted with a constant
bias and a zero-mean Gaussian noise in each axis. Bias terms
were drawn from a zero-mean Gaussian distribution with a
standard deviation of σ = 10 mg for the accelerometers and
σ = 10 deg/hr for the gyroscopes. The noise terms were
drawn from a zero-mean Gaussian distribution with σ =
100µg/

√
Hz and σ = 0.001 deg/

√
hr for the accelerometers

and gyroscopes.
In addition to IMU measurements, GPS measurements were

generated at 1 Hz and corrupted with a Gaussian noise with
a standard deviation of 10 meters. A stereo camera rig was
also assumed, producing relative pose measurements T∆ (cf.
Section III-C) at a 0.5 Hz frequency. These measurements
were calculated from observations of unknown landmarks,
scattered on the ground with ±50 meters elevation. Finally,
a bank of known landmarks was used to produce short-track
visual observations. Each landmark is observed in only a few
camera frames (3−4 frames). These landmarks were assumed
to be known within a 10 meters precision (1σ). A zero-mean
Gaussian noise, with σ = 0.5 pixels, was added to all visual
measurements. To avoid double counting, visual observations
of known landmarks were not used for calculating relative
transformations.

The implemented IMU factor is based on a strapdown
mechanism [8]. IMU nodes were added to the factor graph
at the frequency of IMU measurements, while a random walk
process was used for the bias factor, with new bias nodes
added to the factor graph every 0.5 seconds.

The next sections compare between the proposed incremen-
tal smoother and a conventional EKF in a basic scenario, and
demonstrate the performance of the smoother in a multi-rate
information fusion scenario. The results are shown in terms
of estimation/optimization errors relative to the beginning of
trajectory.

A. Incremental Smoothing vs. EKF

A comparison between the proposed incremental smoothing
approach to a conventional EKF is shown in Figures 3-4. As
seen in Figure 3b, a similar performance was obtained when
using IMU and GPS measurements, because of the imple-
mented simplified GPS measurement equation that is linear
with the position terms. In terms of timing, the incremental
smoother produces results every 4 msec on average, with a
standard deviation of 2.7 msec, thereby allowing operation at
IMU frequency. All runs were performed on a single core of an
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Figure 3. (a) Ground truth and estimated trajectory. (b) Position errors using
IMU and GPS measurements. A similar performance is obtained in smoothing
and filtering approaches.

Intel i7-2600 processor with a 3.40GHz clock rate and 16GB
of RAM memory.

In contrast to GPS measurements, incorporating IMU and
visual observations of known landmarks (performed at 0.5
Hz), with the non-linear measurement equation (6), produced
much better results in favor of the smoother, as shown in
Figure 4. While an improved performance of the filter is ex-
pected when applying an iterated EKF, the whole state vector
would be estimated each time, in contrast to the proposed
approach. As mentioned in Section I, this is an expensive
operation when using a large augmented state vector so that
measurements from sensors, operating at different frequencies,
could be accommodated.

B. Incremental Smoothing in a Multi-Sensor Scenario

We now consider a scenario with several sensors operating
at different frequencies. Specifically, in addition to the high-
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Figure 4. Comparison between incremental smoothing and an EKF using
IMU and visual observations of short-track landmarks, operating at 100
and 0.5 Hz, respectively. Incremental smoothing produces significantly better
results: (a) Position errors. (b) Accelerometer bias estimation errors.

frequency IMU measurements, relative pose measurements
were incorporated at a 0.5 Hz frequency and visual observa-
tions of known landmarks were introduced every 10 seconds.

Estimation errors of position, attitude and accelerometer’s
bias are given in Figure 5, which shows the incremental
smoothing solution obtained at each time step, the estimated
square root covariance, and the final smoothing solution of
the whole trajectory. The final smoothing solution, equivalent
to incremental smoothing at the final time, is as expected,
significantly better from the actual (concurrent) smoothing
solution and may be useful for various applications such as
mapping.

A comparison between the incremental smoothing solution,
obtained by the proposed approach, to a batch optimization (cf.
Section IV-A), yielded nearly identical results. Actual plots of
this comparison are not shown due to space limitation.
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Figure 5. Incremental smoothing results in a multi-sensor scenario, using
IMU, relative pose measurements and visual observations of short-track
known landmarks, operating at 100, 0.5 and 0.1 Hz, respectively. Position
(a), attitude (b) and accelerometer bias (c) estimation errors of the smoother
are shown and compared to the estimated square root covariance and to errors
in the final smoothing.

In terms of performance, position errors are confined
within 8 meters and are much smaller most of the time.
Orientation and accelerometer bias is gradually estimated,
especially during the vehicle’s maneuvers (first maneuver is
during t = 20 to 50 seconds) that increase the system’s
observability. Gyroscopes bias was only partially estimated,
both in the smoothing and filtering approaches (not shown),
due to insufficient precision of the measurements. Overall, the
estimated covariance is consistent with the estimation error.

VI. CONCLUSION

This paper described a factor graph formulation for informa-
tion fusion problems in inertial navigation systems. The new
formulation provides for the incorporation of asynchronous
and/or out-of-sequence measurements from multiple sensors,
supporting the development of a plug and play capability
for registering and un-registering sensors based upon their
availability. Incoming measurements were processed into a
navigation solution based on a non-linear optimization. Ap-
plying a recently developed method for incremental inference,
which is equivalent to an adaptive fixed-lag smoother, provided
close to an optimal performance with a minimum time delay.
The validity of the proposed approach was demonstrated in a
simulated environment that included IMU, GPS and stereo-
vision measurements, and compared to the full batch non-
linear optimization, and to a conventional filter.
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APPENDIX: INS KINEMATIC EQUATIONS

This appendix provides the inertial navigation equations
leading to Eq. (1). Assuming some general frame a and
denoting by b and i the body and inertial frames, the time
derivative of the velocity, expressed in frame a, is given by
[8]:

v̇a = Rabf
b + ga − 2Ωaiav

a −
(

ΩaiaΩaia + Ω̇aia

)
pa, (8)

where Rab is a rotation matrix transforming from body frame
to frame a, f b is the specific force measured by the accelerom-
eters, pa is the position vector, evolving according to

ṗa = va (9)

and the matrix Ωaia is defined as

Ωaia = [ωaia]×

with ωaia being the rotational rate of frame a with respect to
the inertial frame i, expressed in frame a, and [.]x is the skew-
symmetric operator, defined for any two vectors q1 and q2 as
[q1]× q2 = q1 × q2. The vector ga is the position-dependent
gravity acceleration.



The time-evolution for the rotation between frame b and a
is given by

Ṙab = RabΩbab (10)

with Ωbab =
[
ωbab
]
× and the rotation rate ωbab measured by

the gyroscopes. The IMU measurement notations f b and ωbab
correspond to the notations am and ωm used in Section III-A.

Eqs. (8)-(10) can always be written in the form of Eq. (1),
although different expressions are obtained for each choice of
the frame a (such as inertial frame, tangent frame, etc.).

REFERENCES

[1] M. Agrawal. A Lie algebraic approach for consistent pose
registration for motion estimation. In IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), 2006.

[2] Y. Bar-Shalom. Update with out-of-sequence measurements in
tracking: Exact solution. Signal and Data Processing of Small
Targets 2000, Proceedings of SPIE, 4080:541–556, 2000.

[3] J.L. Crassidis. Sigma-point Kalman filtering for integrated GPS
and inertial navigation. IEEE Trans. Aerosp. Electron. Syst., 42
(2):750–756, 2006.

[4] T.A. Davis, J.R. Gilbert, S.I. Larimore, and E.G. Ng. A column
approximate minimum degree ordering algorithm. ACM Trans.
Math. Softw., 30(3):353–376, 2004. ISSN 0098-3500.

[5] F. Dellaert and M. Kaess. Square Root SAM: Simultaneous lo-
calization and mapping via square root information smoothing.
Intl. J. of Robotics Research, 25(12):1181–1203, Dec 2006.

[6] D. Diel, P. DeBitetto, and S. Teller. Epipolar con-
straints for vision-aided inertial navigation. In Proceedings
of the IEEE Workshop on Motion and Video Computing
(WACV/MOTION’05), Washington, DC, USA, 2005.

[7] R.M. Eustice, H. Singh, and J.J. Leonard. Exactly sparse
delayed-state filters for view-based SLAM. IEEE Trans.
Robotics, 22(6):1100–1114, Dec 2006.

[8] J.A. Farrell. Aided Navigation: GPS with High Rate Sensors.
McGraw-Hill, 2008.

[9] J. Folkesson, P. Jensfelt, and H.I. Christensen. Graphical SLAM
using vision and the measurement subspace. In IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems (IROS), Aug 2005.

[10] Strasdat H., Montiel J. M. M., and Davison A. J. Scale drift-
aware large scale monocular SLAM. In Robotics: Science and
Systems (RSS), Zaragoza, Spain, June 2010.

[11] R. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2000.

[12] P. Heggernes and P. Matstoms. Finding good column orderings
for sparse QR factorization. In Second SIAM Conference on
Sparse Matrices, 1996.

[13] V. Indelman, P. Gurfil, E. Rivlin, and H. Rotstein. Real-time
vision-aided localization and navigation based on three-view
geometry. IEEE Trans. Aerosp. Electron. Syst., 48(2), 2012.

[14] E.S. Jones and S. Soatto. Visual-inertial navigation, mapping
and localization: A scalable real-time causal approach. Intl. J.
of Robotics Research, 30(4), Apr 2011.

[15] M. Kaess, V. Ila, R. Roberts, and F. Dellaert. The Bayes tree:
An algorithmic foundation for probabilistic robot mapping. In
Intl. Workshop on the Algorithmic Foundations of Robotics, Dec
2010.

[16] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and
F. Dellaert. iSAM2: Incremental smoothing and mapping using
the Bayes tree. Intl. J. of Robotics Research, 31:217–236, Feb
2012.

[17] F.R. Kschischang, B.J. Frey, and H-A. Loeliger. Factor graphs
and the sum-product algorithm. IEEE Trans. Inform. Theory,
47(2), February 2001.

[18] F. Lu and E. Milios. Globally consistent range scan alignment
for environment mapping. Autonomous Robots, pages 333–349,
Apr 1997.

[19] T. Lupton and S. Sukkarieh. Visual-inertial-aided navigation
for high-dynamic motion in built environments without initial
conditions. IEEE Trans. Robotics, 28(1):61–76, Feb 2012.

[20] Bryson M., Johnson-Roberson M., and Sukkarieh S. Airborne
smoothing and mapping using vision and inertial sensors. In
IEEE Intl. Conf. on Robotics and Automation (ICRA), pages
3143–3148, 2009.

[21] Y. Ma, S. Soatto, J. Kosecka, and S.S. Sastry. An Invitation to
3-D Vision. Springer, 2004.

[22] P. Maybeck. Stochastic Models, Estimation and Control, vol-
ume 1. Academic Press, New York, 1979.

[23] A.I. Mourikis and S.I. Roumeliotis. A multi-state constraint
Kalman filter for vision-aided inertial navigation. In IEEE Intl.
Conf. on Robotics and Automation (ICRA), pages 3565–3572,
April 2007.

[24] A.I. Mourikis and S.I. Roumeliotis. A dual-layer estimator
architecture for long-term localization. In Proc. of the Workshop
on Visual Localization for Mobile Platforms at CVPR, Anchor-
age, Alaska, June 2008.

[25] Trawny N., Mourikis A. I., Roumeliotis S. I., Johnson A. E., and
Montgomery J. F. Vision-aided inertial navigation for pin-point
landing using observations of mapped landmarks: Research
articles. J. of Field Robotics, 24(5):357–378, May 2007.

[26] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference. Morgan Kaufmann, 1988.

[27] A. Ranganathan, M. Kaess, and F. Dellaert. Fast 3D pose
estimation with out-of-sequence measurements. In IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), pages
2486–2493, San Diego, CA, Oct 2007.

[28] X. Shen, E. Son, Y. Zhu, and Y. Luo. Globally optimal dis-
tributed Kalman fusion with local out-of-sequence-measurement
updates. IEEE Transactions on Automatic Control, 54(8):1928–
1934, Aug 2009.

[29] C.J. Taylor and D.J. Kriegman. Minimization on the Lie group
SO(3) and related manifolds. Technical Report 9405, Yale
University, New Haven, CT, April 1994.

[30] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. The
MIT press, Cambridge, MA, 2005.

[31] R Van Der Merwe, E Wan, and Sj Julier. Sigma-point Kalman
filters for nonlinear estimation and sensor fusion: Applications
to integrated navigation. AIAA Guidance Navigation and
Control Conference and Exhibit, pages 1735–1764, 2006.

[32] Kong X., Nebot E. M., and Durrant-Whyte H. Development of
a nonlinear psi-angle model for large misalignment errors and
its application in INS alignment and calibration. In IEEE Intl.
Conf. on Robotics and Automation (ICRA), pages 1430–1435,
1999.

[33] S. Zahng and Y. Bar-Shalom. Optimal update with multiple
out-of-sequence measurements. In Proc. of the SPIE, Signal
Processing, Sensor Fusion, and Target Recognition XX, May
2011.


