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Abstract— In this paper, we demonstrate a system for tempo-
rally scalable visual SLAM using a reduced pose graph repre-
sentation. Unlike previous visual SLAM approaches that main-
tain static keyframes, our approach uses new measurements to
continually improve the map, yet achieves efficiency by avoiding
adding redundant frames and not using marginalization to
reduce the graph. To evaluate our approach, we present results
using an online binocular visual SLAM system that uses place
recognition for both robustness and multi-session operation.
Additionally, to enable large-scale indoor mapping, our system
automatically detects elevator rides based on accelerometer
data. We demonstrate long-term mapping in a large multi-floor
building, using approximately nine hours of data collected over
the course of six months. Our results illustrate the capability
of our visual SLAM system to map a large are over extended
period of time.

I. INTRODUCTION

To achieve long-term robotic autonomy, in complex and
dynamic environments, mapping algorithms are required that
scale solely with the area explored and are independent of
the duration of exploration and operation. There are many
applications for autonomously navigating mobile robots,
such as service, delivery, and search and rescue, in which
long-term mapping and localization operations are critical.
To be widely applicable, the system should construct the
map of its operating environment using only onboard sensors,
continuously updating and extending this map with new
information.

Many recent solutions to mapping are based on the pose
graph formulation [18]. In this formulation the world is
represented by a set of discrete poses sampled along the full
trajectory of the robot, which are connected by odometry and
loop closure constraints. Very efficient recursive algorithms
have been presented which can maintain an online solution to
this continuously expanding optimization problem, however
the pose graph, by design, grows unbounded in time [1]. This
is true even for small environments which are repeatedly
explored, making the naive application of the pose graph
unsuitable for long-term mapping.

It is desirable to achieve a persistent mapping solution that
scales only in terms of the spatial extent of an environment,
and not the duration of the mission. Additionally, long-term
persistent operation will require the ability to develop com-
pact representations, which can effectively describe an envi-
ronment of interest, yet still provide robustness to changes
in the environment and recovery from mistakes.
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N00014-11-1-0688, and N00014-12-10020. The authors are with the
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Fig. 1. Left: A map of ten floors of the MIT Stata Center created using the
reduced pose graph in combination with a real-time visual SLAM system.
The data used was collected in 14 sessions spanning a six month period.
The total operation time was nine hours and the distance traveled was
11km. Elevator transitions are shown as vertical blue lines. The view is
orthographic and the vertical axis has been exaggerated to make it easier
to see each floor. The 2nd floor is approximately 90m across. Right: Floor
plans for each of the floors that were mapped.

The primary contribution of this paper is an approach,
called the reduced pose graph, that addresses the temporal
scalability of traditional pose graphs. For long-term mapping,
the size of the optimization problem should be bounded by
the size of the explored environment and be independent of
the operation time. To achieve this goal, the reduced pose
graph reuses already existing poses in previously mapped
areas, keeping the number of poses bounded by the size of
the explored environment. In addition, our key insight is that
new measurements can be used to further improve the map,
by converting them into supplementary constraints between
existing poses. The process is fluid, with new poses being
added when new spaces are explored.

The advantages of the reduced pose graph extend be-
yond scalability. Our approach maintains multiple constraints
between each pair of poses. While these constraints could
be combined immediately, retaining redundancy allows for
consistency checking and the detection of faulty constraints.
In combination with a robust estimator this can limit the
effect of erroneous constraints on the state estimation. When
consensus is reached over a significant number of constraints



they can eventually be combined into a single reliable
constraint, thus avoiding the incorporation of erroneous mea-
surements into the resultant pose graph edge.

Our secondary contribution is a full 6-DOF visual SLAM
system which we use to illustrate and evaluate the proposed
reduced pose graph formulation, as shown in Fig. 1. Our
system is stereo-vision-based and operates in real-time and
has been tested with data from multiple robotic platforms.
A visual odometry model produces incremental constraints
between key-frames which are used as input to the reduced
pose graph. A place recognition module uses appearance-
based methods to propose loop closures for which a geo-
metric consistency check provides the actual constraint if
successful. Place recognition allows mapping over multiple
sessions, and provides improved robustness in the case of
localization failure.

Robustness is further improved by using other sources
of egomotion. In our work we have also utilized wheel
odometry and an IMU. An accelerometer is particularly
useful to eliminate drift in inclination which can accumulate
in explorations as large as those presented here.

To allow for operation in large multi-floor indoor envi-
ronments, our SLAM system automatically detects elevator
transitions. Using an accelerometer, this approach detects
characteristic elevator motion to track the vertical displace-
ment of the robot.

We have evaluated our approach on data recorded with a
PR2 mobile robot from Willow Garage. We use nine hours of
data corresponding to eleven kilometers of robot trajectory
recorded over a six month period, demonstrating robustness
to changes in the environment. The PR2 has both a stereo
camera and a RGB-D camera (the Microsoft Kinect). The
main results presented here were generated using the stereo
camera, while the system also supports the RGB-D camera.

II. RELATED WORK

The pose graph optimization approach to SLAM was first
introduced by Lu and Milios [18] and further developed
by many researchers including [9, 6, 3, 19]. Significant
research has focused on providing efficient solutions, both
approximate and exact. Notable examples include hierar-
chical representations [8], collections of local maps [5] as
well as relative and non-Euclidean [23]. However few have
addressed reducing the growth in size of the number of pose
graph nodes as a function of time.

The visual maps by Konolige and Bowman [16] are closely
related to our work. They create a skeleton graph of views
similar to a pose graph. To keep the density of views or
poses constant in a given region, least-recently used views
are removed from the skeleton by marginalization. Our work,
in contrast, avoids marginalization by not adding redundant
views to begin with.

Compact pose SLAM by Ila et al. [11] uses an
information-theoretic method to decide which constraints
should be added. New poses are only added to the estimator
(an information filter) if no other poses are nearby, while
taking into account information gain from potential loop

closures. The paper does not address how to limit growth
when continuously operating in the same environment. In
contrast, our approach can connect constraints to existing
poses in areas already mapped — so as to avoid the need
for the periodic addition of new nodes along the trajectory.

Kretzschmar et al. [17] also use an information-theoretic
approach to decide which laser scan should be removed from
the graph. They have shown large reductions in complex-
ity for laser-based 2D pose graphs, using an approximate
marginalization to retain the sparsity of the solution.

Also related to this are the sample-based maps by Biber
and Duckett [1]. An initial map is created with traditional
SLAM methods, and then updated at multiple different time
scales to capture dynamic changes in the environment. The
map is represented by a set of evolving grid-based local maps
connected to an underlying pose graph. They demonstrate
long-term laser based mapping on several hours of data
recorded over five weeks.

For monocular SLAM, a different approach without pose
graphs has been taken for managing complexity when repeat-
edly mapping the same environment. Most notably, Klein and
Murray [13, 14] introduced monocular parallel tracking and
mapping (PTAM), where a map of sparse features is updated
over time by bundle adjustment, and the camera is contin-
uously localized based on this map. Targeting augmented
reality applications, the original formulation of PTAM was
limited to small scale environments, mostly because of the
complexity of bundle adjustment.

An extension to augmented reality applications to large-
scale environments using several local PTAM maps is
demonstrated by Castle et al. [2]. More recently, Pirker et al.
[21] proposed larger scale monocular reconstruction again
based on bundle adjustment. Their system updates the map
in dynamic environments and achieves real-time performance
with the exception of loop closures.

Eade et al. [4] reduces complexity by marginalization and
degree thresholding for monocular SLAM with odometry.
When the degree of a node exceeds a specific threshold, the
constraint with the least residual error is removed. While
suitable for low-power platforms, the estimate will be biased
towards measurements with larger errors.

III. REDUCED POSE GRAPHS

A pose graph exploits the fact that a map of the en-
vironment can be generated from a set of localized robot
poses and their sensor measurements. Select poses along the
robot trajectory are represented by nodes in the pose graph,
typically created at fixed time intervals or after moving for
a certain distance.

Independent of the application domain, constraints be-
tween consecutive poses are added based on incremental
odometry (laser, wheel, visual or sonar) while loop closing
constraints are found between pairs of poses (based on laser-
scan, feature or visual matching). For this set of constraints,
optimization finds the best configuration for all poses and
is often formulated as a maximum likelihood problem.
An explicit map can be formed by projecting the sensor
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Fig. 2. A comparison of the construction of a full vs. reduced pose graph. The red circles represent existing poses in the map, while the blue darts
represent recent poses that are not part of the map. (a) Full pose graph: (1) A loop closure to map pose xi is detected. (2) The new pose (xn+1) has
been added to the map, and a new loop closure to xj detected. (3) Again the new pose (xn+2) has been added. (4) The same procedure is repeated for
each loop closure. (b) Reduced pose graph: (1) A loop closure to map pose xi is detected. (2) Because the current pose is close enough to the existing
pose xi, no new pose has been added. A new loop closure to xj is detected. (3) A second loop closure to xj is detected. Now the chain of constraints
(dashed green) can be compounded into a single constraint, and the sequential constraint between the last two poses is dropped. (4) The new constraint
(green link) has been added. A new loop closure to xk is detected, possibly allowing creation of a constraint between xj and xk .

measurements at each pose into a common reference frame.
By construction, this basic pose graph formulation has a
significant drawback: the graph will grow unbounded with
time as new poses are constantly being added.

The motivation for the reduced pose graph is to re-use
existing poses in previously mapped areas. The concept
of pose graph reduction to achieve temporal scalability is
intuitively appealing, and indeed has been proposed in the
previous literature in several contexts [7, 25, 26].

Our approach estimates the poses of a collection of
keyframes as is done in PTAM [13]. Similar to FrameS-
LAM [15], we reduce the problem to a pose graph instead
of solving the full bundle adjustment problem as is done in
PTAM. In addition we continually incorporate new informa-
tion as places are revisited and gradually improve accuracy
over time.

This strategy corresponds to the approach taken by the
exactly sparse extended information filter (ESEIF) [25, 26]
to maintain sparseness and preserve consistency in an infor-
mation filter context. A related and similar strategy has been
previously adopted in a pose graph context by Grisetti et
al. [7]. The challenges in implementing such an approach
include deciding when to add new poses, how to minimize
the loss of information, how to avoid inconsistency and how
to achieve robust performance for long-term operation.

In Fig. 2 we illustrate the reduction technique by com-
paring the construction of a full pose graph and a reduced
pose graph in the top and bottom figure respectively. The
blue dart indicates the current position of the robot. In step
(1) a single loop closure to the map has been acquired —
as indicated by the blue edge. In step (2) a node is added to
the graph so the loop closure can be used and a loop closure
to xj is detected. In step (3) a node has been added so the
last loop closure can be incorporated into the graph. No loop
closure is considered at the current pose because the robot

has not moved far enough from the previous place. Finally
in step (4) the robot has traveled enough distance that a new
pose is added and the whole process is repeated.

In contrast the reduced pose graph algorithm will create
a derived constraint between map poses xi to xj without
adding new nodes. So in step (2) the transformation to xi

is updated instead of adding a new node to graph. In step
(3) a complete chain from xi to xj (shown in green) has
been formed and can now be added as a constraint to the
graph. Furthermore the robot continuously tracks its position
relative to the active node xj . Then in step (4) the process
is repeated as other places are visited.

A. Formulation
The reduced pose graph consists of N pose nodes X =

{xi}Ni=1 and M constraints Z = {zk}Mk=1. A pose node
contains the actual pose as well as the sensor measurement
required to construct a map and to recognize when the pose
is revisited. A constraint zk measures the spatial relationship
between two poses ik and jk. Because the measurements
are noisy we consider the probability distribution p(X,Z),
in particular we are interested in the maximum likelihood
solution of p(X|Z) were X are our parameters of interest.
By design, the joint distribution factorizes as follows

p(X,Z) =

M∏
k=1

p(zk|Xk)

N∏
i=1

p(xi), (1)

where Xk is some subset of X . Then we can compute the
maximum likelihood estimator X∗ by

X∗ = argmax
X

p(X|Z) = argmax
X

M∏
k=1

p(zk|Xk) (2)

= argmin
X

M∑
k=1

− ln p(zk|Xk) (3)



Algorithm 1: Reduced Pose Graph Mapping
Data: map the map estimate
Input: matches a queue for incoming matches
foreach match ∈ matches do

if match sucessful then
update ∆a

t using match
else

update ∆a
t using wheel odometry

extract descriptor from current frame
check for loop closure to active node
if not found then

check for a global loop closure

if found then
if found node is active node then

update transform to active node
else

add transformation to found node
set found node as active node

else
if in a new place then

add a node for new place
set new node as active node

update map

and for distributions of the form p(zk|Xk) ∝ eCk(f(Xk)−zk)

we get the following nonlinear optimization problem

X∗ = argmin
X

∑
k

Ck (f(xik , xjk)− zk) , (4)

where f is a function that predicts a constraint from two
poses and Ck is a cost function associated with constraint
k. The same solution applies to the traditional pose graph
with the only difference being the way that constraints and
nodes are created. For a Gaussian error distribution the cost
function is the Mahalanobis distance.

B. Graph Construction

Let us now consider how the reduced pose graph is con-
structed; a summary is provided in Algorithm 1. The graph is
initialized by defining the first pose as the origin. There are
three primary operations performed: tracking, adding nodes,
and adding loop closures. Let xa denote the active pose and
∆a

t denote the transformation from the active node to the
current position at time t.

1) Tracking: The tracker estimates the distribution
p(∆a

t |Ut, Zt) where Ut and Zt are the odometry and visual
constraints respectively. Under our Markov assumption the
distribution can be computed recursively

p(∆a
t |Ut, Zt) ∝ p(∆a

t |ut, zt,∆
a
t−1)p(∆a

t−1|Ut−1, Zt−1).
(5)

In practice we track the location distribution by com-
pounding with the new measurement at each stage. The com-
pounding of uncertain transformations follows the notation of

Smith et al. [24]. Given a chain of transformations {z12, z23}
with covariances {Σ12,Σ23} respectively, the compounded
transformation z13 is computed as follows

z13 = z12 ⊕ z23 (6)

Σ13 = J1⊕Σ12J
T
1⊕ + J2⊕Σ23J

T
2⊕, (7)

where J1⊕ and J2⊕ are the Jacobians of the compound
operation ⊕ with respect to z12 and z23 respectively. This is
the first order approximation of the mean and covariances,
where z12 and z23 are assumed to be independent. The factor
added to the graph will then be |f(x1, x3)− z13|Σ13

, where
f is a function that computes the transformation between x1

and x3, i.e. x3 = x1 ⊕ f(x1, x3).
2) Adding nodes: A new node is added if the currently

estimated position, xa ⊕∆a
t , is in a location where there is

no existing node. Then a new node xN+1 is added to the
graph and the new distribution is computed by

p(XN+1, ZM+1) ∝ p(zM+1|xa,∆
a
t )p(XN , ZM ). (8)

The newly added node becomes the new active node xa and
the tracker is re-initialized.

3) Adding loop closures: The tracker is always trying to
find an alignment with an existing pose. First the node that is
closest to the current position is tested. If that fails a global
appearance based search is used to discover a loop closure.
If successful, a new constraint is added to the graph. The
registration is given by

p(∆b
t |xa,∆

a
t , xb), (9)

where xb is the node being registered to. After the loop
closure is added xb becomes the active node. Next the robot
needs to re-localize relative to the map to avoid reusing the
previous measurement. A re-localization will initialize the
active node and the relative position to it. Alternatively, if
enough inliers were found in the loop closure, they could be
split into two sets, one for the loop closure and the other
for re-localizing. In comparison a full pose graph approach
would have added a new pose at the point of loop closure.

In case xa and xb are the same node it is possible to choose
if the current estimate or this loop closure should be used
as the estimate of the position relative to xa by considering
which has higher entropy, using the test det(Σa

t ) > det(Σb
t).

The graph is sparsified by discarding some of the se-
quential constraints and then marginalizing along a chain
of poses. The algorithm continuously incorporates new in-
formation as places are revisisted. This gradually improves
the accuracy of the map as shown in Fig .3. Most of the
updates are additions of new constraints (but not variables)
to the estimation problem, which is applied incrementally
in an efficient manner using the iSAM algorithm [12] for
pose graph optimization, which also includes an incremental
implementation of the Powell’s dog leg algorithm [22] for
use with robust estimators.
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Fig. 3. Estimation error for a subset of the poses over time. The blue
and red lines are the mean error when using squared and pseudo-Huber cost
respectively. The estimation error is computed as the Euclidean distance, in
the XY plane, between the estimated position and the groundtruth.

IV. VISUAL SLAM

In this section we demonstrate the reduced pose graph
concept in a complete visual SLAM system. The main
components are: visual odometry [10], loop proposal using
bag of visual words, and map state estimation using iSAM.
In typical operation the visual odometry algorithm is run on
a single thread at 30Hz (the camera framerate) while the
remaining components are executed on a second thread.

A. Visual Odometry

Incremental motion is estimated using an efficient imple-
mentation of stereo-visual odometry. This approach, named
FOVIS (Fast Odometry for VISion) is explained and quanti-
fied in more detail in Huang et al. [10]. The output from the
visual odometry are a pair of matched frames. The match
includes an estimated 6-DOF transformation between the
frames, detected keypoints, and correspondences between the
keypoints. The FOVIS library supports both stereo cameras
and RGB-D sensors (such as the Microsoft Kinect) and
results for both camera types are presented in Section V.

Additionally, our approach incorporates IMU (roll and
pitch) and wheel odometry (horizontal translation) in situ-
ations in which the vision system cannot estimate motion,
e.g. featureless walls, low light, and occlusion of the camera.
If required, it is also possible to use the wheel odometry
(WO) as the sole source of relative motion estimation —
using vision data only for the detection of loop closures.
Results comparing these different options is given in Table
I. In section IV-F we show how the IMU can be used to
detect floor transitions.

Median (m) Mean (m) StdDev (m)
Vision only 0.74 0.73 0.55
WO + IMU 0.71 0.79 0.52
Vision + IMU + WO 0.59 0.58 0.38

TABLE I
ACCURACY FOR DIFFERENT VARIANTS OF THE SLAM ALGORITHM. IN

ALL CASES THE CAMERA IMAGES ARE USED FOR LOOP CLOSURES.

B. Map Management

The map management module receives incoming mea-
surements from the visual odometry, IMU and other sensor

inputs. For any incoming frame a feature descriptor is
computed for each keypoint in the new frame. The feature
descriptors are maintained for later use in the appearance-
based loop proposal and frame registration modules. Several
different descriptor types are supported by our implementa-
tion including BRIEF, Calonder and SURF. In each case we
utilize their OpenCV implementations.

To limit of the number of poses estimated the explored
space is partitioned. Our current implementation partitions
each floor according to the robot’s 2D motion (i.e. in x, y,
and heading). The partitioning is updated each time the map
estimate is updated. An extension of this approach to full
3D motion can be based around the volume observed from
a particular camera pose. If multiple nodes are assigned to
the same grid cell, the node most recently added is selected
as the active node. This map is then used to actively localize
the robot by continuously registering the current image frame
against this active node.

C. Active Node Registration

To register two frames to one another a collection of
putative matches are found by matching each keypoint to
the keypoint that has the closest feature descriptor. This is
done using brute-force matching. The descriptor we most
commonly use is the BRIEF descriptor, which can be com-
pared very efficiently. Inliers are determined by finding a
maximal clique in a graph of consistent feature pairs [10].
Finally the 6-DOF transformation between the two frames
is estimated by minimizing the bi-directional re-projection
errors of these matched keypoints. If the number of inliers
is within a threshold the registration is accepted.

D. Global Node Registration

If registration to the active node fails, a global loop closure
algorithm (across the entire set of poses) is used instead. A
bag of visual words approach is used to describe each frame
and using an inverted index an efficient search is carried out
for similar frames. We use Dynamic Bag-Of-Words [20] for
SURF descriptors and Binary Bag-of-Words (BBoW) 1 for
BRIEF descriptors. Each match is scored and if the score is
below a given threshold the frame is proposed as a possible
loop closure. A typical distribution of the scores is shown in
Fig. 5. By setting an appropriate threshold on the score we
can choose between having many false proposals and missing
potential matches. The loop proposal is then verified with a
geometric consistency check, by registering the two frames,
using the method described above.

E. Map Estimation

The result of both the visual odometry and visual registra-
tion algorithms are inserted into the SLAM map estimation
algorithm which is based on iSAM [12]. This approach effec-
tively solves the non-linear least squares problem induced by
the pose graph, albeit in an efficient incremental manner. An

1The library used for the binary descriptors is called Binary Bag-Of-
Word (BBoW) developed by Daniel Maturana — http://dimatura.
net/proj_bbow.html

http://dimatura.net/proj_bbow.html
http://dimatura.net/proj_bbow.html
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Fig. 7. Timing results when using a full pose graph (left) for a 4 hour sequence and a reduced pose graph (right) for a 9 hour sequence (i.e. 5 additional
hours). The top row of plots shows the time for each component of the SLAM system as a function of exploration time. The middle row shows only
the components that have growing time complexity. The lower row shows the number of nodes in the graph — both for the pose graph (left) and the
reduced pose graph (both). As detailed in Section V the core system infrastructure was specifically designed to maintain real-time operation by delaying
optimization if necessary. After 4 hours the full pose graph spends a majority of the available computation time doing so, resulting in delayed optimization
and few loop closure constraints being found. Meanwhile the reduced pose graph approach remains comfortably real-time.
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Fig. 4. A comparison of a full pose graph vs. a reduced pose graph from
4 hours of traversal. The green is the groundtruth trajectory and red are the
estimated trajectories. The average error for the full pose graph is 0.43m
while it is 0.47m for the reduced pose graph.
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Fig. 5. The distribution of the failed and successful loop proposals as a
function of the score from the system.

update is carried out each time new information is added to
the graph: either a new node or a constraint between existing
nodes. By utilizing the reduced pose graph approach, the
rate at which the problem grows is reduced significantly, as
demonstrated in Fig. 7.

F. Vertical Motion: Elevators

For many multi-floor buildings it is reasonable to assume
that the robot can go from one floor to another using an
elevator. This type of motion is not observable by the vision
system or the wheel odometry. Also it is not sufficient to rely
on intent only, because the robot does not have full control
over which floors the elevator will stop at.

To detect elevator rides we track the vertical motion using
an accelerometer sensor. Integrating the vertical accelerome-
ter information over time results in the vertical displacement.
The method is accurate because the velocity at the start and
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Fig. 6. Top: Using the Z-component of the PR2’s accelerometer, the start
and end of elevator transitions can be detected using a matched filter. The
figure illustrates 5 different elevator rides - showing that the acceleration
is clearly repeated. Middle: By integrating this signal the elevation of each
floor can be estimated. Bottom: During our 10 floor experiment (beginning
and ending on floor 3), the floor assignment can be determined using a
simple lookup table. See Section IV-F for more details.

TABLE II
APPROXIMATE FIGURES OF INTEREST CORRESPONDING TO THE 10

FLOOR EXPERIMENT ILLUSTRATED IN FIG. 1.

Duration of Experiment 6 months
Operation time 9 hours
Distance Traveled 11km
VO keyframes 630K
Failed VO frames 87K
Registrations 303K
Loop proposals 30K

end of the elevator transit are known to be zero. Results from
our floor tracker are show in Fig. 6.

To assign these vertical displacements to floor numbers, a
table of floor heights is maintained. Each time a transition
is detected the table is searched for the closest floor. If the
distance to that floor is within a given threshold it is accepted
as the current floor, otherwise a new floor is added to the
table. Knowing the floor the robot is on is also useful for
limiting loop closure search in order to avoid wrong matches
based on self-similarities between floors.

V. RESULTS

We evaluated the system with the MIT Stata Center vision
data set2 (see Table II) that was collected by manually driving
a PR2 through the building. The PR2 was equipped with a
stereo camera, a Kinect sensor and a Microstrain IMU among
other sensors. The data was collected over a period of six
months. There were repeated excursions through one of the
floors (see Fig. 8) and occasional visits to the other floors.
In total 10 floors were visited; a map spanning all the floors
was created (see Fig. 1).

As shown in Fig. 7, the rate at which nodes are added
to the graph reduces as time progresses. When new areas
were first explored this rate increased as each new place was

2More information about the MIT Stata Center Mapping Data Set is
available at http://projects.csail.mit.edu/stata/

recorded. The loop proposal and the optimization modules
grow in complexity as more nodes are added to the graph.
However, as shown in Fig. 7 these modules account for only
a small fraction of the total running time of the system and
are much reduced when compared to the traditional full pose
graph. The majority of computation time is spent on frame
registration and feature extraction, both of which are constant
time. Visual odometry runs at 30Hz on a separate thread, and
loop closure runs at 2Hz.

To compare the full pose graph with the reduced pose
graph we used a 9 hour data set collected over 6 months
and encompassing 11km of motion. After just 4 hours the
full pose graph approach uses a majority of the available
computation time optimizing the graph (See Fig. 7). Doing
so will eventually affect the localization accuracy of the
system. This happens because the core system infrastructure
was developed to adaptively balance the load so that it can
meet real-time requirements when running on a robot. This
is achieved by having the mapping thread consider a limited
number of loop closure proposals and also adapting how
often the map optimization is executed. Thus, as the pose
graph grows, the system cannot keep up and fewer and fewer
frames are registered with the map. This figure also illustrates
that the reduced pose graph does not suffer this problem
and after 9 hours continues to expand and improve its map
without sacrificing map accuracy.

An overview of pose estimates from the two two methods
is provided in Fig. 4. The reduced pose graph is an order
of magnitude smaller than the full pose graph, yet they both
represent the environment to similar accuracy. Here the data
was played back at a slower rate so the full pose graph would
not be adversely affected by the increased computation time.
We have compared these results to ground truth obtained by
manually aligning laser scans to an architectural floor plan.
The error for the full pose graph is 0.43m mean absolute
error with 0.27m standard deviation, while the reduced pose
graph has 0.46m mean absolute error with 0.29m standard
deviation.

Finally to demonstrate the versatility of our approach, in
Fig. 8 we present a reduced pose graph produced using RGB-
D from the robot’s Microsoft Kinect. It can be seen that the
map closely resembles the corresponding floor plan.

One of the lessons learned from this experiment was that
it is essential to incorporate more than one sensor input.
In our case we used wheel odometry and the IMU. The
visual odometry typically failed in the elevators, when going
through areas where the lights had been turned off, when
turning around corners while looking at featureless walls,
and because of people obstructing significant portions of
the camera view. We have also observed that by continually
incorporating information into the estimate the robot was
able to correct the map in later passes if failures had occurred
during a previous visit. The conclusion is that these two
aspects are important to robust operations.

http://projects.csail.mit.edu/stata/


Fig. 8. Map created using a Kinect camera. The map is aligned using the
best similarity transform that fits the pose graph to the ground truth.

VI. CONCLUSION

This paper proposes a reduced pose graph formulation
which enables large scale mapping over long time durations.
In an environment which has been previously explored,
this approach adds extra pose-to-pose constraints instead of
adding new and redundant poses to the underlying pose
graph. This important modification allows the SLAM system
to scale in size with area of exploration instead of the time of
exploration. Additionally these constraints enable continual
improvement of the map solution as inconsistent constraints
can be pruned.

The algorithm was demonstrated within a visual SLAM
system and its effectiveness was demonstrated on a large
data set where the same environment was frequently re-
visited by an exploring robot. In addition to stereo-vision
and RGB-D, information from sensors such as a robot’s
wheel odometry and IMU can also be incorporated and result
in improved robustness in situations where the vision-only
system would fail. We have also shown how elevator transits
can be detected — enabling seamless multi-floor mapping.

There are still several issues that remain to be explored
within the proposed model. Our current implementation
cannot fully guarantee that the graph will not grow with
time. When the robot becomes temporarily disconnected
from the map, it will add poses to the graph until re-localized.
Changes in the environment can also result in new nodes
being added. We believe that this issue can be handled by
introspection of the overlapping poses when re-localization
finally occurs.
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