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Abstract

Data association is one of the core problems of simultaneous localization and mapping (SLAM), and it requires knowledge
about the uncertainties of the estimation problem in the form of marginal covariances. However, it is often difficult to
access these quantities without calculating the full and dense covariance matrix, which is prohibitively expensive. We
present a dynamic programming algorithm for efficient recovery of the marginal covariances needed for data association.
As input we use a square root information matrix as maintained by our incremental smoothing and mapping (iISAM) al-
gorithm. The contributions beyond our previous work are an improved algorithm for recovering the marginal covariances
and a more thorough treatment of data association now including the joint compatibility branch and bound (JCBB)
algorithm. We further show how to make information theoretic decisions about measurements before actually taking
the measurement, therefore allowing a reduction in estimation complexity by omitting uninformative measurements. We

evaluate our work on simulated and real-world data.
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1. Introduction

Data association is an essential component of simul-
taneous localization and mapping (SLAM) [1]. The data
association problem in SLAM, which is also known as the
correspondence problem, consists of matching the current
measurements with their corresponding previous observa-
tions. Correspondences can be obtained directly between
measurements taken at different times, or by matching the
current measurements to landmarks already contained in
the map based on earlier measurements. A solution to the
correspondence problem provides frame-to-frame match-
ing, but also allows for closing large loops in the trajectory.
Such loops are more difficult to handle as the estimation
uncertainty is much larger than between successive frames,
and the measurements might even be taken from a differ-
ent direction.

Performing data association can be difficult especially
in ambiguous situations, but is greatly simplified when
the state estimation uncertainties are known. Parts of
the overall SLAM state estimate uncertainty are needed
to make a probabilistic decision based on the maximum
likelihood (ML) criterion or when using the joint compat-
ibility branch and bound (JCBB) algorithm by Neira and
Tardos [2], a popular algorithm for SLAM [3, 1]. The parts
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that are required are so-called marginal covariances that
represent the uncertainties between a relevant subset of
the variables, for example a pose and a landmark pair.

However, it is generally difficult to recover the exact
marginal covariances in real-time. But as mobile robot
applications require decisions to be made in real-time, we
need an efficient solution for recovering the marginal co-
variances. While it is trivial to recover the covariances
from an Extended Kalman Filter (EKF), its uncertainties
are inconsistent when non-linear measurement functions
are present, which is typically the case. Other solutions
to SLAM, for example based on iterative equation solvers
such as [4, 5, 6, 7], cannot directly access the marginal co-
variances. An alternative is to use conservative estimates
of the marginal covariances as in [8], however, they will
provide less constraints for ambiguous data association de-
cisions and therefore fail earlier.

Our solution provides efficient access to the marginal
covariances based on the square root information matrix.
Such a factored information matrix is maintained by our
incremental smoothing and mapping (iISAM) algorithm [9],
which efficiently updates the factored representation when
new measurements arrive. Our solution consists of a dy-
namic programming algorithm that recovers only parts of
the full covariance matrix based on the square root infor-
mation matrix, thereby avoiding to calculate the full dense
covariance matrix, which contains a number of entries that
is quadratic in the number of variables.
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The contributions over our previous work [10, 9] are
an improved marginal covariance recovery algorithm and
a detailed discussion of the algorithm. We also add the
JCBB algorithm to our discussion of data association tech-
niques, and use a uniform mathematical presentation to
contrast the presented methods. Beyond typical data as-
sociation work, we further show how to use these marginal
covariances to determine the value of a specific measure-
ment, allowing to drop redundant or uninformative mea-
surements in order to increase estimation efficiency. We
present detailed evaluations on simulated and real-world
data. And finally we provide insights into using JCBB
versus the RANSAC algorithm by Fischler and Bolles [11].

2. Covariance Recovery

We show how to efficiently obtain selected parts of
the covariance matrix, the so-called marginal covariances,
based on a square root information matrix. But first we
briefly introduce the square root information matrix and
an efficient algorithm for calculating it.

2.1. Square Root Information Matrix

The square root information matrix appears in the con-
text of smoothing and mapping (SAM) [12], a smoothing
formulation of the SLAM problem. The smoothing for-
mulation includes the complete robot trajectory, that is
all poses x; (i € {0...M}) in addition to the landmarks
l; (j € {1...N}). This is in contrast to typical filtering
methods that only keep the most recent pose by marginal-
izing out previous poses. Smoothing provides the advan-
tage of a sparse information matrix, therefore allowing to
efficiently solve [12] the equation system.

The SLAM problem typically contains non-linear func-
tions through robot orientation and bearing measurements
and therefore requires iterative linearization and solution
steps. Please see [12, 9] for a detailed treatment of the pro-
cess and measurement models, and their linearization and
combination into one large least-squares system. One step
of the resulting linearized SLAM problem can be written
as

arg min [ Ax — b &

where A is the measurement Jacobian of the SLAM prob-
lem at the current linearization point, x the unknown state
vector combining poses and landmarks, and b the so-called
right-hand side that is irrelevant in this work. Solutions
to the state vector x in (1) can be found based on the
square root information matriz R, an upper triangular
matrix that is found by Cholesky factorization of the in-
formation matrix 7 := ATA = RTR or directly by QR
factorization of the measurement Jacobian A = @ 0
The upper triangular shape of the square root information
matrix allows efficient solution of the SLAM problem by
back-substitution.
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Figure 1: Only a small number of entries of the dense co-
variance matrix are of interest for data association. In this
example, both the individual and the combined marginals
between the landmarks 1; and 13 and the latest pose x5 are
retrieved. As we show here, these entries can be obtained
without calculating the full dense covariance matrix.

In practice it is too expensive to refactor the informa-
tion matrix each time a new measurement arrives. In-
stead, our incremental smoothing and mapping (iISAM)
algorithm [9] updates the square root information matrix
directly with the new measurements. Periodic variable re-
ordering keeps the square root information matrix sparse,
allowing efficient solution by back-substitution as well as
efficient access to marginal covariances, which is described
next.

2.2. Recovering Marginal Covariances

Knowledge of the relative uncertainties between sub-

sets {j1,...,7Kx} of the SLAM variables are needed for
data association. In particular, the marginal covariances
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are the basis for advanced data association techniques that
we discuss in detail in Section 3, as well as for informa-
tion theoretic decisions about the value of measurements
as discussed in Section 4. This marginal covariance matrix
contains various blocks from the full covariance matrix, as
is shown in Fig. 1. Calculating the full covariance matrix
to recover these entries is not an option because the covari-
ance matrix is always densely populated with n? entries,
where n is the number of variables. However, we show in
the next section that it is not necessary to calculate all
entries in order to retrieve the exact values of the relevant
blocks.

Recovering the exact values for all required entries with-

out calculating the complete covariance matrix is not straight-

forward, but can be done efficiently by again exploiting the
sparsity structure of the square root information matrix R.
In general, the covariance matrix is obtained as the inverse
of the information matrix

Y= (ATA) = (RTR)™! (3)



Figure 2: Marginal covariances projected into the cur-
rent robot frame (robot indicated by red rectangle) for a
short trajectory (red curve) and some landmarks (green
crosses). The exact covariances (blue, smaller ellipses) ob-
tained by our fast algorithm coincide with the exact co-
variances based on full inversion (orange, mostly hidden
by blue). Note the much larger conservative covariance
estimates (green, large ellipses) as recovered in our earlier
work [9].

based on the factor matrix R by noting that
RTRY =1 (4)
and performing a forward, followed by a back-substitution

R'Y =1, RX=Y. (5)
Because the information matrix is not band-diagonal in
general, this would seem to require calculating all n? en-
tries of the fully dense covariance matrix, which is infea-
sible for any non-trivial problem. This is where we ex-
ploit the sparsity of the square root information matrix
R. Both, Golub and Plemmons [13] and Triggs et al. [14]
present an efficient method for recovering only the entries
03 of the covariance matrix ¥ that coincide with non-zero
entries in the factor matrix R = (74;)

n

1 1
g = 7 7 — E T15051 (6)
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forl=mn,...,1and i =1-1,...,1, where the other half
of the matrix is given by symmetry. Note that the sum-
mations only apply to non-zero entries of single columns
or rows of the sparse matrix R. This means that in order
to obtain the top-left-most entry of the covariance matrix
(note that the corresponding entry in R is always non-
zero), we at most have to calculate all other entries that
correspond to non-zeros in R. For any other non-zero en-
try, even less work is required, as only entries further to the
right are needed. For recovering all entries corresponding
to non-zero entries in R, this algorithm yields O(n) time

complexity for band-diagonal matrices and matrices with
only a small number of entries far from the diagonal, but
can be more expensive for general sparse R. In particular,
if the otherwise sparse matrix contains a dense block of side
length s, the complexity is O(nk + s®) and the constant
factor s® can become dominant for practical purposes.

Data association might additionally require access to
entries of the covariance matrix for which the correspond-
ing entries of the square root information matrix are zero,
but they can easily be calculated based on a dynamic pro-
gramming approach. Note that the algorithm in (6) and
(7) does not restrict which entries we can recover. Rather,
it tells us that the minimum we have to calculate is al-
ways a subset of the entries corresponding to non-zeros in
R. Our dynamic programming approach shown in Alg. 1
performs the minimum amount of calculations needed to
recover any set of entries that we want to calculate, such as
a marginal covariance between a small set of variables. An
example of how the recovery proceeds is shown in Fig. 3.
Fig. 2 shows the marginal covariances obtained by this al-
gorithm for the first part of the Victoria Park sequence.
Note that they coincide with the exact covariances ob-
tained by full matrix inversion.

3. Data Association Techniques

In this section we present some of the most common
data association techniques and show that they require
access to marginal covariances as provided by our work.
In particular we discuss the nearest neighbor method, the
maximum likelihood formulation and the joint compati-
bility branch and bound algorithm. We also discuss the
landmark-free case, where data association is based for
example on dense laser scan matching.

3.1. Nearest Neighbor (NN)

For completeness we include the often used nearest
neighbor (NN) approach to data association, even though
it is not sufficient for most practical applications. NN as-
signs each measurement to the closest landmark predicted
by the current state estimate, as shown in Fig. 4. The
predicted measurement z;; taken at pose x; of landmark
1; is given by the measurement model

zij = hii(X) + vy (8)

where v;; is additive zero-mean Gaussian noise with co-
variance I'. Note that x is the current state vector that
includes at least the robot pose x; and the landmark 1;.
We formulate the correspondence problem for a spe-
cific measurement k € {1... K} in the following way: We
have an actual measurement z;, that we know was taken at
time 7 and we want to determine which landmark j; gave
rise to this measurement. We define the nearest neighbor
cost Di}NN of the hypothesis j; = j simply as the squared



(a) First 5 steps.

(b) Steps 245 to 249.

(c) Last 5 steps.

Figure 3: The process of recovering marginal covariances: The three columns show successive steps of recovering the
entries of the covariance matrix that correspond to non-zero entries in the square root information matrix. The overall
process takes 716 steps. For each step the square root information matrix is shown in the left square and the partially
computed covariance matrix in the right square. The matrix entry to be calculated is shown in red, while entries required
for its calculation are blue and the remaining non-zero entries are green.

distance between the actual measurement z; and its pre-
diction z;,; = h;,;(%x) based on the mean of the current
state estimate X as follows

, N ~ (2
DN = ||k, (%) — 2] (9)

We accept the hypothesis that landmark j gave rise to
measurement z; only if this squared distance falls below a
threshold
2,NN
Dy < Dj (10)

max

where the threshold D2 limits the maximum squared
distance allowed between a measurement and its predic-
tion in order to still be considered as a potential match.
The threshold is typically chosen based on the nature of
the data, i.e. the minimum distance between landmarks
as well as the expected maximum uncertainty of the mea-

surements.

When considering multiple measurements at the same
time, the NN approach can be formulated as a minimum
cost assignment problem that also takes mutual exclusion
into account. Mutual exclusion means that once a land-
mark is assigned to a measurement it is no longer available
for other assignments. For K measurements and N land-
marks, we form a K x N matrix that contains the cost for
each possible assignment. In order to deal with unassigned
measurements, which can arise from newly observed land-
marks or from noise, we augment the matrix by K columns
that all contain the threshold D2

D%l D%Z D%N D12nax
9 . .
p—| P= (11)
D%(l D%(N Dr2nax

We use the Jonker-Volgenant-Castanon (JVC) algorithm
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Figure 4: Comparison of some common data association techniques discussed in this work. Nearest neighbor assigns a
measurement (blue star) to the closest landmark (green cross). Individual compatibility takes the estimation uncertainty

between sensor and landmark into account, here indicated as green ellipses.

The assignment is different as it now

corresponds to nearest neighbor under a Mahalanobis distance. Joint compatibility branch and bound additionally takes
into account the correlation between the landmarks, again yielding a different assignment for this example.

[15] to optimally solve this assignment problem.

The greatest advantage of NN over other methods is
that it does not require any knowledge of the uncertain-
ties of the estimation problem. However, that is also its
greatest weakness, as NN will eventually fail once the un-
certainties become too large, as is the case when closing
large loops.

3.2. Mazimum Likelihood (ML)

The maximum likelihood (ML) solution to data associ-
ation [16] is based on probabilistic considerations and takes
into account the relative estimation uncertainties between
the current robot location and the landmark in the map,
as indicated in Fig. 4. This technique is also known as
individual compatibility (IC) matching [2]. It is similar to
the NN method, but with the Euclidean distance replaced
by the Mahalanobis distance based on the projected esti-
mation uncertainty.

The ML data association decision is based on a proba-
bilistic formulation of the question whether a measurement
was caused by a specific landmark or not. Particularly,
for an individual measurement z; we are interested in the
probability P(zk,jr = j|Z~) that this measurement was
caused by landmark j, given all previous measurements
7~ . This expression does not yet contain any connection
to the SLAM state estimate. However, we can simply in-
troduce the state x, a vector that combines all landmarks
1; and poses x;, and then integrate it out again

P(zg, jr = jlZ7) :/P(ikajk =7,x|Z7) (12)
- / Pl jx = i1x. 27 )P(x|27)
- / Py, jr = %) P(x|Z")

where we applied the chain rule to obtain the measurement
likelihood P(Zy, jr = j|x,Z~) = P(zk, jr = j|x), which is
independent of all previous measurements Z~ given the
state x. We already know the prior P(x|Z~), as that is
the current state estimate, or in the case of iISAM simply
a normal distribution with mean %X and covariance ¥. We
also know the measurement likelihood P(Zg, jir = j|x) as

it is defined by the predictive distribution from (8). The
complete probability distribution is therefore an integral
over normal distributions that can be simplified to a single
normal —+distribution

P(zg, ji = j127) (13)
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Note that for the approximation in (13) to be precise, a
good linearization point must be chosen, which iISAM [9]
provides based on periodic relinearization steps. We drop
the normalization factor of (13) as it does not depend on
the actual measurement but is constant given the state.
Further, we take the negative logarithm of the remaining
expression from (13) to obtain the maximum likelihood
cost function

D™ = lha (%) =zl (15)

ey
where again we evaluate the hypothesis that a specific mea-
surement Zj taken in image i;, was caused by the j* land-
mark. Note that this distance function is exactly the same
as for the NN problem in (9) except that it takes into ac-
count the uncertainties of the state estimate given by the
covariance Y. As this squared distance function follows a
chi-square distribution, we base the acceptance decision

2, ML
ij < Xz,a (16>

on the chi-square test, where « is the desired confidence
level and d is the dimension of the measurement. Going
back to probabilities for a moment, the threshold being ex-
ceeded means that the difference of the sample (the actual
measurement z) from the mean of the actual distribution
(measurement 2;,; predicted by the measurement model



Algorithm 1 Dynamic programming algorithm for mar-
ginal covariance recovery inspired by Golub’s partial
sparse matrix inversion algorithm [13]. The function
recover obtains arbitrary entries of the covariance matrix
with the minimum number of calculations, while reusing
previously calculated entries. We have chosen to use a
hash table for fast random access to the already calcu-
lated entries. The example function marginal_cov returns
the marginal covariance matrix for the variables specified
by its argument indices. For practical implementations,
care has to be taken to avoid stack overflows caused by the
recursive calls. Entries should be processed starting from
the right-most column, while taking the variable ordering
into account.
n = rows(R)
for i=1:n do

# precalculate, needed multiple times

diag[i] = 1 / RI[i,i]
done

# efficiently recover an arbitrary entry,
# hashed for fast random access
function hash recover(i, 1) =
# sum over sparse entries of one row
# see equations (6) and (7)
function sum_j(i) =
sum = O
for each entry rij of sparse row i of R do
if j<>i then

if j>1 then
1j = recover(l, j)
else
1j = recover(j, 1)
endif
sum += rij * 1j
endif
done

return sum

if i = 1 then # diagonal entries, equation (6)
return (diagl[l] * (diagl[l] - sum_j(1)))

else # off-diagonal entries, equation (7)
return (- sum_j(i) * diagl[i])

endif

# example: recover marginal covariance of variables
# given by indices
function marginal_cov(R, indices) =
n_indices = length(indices)
for r=1:n_indices do
for c=1:n_indices do
P[r,c] = recover(indices[r],indicesl[c])
done
done
return P

based on the state estimate given by x and X) is statis-
tically significant, and we can assume that the measure-
ment was not caused by that specific landmark as assumed
by our hypothesis. For example, for a confidence level of
95% and a three dimensional measurement, the appropri-
ate threshold is x3 o g5 = 7.8147. The relevant chi-square
values are either obtained from a lookup table, or are cal-
culated based on the incomplete gamma function and a
root-finding method [17].

When considering multiple measurements simultane-
ously the resulting matching problem can again be reduced
to a minimum cost assignment problem and solved using
JVC in much the same way as was shown for NN in the
previous section. More details on this minimum cost as-
signment problem and on how to deal with spurious mea-
surements in a more principled probabilistic framework are
provided by Dellaert [18].

In summary we can state that ML data association
requires access to the following subset of the full covariance

matrix -
X X

i = | v W } 17
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for each landmark j that is considered as a candidate, see
Fig. 1 for an example. As we have shown in Section 2,
these entries can be obtained efficiently from the square
root information matrix.

3.3. Joint Compatibility Branch and Bound (JCBB)

Instead of making independent decisions for each mea-
surement, we now consider all measurements at the same
time, which allows us to also take correlations between
landmarks into account, as shown in Fig. 4. This is called
joint compatibility [2], and works in ambiguous configura-
tions in which IC often fails. Such ambiguous configura-
tions are often encountered in real-world data association
problems, in particular under high motion uncertainty and
when closing large loops.

This time we are interested in the probability of all
measurements simultaneously given an estimate for the
landmark locations as well as the robot pose. A joint hy-
pothesis

i=0n-dn)” (18)

for K measurements
T

assigns each measurement k, to a landmark j,, see Fig. 5
for an example. We combine the individual measurement
functions z;j,,. .., 2z, into the joint measurement vector

Zij, hij, (x) + v
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Figure 5: Example of a joint hypothesis j that assigns a
set of measurements to landmarks. Measurements that
are not assigned can be used to initialize new landmarks.
Not all landmarks are necessarily visible or detected. Note
that mutual exclusion prevents two measurements in the
same frame from being assigned to the same landmark.

Analogous to the ML case we get the same expression for
the probability

1 IO S
\/ |27TCi_j |

from (13), but the mean Zx is now a joint measurement,
and the covariance Cj; is defined as

P(zy,jx =j|1Z7) = (21)

T

— s +Tx (22)

Cis 1= ox

Ohi;
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based on the Jacobian of the joint measurement function
h;j at the current state estimate x with covariance X.

For a specific joint measurement Zy := (Zx, , . . ., Zx, )
the joint compatibility cost or squared distance function is
now given by

JC o =
Dij] = ||hsz(x) — zkHaj . (23)

The joint compatibility test for the joint hypothesis j is
given by
2,JC
ij < X?l,oc (24)

where a is again the desired confidence level, but d is now
the sum of the dimensions of all measurements that are
part of the hypothesis.

Because the measurements are no longer independent,
the search space is too large to exhaustively enumerate all
possible assignments. In contrast, for NN and ML data
association we simply enumerate each possible landmark-
to-feature assignment. For K features and N landmarks
there are

Hindividual — KN (25)

different costs to evaluate. Only then do we deal with
unassigned measurements and mutual exclusion by means

of the minimum cost assignment problem. For joint com-
patibility, however, the measurements are not independent
and we therefore have to evaluate the cost of each joint hy-
pothesis that assigns each feature either to a landmark or
leaves it unassigned. The overall number of these joint
hypotheses is far larger than the number of individual hy-
potheses. In particular, we can assign one of N landmarks
to the first feature or leave it unassigned, and at the same
time one of the N — 1 remaining ones (considering mutual
exclusion) to the second or leave it unassigned and so on,
yielding

(N +1)!

Hjoint —
(N +1-K)!

(26)
possible joint hypotheses to evaluate, which is O(N* ).

The combinatorial complexity of the state space is ad-
dressed by the joint compatibility branch and bound (JCBB)
algorithm by Neira and Tardos [2]. Branch and bound rep-
resents the space of all possible hypotheses by a tree, as
shown in Fig. 6, where each leaf node represents a spe-
cific hypothesis. The goal of the algorithm is to find the
hypothesis with the highest number of jointly compatible
matchings at the lowest squared distance Di}lc according
to (23). The algorithm starts with an empty hypothesis,
the root of the tree, and processes nodes from a queue
starting from the most promising one as determined by a
lower bound of the cost. For this purpose the algorithm
adds to the queue new hypotheses for successors of nodes
that it encounters. Efficiency is achieved by discarding
subtrees whose lower bound is higher than the current
best hypothesis. Furthermore it is essential to evaluate
the joint compatibility cost incrementally to avoid inver-
sion of an increasingly large matrix. For more details see
the original paper by Neira and Tardos [2].

For the case of JCBB data association we need more
entries than in the ML case:

Ejljl E.iTK.il 221.;1

inj = : i : T (27)
ZjK.il T ZjK.iK Zin
Yije o Dijx Y

Fig. 1 shows which entries of the full covariance matrix
these correspond to, based on a simple example. In partic-
ular we need additional off-diagonal entries Xj,; , not con-
tained in the set of individual covariances ¥, for the same
landmarks. These additional off-diagonal entries specify
the correlations between landmarks and are essential for
ambiguous situations which often arise in large loop clos-
ings. As we have shown in Section 2, these entries can
be obtained efficiently from the square root information
matrix.

8.4. Search Region and Pose Uncertainty

How far do we need to search for potential loop clo-
sures? We face this question for example for landmark-
based data association, as we want to quickly identify
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Figure 6: Tree of possible joint hypotheses for a small example with 3 landmarks (green) and 2 measurements (orange).
The tree has one level per measurement, and the branching degree depends on the number of landmarks. Note that a
measurement can remain unassigned, indicated by a dash (*-”), and that mutual exclusion is enforced.

landmarks that are potential candidates for a match in a
given correspondence decision. The same problem also ap-
pears in place recognition, such as our work in [19], where
restricting the search region allows keeping the computa-
tional requirements of place recognition low even for large-
scale applications. Furthermore, the problem appears in
pose-only estimation, such as laser-based scan matching,
where we need to identify earlier parts of the trajectory
(and therefore parts of the map) that are candidates for a
loop closing.

The question about restricting the search region can
again be answered by recovering parts of the covariance
matrix. In the simplest case we only recover the uncer-
tainty of the current pose, which for iSAM is the bottom
right-most block of the full covariance matrix and therefore
trivial to recover from the square root information matrix.
However, imagine a vehicle driving in a straight line for
a long distance and then performing a small loop. The
absolute pose uncertainty is very large as we are far from
the starting point. This would result in a large search
region for loop closing. However, the actual uncertainty
within the small loop is much smaller and is obtained by
taking into account the marginal covariances between the
current pose and some previous pose along the loop. The
off-diagonal blocks contained in this marginal covariance
describe the correlation between poses, and therefore the
search region will now be much smaller.

Similarly to the ML data association case, the question
to ask is how likely it is that two poses x; and x; refer to
nearby locations in space given all measurements Z that
we have seen so far. Note that location does not include
the robot’s orientation. With the same argument as earlier
we obtain

P(x; =xy|Z) (28)

/P(xi =xy|x,Z)P(x|2)

/ 1L b —ill} o bl
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where we define “nearby” through a Gaussian distribution
that is similar to the process model, but without odometry,
and ignoring orientation

xi = f(x;) + W (29)
where w is normally distributed zero-mean noise with co-

variance matrix A, and the covariance Cj;;s is defined as

_ of| s of
Civr = 8xLZ 5| TA (30)

T
X

4. Selecting Informative Measurements

Marginal covariances are also useful to answer the fol-
lowing question, that is essential in reducing computa-
tional complexity of SLAM algorithms: Which measure-
ments provide the most information about the state esti-
mate? The answer certainly depends on the application
requirements in terms of processing speed, and there is a
tradeoff between omitting information and the quality of
the estimation result. However, often there are also re-
dundant or uninformative measurements that do not add
any valuable information and can therefore safely be dis-
carded. An answer to this question allows us to only use
informative measurements in the estimation process, re-
ducing computational complexity. It can also be used to
guide the search for measurements, as exploited by Davi-
son [20] for active search, but that is not the goal of our
work. In this section we discuss the theory of how to de-
termine the information that a measurement contributes
following the work by Davison [20], but diverging in im-
portant points.

Let us start by identifying from a set of measurements
the single measurement that, if applied, results in the state
estimate with lowest uncertainty, or in other words, results
in the highest gain in information. The current state esti-
mate is given by the probability distribution P(x|Z~) over
the state x given all previous measurements Z—. The pos-
terior P(x|z;, Z~) provides the distribution over the state
x after applying a measurement z; on landmark j. The
measurement z; follows the distribution z; = h;;(x) + v



from (8). Note our new notation z;: We do not use a spe-
cific measurement, but rather the expected measurement
z; = hi;(x) + v for a specific landmark j given the state
estimate X, as we want to identify the measurement that
is expected to yield the largest reduction in uncertainty
before the measurement is actually made. The expected
reduction in uncertainty or gain in information about the
state x when making measurement z; is given by the mu-
tual information [21]

I(x;2z;) = H(x)— H(x|z,) (31)

- / Pl =) log PI(D)S(P()) ’

where H (x) is the entropy of the current state and H (x|z;)
is the conditional entropy of the state after applying the
measurement.

As iISAM represents Gaussian distributions, we obtain
an expression for mutual information for this special case.
We start with a random variable a with Gaussian distri-

bution
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that is partitioned into two random variables @ and 3 so
that the joint mean a and covariance Y, are given by
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It is shown by Davison [20] that the mutual information

between the two Gaussian distributions P(a) and P(8) is
given by

I(e;B) =

e~ zlla-als, (32)
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Note that the result is given in bits as we use the logarithm
base 2.

To obtain the mutual information between the state
space x and any of the N measurement functions z; we
combine these random variables into a new one

T
w=(X,21,...,2ZN) (35)
that follows a Gaussian distribution with mean given by
w = (X,Z1,... ,ZN)T and covariance
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(36)
where some of the terms were defined in (14) based on
(13), and the remaining ones follow by analogy.

It is now easy to select the best measurement by cal-
culating all I(x;z;), but how do we treat the remaining
measurements? We identify three different possibilities:

1. We calculate the mutual information between the state
vector and all possible combinations of measurements.
This is the correct solution as the measurements are
not independent. However, unless the number of mea-
surements is very small this solution is infeasible be-
cause the number of possible combinations 2% is ex-
ponential in the number of landmarks N that can be
measured.

2. We select the best measurement, then use the mea-
surement to update the state space and start the fea-
ture selection again with the remaining measurements
as done in [20]. Instead of taking the expected reduc-
tion in uncertainty into account, this solution uses
the actual measurement to update the state space.
However, the decision is sequential and therefore not
guaranteed to be optimal. This solution is practical if
updating the state space and recovering the necessary
covariances are cheap operations.

3. We select the best measurement without updating the
state space, and then ask the same question as before:
Which of the remaining measurements is expected to
yield the lowest uncertainty? This avoids the combi-
natorial complexity as well as updating of the state
space with a measurement. While this solution is also
not optimal, it is much cheaper than the other solu-
tions, which is why we make use of this approach as
described next.

For the third approach, one idea for finding the best mea-
surement from the remaining ones is to look at the mu-
tual information between measurements in order to decide
which ones are redundant, as suggested in [20]. However,
from these quantities we cannot directly calculate the cor-
rect information gains, as they do not consider mutual
information between combinations of measurements.

To find the correct information gain for the third ap-
proach, we calculate the mutual information I(x;z,2;) of
the state space x and measurements z; and z for each re-
maining measurement z. After selecting a measurement
Zo we continue with the mutual information I(x;z,z1, z2)
for the remaining measurements and so on. Our approach
requires the same quantities as in [20], although the cal-
culations get slightly more expensive as increasingly large
blocks from the covariance matrix Xy, are needed. How-
ever, the increase in cost is not significant because the size
of the state space x is of the same order as the size of all
measurements together. Note that our approach correctly
takes care of redundant features.

We are not only interested in the order of the measure-
ments in terms of their value for the estimation process,
but also want to omit measurements that are not informa-
tive enough. For that purpose we ignore features that fall
below a certain threshold, for example 2 bits.

Note that we need the same marginal covariances al-
ready required for joint compatibility in (27).



Table 1: Execution times for the Victoria Park sequence
under different data association techniques. The number
of measurements declines with increasing threshold on the
minimum information a measurement has to provide, until
data association eventually fails as shown in Fig. 8.

Execution Number of
time measure-

ments

NN 207s 3640

ML 423s 3640

JCBB 590s 3640

JCBB, 2 bit threshold 588s 3628

JCBB, 3 bit threshold 493s 2622
JCBB, 4 bit threshold fails -

5. Experiments and Results

We present timing results for recovering the exact mar-
ginal covariances. We analyze data association as well as
the effect of measurement selection based on expected in-
formation gain for the well-known Sydney Victoria Park
dataset. We also present results from loop closing for
visual SLAM. All results are obtained on a Core 2 Duo
2.2GHz laptop computer.

5.1. Laser-Range-Based SLAM

To show the merits of JCBB, we use a simulated en-
vironment with 100 poses, 27 landmarks and 508 mea-
surements in Fig. 7. The trajectory length is about 50m.
We added significant noise to both odometry and land-
mark measurements with all standard deviations 0.1m and
0.1rad. Maximum likelihood data association fails to suc-
cessfully close the loop after a wrong data association deci-
sion is made. JCBB on the other hand successfully estab-
lishes the correct correspondences, because it takes corre-
lations between landmarks into account.

For evaluation of both marginal covariance recovery
and information gain thresholding we use the standard
Sydney Victoria Park dataset, see Figure 8(a). The dataset
consists of laser-range data and vehicle odometry, recorded
in a park with sparse tree coverage. It contains 7247 frames
along a trajectory of 4 kilometer length, recorded over
a time frame of 26 minutes. As repeated measurements
taken by a stopped vehicle do not add any new informa-
tion, we have dropped these, leaving 6969 frames. We
have extracted 3640 measurements from the laser data by
a simple tree detector.

Table 1 compares execution times for different data as-
sociation techniques applied to the Victoria Park sequence.
The results for NN data association do not include recov-
ery of marginal covariances and therefore represent the
computation time of the underlying iSAM estimation al-
gorithm [9]. While additionally recovering the exact mar-
ginal covariances and performing JCBB data association
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in every single step nearly triples the execution time, the
performance still exceeds the requirements for real-time
performance by a factor of 2.5.

Also shown in Table 1 are results for omitting uninfor-
mative measurements when performing JCBB. A thresh-
old of 2 bit only removes a few measurements yielding only
a slightly lower execution time. The result also shows that
the selection of measurements does not add a significant
overhead as the marginal covariances are already recovered
for JCBB data association. For a 3 bit threshold the num-
ber of measurements is significantly lower, resulting in a
significant speedup due to lower complexity of both the es-
timation and the marginal covariance recovery. Finally, for
a 4 bit threshold too many measurements are removed and
the data association fails to close a loop correctly, leading
to an inconsistent map as shown in Fig. 8(d). Note that
we periodically relinearize the system in iSAM to keep
linearization errors small. The failure therefore arises be-
cause JCBB identifies a wrong match based on high mo-
tion uncertainty, which is aided by the relative sparsity of
landmarks in this dataset.

Marginal covariance recovery is quite efficient with our
dynamic algorithm. In Fig. 9(a) we compare the number of
entries of the covariance matrix that have to be recovered
with the number of actually required entries for JCBB data
association. The figure shows both linear (top) and log
scale (bottom). The number of recovered entries is much
lower than the actual number of non-zero entries in the
square root information matrix because our dynamic algo-
rithm only calculates the entries that are actually needed.
If, lets say no variables from the left half of the covari-
ance matrix are needed, then the entries corresponding
to non-zero entries in the left half of R also do not have
to be calculated. Furthermore, from the remaining part of
the matrix not all entries corresponding to non-zeros in the
square root information matrix are necessarily required, as
some variables might not depend on others even if those
are further to the right.

The number of entries calculated by the dynamic ap-
proach stays almost linear in this example. This really
depends on the order of the variables in the square root
information matrix, as it is more expensive to obtain co-
variances for entries that are further to the left side of
the matrix. One can imagine modifying the variable or-
dering to take this into account, while only marginally
increasing the fill-in of the square root information ma-
trix. The spikes in Fig. 9 often coincide with an increased
number of non-zero entries in the square root information
matrix, which are caused by incremental updates during
loop closing events. The significant increase on the right is
a combination of a denser square root information matrix
(see spikes in blue curve) with required variables being fur-
ther to the left of the matrix and additionally more entries
being requested (see green curve) as more landmarks are
visible.

The timing results in Fig. 9(b) show that our algorithm
outperforms other covariance recovery methods. In partic-



(a) Ground truth. (b) ML data association fails. (c) JCBB succeeds despite high noise.

Figure 7: A simulated loop with high noise that requires the JCBB algorithm for successful data association. The red
line is the estimated robot trajectory, the blue line the odometry and the green crosses are the landmarks.

(¢) 3 bit threshold. (d) 4 bit threshold.

Figure 8 Maps for the Victoria Park sequence. (a) Based on all measurements, the trajectory and landmarks are
shown in yellow (light), manually overlaid on an aerial image for reference. Differential GPS was not used in obtaining
the experimental results, but is shown in blue (dark) for comparison - note that in many places GPS was not available,
presumably due to obstruction by trees. (b)(c)(d) Maps resulting from omitting measurements with expected information
below a threshold according to Table 1. For 2 and 3 bit thresholds the maps are visually identical. For a 4 bit threshold
data association fails in the rightmost part of the trajectory, yielding an inconsistent map.
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Figure 9: a) Number of entries of the covariance matrix that have to be recovered compared with the number actually
required for data association, both in linear and log scale. For reference we also show the number of entries in R and
the number of entries if R was dense. Note that our dynamic programming algorithm calculates a significantly lower
number of entries than there are non-zero entries in R. b) Timing for our algorithm in linear and log scale. For reference
we also show timing for full covariance matrix recovery using efficient sparse LDL matrix factorization as well as for only
recovering a dense sub-matrix using the Schur complement (cut off after step 4500).

ular, we compare with full covariance recovery based on a
very efficient sparse LDL matrix factorization [22]. Often
the required entries are not distributed across the com-
plete matrix, and only a dense sub-block of the covariance
matrix is needed. This block can be recovered by a Schur
complement [1], which we also implemented based on the
LDL factorization. The Schur complement could be sped
up by ordering visible landmarks further to the right side
of the matrix, however, this in turn will generate more
fill-in in the factorization, making both SLAM and the
Schur complement more expensive. Our algorithm recov-
ers the results within the real-time constraints of the data,
even towards the end of the sequence, while the other al-
gorithms became prohibitively expensive and have been
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stopped before the end of the sequence.

5.2. Visual SLAM

We evaluate data association for visual SLAM on data
recorded during the final DARPA LAGR program demo
in San Antonio, Texas. We used one of the stereo cam-
era pairs on the LAGR platform shown in Fig. 10(a). We
drove the robot for about 80m through the challenging en-
vironment shown in Fig. 10(b). Note that visual odometry
was running in real-time on the robot (Core Duo 2GHz)
and therefore only the resulting feature tracks are avail-
able. In particular, visual odometry failed over a number
of frames, and only vehicle odometry is available in those
places. This particular dataset was chosen for this exper-



(a)

(b)

Figure 11: San Antonio sequence just before (a) and after (b) loop closing using JCBB. The vehicle internal trajectory
estimate with GPS is shown in black, without GPS in magenta. The trajectory according to our visual odometry is
shown in blue and the result of our visual SLAM algorithm in red. The robot is shown as rectangular outline and the
gray lines represent a grid with 10m spacing. Note that GPS drifted before the vehicle started to move.

iment because of its bad quality. Even after extending
visual odometry tracks using JCBB locally, the loop re-
mains far from closed as shown in Figure 11(left).

Despite the large error at the end of the loop, JCBB
succeeds in closing the large loop, with the result shown
in Figure 11(right). Note that for these experiments we
have hard coded at which frame JCBB is used to close the
loop. However, JCBB successfully found a jointly compat-
ible set of assignments that closes the loop. The results
show how JCBB with our marginal covariance recovery
algorithm allows for data association even under such dif-
ficult circumstances with non-descriptive features.

To show real-time performance, we have run JCBB
data association on top of iSAM live on the DARPA LAGR
platform with results shown in Fig. 12. The trajectory
length is about 70m and includes a place where the robot
got stuck and had to back up with significant wheel slip-

page. Note that the vehicle’s internal state (IMU-+odometry)

is significantly off, while visual odometry provided a much
better estimate. JCBB based on iSAM closed the loop,
however, another relinearization step by iISAM would have
been necessary for the trajectory to completely converge.

6. Discussion: JCBB versus RANSAC

RANSAC by Fischler and Bolles [11] is a well known al-
gorithm suitable for data association, which does not rely
on marginal covariances, so why should we not simply use
RANSAC instead of JCBB? As the answer to this ques-
tion is not straightforward, we decided to include some
of our insights into the differences here. A detailed dis-
cussion requires several paragraphs, but the short answer
is that there is typically no disadvantage to using JCBB,
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and it becomes necessary for data association under high
uncertainty, such as large loop closings, where RANSAC
fails.

RANSAC and JCBB take widely different approaches
to the problem of data association. RANSAC is a prob-
abilistic algorithm that repeatedly samples a minimum
number of candidates needed to constrain the given prob-
lem and then determines their support based on the re-
maining candidates. The candidates are chosen from a set
of putative assignments, and candidates that agree with
the sampled model are called inliers. The model with the
highest number of inliers is selected. The number of sam-
ples needed is adaptively determined in order to achieve a
user specified confidence that the correct result is found.

The main difference between the two algorithms is that
RANSAC has to be supplied with a set of putative as-
signments, while JCBB can explore the complete space
of possible assignments. Therefore, for RANSAC, a part
of the data association problem is already solved in the
preprocessing step, and the whole process fails if the pre-
processing does not include a sufficient number of correct
assignments. This happens for example when closing large
loops where the uncertainty becomes very large. Putatives
are typically selected individually, and therefore their cor-
relation is not taken into account and rather a locally opti-
mal decision is made for each putative, for example based
on distance.

JCBB in contrast is capable of exploring the complete
space of possible assignments. While theoretically the
same is possible with RANSAC by including all possible
assignments in the set of putatives, it would require enu-
merating them and the probabilistic nature of RANSAC
would not provide an optimal strategy to search this com-



(b) :

Figure 10: (a) The DARPA LAGR mobile robot platform
with two front-facing stereo camera rigs, a GPS receiver as
well as wheel encoders and an inertial measurement unit
(IMU). (b) Images taken along the robot path.

Visual SLAM (iISAM)
Visual odometry
IMU + odometry

Figure 12: Robot trajectories from live demo of iSAM on
the LAGR platform.

plete set. Actually, RANSAC is known to perform very
poorly when only a small ratio of the putatives are in-
liers, as in that case many samples are required to reach a
certain confidence level. JCBB on the other hand system-
atically explores that space and additionally prunes large
parts of the search space for efficiency. And while JCBB
evaluates the joint compatibility between all assignments,
RANSAC at most checks for joint compatibility between
the minimum set and each remaining putative individu-
ally, which should perform somewhere between individual
and joint compatibility.
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Finally, JCBB is preferable over RANSAC even for a
small set of putatives with high inlier ratio. For some
applications the set of putatives is of high quality, for ex-
ample when they are based on very informative feature
descriptors such as SIFT. However, while RANSAC only
provides a confidence for the result, i.e. there remains a
small probability that it does not find the correct solution,
JCBB instead performs an exhaustive, yet efficient search.
And if we have only one putative per landmark, the search
tree contains only binary decisions making JCBB efficient
in combination with pruning of subtrees.

Of course, as JCBB solves a NP hard problem exactly
we cannot expect it to work for very large problems. How-
ever, one can typically restrict the problem to a manage-
able size, as we have done in the visual SLAM case. Alter-
natively, one can reduce the problem space for example by
using informative feature descriptors as discussed above.
And if the problem still remains too complex to be solved
by JCBB within real-time constraints, then it is likely that
either the correct solution is not contained in the putatives
(otherwise we could use that small set of putatives as in-
put to JCBB!), or we have such a low inlier ratio that we
have to terminate RANSAC after a maximum number of
iterations, thereby not obtaining the correct result with
the targeted confidence.

7. Conclusion

We presented a dynamic programming algorithm for
efficient recovery of the marginal covariances needed for
data association from a square root information matrix.
The square root information matrix was obtained by the
incremental smoothing and mapping (iISAM) algorithm,
but could for other applications also be obtained by batch
matrix factorization, fixed-lag smoothing or from a filter-
ing approach. The marginal covariances can efficiently be
obtained as long as the necessary variables for data asso-
ciation are included and the square root information ma-
trix is sparse. We used our algorithm to obtain the exact
marginal covariances required to perform JCBB data as-
sociation, thereby eliminating the need for conservative
estimates. We also showed that the same quantities allow
for information theoretic decisions that allow for example
to reduce computational complexity by omitting uninfor-
mative measurements.

While JCBB performed well with simple point features
for visual SLAM, in practice one would want to include ap-
pearance to further simplify the problem. There are also
some practical issues, such as how to deal with situation in
which only one landmark is visible. In that case joint com-
patibility reduces to individual compatibility, and wrong
assignments are easily accepted. And for very large scale
problems the estimation problem will have to be split into
submaps, leading to the question of how to perform data
association if more than one submap has to be considered.
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