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Abstract—This paper presents a novel algorithm for integrat-
ing real-time filtering of navigation data with full map/trajectory
smoothing. Unlike conventional mapping strategies, the result of
loop closures within the smoother serve to correct the real-time
navigation solution in addition to the map. This solution views
filtering and smoothing as different operations applied within a
single graphical model known as a Bayes tree. By maintaining all
information within a single graph, the optimal linear estimate is
guaranteed, while still allowing the filter and smoother to operate
asynchronously. This approach has been applied to simulated
aerial vehicle sensors consisting of a high-speed IMU and stereo
camera. Loop closures are extracted from the vision system in
an external process and incorporated into the smoother when
discovered. The performance of the proposed method is shown
to approach that of full batch optimization while maintaining
real-time operation.

Index Terms—Navigation, smoothing, filtering, loop closing,
Bayes tree, factor graph

I. INTRODUCTION

High frequency navigation solutions are essential for a
wide variety of applications ranging from autonomous robot
control systems to augmented reality. Historically, navigation
capabilities have played an important role from ship travel
to plane and space flight. With inertial sensors now being
integrated onto silicon chips, they are becoming smaller and
cheaper and the first inertial solutions have become available
in everyday products such as smart phones. For autonomous
robots, and even more so for virtual and augmented reality
applications, a high frequency solution is important to allow
smooth operation.

High-frequency navigation estimates are based on inertial
sensor information, typically aided by additional lower fre-
quency sensors to limit long-term drift. In standard inertial
strapdown systems, IMU signals are integrated to estimate
the current state. However, this integrated navigation solution
drifts over time, often quickly depending on the IMU quality,
due to unknown biases and noise in the sensor measurements.
To counter this estimation drift, additional sensors are incor-
porated into the estimation, a process known as aiding. These
aiding sensors typically operate at a much lower frequency
than the IMU and preferably measure some global quantity.
Such sensors as GPS and magnetometers are common aiding
sources, though recent work has investigated the use of vision.
The aided system yields a navigation solution with the high
update frequency needed for real-time control that also bounds
the drift to the interval between aiding updates.

Figure 1. Smoother and filter combined in a single optimization problem and
represented as a Bayes tree. A separator is selected so as to enable parallel
computations.

Simultaneous localization and mapping (SLAM) algorithms
in robotics perform a similar state estimation task, but addi-
tionally can include loop closure constraints at higher latency.
The goal of SLAM is to find the optimal position and attitude
estimate at each time interval given all of the available
measurements. This requires solving a large, nonlinear least-
squares problem, with solutions ranging from off-line batch
approaches to recent innovations in incremental smoothing. In
addition to improved estimates from nonlinear optimization,
SLAM systems also take advantage of identified loops in the
robot’s trajectory. These loop closures serve to both correct
drift accumulated over the loop and bound the estimation
uncertainty. While SLAM systems make use of vehicle nav-
igation data within the optimization, the improved results of
the SLAM solution are rarely fed back to the navigation filter
as an aiding source.

In this paper we propose concurrent filtering and smoothing
by viewing the high-speed navigation filter and the high-
latency localization smoother as operations performed within
a single graphical model known as a Bayes tree. With this
representation it becomes clear that the filtering and smoothing
operations may be performed independently while still achiev-
ing an optimal state estimate at any time. This approach has
been tested on simulated aerial vehicle data with navigation
estimates being performed at 100Hz. In all cases the filter
operated in real time with the final trajectory approaching
the optimal trajectory estimate obtained from a full nonlinear
batch optimization.



In what follows, Section II reviews related work that solves
the tracking and mapping problem through the use of parallel
processes. In Section III we review filtering and smoothing
and present the key insight to our approach. Section IV
describes the graphical model known as a Bayes tree used
to represent the full smoothing problem. The specifics of the
proposed concurrent filtering and mapping algorithm are given
in Section V. Experimental results evaluating our algorithm on
synthetic data are presented in Section VI. Finally conclusions
and future work are discussed in Section VII.

II. RELATED WORK

Many filtering-based solutions to the navigation problem
exist that are capable of integrating multiple sensors [2].
Examples include GPS-aided [6] and vision-aided [20, 33, 8]
inertial navigation. A recent overview of filtering and related
methods to multi-sensor fusion can be found in [27]. In
addition to the extended Kalman filter (EKF) and variants such
as the unscented Kalman filter, solutions also include fixed-
lag smoothing [19]. While delayed and/or out-of-sequence data
can also be handled by filters [1, 26, 32], fixed-lag smoothing
additionally allows re-linearization [25, 17]. However, filter-
ing and fixed-lag smoothing based navigation solutions are
not able to probabilistically include loop closure constraints
derived from camera, laser or sonar data; the most useful loop
closures reach far back in time to states that are no longer
represented by such methods.

Integration of loop closures requires keeping past states in
the estimation and can be solved efficiently by smoothing.
Originally in the context of the simultaneous localization
and mapping (SLAM) problem, a set of landmarks has been
estimated using the EKF [28, 29, 22]. However, the EKF
solution quickly becomes expensive because the covariance
matrix is dense, and the number of entries grows quadratically
in the size of the state. It has been recognized that the dense
correlations are caused by elimination of the trajectory [5, 3].
The problem can be overcome by keeping past robot poses
in the estimation instead of just the most recent one, which is
typically referred to as full SLAM or view-based SLAM. Such
a solution was first proposed by Lu and Milios [16] and further
developed by many researchers including [30, 5, 3, 18, 13].
Even though the state space becomes larger by including the
trajectory, the problem structure remains sparse and can be
solved very efficiently by smoothing [3]. Here we use an
incremental solution to smoothing by Kaess et al. [10].

View-based SLAM solutions typically only retain a sparse
set of previous states and summarize the remaining informa-
tion. For high rate inertial data, summarization is typically
done by a separate filter, often performed on an inertial
measurement unit (IMU). Marginalization is used to remove
unneeded poses and landmarks, good examples are given in
[7, 12]. And finally, the so-called pose graph formulation
omits explicit estimation of landmark locations, and instead
integrates relative constraints between pairs of poses. Despite
all the reductions in complexity, smoothing solutions are not

constant time when closing large loops and are therefore not
directly suitable for navigation purposes.

Similar to our work, filtering and smoothing has been
combined in a single optimization by Eustice et al. [5]. Their
exactly sparse delayed state filter retains select states as part of
the state estimate, allowing loop closures to be incorporated.
The most recent state is updated in filter form, allowing
integration of sensor data at 10Hz. Their key realization was
the sparsity of the information form, and an approximate
solution was used to provide real-time updates. Our solution
instead provides an exact smoothing solution incorporating
large numbers of states, while being able to process high rate
sensor data on the filtering side with minimum delay.

A navigation solution requires constant processing time,
while loop closures require at least linear time in the size of the
loop; hence parallelization is needed. Klein and Murray [11]
proposed parallel tracking and mapping (PTAM) of a single
camera, where localization and map updates are performed
in parallel. This differs from the navigation problem because
filtering is replaced by repeated re-localization of the camera
with respect to the current map. Still, the key idea of per-
forming slower map updates in parallel is directly applicable
to navigation. In addition, the bundle adjustment (BA) [31]
used to optimize the map is mathematically equivalent to the
smoothing solution deployed in our work: the only difference
is the specific structure of the problem, which is more sparse
in our navigation case. The same parallelization is also used
in more recent dense solutions such as dense tracking and
mapping by Newcombe et al. [24] and KinectFusion by
Newcombe et al. [23]. However, while this separation into
relocalization and mapping works well for tracking a camera,
it does not allow probabilistic integration of inertial sensor
data as achieved by our work.

Probably the closest work in navigation is the dual-layer
estimator by Mourikis and Roumeliotis [21] for combined
camera and inertial estimation that uses an EKF for fast
processing and BA for limiting linearization errors. However,
they do not sufficiently explain how the BA result is fed
back into the filter, in particular how consistent feedback
is performed without rolling back the filter. Rolling back
measurements is made unnecessary in our formulation, which
casts the concurrent filtering and smoothing processes as a
single, parallelized optimization problem.

Our novel solution combines filtering and smoothing within
a single estimation framework, while formulating it in such a
way that both are performed concurrently. Hence the filter
operates at constant time when integrating new sensor data,
while updates from the slower smoother are integrated on the
fly once they become available.

III. FILTERING AND SMOOTHING

Existing navigation systems typically integrate the sensor
data using a filtering approach [6]. Most common are EKF
based solutions, in particular the error state EKF. Such filtering
methods provide a constant time solution for estimating the
most recent state xt, and can therefore process high frame



rate sensor data, in particular from inertial sensors, with
minimal delay. The best estimate X̂t is given by the maximum
likelihood solution

X̂t = arg max
Xt

p (Xt | Z) . (1)

In addition to the current state estimate xt, the set Xt may
include landmarks or select previous states that are required
to provide a better estimate of xt. New states X ′

t are constantly
being added, while the previous states are integrated out

p (X ′
t | Z) =

ˆ
Xt

p (Xt, X
′
t | Z) . (2)

Better estimates of the current state can be obtained by
integrating loop closure constraints that provide relative mea-
surements to earlier states. Such loop closure constraints
can be generated, for example, by appearance-based methods
operating on key image frames, or from laser scan matching
and 3D model alignment approaches.

However, loop closure constraints cannot simply be added
into the filtering formulation, which only estimates the most
recent pose. Instead, the earlier state referred to by the loop
closure must be part of the estimation problem. Instead of
integrating out all variables, as in filtering solutions, a typical
solution is to retain select variables. Variables to retain can be
selected by regular sub-sampling of the states, or by selecting
states that correspond to key frames of visual odometry
systems. The resulting estimation problem grows over time and
cannot be solved efficiently in a filtering framework. Instead,
efficient smoothing solutions have been presented that exploit
the sparsity of the underlying problem structure. The optimal
smoothing solution X̂ over all states is given by the maximum
likelihood

X̂ = arg max
X

p (X | Z) . (3)

Unfortunately, a straightforward smoothing solution is not
suitable to high speed navigation. New states X ′

t are constantly
being added, yielding a growing number of states that need to
be estimated

p (X ′ | Z) = p (X,X ′
t | Z) . (4)

In contrast to filtering over a single state, even incremen-
tal smoothing [10] over a growing number of states with
occasional inclusion of loop closure constraints generally is
not a constant time operation. The navigation system needs
to provide the best estimate at any time, incorporating new
measurements at sensor frame rate.

Key Insight

The key insight underlying our work is that a smoothing
solution can be parallelized, allowing the problem to be split
into a high speed navigation component and a higher latency
loop closure component. The key idea is to select a suitable
separator to allow running of the smoother and filter in parallel.
Over the last years, progress has been made in parallelizing
estimation algorithms by partitioning the state space in an

(a) Factor graph

(b) Chordal Bayes net

(c) Bayes tree

Figure 2. (a) An example factor graph is shown with five state variables
xi connected by inertial factors fi. The factor c1 represents a loop closure.
A landmark l1 with two visual measurements vk is also shown. (b) The
equivalent chordal Bayes net for the variable ordering: l1, x1, x2, x3, x4,
x5. (c) The equivalent Bayes tree constructed by identifying cliques.

appropriate manner, e.g. Dellaert et al. [4]. Partitioning al-
gorithms such as nested dissection [15] are well known. The
goal of such methods is to find separators that split the problem
into multiple parts that can be solved in parallel.

Here we introduce a single separator near the most recent
state to separate the low latency filter component from the loop
closure calculations in the smoother. We denote the separator
by Xs, and the sparse set of older states by XR. In the
smoothing formulation of (3), the posterior factors into three
components

p (X | Z) = q (X) = q (XR | Xs) q (Xs) q (Xt | Xs) . (5)

For brevity we omitted the measurement Z from the notation
by defining q (·) := p (· | Z). The factors from left to right
represent the smoother, the separator and the filter. Both, the
smoother and the filter, can be solved in parallel (because they
are independent given the separator), and can then be joined
at the separator.

In the next section we discuss how we address the naviga-
tion problem using this formulation as a single optimization
problem, initially ignoring real-time constraints. In the follow-
ing section we then provide the concurrent solution for real-
time operation, where multiple filter updates are performed
during a single iteration of the smoother.



IV. SMOOTHING SOLUTION

Here we provide a smoothing solution to the navigation
problem using the recently introduced Bayes tree [9, 10].
While this approach does not provide a constant time solution,
it forms the basis for the incremental and parallel computation
described in Section V.

We use a factor graph [14] to represent the smoothing
navigation problem as a graphical model; an example is shown
in Figure 2a. A factor graph is a bipartite graph G = (F , X, E)
with two node types: factor nodes fi ∈ F and variable
nodes xj ∈ X . An edge eij ∈ E is present if and only if
factor fi involves variable xj . The factor graph G defines the
factorization of a function f (X) as a product of factors fi

f (X) =
∏
i

fi (Xi) , (6)

where Xi = {xj |eij ∈ E} is the set of variables xj adjacent
to factor fi.

In the navigation context, a sensor measurement is repre-
sented as a factor affecting select variables. For example, a
GPS measurement affects a single state variable, while an
inertial measurement affects two or more states, depending
on how bias estimation is implemented. A generative model

zi = hi (Xi) + νi (7)

predicts a measurement zi using a function hi (Xi) with added
measurement noise νi. The difference between the prediction
ẑi = hi (Xi) and the actual measurement zi is represented by
the factor

fi (Xi) = di [hi (Xi)− zi] (8)

for some cost function di. If the underlying noise process is
Gaussian with covariance Σ, the distance metric is simply
the Mahalanobis distance d(r) = ‖r‖2Σ, but more general
functions such as robust estimators can also be accommodated.

We use variable elimination on the factor graph as a basis
for efficient inference [10]. To eliminate a variable xj from
the factor graph, we first form the joint density fjoint (xj , Sj)
of all adjacent factors, where the separator Sj consists of all
involved variables except for xj . Applying the chain rule,
we then obtain a new factor fnew (Sj) and a conditional
p (xj | Sj). For a given variable ordering, all variables are
eliminated from the factor graph, and the remaining condi-
tionals form a chordal Bayes net

p (X) =
∏
j

p (xj | Sj) . (9)

An example is shown in Figure 2b. The elimination order
affects the graph structure and therefore also the computational
complexity. Good orderings are provided by efficient heuristics
such as minimum degree.

The solution is obtained from the Bayes tree, which is
created by identifying cliques in the chordal Bayes net. An
example is shown in Figure 2c. Cliques are found by traversing
the graph in reverse elimination order. A node is added to its
parent’s clique if they are fully connected, otherwise a new

clique is started. The resulting cliques are denoted by Fk : Sk,
where Fk are the frontal variables, resulting in the factorization

p (X) =
∏
k

p (Fk | Sk) . (10)

Inference in the Bayes tree proceeds top-down: The root has
no dependencies and can directly be solved; the solution is
passed on to its children, which in turn can then be solved.

V. CONCURRENT FILTERING AND SMOOTHING

(a)

(b)

Figure 3. (a) Filter operation marginalizes out unused variables, but select
key states are retained for the smoother to allow for loop closings. Key states
that are no longer needed by the filter eventually form cliques along a chain
between the current separator and the filter. (b) The separator is advanced
by a simple change in the variable elimination ordering so that the original
separator becomes a part of the smoother.

Here we view the full smoothing problem with the particular
factorization of (5), so that smoothing over past states is decou-
pled from filtering on current states. The posterior p (X | Z)
in (5) is equivalent to a Bayes tree with the separator as root,
as shown in Figure 3. Because the separator is chosen to be
the root of the Bayes tree, it is always eliminated last, which
indicates a point of synchronization. As a consequence, the
filter and smoother may run in parallel, with the filter typically
performing multiple steps during one smoother iteration. Com-
putations are independent except for at the separator, where
they are fused.



A. Filter

The filter has three goals: 1) Integrate new factors as
they become available. 2) Keep the complexity constant by
removing unused states. 3) Leave some key states behind for
integration into the smoother. Here we discuss how these goals
are reached.

Integrating a new factor into the existing Bayes tree is fast
because the integration is independent of the smoother and
only affects the filter and separator cliques. Let us assume
the new factor to be added is fn (Xn) with Xn ⊆ Xt;
this is true for sensor measurements but does not include
loop closures, which instead are directly integrated into the
smoother as described later. By definition, the new factor
directly affects the filter clique Xt. Changing a clique also
affects all ancestors, which can easily be seen from the
elimination algorithm passing information upwards towards
the root, which is eliminated last. Consequently, the separator
clique Xs also has to be recalculated. By the same argumenta-
tion, the smoother cliques in XR are eliminated independently
up to the separator and are therefore unaffected by the new
information integrated into the filter.

Integrating a new factor requires temporarily converting the
affected cliques back into a factor graph [10]. While converting
the factor graph to a Bayes tree requires elimination, the
opposite direction is trivial. Each clique X : Y can directly
be written as a factor f (X,Y ), and the new factor is simply
added. The resulting factor graph is converted back to a Bayes
tree as usual, and the smoother clique is re-added without
change. Solving of the filter state also does not involve the
smoother, and is therefore only dependent on the size of the
filter.

To keep the filter operating in constant time, it needs
to remove intermediate states that are no longer needed.
States have to be kept in the filter states Xt as long as
they might be referred to by future factors. Once no new
sensor measurements can directly affect a state, we call that
state inactive. Removal of inactive states is done during the
integration of new states: By choosing a suitable variable
ordering the inactive states are eliminated first. Marginalization
over inactive states corresponds to simply dropping their
conditionals from the chordal Bayes net, before the Bayes tree
is created by clique finding.

For integration into the smoother, select key states are
retained even after they become inactive in the filter to allow
future loop closings. The key states are selected to provide
a sparse set of summarized poses that support integration of
loop closures in the smoother to (nearly) arbitrary states in the
past. One simple strategy is to retain key poses at fixed time
intervals, and more advanced approaches additionally take into
account the usefulness of a state, for example in terms of visual
saliency. The variable ordering is modified so as to insert these
states between the filter and separator states, which eventually
leads to the formation of additional cliques as shown in Figure
3a. We will see in Section V-C how these cliques eventually
end up in the smoother.

B. Smoother

The main goal of the smoother is to integrate loop closure
constraints. One type of loop closure constraint is a relative
one between two states, such as arising from laser-scan match-
ing or derived from visual constraints. Another type arises
from multiple observations of an unknown landmark over time.
We ignore known landmarks here, which can be treated in
the same way as GPS measurements: they can directly be
integrated into the filter as unary constraints.

Loop closures can only be introduced in the smoother.
Introducing loop closures in the filter that connect to older
variables in the smoother would circumvent the separator,
therefore destroying the conditional independence of filter and
smoother. If one of the variables referred to by a loop closure
constraint is still part of the filter, that state is marked as a
key state, and the loop closure is delayed until that key state
has migrated to the smoother. That delay is not problematic
for the navigation solution because loop closures are typically
calculated in the background and are only available with some
delay. Their main goal is to constrain long term drift, while
the filter produces very accurate results locally.

While the smoother could simply perform batch optimiza-
tion, it is cheaper to update the existing solution with the
newly added information using the iSAM2 algorithm [10].
The smoother updates the conditional p (XR | Xs) and the
separator p (Xs), while the filter p (Xt | Xs) is conditionally
independent and does not change.

C. Synchronization

So far we have discussed how the filter and the smoother
work independently from each other; we will now focus on
the concurrent operation that is needed in practice to provide
a navigation solution with only a small constant delay.

Concurrent operation requires synchronization between the
independently running filter and smoother. Synchronization
happens after each iteration of the smoother. The filter runs
multiple iterations by the time a single iteration of the
smoother finishes. To achieve constant delay in the filter, the
filter can never wait for the smoother. Hence, upon finishing an
iteration, the smoother waits for the filter to finish its current
update.

At the time of synchronization, the orphaned subtree of the
filter is merged back into the updated tree of the smoother.
However, the original separator has changed independently in
both the smoother and the filter. Our solution is to incorporate
from the filter only the change with respect to the original
separator—exactly the information the filter would add had it
been run in sequence with the smoother instead of in parallel.
The synchronization is constant time because only the root
is changed. After synchronization, filter and smoother again
form a consistent Bayes tree, and the filter can immediately
continue with the integration of new information.

The last missing piece is how to move inactive key states
from the filter to the smoother; this is done during synchro-
nization by a modification of the variable ordering. After the
root nodes are merged, the separator and the cliques consisting
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Figure 4. A visualization of the simulated ground truth trajectory of an aerial
vehicle. Ground-based landmarks are observed from a downward-facing stereo
camera.

of key states are re-eliminated with a variable ordering that
changes the separator closer to the filter and therefore transfers
the previous separator and potential intermediate states into
the smoother. This advancing of the separator is visualized in
Figure 3.

VI. RESULTS

To test the concurrent smoothing and mapping system,
sensor measurements from an aerial vehicle simulator were
generated. The simulator models vehicle dynamics as well as
the effects induced from moving along the Earth’s surface,
such as non-constant gravity, non-constant craft rate, and Cori-
olis effects. The simulated aerial vehicle traverses a survey-
type trajectory, circling around a section of terrain several
times. An illustration of the simulated trajectory is shown in
Figure 4. The simulation system produces ground truth IMU
measurements at 100Hz and low-frequency visual odometry
from ground landmarks at 0.5 Hz. Additionally, a sparse set
of loop closures were identified within the visual data. A total
of 22 such constraints were generated at five different locations
corresponding to trajectory crossings.

All measurements were corrupted with white noise before
being given to the estimation system, IMU terms additionally
with a constant bias. Bias terms were drawn from a zero-mean
Gaussian distribution with a standard deviation of σ = 10 mg
for the accelerometers and σ = 10 deg/hr for the gyroscopes.
The noise terms were drawn from a zero-mean Gaussian dis-
tribution with σ = 100µg/

√
Hz and σ = 0.001 deg/

√
hr for

the accelerometers and gyroscopes. Zero-mean Gaussian noise
with σ = 0.5 pixels was added to all visual measurements.

Using these simulated sensors, an inertial strapdown system
has been implemented inside of the filter. This strapdown
system integrates the IMU measurements to create estimates of
velocity, position, and orientation. While the IMU integration
is very accurate over short time periods, measurement errors

can quickly accumulate, resulting is significant estimation drift
over time. To counter this drift, additional sensor are used
to aid the inertial strapdown at lower frequencies. Global
measurements, such as GPS or magnetometer readings, are
typical aiding sources, though the use of vision as an aiding
source has become common. For this simulated example,
the low-frequency visual odometry measurements serve the
purpose of strapdown aiding. Though this significantly limits
the state estimate drift, visual odometry measurements them-
selves provide only relative pose information. Consequently,
significant state estimation errors can accumulate over long
time horizons.

The filtering estimates can be improved by incorporating
the longer-term loop closure constraints into the smoother.
For the concurrent filtering and smoothing example, the filter
has been designed to send the summarized states associated
with the visual odometry frames to the smoother. When a
loop closure constraint is identified, it is sent to the smoother.
Once the smoother has recalculated the trajectory using this
new constraint, the filter and smoother are synchronized, as
described in Section V-C. While the smoother is recalculating,
the filter continues to process the IMU measurements and
produce updated state estimates in real-time.

Figures 5-7 show a comparison of the estimation errors
produced from the filter only, the concurrent filtering and
smoothing system, and a full batch optimization. The filtering
only solution uses the inertial strapdown with the visual
odometry aiding; no loop closures are incorporated. This rep-
resents a typical navigation filtering solution. The concurrent
filtering and smoothing results use the inertial strapdown with
the visual odometry aiding on the filtering side, while loop
closure constraints are provided to the smoother. Unlike the
filtering solution, long-term loop closures at arbitrary positions
along the trajectory can be incorporated without affecting the
time of the filter. Finally, a series of full batch optimizations
have been performed. Each state estimate within the batch
trajectory results from a full, nonlinear optimization of all
measurements up to the current time. This trajectory captures
the best possible state estimate at each time instant using only
measurements available up to that time.

The concurrent filtering and smoothing system is able to
correct the estimated trajectory using loop closure constraints,
approaching the performance of full batch optimization. How-
ever, unlike batch approaches or even recent incremental
smoothing techniques, the update frequency of the filtering
portion of the concurrent system is unaffected by the incor-
poration of these large loop closures. Real-time performance
is achieved on the filtering side, with state updates from the
sensor measurements and synchronization updates from the
smoother requiring less than 1ms on average, well below
the 10ms between sequential IMU readings. Timing was
performed on a single core of an Intel i7-2600 processor
with a 3.40GHz clock rate and 16GB of RAM memory.
Figure 8 displays histograms of the actual calculation times
for the constant-time filter updates and the filter-smoother
synchronization times for the simulated example.
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Figure 5. Position estimation errors produced by a filter only, the concurrent
filtering and smoother, and a full batch optimization.
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Figure 6. Velocity estimation errors produced by a filter, the concurrent filter
and smoother, and a full batch optimization.
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Figure 7. Rotation estimation errors produced by a filter, the concurrent filter
and smoother, and a full batch optimization.
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Figure 8. Histograms of the filter update delay and the filter-smoother
synchronization delay for the simulated example. All times are well below
the 10ms between sequential IMU updates.

VII. CONCLUSION

We presented a novel navigation algorithm that combines
constant time filtering with the loop closing capabilities of
full trajectory smoothing. Using the Bayes tree and choosing a
suitable separator allows us to parallelize these complimentary
algorithms. Smoothing is performed in an efficient incremental
fashion using iSAM2. After each iteration, synchronization
with the filter takes place, allowing information from loop
closures to be rapidly incorporated into the real-time fil-
tering solution. The validity of the proposed approach was
demonstrated in a simulated environment that includes IMU,
visual odometry and camera-based loop closure constraints,
and compared to both a filter and a full batch optimization.

While the computational complexity of the filter is constant
in time, the smoother grows unboundedly, which can be
addressed in a number of ways. One solution is to drop old
states, which is similar to fixed-lag smoothing methods, but
allows for optimization and loop closures over much larger
time windows because of the parallelization. Another approach
that has been proposed in the SLAM community is to sparsify
the trajectory over time.

While not addressed here, multi-rate and out-of-sequence
measurements can be handled similar to fixed-lag smoothing
approaches in the literature [32], by keeping multiple recent
states in the filter instead of just the most recent one.

Marginalization combines linearized factors in the filter,
making it difficult to perform relinearization in the smoother.
Solutions exist in the presence of only pairwise constraints,
such as the lifting of factors described in [12]. We expect
that similar methods can be developed for more complicated
factors such as IMU with bias estimates. Ongoing research
is investigating the integration of the concurrent smoothing
and filtering algorithm with a generic plug-and-play navigation
architecture that incorporates IMU measurements in real-time.
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