
Evaluating the Performance of Map

Optimization Algorithms

Edwin Olson, University of Michigan

Michael Kaess, MIT

Abstract— Localization and mapping are essential capabilities
of virtually all mobile robots. These topics have been the focus of a
great deal of research, but it is not always easy to tell which meth-
ods are best. This paper discusses performance evaluation for an
important sub-problem of robot mapping, map optimization. We
explore aspects underlying the evaluation of map optimization
such as the quality of the result and computational complexity.
For each aspect we discuss evaluation metrics and provide specific
recommendations.

I. INTRODUCTION

Virtually all mobile robots require some form of mapping

or localization, whether for obstacle avoidance, path planning,

or building models of the environment. The central importance

of this problem has attracted a great deal of research (see [1],

[2], [3] for good surveys). However, it is often difficult to

determine which methods are better than others. In turn, this

makes it difficult for consumers of these methods to make

good choices.

Evaluating mapping methods is difficult because the map-

ping problem is not really a single problem, but really a

number of sub-problems, each of which has a significant effect

on the quality of the final result. To produce a final map from

low-level sensor data, for example, a researcher might first

extract features from LIDAR data, match those features from

different poses, reject outliers, and finally compute a posterior

map. Each sub-problem is itself the subject of active research,

and researchers may approach each sub-problem differently.

Making the problem worse, different researchers may decom-

pose the problem differently, for example replacing feature-

matching and explicit data association with direct pose-to-pose

scan matching.

The consequence of these issues is that comparing the

end-to-end performance of two systems is not particularly

illuminating: differences in end-to-end performance could be

the result of any one of the processing stages, and there is

generally little indication as to which.

An ideal evaluation mechanism would allow direct com-

parison between different approaches. Given the challenges

outlined above, it seems unlikely that a perfect benchmark

exists. Still, good (though perhaps imperfect) metrics are worth

pursuing.

One reasonable approach is to develop evaluation methods

for each of the sub-problems individually. A single module

can then be tested in isolation. Ideally, other researchers

could similarly test their own modules, allowing apples-to-

apples comparisons. The challenge is that designing good

Fig. 1. Example pose/feature graph. The map optimization problem can be
represented as a graph whose nodes represent robot poses and landmarks.
Edges encode uncertain geometrical relationships between nodes. The figure
shows a portion of the Victoria Park dataset. Landmarks, depicted in the figure
as stars, are trees extracted from a LIDAR dataset.

performance metrics—even for just a single sub-problem—

is difficult.

In this paper, we focus on the map optimization sub-

problem. Even within this limited scope, there is no single

accepted set of evaluation metrics. Should algorithms be com-

pared based on the quality of the map they produce, the time it

takes them to produce a reasonable map, or their robustness to

poor initial estimates? Methods can be categorically different

as well: some methods might be designed for batch operation,

while others are intended for online use.

We describe multiple aspects of map optimization perfor-

mance in this paper and discuss evaluation metrics for each

one. We also provide recommendations for how to proceed

with performance evaluation. For completeness, after a dis-

cussion of related work, we start with a short introduction of

the map optimization problem.

II. RELATED WORK

While there are few widely-used benchmarks in mapping,

other disciplines have succeeded in establishing common

benchmarking standards and datasets. These have enabled

direct performance comparisons between different researchers’

approaches and have generally contributed towards methodical

and systematic improvements. While it can be argued that

these benchmarks encourage trivial and incremental improve-

ments (or even tuning for the benchmarks themselves), there

is considerable value in having an objective evaluation metric,

even if it is imperfect.

For dense stereo algorithms, for example, the Middle-

bury stereo dataset [4] at http://vision.middlebury.

edu/stereo/ provides several left and right camera images;

the task is to compute the disparity map. Ground truth is

provided, along with specific instructions on how performance

should be measured. Having several datasets conforming to

the same input format, along with a strict prohibition on per-

dataset tuning, limits the effectiveness of optimizing for the

benchmark. In contrast, the mapping community does not have

a similar set of coordinated datasets, and per-dataset tuning is

generally considered inevitable1.

The Middlebury dataset goes further, adding an automated

evaluation system. Authors of new algorithms upload their

results, and the system automatically evaluates and ranks them

against other known algorithms. For one of the test problems,

ground truth is known only by the evaluation system: this

further combats tuning.

The Caltech 101 computer vision dataset [5] is another

example of an performance benchmark. This dataset con-

tains 9,144 images belonging to 101 object classes (such as

“crocodile”, “airplane”, etc.) The task is to identify the cate-

gory of each image. Ground truth, including hand-annotated

object outlines, is provided.

The robotics community has been working towards bet-

ter performance evaluation, primarily through the sharing of

datasets. However, while commonly-available datasets (e.g.

Radish [6], or the recently proposed “data papers” [7]) are

very useful, they generally are not, in themselves, benchmarks.

These datasets do not specify a particular task, much less a

specific evaluation criterion. These datasets often lack ground

truth (generally because there’s no obvious way to obtain

ground truth), which makes it difficult to devise good metrics.

Still, these are a step in the right direction.

For many sub-problems in the robotics mapping domain,

there is no general consensus regarding which performance

metrics to use. While this paper attempts to address this issue

for map optimization, other aspects of the mapping problem

pose challenges as well. With data association, for example,

there is no general consensus on which statistics to report,

or how much an algorithm should be penalized for a false

positive. Within the last year, however, Udo Frese has made

available an excellent dataset for data association that contains

ground truth.

III. PROBLEM FORMULATION

In this paper, we consider the specific sub-problem of map

optimization. That is, we assume that earlier stages of sensor

processing have already completed correctly, including feature

1Since any two robotics datasets may use different robots, different sensors,
use different coordinate system conventions, and/or operate in dramatically
different environments, it is reasonable to allow essential parameters to be
adjusted. A coordinated dataset in which these essential parameters were
provided in a consistent manner would allow a prohibition on tuning.

detection, matching (loop closing), and outlier rejection. The

task is to compute a posterior map given this data.

Computing a posterior map can be naturally cast as a non-

linear optimization problem. The parameters being optimized

are the positions of the robot and/or features in the environ-

ment; these parameters are optimized so that they are in the

best possible agreement with the robot’s observations.

An observation is information about the relative position

of two state variables. For example, the robot might mea-

sure that the distance between it and a nearby landmark

is approximately 5 meters with a variance of 1 meter. The

robot’s position and the position of the landmark are the

state variables, and the observation is the uncertain distance

between them.

For the ith observation, let zi represent the observed quan-

tity, fi represent the observation function (which predicts the

value of the observation given the current state estimate), and

Σi represent the uncertainty of the observation. The χ2 error

for a single observation is a measure of how well the current

state agrees with the observation, and can be written in terms

of the state estimate x. The χ2 error is the squared error times

the inverse of the uncertainty:

χ2

i = (zi − fi(x))T Σ−1

i (zi − fi(x)) (1)

Given a number of observations, the total cost is simply the

sum of the χ2 errors of each observation:

χ2 =
∑

i

(zi − fi(x))T Σ−1

i (zi − fi(x)) (2)

Minimizing the χ2 error is explicitly the objective of the

optimization: smaller values indicate that the state vector is in

better agreement with the observations.

The structure of this optimization problem is well repre-

sented as a pose/feature graph. In this graph, nodes represent

disjoint subsets of the state vector corresponding to positions

in space (the locations of the robot and the landmarks), and

edges represent observations relating the positions of pairs

of locations. The pose/feature graph interpretation is quite

general2 and lends itself to a natural visualization of the

problem (see Fig. 1).

This pose/feature graph formulation, while arising out of

more recent work in the field, is applicable to virtually all

map optimization algorithms. Even those methods that are

not based on this formulation can be viewed as optimization

algorithms for pose/feature graphs. Take, for example, the

Extended Kalman Filter (EKF). It can be viewed as a graph

optimization algorithm that incrementally processes one obser-

vation at a time, minimizing the χ2 error for those observations

it has seen. While the EKF traditionally marginalizes out

2We note that the pose/feature graph is not perfectly general. A single
observation that simultaneously relates three or more nodes does not have a
pose/feature graph representation, even though such an observation could be
represented by Eqn. 2. “Unary” constraints, such as those arising from GPS
observations, can be handled in a pose/feature graph representation by adding
an additional node that represents a fixed reference point.

2

historical robot poses, these poses can be recovered. As a

result, χ2 values can be computed for the EKF that are directly

comparable to that of other algorithms.

The generality of the pose/feature graph formulation moti-

vates the use of it as the canonical formulation when compar-

ing optimization methods.

IV. MAP QUALITY

Perhaps the most obvious performance metric is the quality

of the posterior map. Since the problem is defined in terms

of χ2 error (as in Eqn. 2), it is natural to compare two

optimization methods based on the χ2 error of the maps

that they produce. In this section, we describe some of the

limitations of χ2 error as a performance metric, and detail a

complementary metric that is often helpful. We also illustrate

that the map optimization problem is subject to overfitting,

and discuss how this affects performance evaluation.

A. The limitations of χ2

By definition, the optimal map is the map whose χ2 is

a global minimum. But suppose that we are given two sub-

optimal maps: how do we know which of those maps is better?

Why do we care about comparing the quality of sub-optimal

maps? First, many map optimization algorithms produce sub-

optimal estimates by design, such as the Extended Kalman

Filter and its information-form variants: they are sub-optimal

due to linearization approximations. Sub-optimal estimates

are also computed by a number of non-linear optimization

methods that cut edges (e.g., TreeMap [8] and Thin-Junction

Trees [9]) and those that are based on stochastic gradient

descent [10]. Second, even those algorithms that can produce

optimal maps take time to do so. Along the way, they produce

intermediate results that we want to evaluate.

The critical limitation of χ2 error is that a map with small

χ2 error is not necessarily better than a map with a larger

χ2 error. At first, this may seem odd. In the end, our goal

is to produce the optimal map, or a map that is as similar to

it as possible. The key issue is what we mean by “similar”.

The goal of mapping is to produce maps in which the relative

positions of poses and landmarks is as close as possible to the

optimal values. Thus, we must measure the similarity of two

maps by comparing the positions of the poses and features,

not by comparing the χ2 error. For example, it is possible for

a map with a small χ2 error to be severely distorted, while a

map with a larger χ2 is in better agreement with the optimal

map.

In Fig. 2 we see a simplified scenario where χ2 does not

tell the whole story. In this figure, we are estimating a single

value (the position of a one-dimensional robot along the x

axis, perhaps). The figure shows two different estimates, both

of which have the same χ2 error (as plotted on the y axis).

However, estimate number one is significantly closer to the

optimal value. Clearly, estimate one would be a better answer

than estimate two.

Even in this simple example, we see that this sort of behav-

ior arises from optimization surfaces with complex shapes.

In the map optimization problem domain, the optimization

surfaces can be very complex due to the highly non-linear

nature of the underlying observations. Many optimization

surfaces arising from mapping problems have long shallow

valleys where it is possible for the map to change dramatically

with very little effect on χ2.

This unintuitive behavior is further illustrated in Fig. 3. In

the figure, a map with low χ2 error is severely deformed in

comparison to a map with much larger χ2 error. If we compare

the positions of the individual poses in the map, we find that

the map with a small χ2 error has a very large mean squared

error and that the map with a larger χ2 error has a small mean

squared error relative to the ground truth.

Fig. 2. χ
2 error is not indicative of map quality. The χ

2 error of a state
estimate does not always indicate how close it is to the optimal value. In this
figure, two estimates have equal χ

2 error, but estimate 1 is much closer to
the optimal solution.

We believe that map optimization algorithms should report

the Mean Squared Error (MSE) of their maps with respect to

the optimal map, in addition to the χ2 error. Let x∗ be the

state vector of the optimal map, and x be some estimate of

that map. Naively, the mean squared error is simply (x−x∗)2.

To be clear, these state vectors contain the positions of poses

and features in the global coordinate frame. Of course, the χ2

error should also be reported: it is still highly relevant, since

minimizing it is the explicit optimization objective.

In fact, χ2 and MSE error describe orthogonal components

of solution quality. Consider the simple example in Fig. 2: the

MSE is a measure of the distance along the x axis, while χ2

is a measure along the y axis. This general idea extends to

higher-dimensional optimization problems.

Computing the MSE literally, as suggested above, is prob-

lematic in that it mixes units: position and rotational quantities

are summed together, which makes it more difficult to intu-

itively understand the result. Instead, we propose separately

reporting the mean squared error for position and rotation.

For our application, this produces two quantities, MSExy and

MSEθ.

In many mapping problems, the posterior map is under-

determined: if the whole map is subjected to a global rotation

and translation, the χ2 error is unaffected. This occurs when

the pose/feature graph contains only relative constraints; if

GPS data is available, this degeneracy does not exist.

If the map is under-determined, we cannot simply compute

the mean squared error metrics: we could end up with arbi-

3

Ground Truth

χ2 = 3.6

MSExy = 42.3

MSEθ = 0.075

χ2 = 33.2

MSExy = 0.44

MSEθ = 0.023

Fig. 3. χ
2 anomaly. χ

2 error is not always a good indicator of map quality. From a practical perspective, the right map is superior to the middle map,
despite the fact that the middle map has one-tenth the χ

2 error. The MSE metrics, in contrast, clearly identify the map on the right as being better than the
middle map.

trarily inflated values due to the unknown global translation

and rotation.

Our solution to this problem is to return the minimum

possible MSE: if we freely translate and rotate the whole

posterior map, what is the minimum attainable MSE? This

is equivalent to finding the rigid-body transformation that best

aligns the posterior map with the optimal map which has an

efficient solution [11] in closed form. Code to perform this

alignment is available from the authors’ website.

B. Overfitting

In many problems, the average node degree of the graph is

relatively low. In these cases, the numerical global minimum

often has a substantially lower χ2 error than the ground truth.

In other words, the optimization algorithm can perturb some

nodes in the graph in order to better fit the noise in the edges.

This overfitting is evident in Fig 4.

As in other regression domains, overfitting becomes less

of a concern as the number of observations (graph edges)

grows relative to the number of free variables (graph nodes).

Intuitively this makes sense: as the number of edges attached to

a node increases, it becomes harder to find ways to artificially

reduce the error of some edges without increasing the error of

other edges. Since the real-world purpose of map optimization

algorithms is to infer the true structure of the world, reducing

the χ2 error by overfitting the noise in the graph is not useful.

Overfitting can be a significant issue for graphs with an

average node degree of less than about 20 (see Fig. 5). This

figure plots the ratio of the numerically-optimized χ2 versus

the χ2 corresponding to the ground truth as a function of the

average node degree. When the average node degree is about

5, for example, it is possible to find a solution whose χ2 error

is only about 40% that of the ground truth.

This data was obtained using synthetic experiments so that

ground truth was known; results for each data point were

averaged over 15 randomly-generated graphs. Note that the

impact of overfitting can be predicted using only the average

node degree: factors such as the size of the graph and the noise

Fig. 4. Overfitting example. In this portion of the CSW synthetic dataset,
overfitting is clearly evident. The robot is moving in a grid world, yet
misalignment between nodes in the lower right is obvious. This portion of
the graph has a relatively small node degree.

level in the edges cancel out in computing the ratio. The figure

confirms this: it contains four plots corresponding to different

graph sizes and noise levels. The overfitting behavior (when

plotted versus average node degree) is consistent across all

four experiments.

The overfitting issue must be considered when evaluating

map optimization algorithms. When the average node degree

is small and two methods’ χ2 values are compared, the lower

χ2 error does not necessarily correspond to the better map. The

lower χ2 value may simply represent over-fitting to the noise

in the problem, and may be of little practical significance.

Our Recommendations

• Experimental results should explicitly indicate the aver-

age node degree, since this quantity conveys significant

information about the problem, both in terms of difficulty,

and susceptibility to over-fitting.

• When available, the χ2 error corresponding to the ground

truth should be given along side the χ2 of the map opti-

4

0 10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average node degree

R
a
ti
o
 o

f
m

in
im

u
m

 e
rr

o
r

to
 g

ro
u
n
d
 t

ru
th

 e
rr

o
r

Fig. 5. Overfitting impact. This figure shows the ratio of the minimum χ
2

value (as found by LU decomposition) versus the χ
2 error for the ground truth

for a large number of randomly generated synthetic graphs. As the average
node degree increases, overfitting becomes less of a factor. Four different
trends are plotted for graphs with orders of magnitudes differences in number
of nodes and noise levels: agreeing with theoretical prediction, the impact of
overfitting is independent of these factors.

mization algorithm. If χ2 is being plotted (as a function of

computation time, for example), we recommend plotting

the ground truth χ2 as a horizontal line on the same plot.

• MSE, along with χ2 should be used when describing the

quality of a partially-converged map.

• Consumers of map optimization algorithms should take

overfitting into account when selecting methods.

V. COMPUTATIONAL PERFORMANCE

Computational performance is one of the most important

aspects of robot mapping systems, as it determines if the

system can even be used for a particular application, for exam-

ple under real-time constraints. But comparing computational

performance between different algorithms is difficult, not only

because of variations in the computers used by researchers, but

also because of the various speed/accuracy trade-offs made by

different algorithms.

A. Complexity Bounds

One way to report computational complexity is through

analytical complexity bounds, using big O-notation. These

principled bounds allow methods to be coarsely sorted into

different complexity classes and are independent of particular

datasets.

Most real-world data sets have structure that can lead to

lower bounds. One good example is the approximate pla-

narity of most pose/feature graphs [12]. It is important for

researchers to clearly distinguish between the actual worst-

case performance and the performance bounds arising from

their assumptions. Similarly, researchers should be careful to

indicate if their solutions are approximate.

Asymptotic complexity is a coarse characterization of per-

formance, since it ignores constant factors. It also does not

directly address the applicability of a method to real-time use,

since complexity bounds may represent amortized complexity.

 0

 0.5

 1

 1.5

 2

 2.5

 0 200 400 600 800 1000

T
im

e
 i
n

 s
e

c
o

n
d

s

Step

Execution time per step in seconds

A

B

C

No reordering
Always reorder

Every 100 steps

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 0 200 400 600 800 1000

T
im

e
 i
n

 s
e

c
o

n
d

s
 (

lo
g

 s
c
a

le
)

Step

Execution time per step in seconds - log scale

A

B

CNo reordering
Always reorder

Every 100 steps

Fig. 6. Example of step-by-step timing and comparison against a reference
algorithm, taken from [13]. Both linear (top) and log (bottom) scale are shown,
comparing the iSAM algorithm (blue) with the batch SAM algorithm (green)
and a naive incremental implementation (red).

B. Experimental Evaluation

Often an actual measure of the real computational cost of an

algorithm on sample data is the only way to directly compare

similar algorithms. Batch methods are generally easier to

compare: plotting χ2 and MSE as a function of computational

time, is generally very descriptive. Online algorithms pose

additional challenges.

Amortized cost is a useful concept for describing complex-

ity. However, the actual variation of runtime at each step can

significantly impact the applicability of the method to real-

world robots. An algorithm with an amortized runtime of

O(n) per step might periodically require O(n2) computations,

for example. From a practical system building perspective,

the fact that the algorithm has a low amortized runtime isn’t

particularly helpful: the CPU sits nearly idle most of the time,

but is periodically overwhelmed. Reporting amortized cost is

certainly appropriate, but the worst-case costs per step may be

of greater practical concern to users of the algorithm.

To illustrate the time-varying CPU costs of an algorithm,

we recommend plotting the per-step cost over time, as in

Fig 6. However, the temptation to “eyeball” such a plot in

order to claim an asymptotic complexity bound should be

resisted. First, these plots generally reflect the behavior of the

algorithm on a single dataset and thus cannot be relied upon

for asymptotic bounds. Second, the actual asymptotic behavior

may not be evident over the limited duration of the experiment.

C. Accounting for Hardware Differences

Comparing computational cost between different platforms

is not an easy task, as it is influenced by a large number of

5

factors. The most obvious factor is the type and clock speed

of CPU used. However, many other factors play a role in the

actual computation time, such as the system bus speed, cache

size, compiler, and the use of architecture enhancements (such

as multimedia instructions).

Even if the algorithm itself appears to be single-threaded,

applications may inadvertently benefit from other cores. When

applications call external libraries (e.g., BLAS, Boost, IPP,

or OpenCV), they may unknowingly be making use of addi-

tional cores on their CPU. Graphics processors (GPUs) can

also be used to accelerate both robotics algorithms [14] and

math libraries in general; as time progresses, libraries may

automatically make use of this hardware as well. As a result,

the runtime performance of an algorithm may be dependent on

both the CPU and GPU. Authors should be especially careful

to identify these situations and to provide all of the relevant

specifications of their computers.

Still, it seems inevitable that no two researchers will be

able to exactly replicate each other’s performance results due

to the large number of factors. One possible approach is for re-

searchers to provide relative performance data, comparing their

own method to other “standard” algorithms. This approach is

not without its challenges, as we discuss below.

An alternative is for researchers to establish centralized

performance testing systems, similar to the Middlebury dataset

[4]. But in contrast to the Middlebury dataset that only tests

for quality, a computational cost evaluation would require sub-

mitting a statically linked executable for a specific platform,

or a platform-independent implementation such as Java. This

provides a partial solution to the problem, but is also fairly

limiting.

D. Reference Algorithm

Another way to compare different methods is to implement

the various algorithms and directly compare them on the same

hardware. However, implementing well-optimized versions

of other researcher’s methods can be challenging and time

consuming: experience with the intricacies of the algorithm

can be critical in order to produce representative results.

An alternative is to use source code published by other

researchers. This doesn’t necessarily enable fair comparisons

either, as it tends to favor existing methods that have been

laboriously optimized.

Some baseline methods are conceptually simple and rel-

atively easy to implement, such as Gauss-Seidel. Sparse

permuted Cholesky decomposition is conceptually simple,

and depending upon the availability of a well-written sparse

matrix library package, could serve as a very good baseline

performance metric3. See Fig 6 for an example of a graphical

comparison to a baseline algorithm.

3Sparse permuted Cholesky decomposition is particularly sensitive to the
implementation details of the matrix library. Even subtly sub-optimal methods
can significantly inflate the runtime of the algorithm. In particular, variable
reordering via a method like COLAMD is critical; see [13] for additional
information.

Fig. 7. Local Minimum. On the gridworld CSW dataset, Gauss-Seidel
relaxation becomes stuck in a local minimum. Early iterations of the algorithm
resulted in large and erratic changes to the state variables, creating a “knot” in
the robot trajectory (note the oddly oriented nodes in the center of the figure).
Gauss-Seidel will never be able to escape this local minimum.

Our Recommendations

• Theoretical complexity bounds should be specified when-

ever possible. These bounds should reflect actual worst-

case performance on the worst possible input. If lower

bounds are possible given specific assumptions (e.g.

graph planarity, limited observation range), authors

should clearly specify these assumptions along side their

lowered bounds.

• If the optimization algorithm produces sub-optimal maps,

this should be clearly stated along side the complexity

bound.

• Experimental results should include overall execution

time for batch methods, and amortized and worst-case

time per step for online methods, together with all rel-

evant hardware information. At a minimum, this should

contain the processor type and frequency.

• Timing results for a simple reference algorithm on the

same data and hardware should be provided for compar-

ison.

VI. ROBUSTNESS EVALUATION

It hardly matters how fast a map optimization method is

if it does not find the correct answer. Methods can become

trapped in local minima, and these local minima can reflect

significant deformations of the correct map. Of course, when

the global minimum is known, it is easy to determine when

an algorithm has become stuck in a local minimum: the χ2

error will be too high. In general, algorithms are more likely to

become stuck in local minima when there is significant noise

in the observations and/or the initial estimate is poor.

Evaluating robustness requires implementers to try their

methods on a large number of inputs: success on a single input,

even a “difficult” input, is at best anecdotal. The behavior of

the algorithm must also be characterized over a range of noise

levels.

Using a synthetic problem generator, a large number of

datasets can be generated. A new method can be compared to

6

an existing baseline method by plotting, as a function of noise

level, the fraction of the datasets in which the method found

the global (and not a local) minimum. In such an experiment,

each algorithm should be allowed to run to convergence, and

some χ2 or MSE tolerance should be allowed so as to not

penalize methods that do not generally find the numerical

minimum, even though they may find the basin of the global

minimum.

Our Recommendations

• The robustness (or tendency to find the global minimum)

of optimization algorithms is an important performance

criterion and should be evaluated for new methods.

• A large number of synthetic data problems (thousands)

should be generated, spanning a range of noise levels. The

fraction of problems solved at each noise level should be

plotted.

• Results for a baseline algorithm should also be provided.

VII. CONCLUSION

We have described performance evaluation metrics for map

optimization, identifying shortcomings in traditional metrics

like χ2, and suggesting effective ways of presenting results.

In the future, we plan to assemble a benchmark dataset

for map optimization, modeling it (in part) on the successful

benchmarks found in related fields.

Of course, map optimization is just one part of the mapping

problem. Other parts, like feature detection and loop closing,

would also benefit from the development of better evaluation

metrics and benchmark datasets.

REFERENCES

[1] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. The MIT
press, Cambridge, MA, 2005.

[2] H. Durrant-Whyte and T. Bailey, “Simultaneous localisation and map-
ping (SLAM): Part I the essential algorithms,” Robotics & Automation

Magazine, Jun 2006.
[3] T. Bailey and H. Durrant-Whyte, “Simultaneous localisation and map-

ping (SLAM): Part II state of the art,” Robotics & Automation Magazine,
Sep 2006.

[4] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms,” International Journal of

Computer Vision, vol. 47, no. 1, pp. 7–42, May 2002.
[5] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object

categories,” IEEE Transactions on Pattern Analysis and Machine In-

telligence, vol. 28, no. 4, pp. 594–611, April 2006.
[6] A. Howard and N. Roy, “The robotics data set repository (Radish),”

2003. [Online]. Available: http://radish.sourceforge.net/
[7] P. Newman and P. Corke, “Editorial: Data papers – peer reviewed

publication of high quality data sets,” International Journal of Robotics

Research, vol. 28, no. 5, p. 587, May 2009.
[8] U. Frese, “Treemap: An O(log n) algorithm for simultaneous localiza-

tion and mapping,” in Spatial Cognition IV, C. Freksa, Ed. Springer–
Verlag, 2005, pp. 455–476.

[9] M. Paskin, “Thin junction tree filters for simultaneous localization and
mapping,” University of California, Berkeley, Tech. Rep. UCB/CSD-02-
1198, September 2002.

[10] E. Olson, J. Leonard, and S. Teller, “Fast iterative optimization of
pose graphs with poor initial estimates,” in Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA), 2006,
pp. 2262–2269.

[11] B. K. P. Horn, “Closed-form solution of absolute orientation using unit
quaternions,” Journal of the Optical Society of America. A, vol. 4, no. 4,
pp. 629–642, Apr 1987.

[12] P. Krauthausen, F. Dellaert, and A. Kipp, “Exploiting locality by nested
dissection for square root smoothing and mapping,” in Proceedings of

Robotics: Science and Systems (RSS), 2006.
[13] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Incremental smooth-

ing and mapping,” IEEE Transactions on Robotics”, vol. 24, no. 6, pp.
1365–1378, Dec 2008.

[14] E. Olson, “Real-time correlative scan matching,” in Proceedings of the

IEEE International Conference on Robotics and Automation (ICRA),
May 2009.

7

