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ABSTRACT

We describe a supervised learning procedure for estimating the relation between a set of local image features
and the local optimal parameters of an adaptive bilateral filter. A set of two entropy-based features is used to
represent the properties of the image at a local scale. Experimental results show that our entropy-based adaptive
bilateral filter outperforms other extensions of the bilateral filter where parameter tuning is based on empirical
rules. Beyond bilateral filter, our learning procedure represents a general framework that can be used to develop
a wide class of adaptive filters.
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1. INTRODUCTION

Bilateral filtering (BF) smooths an image while preserving strong edges.1 It has been used in applications ranging
from image denoising2 to edge enhancement,3 exposure correction,4 and tone mapping.5 To preserve edges and
reduce noise, BF uses the weighted sum of the pixels in a local neighborhood, where weights depend on both the
spatial and intensity distance. More specifically, the output of the filter in position x, d(x) is given by:

d (x) =

∑
y∈N(x) e

− ||y−x||2

2σ2
d e

− ||t(y)−t(x)||2

2σ2r t(x)∑
y∈N(x) e

− ||y−x||2

2σ2
d e

− ||t(y)−t(x)||2
2σ2r

, (1)

where t(x) is the noisy image, N(x) is the neighborhood of x, and σd and σr are the filter parameters that
control the fall-off of the weights in the spatial and intensity domains. Improvements to basic BF include
Adaptive Bilateral Filter (ABF) that adapts the filter parameters to the global2 or local characteristics of the
image.2,6

Based on the experimental results obtained on a large set of natural images, Zhang and Gunturk2 reported
that the optimal σd value is relatively insensitive to the noise standard deviation σn and it is generally in the
range [1.5 − 2.1], while the optimal σr is approximately linearly related to σn. This allows setting a global,
reasonable σr value for an image corrupted by noise with known standard deviation σn, but the same authors
suggested that future research should look for spatially adaptive parameters selection. In the same paper and
based on their empirical rule for setting σr and σd, Zhang and Gunturk2 combine wavelet-based multiresolution
analysis and bilateral filter to get an adaptive filter, whose computational complexity is however larger than
that of the original BF. Furthermore, the optimal value for σd is likely to be a function of the image size and
resolution, although this has not been deeply investigated by the authors. Another interesting attempt to develop
an ABF is described by Qi et al.,6 where σd is fixed as suggested by Zhang and Gunturk,2 while σr is modulated
across the image as a function of the global noise variance and the local signal standard deviation. The intuition
behind this empirical rule is that close to the edges the intensity domain of the filter should be small to collect
only those data that belong to the same grey level cluster, thus preserving the local edge. In this sense, the
local variance of the image can be regarded as a local feature that guides the behavior of the filter. Similar
approaches have been described also by Zhang and Allebach,3 where the characteristics of the filter are locally
tuned to suppress noise and enhance edges, as well as by Wong,7 where local phase coherency is measured and
used to roughly identify edges and consequently modulate σd and σr across the image.
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In all the cases described above, empirical rules derived from intuition and experience are employed to
determine the “sub-optimal” relation between the local characteristics of the image and the parameters of ABF.
This is, however, an error-prone procedure, because of the unavoidable approximations in the signal and noise
models, and because of the difficulty of catching the complex relations between large sets of parameters, image
features, and the filter output.

Machine learning can be used to avoid these issues and learn the relation between the characteristics of a
given image and the optimal filter parameters at a local scale. Such approach has already been employed by
Hammond and Simoncelli,8 where a spatially varying decision function learned from the image data (minimizing
a weighted least-squares error function) was used to properly mix the outputs of two sliding wavelet denoising
filters, achieving an image quality superior to either method. Similarly, in Zhu and Milanfar,9 spatially variant
filter parameters are modulated based on a training procedure. We developed a learning procedure which is
characterized by a far more general formulation with respect to these approaches; this makes it potentially useful
for the development of a large class of adaptive filters. The method builds a set of entropy-based local image
descriptors, extracted from the noisy image and used to modulate σr and σs across the image. A supervised
learning procedure is then used to estimate the parameters of a logistic function that relates the local image
characteristics with the optimal filter parameters. We provide a detailed validation of the learning framework,
applied to the specific case of BF. The filter developed with the proposed framework will be indicated as Entropy-
based Adaptive Bilateral Filter (EABF). Experiments performed at different noise levels demonstrate that this
learning procedure produces significant improvement at any noise level, with the most significant improvements
achieved for high noise levels. In Sec. 4, we analyze in detail the difference between the parameter modulation
strategy learned within our framework and the empirical ones proposed by Qi et al.6 and by Zhang and Gutur-
nuk.2 Finally, we perform an extensive comparison of the filter output demonstrating that EABF outperforms
both traditional BF and some of its recently proposed variants.

2. METHOD

2.1 A general framework for developing adaptive filters

An adaptive version of BF, ABF, is obtained using different values of the filter parameters for each pixel, i.e.,
by defining two maps σd = σd(x, y) and σr = σr(x, y). We illustrate a general supervised learning method for
developing an adaptive filter, that in the specific case of EABF permits map estimation using the local properties
of the image in position (x, y). We adopt the following notation:

• For each pixel (x, y), fx,y =
[
f0x,y f

1
x,y ... f

F−1
x,y

]T
is a vector with F scalar features describing the local

image characteristics; the first element of fx,y is equal to one, f0x,y = 1. The actual features used for EABF
are described in Sec. 2.3.
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[
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1
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contains the P parameters of the adaptive filter in (x, y); for EABF,

P = 2, p0x,y = σr(x, y) and p1x,y = σd(x, y).

• A logistic function relates ppx,y and fx,y as:
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where θp =
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θ0p θ
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p

]T
contains F unknown elements and each ppx,y takes a value between ppMin and

ppMax. The complete vector is θ = [θ0 θ1 ... θP−1]
T

.

• {tj}j=0..M−1 is a set of M noise-free training images; {tjn}j=0..M−1 is the corresponding set of noisy images,
obtained by corrupting each tj by Additive Gaussian White Noise (AWGN) with standard deviation σn.
Notice that here and in the following we use the vectorized, 1D representation of a 2D image.

• The EABF filter produces a denoised image dj = dj
(
tjn,θ

)
from tjn; the filtering parameters σd(x, y) and

σr(x, y) for the pixel (x, y) are obtained from fx,y, θ, and Eq. 2.



• E = E
(
{tj}, {tjn},θ

)
is a cost function, typically related to the quality of the denoised images. We define

E = −
∑M−1
j=0 PSNR(dj , tj), where PSNR(u,v) is the Peak Signal-to-Noise Ratio of u and v.

The supervised learning procedure consists of the minimization of E = E
(
{tj}, {tjn},θ

)
with respect to θ.

After this step, the estimated θ and Eq. 2 can be used to compute px,y for each pixel of any image, out of the
training set.

2.2 Optimization

Because of the non-linearities in E as well as in the filtering procedure, a closed-form solution to identify the
value of θ associated to the minimum of E is not available and an iterative optimization algorithm is required.
We use the steepest-descent method,10 where the value of θ at the kth iteration, θk, is updated as:

θk+1 = θk − µ∂E
∂θ

∣∣∣∣
θk
, (3)

where 0 < µ < 1 is a small damping parameter. However, analytical computation of the derivatives of E with
respect to θ is generally hard or even not feasible. To overcome this issue, we numerically approximate ∂E/∂θ|θk
by sampling E in E

(
{tj}, {tjn},θ

k + δθk
)

for PF different small values of δθk.10 Notice that this is generally

computationally intensive, as it requires applying the filter and computing the cost function PF times for each
of the M images of the training set, for each iteration. To avoid overfitting, we employed an additional set of

N images for validation, {vj}j=0..N−1. At each iteration, the cost function E
(
{vj}, {vjn},θ

k
)

is evaluated on

this set of images; at the end of the learning procedure, the θk associated to the lowest E
(
{vj}, {vjn},θ

k
)

is

selected. This prevents identifying θk which is optimal for the training set, but does not generalize well to other
images.

2.3 Entropy-based local image descriptors

Local image descriptors are necessary to properly guide the modulation of the filtering parameters across the
image. Entropy-based image descriptors have already been applied for texture classification,11 edge detection,12

and development of adaptive filters based on local image content.13 We introduce two entropy-based features
that can be used in fx,y for EABF. Let us first introduce the Shannon’s entropy of a vector i of integers (in the
range [0, B]):

ei = −
B∑
h=0

log2(p(h)) p(h), (4)

where p(h) is the probability of h in i. The entropy is minimal (ei = 0) when all the elements share the same
value h (i.e., p(h) = 1 for that h), and it is maximal (ei = log2(B + 1)) when p (h) has a uniform distribution.
Entropy can be used to describe the local characteristics of an image i (x, y) as described below.

Let us define the gradient image as g (x, y) =
√
ix(x, y)2 + iy(x, y)2, where ix(x, y) and iy(x, y) indicate the

gradient of the image in x and y directions (these are computed here as ix(x, y) = i(x, y) − i(x − 1, y) and
iy(x, y) = i(x, y)− i(x, y − 1)). For the noise-free images in Fig. 1a - 1d, Table 1 shows the entropies computed
for each image (ei) and for the corresponding gradient image (eg); eg = 0 for the flat and gradient area, where
the norm of the gradient is constant, whereas ei = 0 in the flat area and ei = 6.0 in the gradient area. Both ei
and eg are slightly larger in a textured area (Fig. 1c), where grey levels and gradient norms assume few (only
two in this example) different values because of the regularity of the texture. In the complex image including
edges and gradients (Fig. 1d), both ei and eg are high. These results suggest that the pair [ei, eg] can be used
to discriminate between flat, gradient, textured, and complex areas, at least in the absence of noise.

Let us assume now that the grey level image is corrupted by AWGN with variance σ2
n. The entropies of

the images in Fig. 1, after their corruption with AWGN, σn = 5, are reported in Table 1. Also in this case, eg
significantly increases for the gradient area with respect to the flat area, whereas both ei and eg slightly increase
from the flat area to the textured one. The entropies of the complex areas remain the highest even in a presence



Table 1: Entropies for the flat (F), gradient (G), textured (T), and complex (C) images shown in Fig. 1, corrupted
by AWGN with standard deviation σn, with and without grey level clipping.

σn 0 5 5
Clipping No No Yes

Type F G T C F G T C F G T C
ei 0.0 6.0 1.0 5.6 4.4 6.2 5.4 6.2 1.8 4.9 4.1 3.3
eg 0.0 0.0 1.2 5.5 4.2 4.2 5.6 6.5 3.2 4.0 5.4 5.5

(a) (b) (c) (d)

Figure 1: Panels (a-d) show a 128 × 128 flat, gradient, textured, and complex, noise-free area. Entropies for
these images are reported in Table 1.

of noise. Beyond noise, grey level clipping due to the limited sensor dynamics may occur in the brightest and
darkest areas of real images, leading to a loss of information content. Table 1 also shows ei and eg in the presence
of clipping (achieved in this case by shifting the grey levels of the noisy images by −32 grey levels and clipping
to [0, 255]).

Overall, Table 1 suggests that a vector [ei, eg] can be used to discriminate between flat, gradient, textured,
and complex images, even in the presence of grey level clipping and/or noise. To obtain a local description of an
image in terms of entropies, we therefore propose to compute ei and eg on a sliding window of size W ×W (here
the patch size W is 8) with a shift between consecutive windows of 2 pixels in each direction. To limit the effect
of noise, the image is pre-filtered with a moving average 3×3 filter before computing eg. For each pixel (x, y), the
final values ei (x, y) and eg (x, y) are obtained by averaging the value of ei and eg over all the patches including
the pixel (x, y). Figure 2 shows the computed entropy maps for the lena image, in absence and presence of noise.
Notice that, although high correlation exists between ei and eg, these also convey different information in some
parts of the image even in presence of noise (e.g., the face details are more evident in eg(x, y) than in ei(x, y) in
the noisy case).

2.4 Training, validation, and testing datasets

We built a training set {tjn}j=1..M composed of fifteen images taken from the McMaster14 dataset and twenty
images from the Kodak15 dataset, for a total of M = 35 training images. Three images from the McMaster and
three from the Kodak dataset were used for validation during the training procedure. Overall, the training dataset
included natural and artificial scenes, piecewise constant and texturized areas, as well as images characterized
by dominant frequencies both in the low or high range.

Similar to the results presented by Zhang and Gunturk2 and Qi et al.,6 we used for testing a set of well-
known images composed by barbara, boats, goldhill, house, lena, and peppers. Different levels of noise (σn =
{5, 10, 20, 30, 40}) were considered, clipping the image grey levels between 0 and 255 after adding the noise.
We trained our model using F = 3 features, (i.e., using the the image and edge entropy features introduced
before) through 1000 iterations of the steepest-descent algorithm; at the end of the training procedure, only
small changes in the value of θ were found between two consecutive iterations. The minimum and maximum
values of σd were set to 0.0 and 5.0, whereas for σr the minimum and maximum values were set to 1.0 and 6σn.



(a) ei(x, y), σn = 0. (b) eg(x, y), σn = 0. (c) ei(x, y), σn = 20. (d) eg(x, y), σn = 20.

(e) σn = 0. (f) σn = 20.

Figure 2: Local features ei(x, y) and eg(x, y) for the lena image, in absence and presence of noise. Panels (e)
and (f) show a false color representation of the same image, derived from ei(x, y) and eg(x, y), with and without
noise.

3. RESULTS

We have compared the results achieved by the EABF (rightmost columns in Table 2) with different implemen-
tations of BF. In particular, we first considered the empirical rule suggested by Zhang and Gunturk2 to set the
parameters of BF, where σr is computed as a linear function of σn as σr = 2σn, whereas σd = 1.8 independent
from the noise level. Results from this filter are reported in the second column of Table 2, and they represent
the typical image quality achieved by BF when parameter setting is performed through an empirical approach.
EABF achieves a PSNR which is on the average +1.02dB higher than that achieved by BF,2 with a maximum
improvement of 2.80dB for lena and σn = 40. The advantage of EABF with respect to BF2 is generally higher
for higher noise levels. Only for the barbara image and σn = 10, 20, 30 EABF achieves a PSNR which is lower
(−0.69dB in the worst case) than BF.2

A more challenging test for EABF was obtained comparing its output with the best output achievable by
BF. The best BF-filtered images were obtained by identification of the pair (σd, σr) that maximizes the PSNR
for each image in the testing set and for each noise level (this can be done by an extensive search or, within
the proposed learning framework, using F = 1 and a unique training image). The corresponding PSNRs are
reported in the first column of Table 2: as expected, these are always significantly higher than the PSNRs
achieved by BF,2 thus suggesting that the empirical rule for setting σd and σr produces only sub-optimal results.
Nevertheless, images filtered with EABF generally have a higher PSNR with respect to that produced by BF
and optimal parameter setting, with the only exception of barbara image. The average advantage of EABF with
respect to BF with optimal parameter setting is +0.33dB, with larger improvement generally obtained for higher
noise levels. Overall, EABF produces an average PSNR which is higher than the maximum PSNR achievable by
non-adaptive BF, thus demonstrating the large advantage of an adaptive filter over a non-adaptive one.

The third column in Table 2 reports the PSNR for the ABF filter proposed in by Qi et al.,6 where the value
of σr(x, y) is computed for each pixel from σn and the local variance of the signal, σs(x, y) (the exact equation
is reported in Table 2). EABF provides in this case a PSNR which is on the average 0.41dB higher (also in
this case the only exception is the barbara image), in this case independently from the noise level. These results



suggest that the proposed learning procedure can catch more complex relations between the filter parameters
(than the one adopted by Qi et al.6) and, therefore, better modulate them across the filtered images.

A more visual comparison of the results is illustrated in Fig. 3, which shows the ground truth and noisy
lena image, for σn = 20, and the same image, filtered with BF,2 σd = 1.8, σr = 2σn, with ABF,6 σd = 1.8,
σr = σ2

n/(0.3σs) and with EABF. Figure 3 also shows the residual noise for each filter, together with a zoom on
the eye area. For all the filters, the larger residual error is close to the edges of the image. For non-adaptive BF,2

the residual error (Fig. 3f) is higher in the flat areas (like the background or the shoulder skin) with respect to
EABF (Fig. 3l). This is explained considering that, for BF,2 the spatial extent of the Gaussian of the bilateral
filter is constant across the image (σd = 1.8), whereas EABF produces a smoother image in the flat areas by
adoption of a larger σd (approximately comprised between 1.8 and 2.6, see Fig. 4d). Comparison of the zooms
in the eye area shows more noise at high frequency for BF2 with respect to EABF.

Figures 3g-h show the output of ABF6 obtained with σd = 1.8 and σr = σ2
n/(0.3σs). Comparison with EABF

shows a larger error close to the edges for this algorithm with respect to the proposed one. This is evident in
Fig. 3h, where high-frequency noise is present in the eyebrow area, whereas this is filtered out by EABF (Fig. 3k).

Visual inspection of Fig. 4 highlights the different modulation of the filter parameters operated by Qi et al.’s
ABF6 and our EABF. It shows the σd(x, y) and σr(x, y) maps adopted by EABF and the σr(x, y) used by Qi
et al. Following the empirical rule proposed by Zhang et al., σr increases with the noise level for both EABF
and for ABF of Qi et al., which uses values of σr that are largely different in the same image, with lower σr in
the edge areas. On the other hand, the modulation strategy learned using our framework uses largely different
values of σd (which is generally smaller in the edge areas and larger in the flat zones), whereas σr is only slightly
reduced in the edge areas with respect to the flat ones. Overall, the learned parameter modulation strategy is
more complex than the empirical ones reported by Zhang and Gunturk2 or by Qi et al.,6 but also more effective
as demonstrated by the PSNRs reported in Table 2.

Figure 4 furthermore shows that the EABF modulation of σd(x, y) and σr(x, y) across the image produces
similar patterns independent from the noise level, although some of the image details are more evident for low
noise levels. This fact can be explained considering that high level of noise may significantly alter the vector of
features fx,y (see Fig. 2), leading to a less reliable description of the local image characteristics and therefore to
a less precise map for the filter parameters. Despite of this, the improvement for EABF with respect to BF2 and
ABF6 remains consistent even for high noise levels.

4. DISCUSSION

We have introduced a general framework for developing an adaptive filter, and we have successfully applied it to
the bilateral filter. The proposed framework is, however, more general, and it can be applied to any filter that
can be expressed in the form described in Sec. 2. We have illustrated the framework using BF because of the
wide applicability and simplicity of this filter.

The framework allows learning the relation between the local image characteristics, described by the feature
vector fx,y, and the “optimal” filter parameters for the pixel (x, y), p(x,y). Optimality is defined by the user-
defined cost function E = E({tj}, {tjn},θ) and it, therefore, represents a quite general concept in our framework.
Traditionally, the objective is the maximization of the image quality; this leads to a cost function similar to the
one based on PSNR we adopted to develop EABF. On the other hand, in applications such as mobile computing
it may be preferable to identify a trade-off between image quality and optimal usage of the limited hardware
resources (e.g., energy or bandwidth). Our framework supports this by a slight modification of the cost function:

E = E
(
{tj}, {tjn},θ

)
= −

M−1∑
j=0

PSNR(dj , tj) + λP
(
tjn,θ

)
, (5)

where P
(
tjn,θ

)
is a penalty term for filtering the image tjn using the filter parameters computed from θ and

Eq. 2, and it can represent computational cost as well as bandwidth use, memory utilization and so on, whereas
λ is a regularization parameter that fixes the weight of P with respect to the image quality term.



(a) Ground truth. (b) Ground truth—detail. (c) Noisy, σn = 20.

(d) BF,2 σd = 1.8, σr = 2σn, PSNR
= 30.02dB.

(e) BF2—detail. (f) Absolute residual error, BF.2

(g) ABF,6 σd = 1.8, σr = σ2
n/(0.3σs),

PSNR = 31.05dB.
(h) ABF6—detail. (i) Absolute residual error, ABF.6

(j) EABF, PSNR = 32.08dB. (k) EABF—detail. (l) Absolute residual error, EABF.

Figure 3: Panel (a) shows the ground truth lena image and panel (c) shows the same image corrupted by AWGN.
The rectangles in panel (a) (better visualized in electronic version) indicate the area used for additional analysis
of the modulation of the filter parameters (see Fig. 5). A zoomed detail in the eye area of the ground truth image
is shown in panel (b). The remaining panels in the leftmost column show the image filtered with BF,2 ABF,6

and EABF, with zooms in the central column. Panels in the rightmost column show the corresponding absolute
residual errors, filtered with a 7 × 7 moving average filter to better highlight the error distribution across the
different areas of the image (better visualized in electronic version).



(a) σd(x, y), EABF, σn = 5. (b) σr(x, y), EABF, σn = 5. (c) σr(x, y), ABF,6 σn = 5.

(d) σd(x, y), EABF, σn = 20. (e) σr(x, y), EABF, σn = 20. (f) σr(x, y), ABF,6 σn = 20.

(g) σd(x, y), EABF, σn = 40. (h) σr(x, y), EABF, σn = 40. (i) σr(x, y), ABF,6 σn = 40.

Figure 4: σd(x, y) and σr(x, y) for EABF and ABF,6 for the lena image and different noise levels. For EABF, σr
generally increases with σn, as empirically suggested by Zhang and Gunturk for BF.2 However, the parameter
modulation learned with our method prefers large variations of σd over changes of σr, differently from the rule
suggested by Qi et al. in their ABF.6



(a) σd(x, y) for the pixels in the rectangle in the background area. (b) σr(x, y) for the pixels in the rectangle in the background area.

(c) σd(x, y) for the pixels in the rectangle in the eye area. (d) σr(x, y) for the pixels in the rectangle in the eye area.

Figure 5: σd(x, y) and σr(x, y) vs. σn(x, y) for the pixels in the rectangles in the background and eye areas in
Fig. 3a, for BF,2 ABF6 and EABF. For both BF2 and ABF,6 σd is assumed to be constant, whereas our learned
modulation strategy for this parameter is described by a complex curve the shape of which changes at different
positions within the image. In the case of σr, the learned modulation strategy is characterized by an evident
non-linearity, which is not present in BF2 and less evident in ABF.6

Defining the training procedure in the context of machine learning offers a significant advantage over a
more traditional approach, where human intuition and experience lead to empirical rules for adapting the filter
parameters to the local image characteristics. Comparison with the works of Zhang and Gunturk2 and Qi et al.6

offers good examples of such advantage.

Based on the average results obtained by filtering 200 images with BF and different parameter sets, Zhang
and Gunturk2 first suggested that a good range for σd is roughly within the [1.5-2.1] interval. The σd = σd(x, y)
maps obtained with our method and illustrated in Fig. 4 for various noise levels suggest that such intuition is
mainly correct, although different areas of the images benefit from a choice of σd which is well outside these
boundaries (for instance, lower σd values should be used close to edges). Lower σd values also seem to be more
appropriate for very low noise levels (see Fig. 4a, as well as the optimal σd values reported for BF in Table 2).
Zhang and Gunturk additionally suggest that, once σd has been fixed, σn and the optimal value of σr are linearly
related, although the slope of the line relating these two parameters depends on σd. The analysis of the filtering
parameters obtained by the EABF in the rectangles in Fig. 3a, in the background and eye areas, confirms that



also this intuition is mainly correct, but EABF has the important advantage of automatically identifying the
proper slope (Fig. 5b) as well as catching the non-linear relation (Fig. 5d) between σr and σn. Figures 5a and
5c also show that assuming a constant value for σd over the entire image represents an excessive simplification,
as EABF uses significantly smaller values of σd in the eye area; furthermore, the relation of the optimal σd with
respect to σn is in this case non-linear and hardly identifiable using intuition. Overall, this analysis shows how
the proposed framework can identify complex, non-linear relations between the local image characteristics and
the optimal filtering parameters; accomplishing the same task using human intuition and experience appears
hard or even impossible, especially when filters more complex than BF are taken into consideration.

Another example of the advantages offered by the proposed learning procedure is evident by comparison with
the ABF filter proposed by Qi et al.,6 where σd is fixed and an empirical rule to modulate σr across the image
is used. This leads to the adoption of a σr(x, y) that increases with the image noise and it is generally much
smaller close to the edges than in the flat areas. Analysis of Fig. 4 shows that EABF learned a significantly
different parameter modulation strategy, where σr(x, y) largely increases with the noise level, but it only slightly
decreases in proximity of the edges, whereas σd(x, y) has large variations across the image and in particular
is smaller close to the edge and larger in the flat areas. The results in Table 2 demonstrate the superiority
of the learned parameters modulation strategy with respect to the empirical one proposed by Qi et al. This
furthermore shows the capability of the proposed learning procedure to catch complex relations between the
filtering parameters and the local image characteristics.

A deeper visual inspection of Fig. 4 finally reveals that the local variance computed as by Qi et al.6 is
characterized by a higher-frequency content with respect to the parameter maps obtained with the proposed
method. In the future we are therefore going to investigate the local image variance as additional feature that
can contribute to a finer modulation of the filtering parameters.

In our experiments, we used only AWGN to corrupt the images. It is worth noticing that, for several, common
distributions, the noise variance can be made constant through the application of a proper variance stabilizing
transform.16 In some cases, like for Poisson distribution, the noise distribution is also reasonably approximated
as AWGN after variance stabilization; on the other hand, other noise distributions, like for instance impulse
noise,17 cannot be described by this model either before or after variance stabilization. Nevertheless, the proposed
framework is general and it can be used with any noise distribution (e.g., Poisson,18 mixture of Gaussian and
Poisson with grey level clipping,16 salt and pepper, and so on). To this aim, it is sufficient to use a different
noise generator during the creation of the dataset {tjn}j+0..M−1.

In our experiments, we used a training set composed of M = 35 images. Because of the limited size of the
dataset, the estimated θ vector may be biased, leading to a decreased performance compared to those achievable
using a larger training set, where images with widely varying characteristics can be used. This may explain why
EABF produces inferior results on the barbara image which contains a lot of textured areas at different frequencies
not present in the training dataset. The use of massive data requires, however, a very efficient implementation
of the learning procedure. At present, only EABF has been implemented in parallel using CUDA to run on a
GPGPU, whereas the rest of the learning procedure was written in C++ and run sequentially on a standard
CPU. The typical training time for 1000 iterations of the approximate steepest-descent algorithm was 90 minutes
on a Dell Alienware equipped with a Intel Core i7-4700MQ CPU @ 2.4GHz, 8G RAM, and an NVIDIA GeForce
GT750M with 4G RAM. We are currently working on a full GPU implementation of the framework, that will
avoid data transfer between the RAM and the GPU memory, leading to a significant speed-up and therefore
offering the possibility to use a larger training set of images and to finally reduce the bias in the estimate of θ.

It is finally important to notice that the high computational cost of the learning procedure is mainly due to the
high number (PF at each iteration) of evaluations of the cost function E (and therefore filtering of the M images
in the training set), which is required to numerically compute ∂E/∂θ. For simple filters like BF, analytically
computing ∂E/∂θ is actually feasible, which could lead to a significant speed-up of the training procedure. On
the other hand, this would make the proposed learning procedure less general, since it could not be applied to
more complex filters where ∂E/∂θ cannot be computed analytically (like for instance in BM3D,19 where some
of the filter parameters are discrete, or in Total Variation denoising,18 which is an iterative filtering procedure).
Moreover, the development of any new adaptive filter would require explicitly computing ∂E/∂θ. For these



reasons, we prefer the current formulation of the optimization procedure involving the numerical estimate of the
gradient of the cost function E.

Overall, the results presented here demonstrate the practical use of the proposed framework in the case of BF.
The results obtained with EABF outperform other adaptive filters obtained through empirical rules and intuition.
Preliminary results (not reported here for reason of space) also showed that the same learning procedure can be
applied to develop an adaptive Sliding Discrete Cosine Transform (DCT) filter,20 where an adaptive threshold
is used to eliminate DCT components locally associated to noise. The same framework was then applied to
adaptively blending the output of EABF and Adaptive Sliding DCT filter, similar to the work described by
Hammond and Simoncelli,8 with significant image quality improvements. Based on the results described here,
we are therefore going to apply our framework to the optimization of more complex filtering procedures, like
BM3D19 and Total Variation denoising.18
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Table 2: PSNRs (in dB) for the test images, different levels of noise and different version of BF, ABF, and
EABF. The method adopted by each filter to compute σd(x, y) and σr(x, y) is reported in the first two rows.
For BF, the parameter values are reported within the brackets for each image and for each noise level. The bold
character indicate the highest PSNR at each row of the table. The PSNR for EABF is typically 0.5dB higher
than that of ABF,6 independently from σn, and up to 2.8dB higher with respect to BF,2 whose performance
decreases faster for increasing σn values.

σd(x, y) optimal 1.8 1.8 Eq. 2
σr(x, y) optimal 2σn σ2

n/(0.3σs) Eq. 2

image σn
BF

BF2 ABF6 EABF
σd σr

barbara (512× 512)

5 36.13 (1.31, 10) 36.06 36.00 36.27
10 31.45 (1.51, 19) 31.40 31.44 31.10
20 27.11 (1.69, 40) 27.09 27.36 26.40
30 25.07 (1.83, 67) 25.00 25.32 24.68
40 23.94 (1.98, 101) 23.69 24.11 23.76

boat (512× 512)

5 36.29 (0.87, 12) 36.04 35.92 36.40
10 32.53 (0.99, 28) 32.17 32.03 32.81
20 28.96 (1.20, 59) 28.48 28.75 29.51
30 26.96 (1.34, 99) 26.31 26.98 27.62
40 25.63 (1.47, 151) 24.72 25.68 26.17

goldhill (512× 512)

5 36.50 (0.70, 15) 36.07 35.93 36.54
10 32.64 (0.98, 28) 32.23 32.15 32.78
20 29.32 (1.23, 64) 28.81 29.17 29.65
30 27.71 (1.49, 109) 26.84 27.68 28.01
40 26.66 (1.72, 172) 25.33 26.53 26.82

house (256× 256)

5 37.69 (1.35, 10) 37.50 37.20 37.81
10 34.00 (1.24, 28) 33.76 33.66 34.37
20 30.31 (1.42, 62) 29.64 30.17 31.11
30 28.20 (1.50, 108) 27.12 28.20 29.24
40 26.86 (1.62, 163) 25.46 26.83 27.78

lena (512× 512)

5 38.17 (0.97, 14) 37.86 37.64 38.45
10 34.64 (1.18, 31) 34.09 34.18 35.17
20 31.20 (1.45, 70) 30.02 31.05 32.08
30 29.37 (1.67, 126) 27.78 29.24 30.21
40 28.20 (1.89, 190) 25.97 27.83 28.77

peppers (512× 512)

5 37.81 (1.23, 12) 37.74 37.37 37.86
10 34.75 (1.37, 30) 34.31 34.22 34.98
20 31.27 (1.62, 62) 30.40 31.22 31.80
30 29.14 (1.76, 106) 27.85 29.30 29.75
40 27.79 (1.92, 163) 25.95 27.71 28.30

average

5 37.10 (1.07, 12) 36.88 36.68 37.22
10 33.33 (1.21, 27) 32.99 32.95 33.53
20 29.69 (1.43, 59) 29.07 29.62 30.09
30 27.74 (1.60, 102) 26.82 27.79 28.25
40 26.51 (1.77, 157) 25.19 26.44 26.93

average {5, 10, 20, 30, 40} 30.88 - - 30.19 30.70 31.21


