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CoMpUter vIsIon Is a rapidly growing field devoted to 
analyzing, modifying, and high-level understanding of 
images. Its objective is to determine what is happening 
in front of a camera and use that understanding to 
control a computer or robotic system, or to provide 
people with new images that are more informative 

or aesthetically pleasing than the 
original camera images. Application 
areas for computer-vision technology 
include video surveillance, biomet-
rics, automotive, photography, movie 
production, Web search, medicine, 
augmented reality gaming, new user 
interfaces, and many more. 

Modern cameras are able automati-
cally to focus on people’s faces and trig-
ger the shutter when they smile. Optical 
text-recognition systems help trans-
form scanned documents into text that 
can be analyzed or read aloud by a voice 
synthesizer. Cars may include automat-
ed driver-assistance systems that help 

users park or warn them about poten-
tially dangerous situations. Intelligent 
video surveillance plays an increasingly 
important role in monitoring the secu-
rity of public areas. 

As mobile devices such as smart-
phones and tablets come equipped with 
cameras and more computing power, 
the demand for computer-vision ap-
plications is increasing. These devices 
have become smart enough to merge 
several photographs into a high-reso-
lution panorama, or to read a QR code, 
recognize it, and retrieve information 
about a product from the Internet. It 
will not be long before mobile computer-
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Vision And heterogeneous 
Parallel Computing 
In the past, an easy way to increase the 
performance of a computing device 
was to wait for the semiconductor pro-
cesses to improve, which resulted in 
an increase in the device's clock speed. 
When the speed increased, all applica-
tions got faster without having to mod-
ify them or the libraries that they relied 
on. Unfortunately, those days are over. 

As transistors get denser, they also 
leak more current, and hence are less 
energy efficient. Improving energy effi-
ciency has become an important prior-
ity. The process improvements now al-
low for more transistors per area, and 
there are two primary ways to put them 
to good use. The first is via paralleliza-
tion: creating more identical process-
ing units instead of making the single 
unit faster and more powerful. The 
second is via specialization: building 
domain-specific hardware accelerators 
that can perform a particular class of 
functions more efficiently. The concept 

vision technology becomes as ubiqui-
tous as touch interfaces. 

Computer vision is computation-
ally expensive, however. Even an al-
gorithm dedicated to solving a very 
specific problem, such as panorama 
stitching or face and smile detec-
tion, requires a lot of power. Many 
computer-vision scenarios must be 
executed in real time, which implies 
that the processing of a single frame 
should complete within 30–40 milli-
seconds. This is a very challenging re-
quirement, especially for mobile and 
embedded computing architectures. 
Often, it is possible to trade off qual-
ity for speed. For example, the panora-
ma-stitching algorithm can find more 
matches in source images and synthe-
size an image of higher quality, given 
more computation time. To meet the 
constraints of time and the compu-
tational budget, developers either 
compromise on quality or invest more 
time into optimizing the code for spe-
cific hardware architectures. 

of combining these two ideas—that is, 
running a CPU or CPUs together with 
various accelerators—is called hetero-
geneous parallel computing. 

High-level computer-vision tasks 
often contain subtasks that can be run 
faster on special-purpose hardware 
architectures than on the CPU, while 
other subtasks are computed on the 
CPU. The GPU (graphics processing 
unit), for example, is an accelerator 
that is now available on every desktop 
computer, as well as on mobile devices 
such as smartphones and tablets. 

The first GPUs were fixed-function 
pipelines specialized for accelerated 
drawing of shapes on a computer 
display, as illustrated in Figure 1. As 
GPUs gained the capability of using 
color images as input for texture map-
ping, and their results could be shared 
back with the CPU rather than just be-
ing sent to the display, it became pos-
sible to use GPUs for simple image-
processing tasks. 

Making the fixed-function GPUs 
partially programmable by adding 
shaders was a big step forward. This 
enabled programmers to write special 
programs that were run by the GPU 
on every three-dimensional point of 
the surface and at every pixel rendered 
onto the output canvas. This vastly ex-
panded the GPU’s processing capabil-
ity, and clever programmers began to 
try general-purpose computing on a 
GPU (GPGPU), harnessing the graph-
ics accelerator for tasks for which it 
was not originally designed. The GPU 
became a useful tool for image pro-
cessing and computer-vision tasks. 

The graphics shaders, however, 
did not provide access to many useful 
hardware capabilities such as synchro-
nization and atomic memory opera-
tions. Modern GPU computation lan-
guages such as CUDA, OpenCL, and 
DirectCompute are explicitly designed 
to support general-purpose computing 
on graphics hardware. GPUs are still 
not quite as flexible as CPUs, but they 
perform parallel stream processing 
much more efficiently, and an increas-
ing number of nongraphics applica-
tions are being rewritten using the 
GPU compute languages. 

Computer vision is one of the tasks 
that often naturally map to GPUs. This 
is not a coincidence, as computer vi-
sion really solves the inverse to the 

figure 1. Computer vision and GPu.
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computer graphics problem. While 
graphics transforms a scene or object 
description to pixels, vision transforms 
pixels to higher-level information. 
GPUs contain lots of similar process-
ing units and are very efficient in ex-
ecuting simple, similar subtasks such 
as rendering or filtering pixels. Such 
tasks are often known as “embarrass-
ingly parallel,” because they are so easy 
to parallelize efficiently on a GPU. 

Many tasks, however, do not paral-
lelize easily, as they contain serial seg-
ments where the results of the later 
stages depend on the results of earlier 
stages. These serial algorithms do not 
run efficiently on GPUs and are much 
easier to program and often run faster 
on CPUs. Many iterative numerical 
optimization algorithms and stack-
based tree-search algorithms belong 
to that class. 

Since many high-level tasks consist 
of both parallel and serial subtasks, 
the entire task can be accelerated by 
running some of its components on 
the CPU and others on the GPU. Un-
fortunately, this introduces two sourc-
es of inefficiency. One is synchroniza-
tion: when one subtask depends on 
the results of another, the later stage 
needs to wait until the previous stage 
is done. The other inefficiency is the 
overhead of moving the data back 
and forth between the GPU and CPU 
memories—and since computer-vi-
sion tasks need to process lots of pix-
els, it can mean moving massive data 
chunks back and forth. These are the 
key challenges in accelerating com-
puter-vision tasks on a system with 
both a CPU and GPU. 

openCV Library 
The open source computer vision li-
brary, OpenCV, began as a research 
project at Intel in 1998.5 It has been 
available since 2000 under the BSD 
open source license. OpenCV is aimed 
at providing the tools needed to solve 
computer-vision problems. It contains 
a mix of low-level image-processing 
functions and high-level algorithms 
such as face detection, pedestrian de-
tection, feature matching, and track-
ing. The library has been downloaded 
more than three million times. 

In 2010 a new module that pro-
vides GPU acceleration was added to 
OpenCV. The GPU module covers a 

significant part of the library’s func-
tionality and is still in active develop-
ment. It is implemented using CUDA 
and therefore benefits from the CUDA 
ecosystem, including libraries such as 
NVIDIA Performance Primitives (NPP). 

The GPU module allows users to 
benefit from GPU acceleration without 
requiring training in GPU program-
ming. The module is consistent with 
the CPU version of OpenCV, which 
makes adoption easy. There are differ-
ences, however, the most important of 
which is the memory model. OpenCV 
implements a container for images 
called cv::Mat that exposes access to 
image raw data. In the GPU module the 
container cv::gpu::GpuMat stores 
the image data in the GPU memory and 
does not provide direct access to the 
data. If users want to modify the pixel 
data in the main program running on 
the GPU, they first need to copy the 
data from GpuMat to Mat.

#include <opencv2/opencv.hpp>
  #include <opencv2/gpu/gpu.hpp> 
using namespace cv; 
... 
Mat image = imread("file.png"); 
gpu::GpuMat image_gpu; 
image_gpu .upload(image); 
gpu::GpuMat result; 
gpu::threshold(image_gpu, 
  result, 128, CV_THRESH_BINARY); 
result.download(image); 
imshow("WindowName", image); 
waitKey (); 

In this example, an image is read 
from a file and then uploaded to GPU 
memory. The image is thresholded 
there, and the result is downloaded 
to CPU memory and displayed. In this 
simple example only one operation is 
performed on the image, but several 
others could be executed on the GPU 
without transferring images back and 
forth. The usage of the GPU module is 
straightforward for someone who is al-
ready familiar with OpenCV. 

This design provides the user with 
explicit control over how data is moved 
between CPU and GPU memory. Al-
though the user must write some addi-
tional code to start using the GPU, this 
approach is flexible and allows more ef-
ficient computations. In general, it is a 
good idea to research, develop, and de-
bug a computer-vision application us-

ing the CPU part of OpenCV, and then 
accelerate it with the GPU module. De-
velopers should try different combina-
tions of CPU and GPU processing, mea-
sure their timing, and then choose the 
combination that performs the best. 

Another piece of advice for develop-
ers is to use the asynchronous mecha-
nisms provided by CUDA and the GPU 
module. This allows simultaneous 
execution of data transfer, GPU pro-
cessing, and CPU computations. For 
example, while one frame from the 
camera is processed by the GPU, the 
next frame is uploaded to it, minimiz-
ing data-transfer overheads and in-
creasing overall performance. 

Performance of  
openCV GPu Module 
OpenCV’s GPU module includes a 
large number of functions, and many 
of them have been implemented in 
different versions, such as the image 
types (char, short, float), number of 
channels, and border extrapolation 
modes. This makes it challenging to 
report exact performance numbers. An 
added source of difficulty in distilling 
the performance numbers down is the 
overhead of synchronizing and trans-
ferring data. This means that best per-
formance is obtained for large images 
where a lot of processing can be done 
while the data resides on the GPU. 

To help the developer figure out the 
trade-offs, OpenCV includes a perfor-
mance benchmarking suite that runs 
GPU functions with different param-
eters and on different datasets. This 
provides a detailed benchmark of how 
much different datasets are acceler-
ated on the user’s hardware. 

Figure 2 is a benchmark dem-
onstrating the advantage of the 
GPU module. The speedup is mea-
sured against the baseline of a heav-
ily optimized CPU implementation of 
OpenCV. OpenCV was compiled with 
Intel’s Streaming SIMD Extensionsn 
(SSE) and Threading Building Blocks 
(TBB) for multicore support, but not 
all algorithms use them. The primitive 
image-processing speedups have been 
averaged across roughly 30 functions. 
Speedups are also reported for several 
high-level algorithms. 

It is quite normal for a GPU to show a 
speedup of 30 times for low-level func-
tions and up to 10 times for high-level 
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functions, which include more over-
head and many steps that are not easy 
to parallelize with a GPU. For example, 
the granularity for color conversion is 
per-pixel, making it easy to parallel-
ize. Pedestrian detection, on the other 
hand, is performed in parallel for each 
possible pedestrian location, and par-
allelizing the processing of each win-
dow position is limited by the amount 
of on-chip GPU memory. 

As an example, we accelerated two 
packages from Robot Operation Sys-
tem (ROS)8—stereo visual odometry 
and textured object detection—that 
were originally developed for the CPU. 

They contain many functional blocks 
and a class hierarchy. 

Wherever it made sense, we offload-
ed the computations to the GPU. For 
example, OpenCV GPU implementa-
tions performed Speeded-Up Robust 
Feature (SURF) key point detection, 
matching, and search of stereo corre-
spondences (block matching) for ste-
reo visual odometry. The accelerated 
packages were a mix of CPU/GPU im-
plementations. As a result, the visual 
odometry pipeline was accelerated 2.7 
times, and textured object detection 
was accelerated from 1.5–4 times, as 
illustrated in Figure 3. Data-transfer 

overhead was not a significant part of 
the total algorithm time. This example 
shows that replacing only a few lines of 
code results in a considerable speedup 
of a high-level vision application. 

stereo Correspondence 
with GPu Module 
Stereo correspondence search in a 
high-resolution video is a demanding 
application that demonstrates how 
CPU and GPU computations can be 
overlapped. OpenCV’s GPU module 
includes an implementation that can 
process full HD resolution stereo pair 
in real time (24 frames per second) on 
the NVIDIA GTX580. 

In a stereo system, two cameras are 
mounted facing in the same direction. 
While faraway objects project to the 
same image locations on each cam-
era, nearby objects project to different 
locations. This is called disparity. By 
locating each pixel on the left camera 
image where the same surface point 
projects to the right image, you can 
compute the distance to that surface 
point from the disparity. Finding these 
correspondences between pixels in 
the stereo image pairs is the key chal-
lenge in stereo vision. 

This task is made easier by rectifying 
the images. Rectification warps the im-
ages to an ideal stereo pair where each 
scene surface point projects to a match-
ing image row. This way, only points on 
the same scan line need to be searched. 
The quality of the match is evaluated by 
comparing the similarity of a small win-
dow of pixels with the candidate-match-
ing pixel. Then the pixel in the right 
image whose window best matches the 
window of the pixel on the left image is 
selected as the corresponding match. 

The computational requirements 
obviously increase as the image size 
increases, because there are more pix-
els to process. In a larger image the 
range of disparities measured in pixels 
also increases, which requires a larger 
search radius. For small-resolution im-
ages the CPU may be sufficient to cal-
culate the disparities; with full HD res-
olution images, however, only the GPU 
can provide enough processing power. 

Figure 4 presents a block-matching 
pipeline that produces a disparity im-
age d(x,y) such that LeftImage(x,y) 
corresponds to RightImage(x-d(x,y),y). 
The pipeline first rectifies the images 

figure 3. Textured object detection application: CPu and GPu.

figure 4. stereo block matching pipeline.
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figure 5. RGB frame, depth frame, ray-casted frame, and point cloud.
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and then finds the best matches, as 
previously described. In areas where 
there is little texture—for example, a 
blank wall—the calculated matches 
are unreliable, so all such areas are 
marked to be ignored in later process-
ing. As the disparity values are expect-
ed to change significantly near object 
borders, the speckle-filtering stage 
eliminates speckle noise within large 
continuous regions of disparity image. 
Unfortunately, the speckle-filtering al-
gorithm requires a stack-based depth-
first search difficult to parallelize, so it 
is run on the CPU. The results are visu-
alized using a false-color image. 

All the steps except speckle filter-
ing are implemented on the GPU. The 
most compute-intensive step is block 
matching. NVIDIA GTX580 has accel-
erated it seven times faster than a CPU 
implementation on a quad core Intel 
i5-760 2.8GHz processor with SSE and 
TBB optimizations. After this speedup 
the speckle filtering becomes the bot-
tleneck, consuming 50% of the frame-
processing time. 

An elegant parallel-processing solu-
tion is to run speckle filtering on the 
CPU in parallel with the GPU process-
ing. While the GPU processes the next 
frame, the CPU performs speckle fil-
tering for the current frame. This can 
be done using asynchronous OpenCV 
GPU and CUDA capabilities. The het-
erogeneous CPU/GPU system now 
provides a sevenfold speedup for the 
high-resolution stereo correspondence 
problem, allowing real-time (24fps) 
performance at full HD resolution. 

kinectfusion
Microsoft’s KinectFusion4 is an exam-
ple of an application that previously 
required slow batch processing but 
now, when powered by GPUs, can be 
run at interactive speeds. Kinect is a 
camera that produces color and depth 
images. Just by aiming the Kinect de-
vice around, one can digitize the 3D 
geometry of indoor scenes at an amaz-
ing fidelity, as illustrated in Figure 5. 
An open source implementation of 
such a scanning application is based 
on the Point Cloud Library,6 a com-
panion library to OpenCV that uses 3D 
points and voxels instead of 2D pixels 
as basic primitives. 

Implementing KinectFusion is not 
a simple task. Kinect does not return 

range measurements for all the pix-
els, and it works reliably only on con-
tinuous smooth matte surfaces. The 
range measurements that it returns 
are noisy, and depending on the sur-
face shapes and reflectance properties, 
the noise can be significant. The noise 
also increases with the distance to the 
measured surface. Kinect generates a 
new depth frame 30 times in a second. 
If the user moves the Kinect device 
too fast, the algorithm gets confused 
and cannot track the motion using the 
range data. With a clever combination 
of good algorithms and using the pro-
cessing power provided by GPUs, how-
ever, KinectFusion works robustly. 

There are three key concepts that 
make a robust interactive implementa-
tion feasible. First, the tracking algo-
rithm is able to process the new scan 
data so fast that the camera has time to 
move very little between the consecutive 
frames. This makes it feasible to track 
the camera position and orientation us-
ing just the range data. 

Second, fusion of depth data is done 
using a volumetric surface representa-
tion. The representation is a large voxel 
grid that makes it easier to merge the 
data from different scans in compari-
son with surface-based representations. 
To obtain high model quality, the grid 
resolution is chosen to be as dense as 
possible (512×512×512), so it has to be 
processed by the GPU for real-time rates. 

Finally, the manner in which the new 
data is merged with the old reduces the 
noise and uncertainty as more data is 
gathered, and the accuracy of the mod-
el keeps improving. As the model gets 
better, tracking gets easier as well. Par-
allel ray casting through the volume is 
done on the GPU to get depth informa-
tion, which is used for camera tracking 
on the next frame. So frame-to-frame 
movement estimation is performed 
only between the first and second 
frames. All other movements are com-
puted on model-to-frame data, which 
makes camera tracking very robust. 

All of these steps are computation-
ally intensive. Volumetric integration 
requires the high memory bandwidth 
that only the GPU can deliver at a price 
low enough to be affordable by normal 
consumers. Without GPUs this system 
would simply not be feasible.  Howev-
er, not every step of the computation 
is easy to do on a GPU. For example, 

tracking the camera position is done 
on a CPU. Though the linear equation 
matrix required for camera position es-
timation is fully computed on the GPU, 
computing the final solution does not 
parallelize well, so it is done on the 
CPU, which results in some download 
and API call overhead. Another prob-
lem is that the bottom-level image in 
the hierarchical image processing ap-
proach is only 160×120, which is not 
large enough to fully load a GPU. All 
the other parts are ideal for GPU but 
limited by the amount of available GPU 
memory and computing resources. 

Further development requires even 
more GPU power. At the moment, the 
size of the scene is limited by the volu-
metric representation. Using the same 
number of voxels but making them big-
ger would allow us to capture a larger 
scene but at a coarser resolution. Re-
taining the same resolution while scan-
ning larger scenes would require more 
voxels, but the number of voxels is lim-
ited by the amount of memory available 
on GPU and by its computational power. 

Mobile Devices
While PCs are often built with a CPU 
and a GPU on separate chips, mobile 
devices such as smartphones and tab-
lets put all the computing elements 
on a single chip. Such an SoC (system 
on chip) contains one or more CPUs, a 
GPU, as well as several signal processors 
for audio and video processing and data 
communication. All modern smart-
phones and some tablets also contain 
one or more cameras, and OpenCV is 
available on both Android and iOS op-
erating systems. With all these com-
ponents, it is possible to create mobile 
vision applications. The following sec-
tions look at the mobile hardware in 
more detail, using NVIDIA’s Tegra 2 and 
Tegra 3 SoCs as examples, and then in-
troduce several useful multimedia APIs. 
Finally, two mobile vision applications 
are presented: panorama creation and 
video stabilization.

Tools for Mobile Computer Vision 
At the core of any general-purpose 
computer is the CPU. While Intel’s 
x86 instruction set rules on desktop 
computers, almost all mobile phones 
and tablets are powered by CPUs from 
ARM. ARM processors follow the RISC 
(reduced instruction set computing) 
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approach, as can be deduced from 
ARM’s original name, Advanced Risc 
Machines. While x86 processors were 
traditionally designed for high com-
puting power, ARM processors were 
designed primarily for low-power us-
age, which is a clear benefit for battery-
powered devices. As Intel is reducing 
power usage in its Atom family for mo-
bile devices, and recent ARM designs 
are getting increasingly powerful, they 
may in the future reach a similar de-
sign point, at least on the high end of 
mobile computing devices. Both Tegra 
2 and Tegra 3 use ARM Cortex-A9 CPUs. 

Mobile phones used to have only 
one CPU, but modern mobile SoCs are 
beginning to sport several, providing 
symmetric multiprocessing. The rea-
son is the potential for energy savings. 
One can reach roughly a similar level 
of performance using two cores run-
ning at 1GHz each than with one core 
running at 2GHz. Since the power con-
sumption increases super-linearly with 
the clock speed, however, these two 
slower cores together consume less 
power than the single faster core. Tegra 
2 provides two ARM cores, while Tegra 
3 provides four. Tegra 3 actually con-
tains five (four plus one) cores, out of 
which one, two, three, or four cores can 
be active at the same time. One of the 
cores, known as the shadow or com-
panion core, is designed to use par-
ticularly little energy but can run only 
at relatively slow speeds. That mode is 
sufficient for standby, listening to mu-
sic, voice calls, and other applications 
that rely on dedicated hardware such 
as the audio codec and require only a 
few CPU cycles. When more processing 
power is needed (for example, read-
ing email), the slower core is replaced 
by one of the faster cores, and for in-
creased performance (browsing, gam-
ing) additional cores kick in. 

SIMD (single instruction, multiple 
data) processing is particularly useful 
for pixel data, as the same instruc-
tion can be used on multiple pixels 
simultaneously. SSE is Intel’s SIMD 
technology, which exists on all mod-
ern x86 chips. ARM has a similar tech-
nology called NEON, which is an op-
tional coprocessor in the Cortex A9. 
The NEON can process up to eight, 
and sometimes even 16 pixels at the 
same time, while the CPU can pro-
cess only one element at a time. This 
is very attractive for computer-vision 
developers, as it is often easy to ob-
tain three to four times performance 
speedup—and with careful optimiza-
tion even more than six times. Tegra 2 
did not include the NEON extension, 
but each of Tegra 3’s ARM cores has a 
NEON coprocessor.

All modern smart phones include 
a GPU. The first generation of mobile 
GPUs implemented the fixed-function-
ality graphics pipeline of OpenGL ES 
1.0 and 1.1. Even though the GPUs were 
designed for 3D graphics, they could 
be used for a limited class of image-
processing operations such as warp-
ing and blending. The current mobile 
GPUs are much more flexible and sup-
port OpenGL shading language (GLSL) 
programming with the OpenGL ES 2.0 
API, allowing programmers to run fair-
ly complicated shaders at each pixel. 
Thus, many old-school GPGPU tricks 
developed for desktop GPUs about 10 
years ago can now be reused on mobile 
devices. The more flexible GPU com-
puting languages such as CUDA and 
OpenCL will replace those tricks in the 
coming years but are not available yet. 

Consumption and creation of audio 
and video content is an important use 
case on modern mobile devices. To sup-
port them, smartphones contain dedi-
cated hardware encoders and decoders 
both for audio and video. Additionally, 
many devices have a special ISP (image 
signal processor) that processes the 
pixels streaming out from the camera. 
These media accelerators are not as eas-
ily accessible and useful for computer-
vision processing, but the OpenMAX 
standard helps.1 OpenMAX defines 
three different layers: AL (application), 
IL (integration), and DL (development). 
The lowest, DL, specifies a set of primi-
tive functions from five domains: au-
dio/video/image coding and image/

signal processing. Some of them are of 
potential interest for computer-vision 
developers, especially video coding and 
image processing, because they provide 
a number of simple filters, color space 
conversions, and arithmetic opera-
tions. IL is meant for system program-
mers for implementing the multimedia 
framework and provides tools such as 
for camera control. AL is meant for ap-
plication developers and provides high-
level abstractions and objects such 
as Camera, Media Player, and Media 
Recorder. The OpenMAX APIs are use-
ful for passing image data efficiently 
between the various accelerators and 
other APIs such as OpenGL ES. 

Sensors provide another interesting 
opportunity for computer-vision devel-
opers. Many devices contain sensors 
such as an accelerometers, gyroscopes, 
compasses, and GPSs. They are not 
able to perform calculations but can 
be useful if the application needs to 
reconstruct the camera orientation or 
3D trajectory. The problem of extract-
ing the camera motion from a set of 
frames is challenging, both in terms of 
performance and accuracy. Simultane-
ous localization and mapping (SLAM), 
structure from motion (SfM), and oth-
er approaches can compute both the 
camera position and even the shapes 
of the objects the camera sees, but 
these methods are not easy to imple-
ment, calibrate, and optimize, and they 
require a lot of processing power. The 
sensors can nonetheless deliver a fairly 
accurate estimate of the device orienta-
tion at a fraction of the cost of relying 
only on visual processing. For accurate 
results the sensor input should be used 
only as a starting point, to be refined 
using computer-vision techniques. 

openCV on Tegra 
A major design and implementation 
goal for OpenCV has always been high 
performance. Porting both OpenCV 
and applications to mobile devices 
requires care, however, to retain a suf-
ficient level of performance. OpenCV 
has been available on Android since 
the Google Summer of Code 2010 when 
it was first built and run on Google 
Nexus One. Several demo applications 
illustrated almost real-time behavior, 
but it was obvious that OpenCV need-
ed optimization and fine-tuning for 
mobile hardware. 

energy savings with GLsL on Tegra 3. 

openCV function  
(10,000 iterations)

energy  
savings

median blur 3.43

planar warper 6.25

warpPerspective 6.45

cylindrical warper 3.89

blur3x3 3.60

warpAffine 15.38
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That is why NVIDIA and Itseez de-
cided to create a Tegra-optimized 
version of OpenCV. This work ben-
efited from three major optimization 
opportunities: code vectorization with 
NEON, multithreading with the Intel 
TBB (Threading Building Blocks) li-
brary, and GPGPU with GLSL. 

Taking advantage of the NEON 
instruction set was the most attrac-
tive of the three choices. Figure 6 
compares the performance of origi-
nal and NEON-optimized versions of 
OpenCV. In general, NEON requires 
basic arithmetic operations using 
simple and regular memory-access 
patterns. Those requirements are 
often satisfied by image-processing 
primitives, which are almost ideal 
for acceleration by NEON vector op-
erations. As those primitives are of-
ten in the critical path of high-level 
computer vision workflows, NEON 
instructions can significantly accel-
erate OpenCV routines. 

Multithreading on up to four sym-
metric CPUs can help at a higher level. 
TBB and other threading technolo-
gies enable application developers to 
get the parallel-processing advantage 
of multiple CPU cores. At the applica-
tion level independent activities can be 
distributed among different cores, and 
the operating system will take care of 
load balancing. This approach is con-
sistent with the general OpenCV strat-
egy for multithreading—to parallelize 
the whole algorithmic pipeline—while 
on a mobile platform we often also 
have to speed up primitive functions. 

One approach is to split low-level 
functions into several smaller sub-
tasks, which produces faster results. A 
popular technique is to split an input 
image into several horizontal stripes 
and process them simultaneously. 
An alternative approach is to create a 
background thread and get the result 
later while the main program works 
on other parts of the problem. For ex-
ample, in the video stabilization ap-
plication a special class returns an 
asynchronously calculated result from 
the previous iteration. Multithread-
ing limits the speedup factor by the 
number of cores, which on the most 
advanced current mobile platforms 
is four, while NEON supports vector 
operations on 16 elements. Of course, 
both of these technologies can be com-

bined. If the algorithm is constrained 
by the speed of memory access, how-
ever, multithreading may not provide 
the expected performance improve-
ment. For example, the NEON version 
of cv::resize does not gain from 
adding new threads, because a single 
thread already fully consumes the 
memory-bus capacity. 

The final method applied during 
the optimization of the OpenCV li-
brary for the Tegra platform is GPGPU 
with GLSL shaders. Though the mo-
bile GPU has limitations as discussed 
previously, on certain classes of al-
gorithms the GPU is able to show an 
impressive performance boost while 
consuming very little energy. On mo-
bile SoCs it is possible to share mem-
ory between CPU and GPU, which 
allows interleaving C++ and GLSL 
processing of the same image buffer. 

Figure 7 shows example speedups of 
some filters and geometric transfor-
mations from the OpenCV library. 

An additional benefit of using the 
GPU is that at full speed it runs at a 
lower average power than the CPU. 
On mobile devices this is especially 
important, since one of the main us-
ability factors for consumers is how 
long the battery lasts on a charge. We 
measured the average power and time 
elapsed to perform 10,000 iterations 
of some optimized C++ functions, 
compared with the same functions 
written in GLSL. Since these func-
tions are both faster on the GPU, and 
the GPU runs at lower peak power. We 
measured the result is significant en-
ergy savings (see the accompanying 
table). We measured energy savings of 
3–15 times when porting these func-
tions to GPU. 

figure 6. Performance improvement with neon on Tegra 3.
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figure 7. Performance improvement with GLsL on Tegra 3.
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Applications 
We have developed two mobile vision 
applications using OpenCV: one that 
stitches a panoramic image from sev-
eral normal photographs, and another 

that stabilizes streaming video. The per-
formance requirements are challeng-
ing. Our goal is real-time performance, 
where each frame should be processed 
within about 30 milliseconds, of which 

basic operations such as simply copy-
ing a 1280×720-pixel frame may take 
eight milliseconds. Consequently, to a 
large extent the final design of an appli-
cation and its underlying algorithm is 
determined by this constraint. 

In both cases we were able to satisfy 
the time limits by using the GPU for op-
timizing the applications’ bottlenecks. 
Several geometric transformation 
functions such as image resizing and 
various types of image warping were 
ported to the GPU, resulting in a dou-
bling of the application performance. 
The results were not nearly as good 
when performing the same tasks us-
ing NEON and multithreading. One of 
the reasons was that both applications 
deal with high-resolution four-channel 
images. As a result, the memory bus 
was overloaded and the CPU cores 
competed for the cache memory. At 
the same time we needed to program 
bilinear interpolation manually, which 
is implemented in GPU hardware. We 
learned that the CPU does not work as 
well for full-frame geometric transfor-
mations, and the help of the GPU was 
invaluable. Let’s consider both appli-
cations in more detail. 

Panorama stitching. In the panora-
ma-stitching application our goal was 
to combine several ordinary images 
into a single panorama with a much 
larger field of view (FOV) than the in-
put images.7 Figure 8 demonstrates the 
stitching of several detailed shots into 
a single high-resolution image of the 
whole image. 

Figure 9 shows the processing pipe-
line for the OpenCV panorama-stitch-
ing application. The process of porting 
to Tegra started from some algorith-
mic improvements, followed by NEON 
and multithreading optimization; yet 
after all these efforts, the application 
still was not responsive enough and 
could not stitch and preview the result-
ing panorama at interactive speeds. 
Among the top bottlenecks were im-
age resizing and warping. The former 
is required because different algorith-
mic steps are performed at different 
resolutions, and each input frame is re-
sized about three times, depending on 
the algorithmic parameters. The type 
of warping needed depends on the de-
sired projection mode (spherical, cylin-
drical, among others) and is performed 
before the final panorama blending. 

figure 11. Video stabilization pipeline.

high-level 
pipeline

GPu calls

Preprocessing Motion  
estimation

Motion  
smoothing

Motion  
Compensation

image resize image resize

figure 8. input images and the resulting panorama.

figure 9. Panorama stitching pipeline.
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figure 10. Video stabilization input sequence.
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With the GPU version of cv::resize 
we were able to decrease scaling time 
from 41 milliseconds to 26 millisec-
onds for each input frame, which is 
equal to 1.6 times local speedup. Be-
cause of the GPU implementation of 
image warping, we could achieve even 
better local improvements—a boost of 
8–14 times in performance, depending 
on the projection type. As a result, total 
application speedup was 1.5–2.0 times, 
meeting performance requirements. 

Video stabilization. One of the nega-
tive consequences of recording video 
without a tripod is camera shake, 
which significantly degrades the 
viewing experience. To achieve visu-
ally pleasant results, all movements 
should be smooth, and the high-fre-
quency variations in camera orienta-
tion and translation must be filtered. 
Numerous approaches have been 
developed, some have become open 
source or commercially available 
tools. There exist computationally in-
tensive approaches offline that take a 
considerable amount of time, while 
the lightweight online algorithms 
are more suitable for mobile devices. 
High-end approaches often recon-
struct the 3D movement of the cam-
era and apply sophisticated nonrigid 
image warping to stabilize the video.2 
On mobile devices more lightweight 
approaches using translation, affine 
warping, or planar perspective trans-
formations may make more sense.3

We experimented with translation 
and affine models, and in both cases 
the GPU was able to eliminate the 
major hotspot, which was the appli-
cation of the compensating transfor-
mation to an input frame. Applying 
translation to compensate for the mo-
tion simply means shifting the input 
frame along the x and y axes and cut-
ting off some of the boundary areas 
for which some of the frames now do 
not contain color information (see 
Figure 10).

In terms of programming, one 
should choose a properly located sub-
matrix and then resize it into a new 
image at the same resolution as the 
original video stream, as suggested 
in Figure 11. Surprisingly, this simple 
step consumed more than 140 milli-
seconds. Our GPU GLSL implementa-
tion was five to six times faster than 
C++ and took about 25 milliseconds. 

Nevertheless, 25 milliseconds is 
still too long for a real-time algorithm, 
which is why we next tried to obtain 
more speed from asynchronous calls. 
A special class was created for stabi-
lizing frames on the GPU. This class 
immediately returns a result from the 
previous iteration stored in its image-
buffer field and creates a TBB::task 
for processing the next frame. As a 
result, GPU processing is performed 
in the background, and the apparent 
cost and delay for the caller is equal 
to just copying a full frame. This trick 
was also applied to an expensive col-
or-conversion procedure, and with 
further optimizations of the memory-
access patterns, we achieved real-time 
processing performance.

future Directions 
GPUs were originally developed to ac-
celerate the conversion of 3D scene 
descriptions into 2D images at inter-
active rates, but as they have become 
more programmable and flexible, they 
have also been used for the inverse task 
of processing and analyzing 2D images 
and image streams to create a 3D de-
scription, to control some application 
so it can react to the user or events in 
the environment, or simply to create 
higher-quality images or videos. As 
computer-vision applications become 
more commonplace, it will be interest-
ing to see whether a different type of 
computer-vision processor that would 
be even more suitable for image pro-
cessing is created to work with a GPU, 
or whether the GPU remains suitable 
even for this task. The current mobile 
GPUs are not yet as flexible as those on 
larger computers, but this will change 
soon enough. 

OpenCV (and other related APIs 
such as Point Cloud Library) have 
made it easier for application develop-
ers to use computer vision. They are 
well-documented and vibrant open 
source projects that keep growing, 
and they are being adapted to new 
computing technologies. Examples of 
this evolution are the transition from 
a C to a C++ API in OpenCV and the ap-
pearance of the OpenCV GPU module. 
The basic OpenCV architecture, how-
ever, was designed mostly with CPUs 
in mind. Maybe it is time to design a 
new API that explicitly takes heteroge-
neous multiprocessing into account, 

where the main program may run on 
a CPU or several CPUs, while major 
parts of the vision API run on differ-
ent types of hardware: a GPU, a DSP 
(digital signal processor), or even a 
dedicated vision processor. In fact, 
Khronos has recently started working 
on such an API, which could work as 
an abstraction layer that allows inno-
vation independently on the hardware 
side and allows for high-level APIs 
such as OpenCV to be developed on 
top of this layer while being somewhat 
insulated from the changes in the un-
derlying hardware architecture. 
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