
june 2012 | vol. 55 | no. 6 | CoMMuniCATions of The ACM 61

CoMpUter vIsIon Is a rapidly growing field devoted to
analyzing, modifying, and high-level understanding of
images. Its objective is to determine what is happening
in front of a camera and use that understanding to
control a computer or robotic system, or to provide
people with new images that are more informative

or aesthetically pleasing than the
original camera images. Application
areas for computer-vision technology
include video surveillance, biomet-
rics, automotive, photography, movie
production, Web search, medicine,
augmented reality gaming, new user
interfaces, and many more.

Modern cameras are able automati-
cally to focus on people’s faces and trig-
ger the shutter when they smile. Optical
text-recognition systems help trans-
form scanned documents into text that
can be analyzed or read aloud by a voice
synthesizer. Cars may include automat-
ed driver-assistance systems that help

users park or warn them about poten-
tially dangerous situations. Intelligent
video surveillance plays an increasingly
important role in monitoring the secu-
rity of public areas.

As mobile devices such as smart-
phones and tablets come equipped with
cameras and more computing power,
the demand for computer-vision ap-
plications is increasing. These devices
have become smart enough to merge
several photographs into a high-reso-
lution panorama, or to read a QR code,
recognize it, and retrieve information
about a product from the Internet. It
will not be long before mobile computer-

Real-Time
Computer
Vision with
openCV

Doi:10.1145/2184319.2184337

 Article development led by
 queue.acm.org

Mobile computer-vision technology will soon
become as ubiquitous as touch interfaces.

By kARi PuLLi, AnAToLy BAksheeV,
kiRiLL koRnyAkoV, AnD ViCToR eRuhiMoV

62 CoMMuniCATions of The ACM | june 2012 | vol. 55 | no. 6

practice

Vision And heterogeneous
Parallel Computing
In the past, an easy way to increase the
performance of a computing device
was to wait for the semiconductor pro-
cesses to improve, which resulted in
an increase in the device's clock speed.
When the speed increased, all applica-
tions got faster without having to mod-
ify them or the libraries that they relied
on. Unfortunately, those days are over.

As transistors get denser, they also
leak more current, and hence are less
energy efficient. Improving energy effi-
ciency has become an important prior-
ity. The process improvements now al-
low for more transistors per area, and
there are two primary ways to put them
to good use. The first is via paralleliza-
tion: creating more identical process-
ing units instead of making the single
unit faster and more powerful. The
second is via specialization: building
domain-specific hardware accelerators
that can perform a particular class of
functions more efficiently. The concept

vision technology becomes as ubiqui-
tous as touch interfaces.

Computer vision is computation-
ally expensive, however. Even an al-
gorithm dedicated to solving a very
specific problem, such as panorama
stitching or face and smile detec-
tion, requires a lot of power. Many
computer-vision scenarios must be
executed in real time, which implies
that the processing of a single frame
should complete within 30–40 milli-
seconds. This is a very challenging re-
quirement, especially for mobile and
embedded computing architectures.
Often, it is possible to trade off qual-
ity for speed. For example, the panora-
ma-stitching algorithm can find more
matches in source images and synthe-
size an image of higher quality, given
more computation time. To meet the
constraints of time and the compu-
tational budget, developers either
compromise on quality or invest more
time into optimizing the code for spe-
cific hardware architectures.

of combining these two ideas—that is,
running a CPU or CPUs together with
various accelerators—is called hetero-
geneous parallel computing.

High-level computer-vision tasks
often contain subtasks that can be run
faster on special-purpose hardware
architectures than on the CPU, while
other subtasks are computed on the
CPU. The GPU (graphics processing
unit), for example, is an accelerator
that is now available on every desktop
computer, as well as on mobile devices
such as smartphones and tablets.

The first GPUs were fixed-function
pipelines specialized for accelerated
drawing of shapes on a computer
display, as illustrated in Figure 1. As
GPUs gained the capability of using
color images as input for texture map-
ping, and their results could be shared
back with the CPU rather than just be-
ing sent to the display, it became pos-
sible to use GPUs for simple image-
processing tasks.

Making the fixed-function GPUs
partially programmable by adding
shaders was a big step forward. This
enabled programmers to write special
programs that were run by the GPU
on every three-dimensional point of
the surface and at every pixel rendered
onto the output canvas. This vastly ex-
panded the GPU’s processing capabil-
ity, and clever programmers began to
try general-purpose computing on a
GPU (GPGPU), harnessing the graph-
ics accelerator for tasks for which it
was not originally designed. The GPU
became a useful tool for image pro-
cessing and computer-vision tasks.

The graphics shaders, however,
did not provide access to many useful
hardware capabilities such as synchro-
nization and atomic memory opera-
tions. Modern GPU computation lan-
guages such as CUDA, OpenCL, and
DirectCompute are explicitly designed
to support general-purpose computing
on graphics hardware. GPUs are still
not quite as flexible as CPUs, but they
perform parallel stream processing
much more efficiently, and an increas-
ing number of nongraphics applica-
tions are being rewritten using the
GPU compute languages.

Computer vision is one of the tasks
that often naturally map to GPUs. This
is not a coincidence, as computer vi-
sion really solves the inverse to the

figure 1. Computer vision and GPu.

Computer Vision on GPU

The same hardware boosts both!

Computer Vision

Red ball Human face

Raster image

High-level
information

about a scene

Computer Graphics

figure 2. CPu versus GPu performance comparison.

30x

7x
8x

6x

12x

 CPu GPu

Primitive image
processing

stereo vision Pedestrian
detection

(hoG)

Viola Jones
face detector

suRf
keypoints

s
p

ee
d

u
p

practice

june 2012 | vol. 55 | no. 6 | CoMMuniCATions of The ACM 63

computer graphics problem. While
graphics transforms a scene or object
description to pixels, vision transforms
pixels to higher-level information.
GPUs contain lots of similar process-
ing units and are very efficient in ex-
ecuting simple, similar subtasks such
as rendering or filtering pixels. Such
tasks are often known as “embarrass-
ingly parallel,” because they are so easy
to parallelize efficiently on a GPU.

Many tasks, however, do not paral-
lelize easily, as they contain serial seg-
ments where the results of the later
stages depend on the results of earlier
stages. These serial algorithms do not
run efficiently on GPUs and are much
easier to program and often run faster
on CPUs. Many iterative numerical
optimization algorithms and stack-
based tree-search algorithms belong
to that class.

Since many high-level tasks consist
of both parallel and serial subtasks,
the entire task can be accelerated by
running some of its components on
the CPU and others on the GPU. Un-
fortunately, this introduces two sourc-
es of inefficiency. One is synchroniza-
tion: when one subtask depends on
the results of another, the later stage
needs to wait until the previous stage
is done. The other inefficiency is the
overhead of moving the data back
and forth between the GPU and CPU
memories—and since computer-vi-
sion tasks need to process lots of pix-
els, it can mean moving massive data
chunks back and forth. These are the
key challenges in accelerating com-
puter-vision tasks on a system with
both a CPU and GPU.

openCV Library
The open source computer vision li-
brary, OpenCV, began as a research
project at Intel in 1998.5 It has been
available since 2000 under the BSD
open source license. OpenCV is aimed
at providing the tools needed to solve
computer-vision problems. It contains
a mix of low-level image-processing
functions and high-level algorithms
such as face detection, pedestrian de-
tection, feature matching, and track-
ing. The library has been downloaded
more than three million times.

In 2010 a new module that pro-
vides GPU acceleration was added to
OpenCV. The GPU module covers a

significant part of the library’s func-
tionality and is still in active develop-
ment. It is implemented using CUDA
and therefore benefits from the CUDA
ecosystem, including libraries such as
NVIDIA Performance Primitives (NPP).

The GPU module allows users to
benefit from GPU acceleration without
requiring training in GPU program-
ming. The module is consistent with
the CPU version of OpenCV, which
makes adoption easy. There are differ-
ences, however, the most important of
which is the memory model. OpenCV
implements a container for images
called cv::Mat that exposes access to
image raw data. In the GPU module the
container cv::gpu::GpuMat stores
the image data in the GPU memory and
does not provide direct access to the
data. If users want to modify the pixel
data in the main program running on
the GPU, they first need to copy the
data from GpuMat to Mat.

#include <opencv2/opencv.hpp>
 #include <opencv2/gpu/gpu.hpp>
using namespace cv;
...
Mat image = imread("file.png");
gpu::GpuMat image_gpu;
image_gpu .upload(image);
gpu::GpuMat result;
gpu::threshold(image_gpu,
 result, 128, CV_THRESH_BINARY);
result.download(image);
imshow("WindowName", image);
waitKey ();

In this example, an image is read
from a file and then uploaded to GPU
memory. The image is thresholded
there, and the result is downloaded
to CPU memory and displayed. In this
simple example only one operation is
performed on the image, but several
others could be executed on the GPU
without transferring images back and
forth. The usage of the GPU module is
straightforward for someone who is al-
ready familiar with OpenCV.

This design provides the user with
explicit control over how data is moved
between CPU and GPU memory. Al-
though the user must write some addi-
tional code to start using the GPU, this
approach is flexible and allows more ef-
ficient computations. In general, it is a
good idea to research, develop, and de-
bug a computer-vision application us-

ing the CPU part of OpenCV, and then
accelerate it with the GPU module. De-
velopers should try different combina-
tions of CPU and GPU processing, mea-
sure their timing, and then choose the
combination that performs the best.

Another piece of advice for develop-
ers is to use the asynchronous mecha-
nisms provided by CUDA and the GPU
module. This allows simultaneous
execution of data transfer, GPU pro-
cessing, and CPU computations. For
example, while one frame from the
camera is processed by the GPU, the
next frame is uploaded to it, minimiz-
ing data-transfer overheads and in-
creasing overall performance.

Performance of
openCV GPu Module
OpenCV’s GPU module includes a
large number of functions, and many
of them have been implemented in
different versions, such as the image
types (char, short, float), number of
channels, and border extrapolation
modes. This makes it challenging to
report exact performance numbers. An
added source of difficulty in distilling
the performance numbers down is the
overhead of synchronizing and trans-
ferring data. This means that best per-
formance is obtained for large images
where a lot of processing can be done
while the data resides on the GPU.

To help the developer figure out the
trade-offs, OpenCV includes a perfor-
mance benchmarking suite that runs
GPU functions with different param-
eters and on different datasets. This
provides a detailed benchmark of how
much different datasets are acceler-
ated on the user’s hardware.

Figure 2 is a benchmark dem-
onstrating the advantage of the
GPU module. The speedup is mea-
sured against the baseline of a heav-
ily optimized CPU implementation of
OpenCV. OpenCV was compiled with
Intel’s Streaming SIMD Extensionsn
(SSE) and Threading Building Blocks
(TBB) for multicore support, but not
all algorithms use them. The primitive
image-processing speedups have been
averaged across roughly 30 functions.
Speedups are also reported for several
high-level algorithms.

It is quite normal for a GPU to show a
speedup of 30 times for low-level func-
tions and up to 10 times for high-level

64 CoMMuniCATions of The ACM | june 2012 | vol. 55 | no. 6

practice

functions, which include more over-
head and many steps that are not easy
to parallelize with a GPU. For example,
the granularity for color conversion is
per-pixel, making it easy to parallel-
ize. Pedestrian detection, on the other
hand, is performed in parallel for each
possible pedestrian location, and par-
allelizing the processing of each win-
dow position is limited by the amount
of on-chip GPU memory.

As an example, we accelerated two
packages from Robot Operation Sys-
tem (ROS)8—stereo visual odometry
and textured object detection—that
were originally developed for the CPU.

They contain many functional blocks
and a class hierarchy.

Wherever it made sense, we offload-
ed the computations to the GPU. For
example, OpenCV GPU implementa-
tions performed Speeded-Up Robust
Feature (SURF) key point detection,
matching, and search of stereo corre-
spondences (block matching) for ste-
reo visual odometry. The accelerated
packages were a mix of CPU/GPU im-
plementations. As a result, the visual
odometry pipeline was accelerated 2.7
times, and textured object detection
was accelerated from 1.5–4 times, as
illustrated in Figure 3. Data-transfer

overhead was not a significant part of
the total algorithm time. This example
shows that replacing only a few lines of
code results in a considerable speedup
of a high-level vision application.

stereo Correspondence
with GPu Module
Stereo correspondence search in a
high-resolution video is a demanding
application that demonstrates how
CPU and GPU computations can be
overlapped. OpenCV’s GPU module
includes an implementation that can
process full HD resolution stereo pair
in real time (24 frames per second) on
the NVIDIA GTX580.

In a stereo system, two cameras are
mounted facing in the same direction.
While faraway objects project to the
same image locations on each cam-
era, nearby objects project to different
locations. This is called disparity. By
locating each pixel on the left camera
image where the same surface point
projects to the right image, you can
compute the distance to that surface
point from the disparity. Finding these
correspondences between pixels in
the stereo image pairs is the key chal-
lenge in stereo vision.

This task is made easier by rectifying
the images. Rectification warps the im-
ages to an ideal stereo pair where each
scene surface point projects to a match-
ing image row. This way, only points on
the same scan line need to be searched.
The quality of the match is evaluated by
comparing the similarity of a small win-
dow of pixels with the candidate-match-
ing pixel. Then the pixel in the right
image whose window best matches the
window of the pixel on the left image is
selected as the corresponding match.

The computational requirements
obviously increase as the image size
increases, because there are more pix-
els to process. In a larger image the
range of disparities measured in pixels
also increases, which requires a larger
search radius. For small-resolution im-
ages the CPU may be sufficient to cal-
culate the disparities; with full HD res-
olution images, however, only the GPU
can provide enough processing power.

Figure 4 presents a block-matching
pipeline that produces a disparity im-
age d(x,y) such that LeftImage(x,y)
corresponds to RightImage(x-d(x,y),y).
The pipeline first rectifies the images

figure 3. Textured object detection application: CPu and GPu.

figure 4. stereo block matching pipeline.

CPu

GPu rectification Matching

speckle filtering

Color and showlow texture filtering

figure 5. RGB frame, depth frame, ray-casted frame, and point cloud.

practice

june 2012 | vol. 55 | no. 6 | CoMMuniCATions of The ACM 65

and then finds the best matches, as
previously described. In areas where
there is little texture—for example, a
blank wall—the calculated matches
are unreliable, so all such areas are
marked to be ignored in later process-
ing. As the disparity values are expect-
ed to change significantly near object
borders, the speckle-filtering stage
eliminates speckle noise within large
continuous regions of disparity image.
Unfortunately, the speckle-filtering al-
gorithm requires a stack-based depth-
first search difficult to parallelize, so it
is run on the CPU. The results are visu-
alized using a false-color image.

All the steps except speckle filter-
ing are implemented on the GPU. The
most compute-intensive step is block
matching. NVIDIA GTX580 has accel-
erated it seven times faster than a CPU
implementation on a quad core Intel
i5-760 2.8GHz processor with SSE and
TBB optimizations. After this speedup
the speckle filtering becomes the bot-
tleneck, consuming 50% of the frame-
processing time.

An elegant parallel-processing solu-
tion is to run speckle filtering on the
CPU in parallel with the GPU process-
ing. While the GPU processes the next
frame, the CPU performs speckle fil-
tering for the current frame. This can
be done using asynchronous OpenCV
GPU and CUDA capabilities. The het-
erogeneous CPU/GPU system now
provides a sevenfold speedup for the
high-resolution stereo correspondence
problem, allowing real-time (24fps)
performance at full HD resolution.

kinectfusion
Microsoft’s KinectFusion4 is an exam-
ple of an application that previously
required slow batch processing but
now, when powered by GPUs, can be
run at interactive speeds. Kinect is a
camera that produces color and depth
images. Just by aiming the Kinect de-
vice around, one can digitize the 3D
geometry of indoor scenes at an amaz-
ing fidelity, as illustrated in Figure 5.
An open source implementation of
such a scanning application is based
on the Point Cloud Library,6 a com-
panion library to OpenCV that uses 3D
points and voxels instead of 2D pixels
as basic primitives.

Implementing KinectFusion is not
a simple task. Kinect does not return

range measurements for all the pix-
els, and it works reliably only on con-
tinuous smooth matte surfaces. The
range measurements that it returns
are noisy, and depending on the sur-
face shapes and reflectance properties,
the noise can be significant. The noise
also increases with the distance to the
measured surface. Kinect generates a
new depth frame 30 times in a second.
If the user moves the Kinect device
too fast, the algorithm gets confused
and cannot track the motion using the
range data. With a clever combination
of good algorithms and using the pro-
cessing power provided by GPUs, how-
ever, KinectFusion works robustly.

There are three key concepts that
make a robust interactive implementa-
tion feasible. First, the tracking algo-
rithm is able to process the new scan
data so fast that the camera has time to
move very little between the consecutive
frames. This makes it feasible to track
the camera position and orientation us-
ing just the range data.

Second, fusion of depth data is done
using a volumetric surface representa-
tion. The representation is a large voxel
grid that makes it easier to merge the
data from different scans in compari-
son with surface-based representations.
To obtain high model quality, the grid
resolution is chosen to be as dense as
possible (512×512×512), so it has to be
processed by the GPU for real-time rates.

Finally, the manner in which the new
data is merged with the old reduces the
noise and uncertainty as more data is
gathered, and the accuracy of the mod-
el keeps improving. As the model gets
better, tracking gets easier as well. Par-
allel ray casting through the volume is
done on the GPU to get depth informa-
tion, which is used for camera tracking
on the next frame. So frame-to-frame
movement estimation is performed
only between the first and second
frames. All other movements are com-
puted on model-to-frame data, which
makes camera tracking very robust.

All of these steps are computation-
ally intensive. Volumetric integration
requires the high memory bandwidth
that only the GPU can deliver at a price
low enough to be affordable by normal
consumers. Without GPUs this system
would simply not be feasible. Howev-
er, not every step of the computation
is easy to do on a GPU. For example,

tracking the camera position is done
on a CPU. Though the linear equation
matrix required for camera position es-
timation is fully computed on the GPU,
computing the final solution does not
parallelize well, so it is done on the
CPU, which results in some download
and API call overhead. Another prob-
lem is that the bottom-level image in
the hierarchical image processing ap-
proach is only 160×120, which is not
large enough to fully load a GPU. All
the other parts are ideal for GPU but
limited by the amount of available GPU
memory and computing resources.

Further development requires even
more GPU power. At the moment, the
size of the scene is limited by the volu-
metric representation. Using the same
number of voxels but making them big-
ger would allow us to capture a larger
scene but at a coarser resolution. Re-
taining the same resolution while scan-
ning larger scenes would require more
voxels, but the number of voxels is lim-
ited by the amount of memory available
on GPU and by its computational power.

Mobile Devices
While PCs are often built with a CPU
and a GPU on separate chips, mobile
devices such as smartphones and tab-
lets put all the computing elements
on a single chip. Such an SoC (system
on chip) contains one or more CPUs, a
GPU, as well as several signal processors
for audio and video processing and data
communication. All modern smart-
phones and some tablets also contain
one or more cameras, and OpenCV is
available on both Android and iOS op-
erating systems. With all these com-
ponents, it is possible to create mobile
vision applications. The following sec-
tions look at the mobile hardware in
more detail, using NVIDIA’s Tegra 2 and
Tegra 3 SoCs as examples, and then in-
troduce several useful multimedia APIs.
Finally, two mobile vision applications
are presented: panorama creation and
video stabilization.

Tools for Mobile Computer Vision
At the core of any general-purpose
computer is the CPU. While Intel’s
x86 instruction set rules on desktop
computers, almost all mobile phones
and tablets are powered by CPUs from
ARM. ARM processors follow the RISC
(reduced instruction set computing)

66 CoMMuniCATions of The ACM | june 2012 | vol. 55 | no. 6

practice

approach, as can be deduced from
ARM’s original name, Advanced Risc
Machines. While x86 processors were
traditionally designed for high com-
puting power, ARM processors were
designed primarily for low-power us-
age, which is a clear benefit for battery-
powered devices. As Intel is reducing
power usage in its Atom family for mo-
bile devices, and recent ARM designs
are getting increasingly powerful, they
may in the future reach a similar de-
sign point, at least on the high end of
mobile computing devices. Both Tegra
2 and Tegra 3 use ARM Cortex-A9 CPUs.

Mobile phones used to have only
one CPU, but modern mobile SoCs are
beginning to sport several, providing
symmetric multiprocessing. The rea-
son is the potential for energy savings.
One can reach roughly a similar level
of performance using two cores run-
ning at 1GHz each than with one core
running at 2GHz. Since the power con-
sumption increases super-linearly with
the clock speed, however, these two
slower cores together consume less
power than the single faster core. Tegra
2 provides two ARM cores, while Tegra
3 provides four. Tegra 3 actually con-
tains five (four plus one) cores, out of
which one, two, three, or four cores can
be active at the same time. One of the
cores, known as the shadow or com-
panion core, is designed to use par-
ticularly little energy but can run only
at relatively slow speeds. That mode is
sufficient for standby, listening to mu-
sic, voice calls, and other applications
that rely on dedicated hardware such
as the audio codec and require only a
few CPU cycles. When more processing
power is needed (for example, read-
ing email), the slower core is replaced
by one of the faster cores, and for in-
creased performance (browsing, gam-
ing) additional cores kick in.

SIMD (single instruction, multiple
data) processing is particularly useful
for pixel data, as the same instruc-
tion can be used on multiple pixels
simultaneously. SSE is Intel’s SIMD
technology, which exists on all mod-
ern x86 chips. ARM has a similar tech-
nology called NEON, which is an op-
tional coprocessor in the Cortex A9.
The NEON can process up to eight,
and sometimes even 16 pixels at the
same time, while the CPU can pro-
cess only one element at a time. This
is very attractive for computer-vision
developers, as it is often easy to ob-
tain three to four times performance
speedup—and with careful optimiza-
tion even more than six times. Tegra 2
did not include the NEON extension,
but each of Tegra 3’s ARM cores has a
NEON coprocessor.

All modern smart phones include
a GPU. The first generation of mobile
GPUs implemented the fixed-function-
ality graphics pipeline of OpenGL ES
1.0 and 1.1. Even though the GPUs were
designed for 3D graphics, they could
be used for a limited class of image-
processing operations such as warp-
ing and blending. The current mobile
GPUs are much more flexible and sup-
port OpenGL shading language (GLSL)
programming with the OpenGL ES 2.0
API, allowing programmers to run fair-
ly complicated shaders at each pixel.
Thus, many old-school GPGPU tricks
developed for desktop GPUs about 10
years ago can now be reused on mobile
devices. The more flexible GPU com-
puting languages such as CUDA and
OpenCL will replace those tricks in the
coming years but are not available yet.

Consumption and creation of audio
and video content is an important use
case on modern mobile devices. To sup-
port them, smartphones contain dedi-
cated hardware encoders and decoders
both for audio and video. Additionally,
many devices have a special ISP (image
signal processor) that processes the
pixels streaming out from the camera.
These media accelerators are not as eas-
ily accessible and useful for computer-
vision processing, but the OpenMAX
standard helps.1 OpenMAX defines
three different layers: AL (application),
IL (integration), and DL (development).
The lowest, DL, specifies a set of primi-
tive functions from five domains: au-
dio/video/image coding and image/

signal processing. Some of them are of
potential interest for computer-vision
developers, especially video coding and
image processing, because they provide
a number of simple filters, color space
conversions, and arithmetic opera-
tions. IL is meant for system program-
mers for implementing the multimedia
framework and provides tools such as
for camera control. AL is meant for ap-
plication developers and provides high-
level abstractions and objects such
as Camera, Media Player, and Media
Recorder. The OpenMAX APIs are use-
ful for passing image data efficiently
between the various accelerators and
other APIs such as OpenGL ES.

Sensors provide another interesting
opportunity for computer-vision devel-
opers. Many devices contain sensors
such as an accelerometers, gyroscopes,
compasses, and GPSs. They are not
able to perform calculations but can
be useful if the application needs to
reconstruct the camera orientation or
3D trajectory. The problem of extract-
ing the camera motion from a set of
frames is challenging, both in terms of
performance and accuracy. Simultane-
ous localization and mapping (SLAM),
structure from motion (SfM), and oth-
er approaches can compute both the
camera position and even the shapes
of the objects the camera sees, but
these methods are not easy to imple-
ment, calibrate, and optimize, and they
require a lot of processing power. The
sensors can nonetheless deliver a fairly
accurate estimate of the device orienta-
tion at a fraction of the cost of relying
only on visual processing. For accurate
results the sensor input should be used
only as a starting point, to be refined
using computer-vision techniques.

openCV on Tegra
A major design and implementation
goal for OpenCV has always been high
performance. Porting both OpenCV
and applications to mobile devices
requires care, however, to retain a suf-
ficient level of performance. OpenCV
has been available on Android since
the Google Summer of Code 2010 when
it was first built and run on Google
Nexus One. Several demo applications
illustrated almost real-time behavior,
but it was obvious that OpenCV need-
ed optimization and fine-tuning for
mobile hardware.

energy savings with GLsL on Tegra 3.

openCV function
(10,000 iterations)

energy
savings

median blur 3.43

planar warper 6.25

warpPerspective 6.45

cylindrical warper 3.89

blur3x3 3.60

warpAffine 15.38

practice

june 2012 | vol. 55 | no. 6 | CoMMuniCATions of The ACM 67

That is why NVIDIA and Itseez de-
cided to create a Tegra-optimized
version of OpenCV. This work ben-
efited from three major optimization
opportunities: code vectorization with
NEON, multithreading with the Intel
TBB (Threading Building Blocks) li-
brary, and GPGPU with GLSL.

Taking advantage of the NEON
instruction set was the most attrac-
tive of the three choices. Figure 6
compares the performance of origi-
nal and NEON-optimized versions of
OpenCV. In general, NEON requires
basic arithmetic operations using
simple and regular memory-access
patterns. Those requirements are
often satisfied by image-processing
primitives, which are almost ideal
for acceleration by NEON vector op-
erations. As those primitives are of-
ten in the critical path of high-level
computer vision workflows, NEON
instructions can significantly accel-
erate OpenCV routines.

Multithreading on up to four sym-
metric CPUs can help at a higher level.
TBB and other threading technolo-
gies enable application developers to
get the parallel-processing advantage
of multiple CPU cores. At the applica-
tion level independent activities can be
distributed among different cores, and
the operating system will take care of
load balancing. This approach is con-
sistent with the general OpenCV strat-
egy for multithreading—to parallelize
the whole algorithmic pipeline—while
on a mobile platform we often also
have to speed up primitive functions.

One approach is to split low-level
functions into several smaller sub-
tasks, which produces faster results. A
popular technique is to split an input
image into several horizontal stripes
and process them simultaneously.
An alternative approach is to create a
background thread and get the result
later while the main program works
on other parts of the problem. For ex-
ample, in the video stabilization ap-
plication a special class returns an
asynchronously calculated result from
the previous iteration. Multithread-
ing limits the speedup factor by the
number of cores, which on the most
advanced current mobile platforms
is four, while NEON supports vector
operations on 16 elements. Of course,
both of these technologies can be com-

bined. If the algorithm is constrained
by the speed of memory access, how-
ever, multithreading may not provide
the expected performance improve-
ment. For example, the NEON version
of cv::resize does not gain from
adding new threads, because a single
thread already fully consumes the
memory-bus capacity.

The final method applied during
the optimization of the OpenCV li-
brary for the Tegra platform is GPGPU
with GLSL shaders. Though the mo-
bile GPU has limitations as discussed
previously, on certain classes of al-
gorithms the GPU is able to show an
impressive performance boost while
consuming very little energy. On mo-
bile SoCs it is possible to share mem-
ory between CPU and GPU, which
allows interleaving C++ and GLSL
processing of the same image buffer.

Figure 7 shows example speedups of
some filters and geometric transfor-
mations from the OpenCV library.

An additional benefit of using the
GPU is that at full speed it runs at a
lower average power than the CPU.
On mobile devices this is especially
important, since one of the main us-
ability factors for consumers is how
long the battery lasts on a charge. We
measured the average power and time
elapsed to perform 10,000 iterations
of some optimized C++ functions,
compared with the same functions
written in GLSL. Since these func-
tions are both faster on the GPU, and
the GPU runs at lower peak power. We
measured the result is significant en-
ergy savings (see the accompanying
table). We measured energy savings of
3–15 times when porting these func-
tions to GPU.

figure 6. Performance improvement with neon on Tegra 3.

1.6x

23x
1.6x

9.5x 5.4x

4.6x 2.6x 3.1x
3.4x 7.6x

300

250

200

150

100

50

0

 tegra CPu tegra neon

C
an

n
y

M
ed

ia
n

B

lu
r

o
p

ti
ca

l
f

lo
w

C
ol

or

C
on

ve
rs

io
n

M
or

ph
ol

og
y

G
au

ss
ia

n

B
lu

r

fA
s

T

D
et

ec
to

r

s
ob

el

py
rD

ow
n

im
ag

e
R

es
iz

e

T
im

e
(m

s)

figure 7. Performance improvement with GLsL on Tegra 3.

2.4x

13x

9.8x 14x

5.7x

3.3x

800

700

600

500

400

300

200

100

0

 tegra CPu tegra GPu

Median
Blur

Planal
Warper

warpPerspective Cylindrical
Warper

blur3x3 warpAffine

T
im

e
(m

s)

68 CoMMuniCATions of The ACM | june 2012 | vol. 55 | no. 6

practice

Applications
We have developed two mobile vision
applications using OpenCV: one that
stitches a panoramic image from sev-
eral normal photographs, and another

that stabilizes streaming video. The per-
formance requirements are challeng-
ing. Our goal is real-time performance,
where each frame should be processed
within about 30 milliseconds, of which

basic operations such as simply copy-
ing a 1280×720-pixel frame may take
eight milliseconds. Consequently, to a
large extent the final design of an appli-
cation and its underlying algorithm is
determined by this constraint.

In both cases we were able to satisfy
the time limits by using the GPU for op-
timizing the applications’ bottlenecks.
Several geometric transformation
functions such as image resizing and
various types of image warping were
ported to the GPU, resulting in a dou-
bling of the application performance.
The results were not nearly as good
when performing the same tasks us-
ing NEON and multithreading. One of
the reasons was that both applications
deal with high-resolution four-channel
images. As a result, the memory bus
was overloaded and the CPU cores
competed for the cache memory. At
the same time we needed to program
bilinear interpolation manually, which
is implemented in GPU hardware. We
learned that the CPU does not work as
well for full-frame geometric transfor-
mations, and the help of the GPU was
invaluable. Let’s consider both appli-
cations in more detail.

Panorama stitching. In the panora-
ma-stitching application our goal was
to combine several ordinary images
into a single panorama with a much
larger field of view (FOV) than the in-
put images.7 Figure 8 demonstrates the
stitching of several detailed shots into
a single high-resolution image of the
whole image.

Figure 9 shows the processing pipe-
line for the OpenCV panorama-stitch-
ing application. The process of porting
to Tegra started from some algorith-
mic improvements, followed by NEON
and multithreading optimization; yet
after all these efforts, the application
still was not responsive enough and
could not stitch and preview the result-
ing panorama at interactive speeds.
Among the top bottlenecks were im-
age resizing and warping. The former
is required because different algorith-
mic steps are performed at different
resolutions, and each input frame is re-
sized about three times, depending on
the algorithmic parameters. The type
of warping needed depends on the de-
sired projection mode (spherical, cylin-
drical, among others) and is performed
before the final panorama blending.

figure 11. Video stabilization pipeline.

high-level
pipeline

GPu calls

Preprocessing Motion
estimation

Motion
smoothing

Motion
Compensation

image resize image resize

figure 8. input images and the resulting panorama.

figure 9. Panorama stitching pipeline.

high-level
pipeline

GPu calls

image registration seam Finding Compositing

image resize image Warp

figure 10. Video stabilization input sequence.

practice

june 2012 | vol. 55 | no. 6 | CoMMuniCATions of The ACM 69

With the GPU version of cv::resize
we were able to decrease scaling time
from 41 milliseconds to 26 millisec-
onds for each input frame, which is
equal to 1.6 times local speedup. Be-
cause of the GPU implementation of
image warping, we could achieve even
better local improvements—a boost of
8–14 times in performance, depending
on the projection type. As a result, total
application speedup was 1.5–2.0 times,
meeting performance requirements.

Video stabilization. One of the nega-
tive consequences of recording video
without a tripod is camera shake,
which significantly degrades the
viewing experience. To achieve visu-
ally pleasant results, all movements
should be smooth, and the high-fre-
quency variations in camera orienta-
tion and translation must be filtered.
Numerous approaches have been
developed, some have become open
source or commercially available
tools. There exist computationally in-
tensive approaches offline that take a
considerable amount of time, while
the lightweight online algorithms
are more suitable for mobile devices.
High-end approaches often recon-
struct the 3D movement of the cam-
era and apply sophisticated nonrigid
image warping to stabilize the video.2
On mobile devices more lightweight
approaches using translation, affine
warping, or planar perspective trans-
formations may make more sense.3

We experimented with translation
and affine models, and in both cases
the GPU was able to eliminate the
major hotspot, which was the appli-
cation of the compensating transfor-
mation to an input frame. Applying
translation to compensate for the mo-
tion simply means shifting the input
frame along the x and y axes and cut-
ting off some of the boundary areas
for which some of the frames now do
not contain color information (see
Figure 10).

In terms of programming, one
should choose a properly located sub-
matrix and then resize it into a new
image at the same resolution as the
original video stream, as suggested
in Figure 11. Surprisingly, this simple
step consumed more than 140 milli-
seconds. Our GPU GLSL implementa-
tion was five to six times faster than
C++ and took about 25 milliseconds.

Nevertheless, 25 milliseconds is
still too long for a real-time algorithm,
which is why we next tried to obtain
more speed from asynchronous calls.
A special class was created for stabi-
lizing frames on the GPU. This class
immediately returns a result from the
previous iteration stored in its image-
buffer field and creates a TBB::task
for processing the next frame. As a
result, GPU processing is performed
in the background, and the apparent
cost and delay for the caller is equal
to just copying a full frame. This trick
was also applied to an expensive col-
or-conversion procedure, and with
further optimizations of the memory-
access patterns, we achieved real-time
processing performance.

future Directions
GPUs were originally developed to ac-
celerate the conversion of 3D scene
descriptions into 2D images at inter-
active rates, but as they have become
more programmable and flexible, they
have also been used for the inverse task
of processing and analyzing 2D images
and image streams to create a 3D de-
scription, to control some application
so it can react to the user or events in
the environment, or simply to create
higher-quality images or videos. As
computer-vision applications become
more commonplace, it will be interest-
ing to see whether a different type of
computer-vision processor that would
be even more suitable for image pro-
cessing is created to work with a GPU,
or whether the GPU remains suitable
even for this task. The current mobile
GPUs are not yet as flexible as those on
larger computers, but this will change
soon enough.

OpenCV (and other related APIs
such as Point Cloud Library) have
made it easier for application develop-
ers to use computer vision. They are
well-documented and vibrant open
source projects that keep growing,
and they are being adapted to new
computing technologies. Examples of
this evolution are the transition from
a C to a C++ API in OpenCV and the ap-
pearance of the OpenCV GPU module.
The basic OpenCV architecture, how-
ever, was designed mostly with CPUs
in mind. Maybe it is time to design a
new API that explicitly takes heteroge-
neous multiprocessing into account,

where the main program may run on
a CPU or several CPUs, while major
parts of the vision API run on differ-
ent types of hardware: a GPU, a DSP
(digital signal processor), or even a
dedicated vision processor. In fact,
Khronos has recently started working
on such an API, which could work as
an abstraction layer that allows inno-
vation independently on the hardware
side and allows for high-level APIs
such as OpenCV to be developed on
top of this layer while being somewhat
insulated from the changes in the un-
derlying hardware architecture.

Acknowledgments
We thank Colin Tracey and Marina
Kolpakova for help with power analy-
sis; Andrey Pavlenko and Andrey Ka-
maev for GLSL and NEON code; and
Shalini Gupta, Shervin Emami, and Mi-
chael Stewart for additional comments.
NVIDIA provided support, including
hardware used in the experiments.

References
1. khronos openMaX standard; http://www.khronos.org/

openmax.
2. liu, F., Gleicher, M., Wang, J., Jin, H., agarwala, a.

subspace video stabilization. ACM Transactions on
Graphics 30, 1 (2011), 4:1–4:10.

3. Matsushita, y., ofek, e., Ge, W., tang, X., shum, H.-y.
Full-frame video stabiliza¬tion with motion inpainting.
IEEE Transactions on Pattern Analysis and Machine
Intelligence 28, 7 (2006), 1150–1163.

4. newcombe, r.a., Izadi, s. et al. kinectfusion: real-
time dense surface mapping and tracking. IEEE
International Symposium on Mixed and Augmented
Reality (2011), 127–136.

5. openCV library; http://code.opencv.org.
6. Point Cloud library; http://pointclouds.org.
7. szeliski, r. Image alignment and stitching: a tutorial.

Foundations and Trends in Computer Graphics and
Vision 2, 1 (2006), 1–104.

8. Willow Garage. robot operating system; http://www.
ros.org/wiki/.

Kari Pulli is a senior director at nVIdIa research, where
he heads the Mobile Visual Computing research team and
works on topics related to cameras, imaging, and vision
on mobile devices. He has worked on standardizing mobile
media aPIs at khronos and JCP and was technical lead of
the digital Michelangelo Project at stanford university.

Anatoly Baksheev is a project manager at Itseez. He
started his career there in 2006 and was the principal
developer of multi-projector system argus Planetarium.
since 2010 he has been the leader of the openCV GPu
project. since 2011 he has work on the GPu acceleration
module for Point Cloud library.

Kirill Kornyakov is a project manager at Itseez, where
he leads the development of openCV library for mobile
devices. He manages activities on mobile operating-
system support and computer-vision applications
development, including performance optimization for
nVIdIa tegra platform.

Victor Eruhimov is Cto of Itseez. Prior to co-founding
the company, he worked as a project manager and senior
research scientist at Intel, where he applied computer-
vision and machine-learning methods to automate Intel
fabs and revolutionize data processing in semiconductor
manufacturing.

© 2012 aCM 0001-0782/12/06 $10.00

