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Abstract

A method for segmenting range images into homo-
geneous regions is presented. The resulting regions are
either planar or smooth curved surfaces. Surface con-
tinuity is estimated by inspecting the values of normal
vector components, which are linearized in respect to
angular changes, and scaled depth values. The x- and
y-components of the normal vector, and the depth map
are treated as three color bands in a color image. The
image thus formed is segmented using a hierarchical
connected component analysis method, which also al-
lows curved regions to be segmented into one region.

1 Introduction

The large amount of data present in a range im-
age can be more readily utilized by high-level scene
analysis processes if transformed into a more compact
intermediate representation. Such symbolic scene de-
scription can be obtained by segmenting the image
into homogeneous surface patches.

The literature abounds with different approaches to
the range image segmentation problem. Besl locates
seeds for variable order surface fitting and area grow-
ing, e.g, by estimating local curvatures [1], and oth-
ers extract edges which give information about surface
boundaries [2]. There are also methods that combine
these methods, gaining robustness from independent
redundant information [3][4]. Methods exist that uti-
lize surface normals for segmenting planar surface re-
gions [5] or also curved surfaces [6].

The segmentation method of Taylor et al. [5] is a
split-and-merge method, where the homogeneity cri-
terion is based on the comparison of two angles de-
scribing the normal orientation and the original range
value. Merging is based on simple minimum and max-
imum value comparison of neighboring regions.

Sabata et al. [6] use the homogeneity of normal vec-
tors and their three projections onto the xy-plane, the
yz-plane, and the zx-plane. After the initial clustering,
the method proceeds to refine the clustering iteratively
using a pyramidal algorithm. Four independent seg-
mentations are made to form an over-segmented im-
age. These are then merged by higher-level routines
(e.g., variable order bivariate polynomial fitting).

We propose here a simple but powerful segmenta-
tion method, based on local approximations of nor-
mal vectors, that segments a range image into homo-
geneous surface regions. The image is first split into
many regions which are subsequently combined into
larger regions. The homogeneity criterion is a com-
parison of two orthogonal components of normal vec-
tors combined with a depth map. The regions thus
formed need not be planar—they can also be curved.
The algorithm converts a depth map to local normal
vectors, and uses their x- and y-components to de-
tect orientation discontinuities, and the depth map
to detect depth discontinuities. These three compo-
nents are treated as three color bands, and the image
is segmented using a connected component analysis [7]
method developed for color images [8].

2 Normal decomposition

There are several methods for obtaining local sur-
face normals from range data. The basic approach
would be to fit a continuous differentiable function to
data and compute its derivatives analytically. If data
is clean enough, computationally more efficient meth-
ods such as the local quadratic surface least squares
(LSQ) approach presented in [1] suffice. Another pos-
sibility is to use the slightly more complex local LSQ
planar fitting method of Taylor et al. [5]. The prob-
lem in these methods is that the orientation disconti-
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Figure 1: A constant change in the angle does not map to a constant change in the y-component’s value.

nuities get blurred. Further, if there is noise present in
the measurement data, the data must first be filtered.
Gaussian filtering (or approximately Gaussian such as
binomial filtering [1]) attenuates Gaussian noise well
but blurs sharp edges. Median filtering removes shot
noise without blurring edges, but it also makes roof
edges flat.

More reliable alternatives to pre-filtering are the
so-called robust methods, such as M-estimators [9],
iterative reweighting least squares [10], least median
squares [11] and least trimmed squares (LTS) [11][4].
Because LSQ methods try to fit a function to all of the
data, the outliers that deviate a lot from the bulk of
the data pull the fit towards them. Robust methods,
on the other hand, fit a function to the majority of
the data disregarding outliers.

We chose to use LTS as our principal method for
obtaining normal vectors. When estimating normal
vectors, the idea is to choose, within a local neigh-
borhood, sets of three measurements (either all the
possible combinations or a subset) and determine the
planes that fit to those point sets. For each plane
we determine the squared residuals or fitting errors
(within that same neighborhood) and h of them are
summed together (h = n/2, n is the size of the neigh-
borhood). The normal of the plane with the smallest
trimmed sum of squared residuals is chosen. The nor-
mal vectors are normalized, and if a normal vector
points away from the view point, it is flipped.

Having calculated the local normal vectors, we deal
with the individual components separately. Physi-
cally, this corresponds to lighting a scene of Lamber-
tian surfaces with five light sources that are aligned
along the coordinate axes — one shines from the posi-
tive z, and the rest from positive and negative x and y.
You can see this by examining, e.g., the z light: the
reflected light is calculated by taking a dot product

of the light source direction vector (~l = [0, 0, 1]) with
the normal vector. The result is the z-component of
the normal vector. With the x and y components the
light from the positive direction illuminates only the
surfaces where also the corresponding normal compo-
nent is positive, while the opposing light source il-
luminates the surfaces with a negative corresponding
normal component. The illumination information of
both the light sources is combined in one scalar if the
normal components (both x and y) are taken as they
are.

Because the change of the Lambertian reflectance
is unlinear within a curved surface of constant cur-
vature, we deviated from the artificial lighting idea
to facilitate the segmentation process. In Fig. 1, the
behaviour of the y-component is shown when the x-
component equals zero. The horizontal axis represents
the y-component, whereas the vertical axis represents
the z-component. Now if a normal vector is rotated
by a constant angle α, the resulting change in the y-
component’s value is not constant (∆1 6= ∆2). How-
ever, a linear mapping can be obtained by applying
the arcus cosine-function to each component. This re-
sults in a smooth transition of the normal components’
values for surfaces with a constant curvature.

3 Depth component

We also want to have robust estimates for the depth
values. These are obtained using the plane equations
calculated by the LTS method, and inserting x and
y values corresponding to the measurements into the
equation. We also need robust estimates for the depth
values’ dynamic range. To this end, we tesselate the
original data in a number of non-overlapping windows,
calculate the median depth in each window, and use



Figure 2: The segmentation of a few blocks using 5 × 5 operator size (LTS method). From left to right, top to
bottom: original depth map, normal x- and y-components, scaled robust depth map, and segmentation result.

the maximum and minimum of these values to approx-
imate the total range of depth values.

The segmentation can proceed once all the compo-
nents have been obtained. Homogeneous regions are
separated by roof edges and step edges. Roof edges
can be found where there is a large enough differ-
ence between neighboring normal vectors. Instead of
comparing each vector to its neighbors, we chose to
compare x- and y-components of the normalized nor-
mal vectors to the neighbors’ respective components
separately. The z-component is not needed as it is
redundant information (it can be obtained from the
x- and y-components). For dealing with step edges,
a scaled depth map is included in the comparison as
the third component. This causes a difference in the
neighboring pixel values over a step edge so that those
pixels will be classified as belonging to different re-
gions. The values of the three components are taken
as the pixels’ three-dimensional coordinates, and the
connected component analysis is based on the Eu-
clidean distance between neighboring components. In
the case of a large difference between the components,
the connected component analysis deduces that those
measurements belong to different regions.

Both the x- and y components will be linearized and
are then scaled to an integer value [0, 255] and treated
as separate color bands. The third band is obtained by

scaling also the depth map to [0, 255]. The image thus
formed can be segmented, for example, using the hi-
erarchical connected component segmentation method
developed for color images by Westman et al. [8].

4 Segmentation of three-band images

The segmentation procedure in [8] is a robust and
iterative connected component analysis method which
works by first merging pixels and then regions, de-
pending on their average boundary contrast in the
color space. Each successive stage recomputes con-
nected components by a transitive closure of connec-
tivity among adjacent regions, uniquely identifying
the resulting maximal connected components. Usu-
ally two stages suffice to produce good segmentation
results.

The first stage computes the initial image segmen-
tation based on the connectivity of the adjacent pix-
els, which is determined by testing the differences in
their colors. Here, a conventional two-pass algorithm
is used. In the first pass, the image is scanned, row
by row from top to bottom, and pixels are assigned la-
bels by comparing them with adjacent left- and upper-
neighbors using either 4- or 8-connectivity. Adjacent
pixels are said to be connected if their color difference



Figure 3: The segmentation of a pile of planar and curved blocks using 7 × 7 operator size (LTS method). 15%
of the data is contaminated by impulse noise. From left to right, top to bottom: original depth map, normal x-
and y-components, scaled robust depth map, and segmentation result.

is lower than a pre-determined threshold value, δ. In
the second pass, the pixels with component-equivalent
labels are re-labelled uniquely.

After obtaining the basic connected components
the procedure is iterated in a second stage, where two
components are merged if their average boundary con-
trast falls below the threshold ε (ε > δ). The infor-
mation that is needed for the merging process, i.e.,
region labels, average edge contrasts, and lengths of
the borders between adjacent regions, is stored in a
region adjacency graph.

Because the merging criterion is based on the aver-
age edge contrasts rather than the maximum and min-
imum contrasts of the neighboring regions, the method
combines into one segment regions where the contrast
changes smoothly. This is desirable as this results in
curved but locally smooth regions to be segmented
correctly into a single region. The method results in
a reliable and robust segmentation which can also be
efficiently implemented in parallel hardware.

5 Results and discussion

We have tested our segmentation method on sev-
eral range images containing both planar and curved

objects. The images were obtained from the NRCC
(National Research Council of Canada) range image
library [12]. The images are of good quality, but we
have tested the effect of adding salt-and-pepper noise
to the images.

Normal vectors are approximated both by using the
LTS method [11] and by using a local quadratic surface
LSQ method [1]. We have implemented the methods
for 3× 3, 5× 5, and 7× 7 neighborhoods. In order to
accelerate the processing of the LTS method, not all
the possible triplets are used for estimating the plane
equation, but only 5, 10, and 20 preselected triplets for
3×3, 5×5, and 7×7 neighborhoods, respectively. The
triplets were preselected and not randomly selected
for two reasons: to avoid selecting same triplets again
and to avoid degenerized triangles that do not span a
triangle (i.e., the measurements form a straight line).
A third reason is speed: it is faster to consult a look-
up table for triangle vertices than to generate them
randomly. The LSQ method is a very fast mask-based
method.

When using the LTS method, we obtain a robust
estimate for the current range measurement once the
plane that best fits the data for the current neighbor-
hood is determined. It is obtained from the plane
equation by using the x and y values of the cur-



Figure 4: The segmentation of a pile of planar and curved blocks using 3 × 3 operator size and LSQ method.
Depth information is not used in segmentation. From left to right, top to bottom: original depth map, normal
x- and y-components, and segmentation result.

rent measurement. With the LSQ method, we take
the measured depth value as it is; another possibility
would be to take the median of a small neighborhood.

In order to be able to scale the depth values to
[0, 255] we obtain a robust estimate of their dynamic
range by tesselating the original data into 5× 5 pixel
non-overlapping windows, and calculating the median
depth in each window. The minimum and maximum
values are used for linear scaling of the depth values.

Some examples of the results, using LTS normal ex-
traction, are presented in Figs. 2 and 3. The images
from left to right, top to bottom contain the original
range image, the linearized x- and y-components of
the normals, the depth image, and finally the segmen-
tation. Fig. 2 is the same as in [4], but the segmenta-
tion is achieved without surface fitting (other than for
normal approximation). Fig. 3 is a more complicated
image of a collection of curved and planar blocks lying
on a table. Notice that even curved surfaces have been
correctly segmented.

In the current implementation, our segmentation
method calculates the contrast of two pixels by using
the Euclidean distance of the three “color” compo-
nents. Nearly as good results can be obtained by using
city-block distance, or even the maximum difference.

The domain of the x- and y-components is a real

scalar [−1, 1], i.e., the angles vary from 0.0◦ to 180.0◦.
This means that the resolution of the x- and y-
components is 180.0◦/256 = 0.7◦. The normalization
of the normal components was found to be very im-
portant; if they were left unnormalized, curved sur-
faces were often fragmented into several regions. The
resolution of the depth components varies depending
on the dynamic range of the depth values in a scene,
but we have put limits for the accepted depth range.
The upper limit is due to the depth of field or useful
operating range of the range finding device, and the
lower limit is set in order to avoid too swift change of
contrasts within very inclined surfaces.

All the images were obtained after one basic seg-
mentation and one merging phase. We used 4-
connectivity, and the thresholds used with the LTS
method were 7 (δ) and 15 (ε) which correspond to 5◦

and 10.5◦, respectively, in the x- and y-components.
With the LSQ method (Fig. 4) we chose slightly lower
thresholds, 5 and 10. The LSQ method tends to blur
images and smoothen the transition from one surface
to another, which makes it more difficult for the con-
nected component analysis part to separate inclined
surfaces. This blurring can be observed by thicker re-
gion borders (many small regions) between large ho-
mogeneous regions in Fig. 4. If larger operator sizes



are used, the blurring effect is also obvious to the eye
in the normal component images.

When using the robust LTS method for normal ex-
traction, the segmentation does not seem to be sen-
sitive to the choice of thresholds. Too low thresholds
result in several tiny isolated regions, which can be
easily detected from the region graph and be merged
into larger regions. Setting thresholds too high leads
to undersegmentation. A safe way is to use smaller
thresholds and more merging iterations. There are
also ways of choosing thresholds based on image com-
plexity using a cumulative difference histogram [8].

The depth information is often not needed if LSQ
methods are used because the estimated surface nor-
mals are perturbed by step edges. These perturbed
normals keep two regions apart, even if their orienta-
tion is the same. Also in the LTS method the normals
tend to sway when close to step edges, but the bar-
rier thus formed is narrow and may contain holes, so
the depth information is needed to keep the regions
apart. Figure 4 is segmented without using the depth
information.

The LTS method tolerates impulse noise very well,
but LSQ based methods do not. On the other hand,
LSQ methods tolerate small Gaussian noise better
than LTS. In order to get the best of both worlds, one
would first have to apply LTS, determine the outliers
(very noisy measurements or measurements belong-
ing to another surface), remove them and use some
LSQ method to determine the surface orientation. Of
course, this would have large repercussions on the pro-
cessing costs.

The segmentation results in large homogeneous re-
gions. At the boundaries, there are some small seg-
ments, most of which belong to one of the neighboring
large regions. Higher level processes could, depending
on the application, choose to use only the segmented
regions or possibly to fit some surface models to large
regions and check from the original data which of the
large regions the small regions belong to (or whether
they form a surface of their own).

Since our segmentation method concentrates on
finding surface or surface orientation discontinuities,
it is not the method of choice for modeling smoothly
varying surfaces, e.g., a sculpture of a person’s face.
More suitable for that purpose are methods that
try to find areas with different types of curvatures
(paraboloids, saddle surfaces, etc.) [1][4]. However,
our system is well suited for situations where the whole
scene has to be analysed, as in robot navigation or
with intelligent industrial manipulators.

6 Conclusions

A simple but powerful method for range image seg-
mentation has been presented. Range images are seg-
mented into homogeneous regions consisting of pla-
nar and curved surfaces. The comparison of surface
normal vectors is decomposed into the comparison of
normal vector x and y components, which are nor-
malized in respect of angular changes. Also the depth
component is included in the segmentation process.
The decomposition is treated as a three-band color im-
age which is segmented using a hierarchical connected
component method. The decisions of this method
about merging neighboring regions are based on the
average contrast between those regions, and result in
more robust segmentation than if the merging deci-
sion was based on their maximal contrast differences.
The merging criterion also connects curved surfaces
instead of splitting them into planar patches.

The method yields a robust segmentation without
the need for applying resource consuming variable or-
der surface fitting. Thus, it is suited for scene analysis
processes used by, e.g., intelligent robots: it is rather
simple and can thus be made to function fast and it
reliably separates different objects. Should the higher-
level processes need the information about explicit sur-
faces, then most of the segmentation is already done,
and the region growing phase of variable order surface
fitting is reduced to fewer iterations.

Acknowledgements

The financial support provided by the Technology
Development Center of Finland is gratefully acknowl-
edged. Special thanks are due to David Harwood who
first gave the idea of studying surface normals and
how they could be used in segmentation. We would
also like to thank Visa Koivunen for his comments on
the paper.

References

[1] P. Besl, Surfaces in Range Image Understanding,
Springer-Verlag, New York, 1988.

[2] T. Fan, G. Medioni, R. Nevatia, “Segmented
Descriptions of 3-D Surfaces”, IEEE Journal of
Robotics and Automation, vol. RA-3, no. 6, pp.
527-538, December 1987.

[3] N. Yokoya, M. Levine, “Range Image Segmenta-
tion Based on Differential Geometry: A Hybrid



Approach”, IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, vol. PAMI-11, no. 6,
1989.

[4] V. Koivunen, M. Pietikäinen, “Experiments with
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