
HCI

1

Realtime Computer Vision
with OpenCV

Mobile computer-vision technology will soon become as ubiquitous as touch interfaces.

Kari Pulli, NVIDIA Research
Anatoly Baksheev, Itseez
Kirill Kornyakov, Itseez
Victor Eruhimov, Itseez

Computer vision is a rapidly growing field devoted to analyzing, modifying, and high-level
understanding of images. Its objective is to determine what is happening in front of a camera
and use that understanding to control a computer or robotic system, or to provide people with
new images that are more informative or esthetically pleasing than the original camera images.
Application areas for computer-vision technology include video surveillance, biometrics, automotive,
photography, movie production, Web search, medicine, augmented reality gaming, new user
interfaces, and many more.

Modern cameras are able to focus automatically on people’s faces and trigger the shutter when
they smile. Optical text-recognition systems help transform scanned documents into text that can
be analyzed or read aloud by a voice synthesizer. Cars may include automated driver-assistance
systems that help users park or warn them about potentially dangerous situations. Intelligent video
surveillance plays an increasingly important role in monitoring the security of public areas.

As mobile devices such as smart phones and tablets come equipped with cameras and more
computing power, the demand for computer-vision applications is increasing. These devices have
become smart enough to merge several photographs into a high-resolution panorama, or to read a
QR code, recognize it, and retrieve information about a product from the Internet. It won’t be long
before mobile computer-vision technology becomes as ubiquitous as touch interfaces.

Computer vision is computationally expensive, however. Even an algorithm dedicated to solving a
very specific problem, such as panorama stitching or face and smile detection, requires a lot of power.
Many computer-vision scenarios must be executed in realtime, which implies that the processing of a
single frame should be completed within 30-40 milliseconds. This is a very challenging requirement,
especially for mobile and embedded computing architectures. Often, it is possible to trade off quality
for speed. For example, the panorama-stitching algorithm can find more matches in source images
and synthesize an image of higher quality, given more computation time. To meet the constraints of
time and the computational budget, developers either compromise on quality or invest more time in
optimizing the code for specific hardware architectures.

VISION AND HETEROGENEOUS PARALLEL COMPUTING
In the past, an easy way to increase the performance of a computing device was to wait for the
semiconductor processes to improve, which resulted in an increase in the clock speed of the device.
When the clock speed increased, all applications got faster without the programmer modifying them
or the libraries that they relied on. Unfortunately, those days are over.

HCI

2

As transistors get denser, they also leak more current, and hence are less energy efficient.
Improving energy efficiency has become an important priority. The process improvements now
allow for more transistors per area, and there are two primary ways to put them to good use. The first
is via parallelization: creating more identical processing units instead of making the single unit faster
and more powerful. The second is via specialization: building domain-specific hardware accelerators
that can perform a particular class of functions more efficiently. The concept of combining these two
ideas—that is, running a CPU or CPUs together with various accelerators—is called heterogeneous
parallel computing.

High-level computer-vision tasks often contain subtasks that can be run faster on special-purpose
hardware architectures than on the CPU, while other subtasks are computed on the CPU. The GPU
(graphics processing unit), for example, is an accelerator that is now available on every desktop
computer, as well as on mobile devices such as smart phones and tablets.

GRAPHICS HARDWARE
The first GPUs were fixed-function pipelines specialized for accelerated drawing of shapes on a
computer display, as illustrated in figure 1. As GPUs gained the capability of using color images as
input for texture mapping, and their results could be shared with the CPU rather than just being
sent to the display, it became possible to use GPUs for simple image-processing tasks.

Making the fixed-function GPUs partially programmable by adding shaders was a big step
forward. This enabled programmers to write special programs that were run by the GPU on every
three-dimensional point of the surface and at every pixel rendered onto the output canvas. This
vastly expanded the GPU’s processing capability, and clever programmers began to try general-
purpose computing on a GPU (GPGPU), harnessing the graphics accelerator for tasks for which it was
not originally designed. The GPU became a useful tool for image processing and computer-vision
tasks.

Graphics shaders, however, did not provide access to many useful hardware capabilities such
as synchronization and atomic memory operations. Modern GPU computation languages such as

red ball
human

face

computer vision

computer graphics

the same hardware boosts both!

high-level information
about a scene raster image

Computer Vision and GPU

HCI

3

CUDA, OpenCL, and DirectCompute are explicitly designed to support general-purpose computing
on graphics hardware. GPUs are still not quite as flexible as CPUs, but they perform parallel stream
processing much more efficiently, and an increasing number of non-graphics applications are being
rewritten using the GPU compute languages.

Computer vision is one of the tasks that often naturally map to GPUs. This is not a coincidence,
as computer vision solves the inverse of the computer graphics problem. While graphics transforms
a scene or object description to pixels, vision transforms pixels to higher-level information. GPUs
contain lots of similar processing units and are very efficient in executing simple, similar subtasks
such as rendering or filtering pixels. Such tasks are often known as “embarrassingly parallel,” because
they are so easy to parallelize efficiently on a GPU.

Many tasks, however, do not parallelize easily, as they contain serial segments where the results of
the later stages depend on the results of earlier stages. These serial algorithms do not run efficiently
on GPUs and are much easier to program and often run faster on CPUs. Many iterative numerical
optimization algorithms and stack-based tree-search algorithms belong to that class.

Since many high-level tasks consist of both parallel and serial subtasks, the entire task can be
accelerated by running some of its components on the CPU and others on the GPU. Unfortunately,
this introduces two sources of inefficiency. One is synchronization: when one subtask depends
on the results of another, the later stage needs to wait until the previous stage is done. The other
inefficiency is the overhead of moving the data back and forth between the GPU and CPU
memories—and since computer-vision tasks need to process lots of pixels, it can mean moving
massive data chunks back and forth. These are the key challenges in accelerating computer-vision
tasks on a system with both a CPU and GPU.

OPENCV LIBRARY
OpenCV, the open source computer vision library, began as a research project at Intel in 1998.5 It
has been available since 2000 under the BSD open source license. OpenCV is aimed at providing
the tools needed to solve computer-vision problems. It contains a mix of low-level image-processing
functions and high-level algorithms such as face detection, pedestrian detection, feature matching,
and tracking. The library has been downloaded more than 3 million times.

In 2010 a new module that provides GPU acceleration was added to OpenCV. The GPU module
covers a significant part of the library’s functionality and is still in active development. It is
implemented using CUDA and therefore benefits from the CUDA ecosystem, including libraries such
as NPP (NVIDIA Performance Primitives).

The GPU module allows users to benefit from GPU acceleration without requiring training in GPU
programming. The module is consistent with the CPU version of OpenCV, which makes adoption
easy. There are differences, however, the most important of which is the memory model. OpenCV
implements a container for images called cv::Mat that exposes access to image raw data. In the
GPU module the container cv::gpu::GpuMat stores the image data in the GPU memory and does
not provide direct access to the data. If users want to modify the pixel data in the main program
running on the GPU, they first need to copy the data from GpuMat to Mat.

HCI

4

#include <opencv2/opencv.hpp> #include <opencv2/gpu/gpu.hpp>
using namespace cv;
...
Mat image = imread(“file.png”);
gpu::GpuMat image_gpu;
image_gpu .upload(image);
gpu::GpuMat result;
gpu::threshold(image_gpu, result, 128, CV_THRESH_BINARY);
result.download(image);
imshow(“WindowName”, image);
waitKey ();

In this example, an image is read from a file and then uploaded to GPU memory. The image
is thresholded there, and the result is downloaded to CPU memory and displayed. In this simple
example only one operation is performed on the image, but several others could be executed on the
GPU without transferring images back and forth. The usage of the GPU module is straightforward for
someone who is already familiar with OpenCV.

This design provides the user with explicit control over how data is moved between CPU and
GPU memory. Although the user has to write some additional code to start using the GPU, this
approach is both flexible and allows more efficient computations. In general, it is a good idea to
research, develop, and debug a computer-vision application using the CPU part of OpenCV, and then
accelerate it with the GPU module. Developers should try different combinations of CPU and GPU
processing, measure their timing, and then choose the combination that performs the best.

Another piece of advice for developers is to use the asynchronous mechanisms provided by CUDA
and the GPU module. This allows simultaneous execution of data transfer, GPU processing, and CPU
computations. For example, while one frame from the camera is processed by the GPU, the next
frame is uploaded to it, minimizing data-transfer overheads and increasing overall performance.

PERFORMANCE OF THE OPENCV GPU MODULE
OpenCV’s GPU module includes a large number of functions, and many of them have been
implemented in different versions, such as the image types (char, short, float), number of channels,
and border extrapolation modes. This makes it challenging to report exact performance numbers.
An added source of difficulty in distilling the performance numbers down is the overhead of
synchronizing and transferring data. This means that best performance is obtained for large images
where a lot of processing can be done while the data resides on the GPU.

To help the developer figure out the trade-offs, OpenCV includes a performance benchmarking
suite that runs GPU functions with different parameters and on different data sets. This provides a
detailed benchmark of how much different data sets are accelerated on the user’s hardware.

Figure 2 is a benchmark demonstrating the advantage of the GPU module. The speedup is
measured against the baseline of a heavily optimized CPU implementation of OpenCV. OpenCV
was compiled with Intel’s SSE (Streaming SIMD Extensions) and TBB (Threading Building Blocks)
for multicore support, but not all algorithms use them. The primitive image-processing speedups
have been averaged across roughly 30 functions. Speedups are also reported for several high-level
algorithms.

HCI

5

It is quite normal for a GPU to show a speedup of 30 times for low-level functions and up to 10
times for high-level functions, which include more overhead and many steps that are not easy to
parallelize with a GPU. For example, the granularity for color conversion is per-pixel, making it easy
to parallelize. Pedestrian detection, on the other hand, is performed in parallel for each possible
pedestrian location, and parallelizing the processing of each window position is limited by the
amount of on-chip GPU memory.

As an example, we accelerated two packages from ROS (Robot Operation System)8—stereo visual
odometry and textured object detection—that were originally developed for the CPU. They contain
many functional blocks and a class hierarchy.
Wherever it made sense, we offloaded the computations to the GPU. For example, OpenCV GPU
implementations performed SURF (Speeded-up Robust Feature) key point detection, matching,
and search of stereo correspondences (block matching) for stereo visual odometry. The accelerated
packages were a mix of CPU/GPU implementations. As a result, the visual odometry pipeline was
accelerated 2.7 times, and textured object detection was accelerated from 1.5 to 4 times, as illustrated
in figure 3. Data-transfer overhead was not a significant part of the total algorithm runtime. This
example shows that replacing only a few lines of code results in a considerable speedup of a high-
level vision application.

STEREO CORRESPONDENCE WITH THE GPU MODULE
Stereo corre spondence search in a high-resolution video is a demanding application that
demonstrates how CPU and GPU computations can be overlapped. OpenCV’s GPU module includes
an implementation that can process full HD resolution stereo pair in real time (24 frames per second)
on the NVIDIA GTX580.

In a stereo system, two cameras are mounted facing in the same direction. While faraway objects

primitive image
processing

30x

7x 8x
6x

12x

CPU
GPU

stereo vision pedestrian
detection (HOG)

Viola-Jones
face detector

SURF
keypoints

sp
ee

du
p

CPU Versus GPU Performance Comparison

HCI

6

project to the same image locations on each camera, nearby objects project to different locations.
This is called disparity. By locating for each pixel on the left camera image where the same surface
point projects to on the right image, you can use the disparity to compute the distance to that
surface point. Finding these correspondences between pixels in the stereo image pairs is the key
challenge in stereovision.

This task is made easier by rectifying the images. Rectification warps the images to an ideal stereo
pair where each scene surface point projects to a matching image row. This way, only points on
the same scan line need to be searched. The quality of the match is evaluated by comparing the
similarity of a small window of pixels with the candidate matching pixel. Then the pixel in the
right image whose window best matches the window of the pixel on the left image is selected as the
corresponding match.

The computational requirements obviously increase as the image size increases, because there are
more pixels to process. In a larger image the range of disparities measured in pixels also increases,
which requires a larger search radius. For small-resolution images the CPU may be sufficient to
calculate the disparities; with full HD resolution images, however, only the GPU can provide enough
processing power.

Figure 4 presents a block-matching pipeline that produces a disparity image d(x,y) such that
LeftImage(x,y) corresponds to RightImage(x - d(x,y),y). The pipeline first rectifies the images and then
finds the best matches, as previously described. In areas where there is little texture—for example,
a blank wall—the calculated matches are unreliable, so all such areas are marked to be ignored in
later processing. As the disparity values are expected to change a lot only near object borders, the
speckle-filtering stage eliminates speckle noise within large continuous regions of disparity image.
Unfortunately, the speckle-filtering algorithm requires a stack-based depth-first search that is difficult
to parallelize, so it is run on the CPU. Finally, the results are visualized using a false-color image.

All the steps except speckle filtering are implemented on the GPU. The most compute-intensive
step is block matching. NVIDIA GTX580 has accelerated it seven times faster than a CPU

E R U G I F

E R U G I F

E R U G I F
E R U G I F
E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

Texture Object Detection Application: CPU and GPU

 Objects

n coffee filter

n medals

n clog remover

n playing cards

HCI

7

implementation on a quad core Intel i5-760 2.8-GHz processor with SSE and TBB optimizations.
After this speedup the speckle filtering becomes the bottleneck, consuming 50 percent of the frame-
processing time.

An elegant parallel-processing solution is to run speckle filtering on the CPU in parallel with the
GPU processing. While the GPU processes the next frame, the CPU performs speckle filtering for
the current frame. This can be done using asynchronous OpenCV GPU and CUDA capabilities. The
heterogeneous CPU/GPU system now provides a sevenfold speedup for the high-resolution stereo
correspondence problem, allowing realtime (24 fps) performance at full HD resolution.

KINECTFUSION
Microsoft’s KinectFusion4 is an example of an application that previously required slow batch
processing but now, when powered by GPUs, can be run at interactive speeds. Kinect is a camera
that produces color and depth images. Just by aiming the Kinect device around, one can digitize
the 3D geometry of indoor scenes at an amazing fidelity, as illustrated in figure 5. An open source
implementation of such a scanning application is based on the Point Cloud Library,6 a companion

speckle
�ltering

recti�cation matching low texture
�ltering color and show

CPU

GPU

Stereo Block Matching Pipeline

RGB Frame, Depth Frame, Ray-Casted Frame, and Point Cloud

ERUGIF

HCI

8

library to OpenCV that uses 3D points and voxels instead of 2D pixels as basic primitives.
Implementing KinectFusion is not a simple task. Kinect does not return range measurements

for all the pixels, and it works reliably only on continuous smooth matte surfaces. The range
measurements that it returns are noisy, and depending on the surface shapes and reflectance
properties, the noise can be significant. The noise also increases with the distance to the measured
surface. Kinect generates a new depth frame 30 times in a second. If the user moves the Kinect
device too fast, the algorithm gets confused and cannot track the motion using the range data.
With a clever combination of good algorithms and using the processing power provided by GPUs,
however, KinectFusion works robustly.

There are three key concepts that make a robust interactive implementation feasible. First, the
tracking algorithm is able to process the new scan data so fast that the camera has time to move
very little between the consecutive frames. This makes it feasible to track the camera position and
orientation using just the range data.

Second, fusion of depth data is done using a volumetric surface representation. The presentation
is a large voxel grid that makes it easier to merge the data from different scans in comparison with
surface-based representations. To obtain high model quality, the grid resolution is chosen to be as
dense as possible (512x512x512), so it has to be processed by the GPU for realtime rates.

Finally, the manner in which the new data is merged with the old reduces the noise and
uncertainty as more data is gathered, and the accuracy of the model keeps improving. As the model
gets better, tracking gets easier as well. Parallel ray casting through the volume is done on the GPU
to get depth information, which is used for camera tracking on the next frame. So frame-to-frame
movement estimation is performed only between the first and second frames. All other movements
are computed on model-to-frame data, which makes camera tracking very robust.

All of these steps are computationally intensive. Volumetric integration requires the wide
memory bandwidth that only the GPU can deliver at a price low enough to be affordable by normal
consumers. Without GPUs this system would simply not be feasible.

Not every step of the computation is easy to do on a GPU, however. For example, the camera
position is tracked on a CPU. Though the linear equation matrix required for camera position
estimation is fully computed on the GPU, computing the final solution does not parallelize well, so it
is done on the CPU, which results in some download and API call overhead. Another problem is that
the bottom-level image in the hierarchical image processing approach is only 160x120, which is not
large enough to fully load a GPU. All the other parts are ideal for GPU but limited by the amount of
available GPU memory and computing resources.

Further development requires even more GPU power. At the moment, the size of the scene is
limited by the volumetric representation. Using the same number of voxels but making them bigger
would allow us to capture a larger scene but at a coarser resolution. Retaining the same resolution
while scanning larger scenes would require more voxels, but the number of voxels is limited by the
amount of memory available on the GPU and by its computational power.

ACCELERATING COMPUTER VISION ON MOBILE DEVICES
While PCs are often built with a CPU and a GPU on separate chips, mobile devices such as smart
phones and tablets put all the computing elements on a single chip. Such an SoC (system on chip)
contains one or more CPUs and a GPU, as well as several signal processors for audio and video

HCI

9

processing and data communication. All modern smart phones and some tablets also contain one
or more cameras, and OpenCV is available on both Android and iOS operating systems. With all
these components, it is possible to create mobile vision applications. The following sections look
at the mobile hardware in more detail, using NVIDIA’s Tegra 2 and Tegra 3 SoCs as examples, and
then introduce several useful multimedia APIs. Finally, two mobile vision applications are presented:
panorama creation and video stabilization.

TOOLS FOR MOBILE COMPUTER VISION
At the core of any general-purpose computer is the CPU. While Intel’s x86 instruction set rules on
desktop computers, almost all mobile phones and tablets are powered by CPUs from ARM. ARM
processors follow the RISC (reduced instruction set computing) approach, as can be deduced from
ARM’s original name, Advanced Risc Machines. While x86 processors were traditionally designed
for high computing power, ARM processors were designed primarily for low-power usage, which is
a clear benefit for battery-powered devices. As Intel is reducing power usage in its Atom family for
mobile devices, and recent ARM designs are getting increasingly powerful, they may in the future
reach a similar design point, at least on the high end of mobile computing devices. Both Tegra 2 and
Tegra 3 use ARM Cortex-A9 CPUs.

Mobile phones used to have only one CPU, but modern mobile SoCs are beginning to sport
several, providing symmetric multiprocessing. The reason is the potential for energy savings. One
can reach roughly a similar level of performance using two cores running at 1 GHz each than
with one core running at 2 GHz. Since the power consumption increases super-linearly with the
clock speed, these two slower cores together consume less power than the single faster core. Tegra 2
provides two ARM cores, while Tegra 3 provides four. Tegra 3 actually contains five (four plus one)
cores, out of which one, two, three, or four cores can be active at the same time. One of the cores,
known as the shadow or companion core, is designed to use particularly little energy but can run
only at relatively slow speeds. That mode is sufficient for standby, listening to music, voice calls, and
other applications that rely on dedicated hardware such as the audio codec and require only a few
CPU cycles. When more processing power is needed (e.g., reading e-mail), the slower core is replaced
by one of the faster cores, and for increased performance (browsing, gaming) additional cores kick
in.

SIMD (single instruction, multiple data) processing is particularly useful for pixel data, as the same
instruction can be used on multiple pixels simultaneously. SSE is Intel’s SIMD technology, which
exists on all modern x86 chips. ARM has a similar technology called NEON, which is an optional
coprocessor in the Cortex A9. The NEON can process up to eight and sometimes even 16 pixels at
the same time, while the CPU can process only one element at a time. This is very attractive for
computer-vision developers, as it is often easy to obtain three to four times performance speedup—
and with careful optimization even more than six times. Tegra 2 did not include the NEON
extension, but each of Tegra 3’s ARM cores has a NEON coprocessor.

All modern smart phones include a GPU. The first generation of mobile GPUs implemented
the fixed-functionality graphics pipeline of OpenGL ES 1.0 and 1.1. Even though the GPUs were
designed for 3D graphics, they could be used for a limited class of image-processing operations
such as warping and blending. The current mobile GPUs are much more flexible and support GLSL
(OpenGL shading language) programming with the OpenGL ES 2.0 API, allowing programmers
to run fairly complicated shaders at each pixel. Thus, many old-school GPGPU tricks developed

HCI

10

for desktop GPUs about 10 years ago can now be reused on mobile devices. The more flexible GPU
computing languages such as CUDA and OpenCL will replace those tricks in the coming years but
are not available yet.

Consumption and creation of audio and video content is an important use case on modern
mobile devices. To support them, smart phones contain dedicated hardware encoders and decoders
both for audio and video. Additionally, many devices have a special ISP (image signal processor)
that processes the pixels streaming out from the camera. These media accelerators are not as easily
accessible and useful for computer-vision processing, but the OpenMAX standard helps.1 OpenMAX
defines three different layers: AL (application), IL (integration), and DL (development). The lowest,
DL, specifies a set of primitive functions from five domains: audio, video, and image coding, and
image andsignal processing. Some of them are of potential interest for computer-vision developers,
especially video coding and image processing, because they provide a number of simple filters, color
space conversions, and arithmetic operations. IL is meant for system programmers for implementing
the multimedia framework and provides tools for purposes such as camera control. AL is meant
for application developers and provides high-level abstractions and objects such as Camera, Media
Player, and Media Recorder. The OpenMAX APIs are useful for passing image data efficiently
between the various accelerators and other APIs such as OpenGL ES.

Sensors provide another interesting opportunity for computer-vision developers. Many devices
contain sensors such as accelerometers, gyroscopes, compasses, and GPSes. They cannot perform
calculations, but can be useful if the application needs to reconstruct the camera orientation or 3D
trajectory. The problem of extracting the camera motion from a set of frames is challenging, in terms
of both performance and accuracy. SLAM (simultaneous localization and mapping), SfM (structure
from motion), and other approaches can compute the camera position and even the shapes of the
objects the camera sees, but these methods are not easy to implement, calibrate, and optimize, and
they require a lot of processing power. The sensors can nonetheless deliver a fairly accurate estimate
of the device orientation at a fraction of the cost of relying only on visual processing. For accurate
results the sensor input should be used only as a starting point, to be refined using computer-vision
techniques.

OPENCV ON TEGRA
One of the major design and implementation goals for OpenCV has always been high performance.
Porting both OpenCV and applications using it to mobile devices requires care, however, to
retain a sufficient level of performance. OpenCV has been available on Android starting from the
Google Summer of Code 2010 when it was first built and run on Google Nexus One. Several demo
applications demonstrated almost realtime behavior, but it was obvious that OpenCV needed
optimization and fine-tuning for mobile hardware.

That is why NVIDIA and Itseez decided to create a Tegra-optimized version of OpenCV. This
work benefited from three major optimization opportunities: code vectorization with NEON,
multithreading with the Intel TBB (Threading Building Blocks) library, and GPGPU with GLSL.

Taking advantage of the NEON instruction set was the most attractive of the three choices. Figure
6 compares the performance of original and NEON-optimized versions of OpenCV. In general,
NEON requires basic arithmetic operations using simple and regular memory-access patterns.
Those requirements are often satisfied by image-processing primitives, which are almost ideal for

HCI

11

acceleration by NEON vector operations. As those primitives are often in the critical path of high-
level computer vision workflows, NEON instructions can significantly accelerate OpenCV routines.

Multithreading on up to four symmetric CPUs can help at a higher level. TBB and other threading
technologies enable application developers to get the parallel-processing advantage of multiple CPU
cores. At the application level, independent activities can be distributed among different cores, and
the operating system will take care of load balancing. This approach is consistent with the general
OpenCV strategy for multithreading—to parallelize the whole algorithmic pipeline—while on a
mobile platform we often also have to speed up primitive functions.

One approach is to split low-level functions into several smaller subtasks, which produces faster
results. A popular technique is to split an input image into several horizontal stripes and process
them simultaneously. An alternative approach is to create a background thread and get the result
later while the main program works on other parts of the problem. For example, in the video
stabilization application a special class returns an asynchronously calculated result from the previous
iteration. Multithreading limits the speedup factor by the number of cores, which on the most
advanced current mobile platforms is four, while NEON supports vector operations on 16 elements.
Of course, these two technologies can be combined. If the algorithm is constrained by the speed of
memory access, however, multithreading may not provide the expected performance improvement.
For example, the NEON version of cv::resize does not gain from adding new threads, because a
single thread already fully consumes the memory-bus capacity.

The final method applied during the optimization of the OpenCV library for the Tegra platform

canny

1.6x

300

250

200

150

100

50

0

23x
1.6x

9.5x 5.4x

Tegra CPU
Tegra NEON

median
blur

optical
�ow

color
conversion

morph-
ology

gaussian
blur

4.6x 2.6x 3.1x
3.4x 7.6x

FAST
detector

Sobel pyrDown image
resize

tim
e

(m
s)

Performance Improvement with NEON on Tegra 3

ERUGIF

HCI

12

is GPGPU with GLSL shaders. Though the mobile GPU has limitations as discussed previously,
on certain classes of algorithms the GPU is able to show an impressive performance boost while
consuming very little energy. On mobile SoCs it is possible to share memory between CPU and
GPU, which allows interleaving C++ and GLSL processing of the same image buffer. Figure 7 shows
example speedups of some filters and geometric transformations from the OpenCV library.

An additional benefit of using the GPU is that at full speed it runs at a lower average power than
the CPU. On mobile devices this is especially important, since one of the main usability factors
for consumers is how long the battery lasts on a charge. We measured the average power and time
elapsed to perform 10,000 iterations of some optimized C++ functions, compared with the same
functions written in GLSL. Since these functions are both faster on the GPU, and the GPU runs at
lower peak power, the result is significant energy savings (see table 1). We measured energy savings
of 3-15 times when porting these functions to GPU.

median
blur

800

600

400

200

0

2.4x

13x

9.8x

5.7x

3.3x

Tegra CPU
Tegra GPU

planar
warper

warpPerspective blur3x3

14x

cylindrical
warper

warpA�ne

tim
e

(m
s)

Performance Improvement with GLSL on Tegra 3

ERUGIF

TABLE 1: Energy savings with GLSL on Tegra 3.

OpenCV Function (10,000 iterations) Energy Savings

Median Blur 3.43
Planar Warper 6.25
warpPerspective 6.45
Cylindrical Warper 3.89
blur3x3 3.6
warpAffine 15.38

HCI

13

APPLICATIONS
We have developed two mobile vision applications using OpenCV: one that stitches together a
panoramic image from several normal photographs, and another that stabilizes streaming video.
The performance requirements are challenging. Our goal is realtime performance, where each frame
should be processed within about 30 milliseconds, of which basic operations such as simply copying
a 1280x720-pixel frame may take 8 milliseconds. Consequently, to a large extent the final design of
an application and its underlying algorithm is determined by this constraint.

In both cases we were able to satisfy the time limits by using the GPU to optimize the
applications’ bottlenecks. Several geometric transformation functions such as image resizing and
various types of image warping were ported to the GPU, doubling the application’s performance. The
results were not nearly as good when performing the same tasks using NEON and multithreading.
One reason was that both ap plications deal with high-resolution four-channel images. As a result,
the memory bus was overloaded and the CPU cores competed for the cache memory. At the same
time we needed to program bilinear interpolation manually; ths process is implemented in GPU
hardware. We learned that the CPU does not work as well for full-frame geometric transformations,
and the help of the GPU was invaluable. Let’s consider both applications in more detail.

PANORAMA STITCHING
In the panorama-stitching application our goal was to combine several ordinary images into a single
panorama that has a much larger FOV (field of view) than the input images.7 Figure 8 demonstrates
the stitching of several detailed shots into a single high-resolution image of the whole image.

Input Images and the Resulting Panorama

ERUGIF

HCI

14

Figure 9 shows the processing pipeline for the OpenCV panorama-stitching application. The
process of porting to Tegra started from some algorithmic improvements, followed by NEON and
multithreading optimization; yet after all these efforts, the application still wasn’t responsive enough
and could not stitch and preview the resulting panorama at interactive speeds. Among the top
bottlenecks were image resizing and warping. Resizing is required because different algorithmic steps
are performed at different resolutions, and each input frame is resized about three times, depending
on the algorithmic parameters. The type of warping needed depends on the desired projection mode
(spherical, cylindrical, etc.), and images are warped before the final panorama blending.

With the GPU version of cv::resize we were able to decrease scaling time from 41 to 26
milliseconds for each input frame, which is equal to 1.6 times local speedup. Because of the GPU
implementation of image warping, we could achieve even better local improvements—a boost of
8-14 times in performance, depending on the projection type. As a result, total application speedup
was 1.5-2.0 times, meeting performance requirements.

VIDEO STABILIZATION
One of the negative consequences of recording video without a tripod is camera shake, which
significantly de grades the viewing experience. To achieve visually pleasant results, all the movements
should be smooth, and the high-frequency variations in camera orientation and translation need to
be filtered. Numerous approaches have been developed, some of which have become open source
or commercially available tools. There exist offline computationally intensive approaches that
take a considerable amount of time, while the lightweight online algorithms are more suitable for
mobile devices. High-end approaches often reconstruct the 3D movement of the camera and apply
sophisticated nonrigid image warping to stabilize the video.2 On mobile devices more lightweight
approaches using translation, affine warping, or planar perspective transformations may make more
sense.3

We experimented with translation and affine models, and in both cases the GPU was able to
eliminate the major hotspot, which was the application of the compensating transformation to an
input frame. Translation to compensate for the motion simply means shifting the input frame along
the X and Y axes and cutting off some of the boundary areas for which some of the frames now do
not contain color information (see figure 10).

image
registration seam �nding compositing

image warp

high-level pipeline

GPU calls image resize

Panorama Stitching Pipeline

ERUGIF

HCI

15

In terms of programming, one should choose a properly located submatrix and then resize it
into a new image at the same resolution as the original video stream, as suggested in figure 11.
Surprisingly, this simple step consumed more than 140 milliseconds. Our GPU GLSL implementation
was five to six times faster than C++ and took about 25 milliseconds.

Nevertheless, 25 milliseconds is still too long for a realtime algorithm, which is why we next tried
to obtain more speed from asynchronous calls. A special class was created for stabilizing frames on
the GPU. This class immediately returns a result from the previous iteration stored in its image-buffer

Video Stabilization Input Sequence

ERUGIF

preprocessing motion
estimation

motion
smoothing

motion
compensation

image resize

high-level pipeline

GPU calls image resize

Video Stabilization Pipeline

E
R

UGIF

HCI

16

field and creates a TBB::task for processing the next frame. As a result, GPU processing is performed
in the background, and the apparent cost and delay for the caller is equal to just copying a full
frame. This trick was also applied to an expensive color-conversion procedure, and with further
optimizations of the memory-access patterns, we achieved realtime processing performance.

FUTURE DIRECTIONS
GPUs were originally developed to accelerate the conversion of 3D scene descriptions into 2D images
at interactive rates, but as they have become more programmable and flexible, they have also been
used for the inverse task of processing and analyzing 2D images and image streams to create a 3D
description, to control some applications so they can react to the user or events in the environment,
or simply to create higher-quality images or videos. As computer-vision applications become more
commonplace, it will be interesting to see whether a different type of computer-vision processor that
would be even more suitable for image processing is created to work with a GPU, or whether the GPU
remains suitable even for this task. The current mobile GPUs are not yet as flexible as those on larger
computers, but this will change soon enough.

OpenCV (and other related APIs such as Point Cloud Library) have made it easier for application
developers to use computer vision. They are well-documented and vibrant open source projects
that keep growing, and they are being adapted to new computing technologies. Examples of this
evolution are the transition from a C to a C++ API in OpenCV and the appearance of the OpenCV
GPU module. The basic OpenCV architecture, however, was designed mostly with CPUs in mind.
Maybe it is time to design a new API that explicitly takes heterogeneous multiprocessing into
account, where the main program may run on a CPU or several CPUs, while major parts of the vision
API run on different types of hardware: a GPU, a DSP (digital signal processor), or even a dedicated
vision processor. In fact, Khronos has recently started working on such an API, which could work as
an abstraction layer that allows innovation independently on the hardware side and allows for high-
level APIs such as OpenCV to be developed on top of this layer while being somewhat insulated from
the changes in the underlying hardware architecture.

ACKNOWLEDGMENTS

We would like to thank our colleagues for help with numerical experiments and constructive
discussions; Colin Tracey and Marina Kolpakova for help with power analysis; Andrey Pavlenko
and Andrey Kamaev for GLSL and NEON code; and Shalini Gupta, Shervin Emami, and Michael
Stewart for additional comments. NVIDIA provided support, such as all the hardware used in the
experiments.

REFERENCES

1. Khronos OpenMAX standard; http://www.khronos.org/openmax.
2. Liu, F., Gleicher, M., Wang, J., Jin, H., Agarwala, A. 2011. Subspace video stabilization. ACM

Transactions on Graphics 30(1):4:1–4:10.
3. Matsushita, Y., Ofek, E., Ge, W., Tang, X., Shum, H.-Y. 2006. Full-frame video stabiliza tion with

motion inpainting. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(7):1150–1163.
4. Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A. J., Kohli, P., Shotton, J.,

 Hodges, S., Fitzgibbon, A. W. 2011. Kinectfusion: Real-time dense surface mapping and tracking.
IEEE International Symposium on Mixed and Augmented Reality (ISMAR): 127–136.

HCI

17

5. OpenCV library; http://code.opencv.org.
6. Point Cloud Library; http://pointclouds.org.
7. Szeliski, R. 2006. Image alignment and stitching: a tutorial. Foundations and Trends in Computer

Graphics and Vision 2(1):1–104.
8. Willow Garage. Robot Operating System; http://www.ros.org/wiki/.

LOVE IT, HATE IT? LET US KNOW
feedback@queue.acm.org

KARI PULLI is a senior director at NVIDIA Research, where he heads the Mobile Visual Computing
Research team and works on topics related to cameras, imaging, and vision on mobile devices. Previously
he was at Nokia, where he was the sixth Nokia Fellow and a member of the CEO technology council.
He has worked on standardizing mobile media APIs at Khronos and JCP and was the technical lead of
the Digital Michelangelo Project at Stanford University. He has a B.Sc. from the University of Minnesota,
M.Sc. and Lic. Tech. from the University of Oulu (Finland), and Ph.D. from the University of Washington
(Seattle), all in computer science/engineering; and an MBA from the University of Oulu. He is the author
of Mobile 3D Graphics (Morgan Kaufmann, 2007).

ANATOLY BAKSHEEV is a project manager at Itseez. He started his career there in 2006 and was the
principal developer of the multi-projector system Argus Planetarium. In 2008 he worked as a senior
engineer on the OpenCV team. Since 2010 he has been the leader of the OpenCV GPU project that
brings computationally intensive vision algorithms to GPU. He acts as both the architect and the principal
developer of the OpenCV GPU module and in 2011 started working on the GPU acceleration module for
Point Cloud Library. Anatoly graduated from Nizhny Novgorod State University, Russia, with an M.Sc. in
computer science.

KIRILL KORNYAKOV is a project manager at Itseez, where he leads the development of the OpenCV
library for mobile devices. He manages activities on mobile operating system support and computer-vision
applications development, including performance optimization for NVIDIA Tegra platform. He has also
worked on realtime computer-vision systems for open source and commercial products, among them
stereovision on GPU and face detection in complex environments. Kirill has B.Sc. and M.Sc. degrees from
Nizhny Novgorod State University, Russia.

VICTOR ERUHIMOV is CTO of Itseez. Prior to co-founding the company, he worked as a project
manager and senior research scientist at Intel, where he applied computer-vision and machine-learning
methods to automate Intel fabs and revolutionize data processing in semiconductor manufacturing.
Before joining the manufacturing group he was developing technologies for human-motion capture,
image retrieval, super-resolution, and face analysis. He is the author of more than 20 computer-vision and
machine-learning papers, and holds several U.S. and international patents.

© 2012 ACM 1542-7730/12/0400 $10.00

