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Abstract

Commodity graphics hardware has become increasingly programmable over the last few years but has been limited
to a fixed resource allocation. These architectures handle some workloads well, others poorly; load-balancing to
maximize graphics hardware performance has become a critical issue. In this paper, we explore one solution to
this problem using compile-time resource allocation. For our experiments, we implement a graphics pipeline on
Raw, a tile-based multicore processor. We express both the full graphics pipeline and the shaders using StreamIt, a
high-level language based on the stream programming model. The StreamIt compiler maps the stream computation
onto the Raw architecture.
We evaluate our reconfigurable architecture using a mix of common rendering tasks with different workloads
and achieve an increase of more than 150% in throughput over a static allocation. Although our early prototype
cannot compete in performance against commercial state-of-the-art graphics processors, we believe that this
paper describes an important first step in addressing the load-balancing challenge.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture
- Graphics processors C.1.2 [Processor Architectures]: Multiple Data Stream Architectures - Single-instruction-
stream, multiple-data-stream processors (SIMD)

1. Introduction

“All processors aspire to be general-purpose.”

– Tim Van Hook, Graphics Hardware 2001

And so it has been with commodity graphics processing
units (GPUs) in the last few years. New features, such as
floating-point per-pixel operations and flow control, offer
new and exciting possibilities for shading as well as for
general-purpose, non-graphics applications.

Despite significant gains in performance and pro-
grammable features, current GPU architectures have a key
limitation: a fixed resource allocation. For example, the
NVIDIA NV40 processor has 6 vertex pipelines, 16 frag-
ment pipelines, and a fixed set of other resources surround-
ing these programmable stages. The allocation is fixed at de-
sign time and remains the same for all software applications
that run on this chip.

Although GPU resource allocations are optimized for
common workloads, it is difficult for a fixed allocation to

work well on all possible scenarios. For instance, during
an expensive image-based special-effects rendering pass, the
vertex engines sit idle. Conversely, when the bottleneck lies
in the vertex shader because of complex deformations, the
pixel engines are idle. And when an application spends much
of its time rasterizing shadow volumes (e.g. in Doom 3), al-
most the entire chip is idle. These are common scenarios
that suffer from load imbalance due to a fixed resource allo-
cation.

In this paper, we examine one approach for solving this
load-imbalance problem using compile-time resource allo-
cation. For our experiments, we have implemented a graph-
ics pipeline on Raw, a parallel tiled architecture. We compare
a fixed resource allocation representative of current graph-
ics architecture against a compile-time flexible resource al-
location. The flexible allocation takes into account the com-
plexity of the calculation for a given rendering pass and the
respective load on the various stages of the pipeline. We
take an extreme stance and explore the hypothesis where
all stages of a graphics hardware are programmable. While
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many will argue that GPUs will retain a level of specializa-
tion in the foreseeable future (in particular for rasterization),
we show that our hypothesis allows us to explore a point in
the design space that permits efficient load balancing. We
hope that this work will inspire graphics hardware design
that are reconfigurable and yield better resource utilization
through load-balancing.

1.1. Overview

The prototype implementation of our approach is made fea-
sible by two unique technologies: a multicore processor
with programmable communication networks and a pro-
gramming language that allows us to specify the topology of
the graphics pipeline using high-level language constructs.
Our rendering pipeline is executed on the Raw processor
[TKM∗02], which is a highly scalable architecture with pro-
grammable communication networks. The programmable
networks allow us to realize pipelines with different topolo-
gies; hence, we can allocate computation units to rendering
tasks based on the demands of the application. We program
Raw using StreamIt [GTK∗02], which is a high-level lan-
guage based on a stream abstraction. The stream program-
ming model of StreamIt facilitates the expression of par-
allelism with high-level language constructs. The StreamIt
compiler generates the code to control Raw’s networks and
relieves the programmer of the burden of manually manag-
ing data routing between processor tiles. On the compiler
side, our main challenge has been to extend StreamIt to han-
dle the variable datarates present in 3D rendering due to
the variable number of pixel outputs per triangle and shader
lengths.

We emphasize that our implementation is meant as a proof
of concept. Beyond the implementation of load-balancing
for 3D rendering in this particular environment, the thesis of
this article is that load-balancing and increased programma-
bility can be achieved through the following approach:

A multicore chip with exposed communication enables
general-purpose computation and resource reallocation
by rerouting data flow.

A stream-based programming model facilitates the ex-
pression of arbitrary computation.

A compiler approach to static load-balancing facilitates
the appropriate mapping of computing units for each
application phase. The programmer specifies the number
of computing units allocated to each stage of the pipeline.

We focus on load balancing and the programming model
at the cost of the following points, which we plan to address
in future work. First, we do not put emphasis on the mem-
ory system, although we acknowledge its crucial influence
on graphics hardware performance. Second, we focus on the
high-level architecture of the chip and its resource alloca-
tion, and do not address the design of individual process-
ing elements (in particular, vector-computation capabilities

would likely improve our current performance). Third, we
only explore static load balancing at compilation time, and
leave dynamic load balancing as an exciting issue of future
research. Finally, we push full programmability quite far and
do not use specialized units for rasterization, the stage of the
3D pipeline that seems the least-likely component to become
programmable in the near future for performance reasons.
Specializing triangle rasterizers to support other rendering
primitives (e.g., point sprites) is a promising part of our on-
going research agenda.

Despite these limitations, and although the performance
obtained by our simulation cannot compete with state-of-
the-art graphics cards, we believe that this paper describes an
important first step in addressing the load-imbalance prob-
lem in current graphics architectures. Solving this problem
is important because doing so maximizes the use of available
GPU resources, which in turn implies a more efficient and
cost-effective rendering architecture. We hope to encourage
the design of reconfigurable graphics architectures in the fu-
ture.

Paper organization. The rest of this paper is organized as
follows: After reviewing related work in Section 1.2, we pro-
vide an overview of the Raw processor and the StreamIt
language in Section 2. We then discuss mapping a render-
ing pipeline to such a framework (Section 3), followed by a
series of case studies illustrating the improvements in pro-
cessor utilization that we achieve through flexible resource
allocation (Section 4).

1.2. Related Work

Parallelism is a key source of the immense computation
power of graphics processors. Recent studies have focused
on various aspects such as parallel interfaces [ISH98] or load
distribution and scalability with parallel pipelines [EIH00].
Both general-purpose processors [NK96] and PC clus-
ters [HHN∗02] have been used for parallel rendering. How-
ever, these systems are designed with a fixed topology
of computation nodes. Hence, they suffer from the same
load imbalances as special purpose hardware. In contrast,
our system focuses on flexible allocation of computational
resources, which is made possible by the programmable
routers of the Raw processor.

Pioneering work in programmable and reconfigurable ar-
chitectures include PixelFlow [EMP∗97] and the Pixel Ma-
chine [PH89]. PixelFlow had programmable vertex and frag-
ment processing and the ability to balance the load between
the two on similar processing elements. The Pixel machine
featured a programmable pipeline implementation and the
ability to map these algorithms onto its compute nodes.
These designs were workstation architectures and required
a large amount of hardware. With the increasing transis-
tor budget provided by modern manufacturing processes,
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it has become more viable to add a certain level of pro-
grammability to various functional units in consumer GPUs,
e.g., the vertex unit [LKM01]. Also, a number of high-
level languages and compilers are now available to program
these units [PMTH01,MGAK03,MQP02]. Hence, computer
graphics hardware has become more and more attractive for
general purpose, high-performance computing. In particu-
lar, the architecture of rendering pipelines closely matches
the concept of stream processing. For example, Buck et
al. [BFH∗04] presented a streaming language that permits
the implementation of streaming algorithms on the graphics
processor. We also use a stream abstraction as our program-
ming model. However, we use it not only to compile to ver-
tex and pixel shaders, but also to express the full rendering
pipeline itself, thereby allowing for compile-time load bal-
ancing.

Our approach is also related to the shader algebra
[MTP∗04] where shaders can be combined and code analy-
sis leads to efficient compilation and dead-code elimination.

Owens et al. [ODK∗00] characterized rendering as a
stream operation and demonstrated the implementation of a
fixed-function pipeline on a stream processor. We build on
their work and also use a stream processor, the Raw ma-
chine, but we make the pipeline completely programmable.
The application developer can compile several pipelines, and
change the graph topology at runtime, allowing for compile-
time load balancing.

In this paper, we start from the assumption that future
GPUs will contain a single type of general purpose pro-
cessing tiles that can be assigned flexibly to different tasks
(the upcoming unified shaders are going in this direction
[PH89]). Our goal is to study the implications and challenges
that this scenario imposes on the “driver” of such a proces-
sor. The driver will be of critical importance because it allo-
cates resources depending on the rendering task and ensures
that the processor is used efficiently. We build on solutions
in the stream compiler community to tackle this challenge.

2. Background

In this section, we give an overview of the two main tech-
nologies that our system is built upon: the Raw processor
(Section 2.1) and the StreamIt language and compiler (Sec-
tion 2.2).

2.1. The Raw Processor

The Raw processor [TKM∗02,TLM∗04] is a versatile archi-
tecture that achieves scalability by addressing the wire delay
problem. Raw also aims to be as efficient as an ASIC while
still running general purpose programs with reasonable per-
formance. Raw approaches these challenges by exposing its
rich on-chip resources, which include logic, wires, and pins,
through a new ISA to the software. In contrast to other ar-
chitectures, this allows Raw to more effectively exploit all

forms of parallelism, including instruction, data, and thread
level parallelism as well as pipeline parallelism.

Tile-Based Architecture. Raw is a parallel processor with
a 2-D array of identical, programmable tiles. Each tile con-
tains a compute processor as well as a switch processor that
manages four networks to neighboring tiles. The compute
processor is composed of an eight-stage in-order single-issue
MIPS-style processor, a four-stage pipelined floating point
unit, a 32kB data cache, and a 32kB instruction cache. The
current prototype is implemented in an IBM 180nm ASIC
process running at 450MHz; on one chip, it contains 16 uni-
form tiles arranged in a square grid. The theoretical peak
performance of this prototype is 6.8 GFLOPS. In this paper,
we gather results using btl, a cycle-accurate simulator that
can model multiple tile configurations. We use a 64-tile con-
figuration for our results. Though the prototype chip contains
only 16 tiles, a 64-tile configuration is planned.

On-Chip Communication Networks. The switch pro-
cessors control four 32-bit full-duplex on-chip networks.
The networks are register-mapped, blocking, and flow-
controlled, and they are integrated directly into the bypass
paths of the processor pipeline. As a key innovative feature
of Raw, these networks are exposed to the software through
the Raw ISA.

There are two static networks and two dynamic networks.
The static networks are used for communication patterns
that are known at compile time. To route a word from one
tile to another over a static network, it is the responsibility
of the compiler to insert a route instruction on every inter-
mediate switch processor. The static networks are ideal for
regular stream-based traffic and can also be used to exploit
instruction level parallelism [TLAA03]. The dynamic net-
works support patterns of communication that vary at run-
time. Items are transmitted in packets; a header encodes the
destination tile and packet length. Routing is done dynam-
ically by the hardware, rather than statically by the com-
piler. There are two dynamic networks: a memory network
for trusted clients (data caches, I/O, etc.) and a general net-
work for use by applications.

Memory System. On the boundaries of the chip, the net-
work channels are multiplexed onto the pins to form flexible
I/O ports. Words routed off the side of the chip emerge on the
pins, and words put on the pins by external devices appear on
the networks. Raw’s memory system is built by connecting
these ports to external DRAMs. For the 16 tile configura-
tion, Raw supports a maximum number of 14 ports, which
can be connected to up to 14 full-duplex DRAM memory
banks, leading to a memory bandwidth of 47GB per second.
While there are I/O ports only on the boundary of the chip,
any tile can access memory by routing requests and data over
the networks. Memory accesses from inner tiles are almost
as efficient as boundary tiles because the on-chip network
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latency (1 cycle / hop) is negligible compared to the off-chip
memory latency.

Raw as Graphics Hardware. We believe the Raw architec-
ture is interesting for graphics hardware developers, because
its design goals share a number of similarities with current
GPUs. Raw is tailored to effectively execute a wide variety
of computations, from special purpose computations that are
often implemented using ASICs to conventional sequential
programs. GPUs exploit data parallelism (by replicating ren-
dering pipelines, using vector units), instruction level par-
allelism (in super-scalar fragment processors), and pipeline
parallelism (by executing all stages of the pipeline simulta-
neously). Raw, too, is capable of exploiting these three forms
of parallelism. In addition, Raw is scalable: it consists of uni-
form tiles with no centralized resources, no global buses, and
no structures that get larger as the tile count increases. In
contrast to GPUs, Raw’s computational units and commu-
nication channels are fully programmable, which opens up
almost unlimited flexibility in laying out a graphics pipeline
and optimizing its efficiency on Raw.

On the other hand, the computational power of the cur-
rent 16 tile, prototype Raw processor is more than an order
of magnitude smaller than the power of current GPUs. The
obvious reason is that the number of parallel operations on
Raw is much smaller than the one on GPUs (Raw’s compu-
tation units do not perform vector computation). In addition,
Raw is a research prototype implemented with a 0.18µm
process; an industrial design with a modern 90nm process
would achieve higher clock frequencies.

Hence, in this paper we do not intend to compete with cur-
rent GPUs in terms of absolute performance, but we show
the benefits of a flexible and scalable architecture for effi-
cient resource utilization. The optimization of the Raw ar-
chitecture for graphics pipelines is an exciting direction for
future research.

2.2. The StreamIt Programming Language

StreamIt [TKA02, GTK∗02] is a high-level stream language
that aims to be portable across communication-exposed ar-
chitectures such as Raw. The language exposes the paral-
lelism and communication of streaming programs without
depending on the topology or granularity of the underlying
architecture. The StreamIt programming model is based on a
structured stream abstraction: all stream graphs are built out
of a hierarchical composition of filters, pipelines, split-joins,
and feedbackloops.

As we will describe in more detail in Section 3, the struc-
tured stream graph abstraction provided by StreamIt lends
itself to expressing data parallelism and pipeline parallelism
that appear in graphics pipelines. In particular, we will show
how to use StreamIt for high-level specification of rendering
pipelines with different topologies. As previously published,

StreamIt permits only fixed datarates. In order to implement
a graphics system that allows different triangle sizes, sup-
port for variable datarates is a necessity. In this work, we
add variable datarates to the StreamIt language and compiler
(Section 3.3).

Language Constructs. The basic unit of computation in
StreamIt is the filter. A filter is a single-input, single-output
block with a user-defined procedure for translating input
items to output items. Filters send and receive data to and
from other filters through FIFO queues with compiler type-
checked data types. StreamIt distinguishes between filters
with static and variable datarates. A static datarate filter
reads a fixed number of input items and writes a fixed num-
ber of output items in each cycle of execution, whereas a
variable datarate filter has a varying number of input or out-
put items in each cycle.

In addition to the filter, StreamIt provides three language
constructs to compose stream graphs: pipeline, split-join,
and feedback-loop. We call each of these constructs, includ-
ing a filter, a stream. In a pipeline, streams are connected in
a linear chain so that the outputs of one stream are the inputs
to the next stream. In a split-join configuration, the output
from a stream is split onto multiple (not necessarily iden-
tical) streams that have the same input data type. The data
can be either duplicated or placed in a weighted round-robin
scheduling policy. The split data must either be joined some-
where downstream or the split-join must serve as the sink
for the entire stream graph. The split-join allows the pro-
grammer to specify data-parallelism between streams. The
feedback loop enables a stream to receive input from down-
stream, for applications such as MPEG.

2.3. Compiling StreamIt to Raw

A compiler for mapping static datarate StreamIt to Raw
has been described in previous work [GTK∗02]. Compi-
lation involves four stages: dividing the stream graph into
load-balanced partitions, laying out the partitions on the
chip, scheduling communication between the partitions, and
generating code. In this paper, automatic load-balancing is
disabled: as we assume that the programmer has domain-
specific knowledge about the work requirements, each fil-
ter in the program is directly mapped to a single tile. We
summarize the operation of the layout and communication
scheduling stages below and describe how to extend them to
variable datarates in Section 3.3.

Layout The layout stage assigns each filter in the stream
graph to a Raw tile while minimizing communication and
synchronization. Since calculating the optimal layout is a
NP-hard constrained optimization problem, we use a sim-
ulated annealing algorithm that incrementally adjusts the
layout to optimize a cost function. The cost function mea-
sures the memory latency and communication overhead for
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a given layout, as well as the synchronization imposed when
independent communication channels are mapped to inter-
secting routes on the chip. For example, placing memory in-
tensive filters closer to the boundary will reduce the memory
latency component of the cost function. If there are fewer fil-
ters than tiles, certain tiles will remain unmapped; unmapped
tiles will be utilized for routing. For all layouts used in our
experiments, the simulated annealing algorithm ran in under
5 minutes on a Pentium Xeon 2.8 GHz machine.

Communication Scheduling Communication scheduling
maps the abstract communication channels of the stream
graph to Raw’s static network, maximizing throughput while
avoiding deadlock. As multiple channels from the stream
graph might be multiplexed over a single network link, rout-
ing operations are sequenced to minimize the amount of time
that a given tile is idle waiting for another pair of tiles to
communicate. This static communication schedule is calcu-
lated by simulating the firing of filters in the stream graph
and recording the communication pattern for each switch
processor.

3. Flexible Graphics Pipelines Using StreamIt

To address the load-balancing problem, we designed a flexi-
ble graphics pipeline using general purpose hardware, where
the allocation of resources to tasks can be changed to adapt
to the input. We first describe how we express the graphics
pipeline using StreamIt, before presenting our extension of
the compiler to enable variable datarates.

The StreamIt philosophy is to implement filters as inter-
changeable components. In the flexible pipeline, the differ-
ent stages are implemented as StreamIt filters and allocated
to Raw by the StreamIt compiler. The programmer is free to
vary the pipeline topology by rearranging the filters and re-
compiling. The flexible pipeline has several advantages over
a fixed pipeline on the GPU. First, any filter (i.e. stage) in
the pipeline can be changed. For example, in the first two
passes of shadow volume rendering, texture mapping is not
used, and we can perform dead-code elimination. The entire
pipeline is changed so that texture coordinates are neither in-
terpolated nor part of the dataflow and the pixel shader stage
is removed. For the third pass, these functions are added
back in. Second, the topology does not even need to conform
to any traditional pipeline configuration. In our image pro-
cessing case study, (see Section 4.3) the current GPU method
would render the scene to a texture, and use a complex pixel
shader to perform image filtering. We simply reconfigure
Raw to act as a extremely parallel image processor.

In our case studies (Section 4) we compare the perfor-
mance of a flexible pipeline against a fixed-allocation ref-
erence pipeline. The reference pipeline models the same de-
sign tradeoff as made in GPUs in fixing the ratio of fragment
to vertex units. We demonstrate that the flexible pipeline

better balances the load across the available resources and
achieves up to a 150% increase in throughput.

3.1. Pipeline Implementation

The reference pipeline is implemented using StreamIt and
emulates most of the functionality of a programmable GPU.
It is manually laid out on Raw (Figure 1). The pipeline stages
include Input, Programmable Vertex Processing, Triangle
Setup, Rasterization, Programmable Pixel Shading (includ-
ing texture mapping), and Reconfigurable Raster Operations
that write to the frame buffer. The empty tiles are present due
to routing constraints.

The pipeline is a sort-middle architecture [MCEF94]. The
Input stage is connected to off-chip memory through an I/O
port. Six tiles are assigned to programmable vertex process-
ing, and they are synchronized through one synchronization
tile. The synchronizer consumes output of the vertex shaders
using a round-robin strategy and pushes the data to the trian-
gle setup tile. We use homogeneous rasterization to avoid
the overhead of clipping operations [OG97]. The triangle
setup stage computes the vertex matrix and its inverse, the
screenspace bounding box, triangle facing, and the param-
eter vectors needed for interpolation. It distributes data to
the 15 pixel pipelines. The pixel pipelines are screen locked
and interleaved. Each pipeline is assigned to every 15th col-
umn. The pixel pipelines each consist of three tiles, a raster-
izer that outputs the visible fragments of the triangle, a pro-
grammable pixel processor, and a frame buffer operations
tile, which communicates with off-chip memory through an
I/O port to perform Z-buffering, blending and stencil buffer
operations. In StreamIt, filters are independent and have in-
dependent address spaces. Hence, for efficient random ac-
cess to textures, texture memory is replicated to all pixel pro-
cessors. In contrast, the pixel pipelines are screen locked, so
frame buffer memory need not be replicated.

We implement data-level parallelism using StreamIt’s
split-joins at the vertex and pixel level. Our reference
pipeline corresponds to the design strategy of current graph-
ics hardware: at design time, a hypothesis is made on the rel-
ative usage of the various stages of the pipeline, and a fixed
resource allocation is decided to optimize for the situation.
As mentioned above, split-joins are used to provide 6 vertex
and 15 pixel pipelines.

In contrast, our reconfigurable pipeline builds on the same
filters as the reference one, but the programmer varies the
topology depending on the rendering pass of the application.
It leverages the StreamIt compiler to automatically lay out
the stream graph to Raw. The main parameters are the width
of the split-joins at the vertex and pixel stages. Where the
computation permits, the depth of the pipeline for a certain
stage (such as triangle setup or pixel shading) can also be
changed. In some cases, the programmer can also omit some
of the filters when they are not needed. Together, flexible re-
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Figure 1: Reference Pipeline Layout on an 8×8 Raw con-
figuration. Color-coded squares represent Raw tiles. Data
arrives from an I/O port off the edge of the chip.

source allocation and dead-code elimination greatly improve
performance.

While the automatic assignment of filters to tiles by the
compiler provides great flexibility, the layout is often not
optimal. Automatic layout can act as a good first approxima-
tion so the programmer can iterate on pipeline configurations
without having to manually configure the tiles. The program-
mer is free to tweak the layout once satisfied with adjusting
the stream graph and profiling the performance with auto-
matic layout. In our benchmarks, we use only automatic lay-
out for flexible pipeline configurations.

3.2. Switching Between Configuations

We only consider static load balancing, where it is assumed
that the programmer has a priori knowledge of the upcom-
ing frame, rendering pass, or even part of a frame. This
scenario is realistic for a wide range of applications where
the programmer has already profiled the application. Static
load balance via user-specified “context switches” between
precompiled stream graphs when the load is expected to
change. Switching between configurations involves flush-
ing the pipeline and having each tile jump to the code for
its new task. These context switches may or may not incur
some cost. Consider the case of a multi-pass rendering al-
gorithm such as shadow volume rendering. Each pass places
the load on a different part of the pipeline and we would
like to switch configurations between them. In this case, a
pipeline flush occurs between passes anyway, so the over-
head of the branch (and possible instruction cache miss) is

negligible. The other case is a configuration switch within a
frame. An example of this would be rendering a scene with
a detailed character (vertex limited) over a background com-
posed of large triangles (fragment limited). Normally, a flush
would not occur; the programmer must profile the applica-
tion and decide if the overhead from the flush is greater than
the performance increase of the new configuration.

3.3. Variable Datarates in StreamIt

Variable datarates are essential for graphics rendering. Be-
cause the number of pixels corresponding to a given trian-
gle depends on the positions of the vertices for that triangle,
the input/output ratio of a rasterizer filter cannot be fixed at
compile time. This contrasts with traditional applications of
stream-based programming such as digital signal processing
that exhibit a fixed ratio of output to input and can be im-
plemented using synchronous dataflow models. In particular,
the original version of StreamIt relies on the static datarate
assumption.

We augmented the StreamIt language and compiler to
support variable datarates between filters. The language ex-
tension is simple, allowing the programmer to tag a datarate
as variable. On the compiler side, variable datarates are sup-
ported by dividing the stream graph into static-rate sub-
graphs. Each subgraph represents a stream in which child
filters have static datarates for internal communication. A
variable datarate can appear only between subgraphs. The
phases of the StreamIt to Raw mapping are described below.

Partitioning with Variable Datarates In this paper, we
rely on manual partitioning. Because the programmer might
have application-specific knowledge about the relative load
between different subgraphs, he should write the application
to have the appropriate number of filters in each stage. The
compiler maps each filter to a single tile. The programmer
can easily adjust the number of filters allocated to a given
task using StreamIt’s parameterized split-joins.

Layout with Variable Datarates Variable datarates im-
pose two new layout constraints. First, a switch processor
must not interleave routing operations for distinct static sub-
graphs. Because the relative execution rates of subgraphs
are unknown at compile time, it is impossible to generate
a static schedule that interleaves operations from two sub-
graphs without risking deadlock. Second, there is a con-
straint on the links between subgraphs: variable-rate com-
munication channels that are running in parallel and have
downstream synchronization (e.g., in different paths of a
split-join with a roundrobin joiner) must not cross on the
chip. Even when such channels are mapped to the dynamic
network, deadlock can result if such channels share a junc-
tion, since a high-traffic channel can block another. In our
implementation, these constraints are incorporated into the
cost function in the form of large penalties for illegal lay-
outs.
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Figure 2: Output Images. Case studies 1 through 4, left to right. Original Resolution: 600x600

Communication Scheduling with Variable Datarates
Communication scheduling requires a simple extension:
channels with variable datarates are mapped to Raw’s gen-
eral dynamic network (rather than the static network, which
requires a fixed communication pattern). Within each sub-
graph, the static network is still used. Our implementation
avoids the cost of constructing the dynamic network header
for every packet; instead, we construct the header once at
compile time. Even though the rate of communication is
variable, the endpoints of each communication channel are
determined at compile time.

4. Case Studies

We study a number of rendering scenarios to demonstrate
the load imbalance present on a fixed hardware allocation.
We also show how the imbalance can be alleviated and per-
formance improved by reallocating resources appropriately.

In the following case studies, we list performance num-
bers in terms of triangles per second and percent utilization.
The screen resolution is fixed at 600x600 pixels. See Fig-
ure 2 for output images. Pipeline stage utilization is com-
puted as the number of instructions completed by all tiles
assigned to that stage divided by the number of instruction
slots for all the tiles of the stage. Note that this metric for
processor utilization is unlikely to reach 100% in any sce-
nario, even in highly parallel computations such as image
filtering (4.3). While each tile is fully pipelined, it is unlikely
to achieve 1 instruction per clock cycle. Floating point oper-
ations incur a 4 cycle latency, memory access costs 3 cycles
even on a cache hit, and there are likely to be data hazards
in the computation. Furthermore, Raw’s compute processor
uses static branch prediction with a mis-prediction penalty
of 3 cycles.

4.1. Case Study 1: Phong Shading

Consider the case of rendering a coarsely tessellated polyhe-
dron composed of large triangles with per pixel Phong shad-
ing. In the vertex shader, the vertex’s world space position
and normal are bound as texture coordinates. The rasterizer
interpolates the texture coordinates across each triangle and

the pixel shader computes the lighting direction and the dif-
fuse and specular contributions. Most of the load is expected
to be on the fragment processor.

Reference Pipeline As expected, the reference pipeline suf-
fers from an extreme load imbalance. The fragment proces-
sor has a 68% utilization, the rasterizer at 17%, while the
other units are virtually idle (< 1%) (Figure 5). Overall chip
utilization is only 25.5%. Throughput is 4300 triangles per
second.

Vertex

Processor

Triangle

Setup

Rasterizer Frame

Buffer Ops

Variable

Data Rate

Static

Data Rate

Pixel

Processor

A

Pixel

Processor

B

Input

Figure 3: Compiler generated allocation for case study #1.
It has 1 vertex processor, 12 pixel pipelines, 2 fragment pro-
cessors for each pixel pipeline. Unallocated tiles have been
removed to clarify the routing.

Flexible Pipeline We tried several different allocations for
this scenario. We varied the ratio between vertex and frag-
ment processors as well as the depth of the pixel pipelines.
We discovered that the largest gain in performance came
when we pipelined the pixel shader onto two tiles.
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In this allocation, the first pixel processor is at 74% uti-
lization, and the second at 60%. The rasterization stage’s
utilization increases to 31%. The load-balance has improved
significantly, even though it is not balanced across the entire
chip. Overall chip utilization is only 39.5%. This allocation
achieves a throughput of 6652 triangles per second, a 55%
increase over the fixed allocation.

4.2. Case Study 2: Multi-Pass Rendering—Shadow
Volumes

To demonstrate the utility of a flexible pipeline, we bench-
marked shadow volume rendering, a popular technique for
generating real-time hard shadows. In this algorithm, the
load shifts significantly over the three passes. In the first
pass, the depth buffer is initialized with the depth values
of the scene geometry. In our scene, the triangles are rela-
tively large and the computation is rasterization bound. In
the second pass, the shadow volume itself is rendered. This
incurs a significant load on the rasterizer which has to ras-
terize large shadow volume polygons, and the frame buffer
operations, which must perform a depth test and update the
stencil buffer. In the final pass, the fragment shader is used to
texture map the geometry and the computation is fragment-
limited.

Reference Pipeline In the first pass, as expected, the ras-
terization stage is the bottleneck at 69% utilization. It takes
approximately 55 floating point operations for the software
rasterizer to output each fragment. The pixels are output in
screen-aligned order and memory access is very regular for
the large triangles. The frame buffer updates only achieve
a 7% utilization. The other units in the pipeline are virtu-
ally idle, with the exception of the pixel shader use at 6%
simply forwarding rasterized fragments to the frame buffer
operations unit. Throughput is 988 triangles / second and uti-
lization is 25%. On the second pass, the results are virtually
identical, with a slight increase in utilization at the frame
buffer operations stage where the Z-Fail algorithm updates
the stencil buffer based on triangle orientation. Throughput
is 796 triangles / second and utilization is 23%. In the final
pass, the pixel processor retrieves four samples from mem-
ory per fragment to perform texturing with bilinear filtering.
This causes a number of cache misses and also stalls the ras-
terizer upstream. Rasterizer utilization drops to 50% and the
pixel shader utilization is 42% due to the number of cache
misses. Throughput is 689 triangles per second and overall
utilization is 28%.

Flexible Pipeline The first two passes are rasterization
bound, so the allocation is changed to use only 1 tile for ver-
tex processing. Neither pass requires pixel shading, so the
stage is removed completely and the tiles are reallocated to
increase the number of pixel pipelines to 20 (see Figure 4).
Since the input vertices do not contain any attributes other

than position, we can safely remove interpolation and pa-
rameter vector calculation for the other attributes from the
rasterization and triangle setup stages. We achieve more than
100% increase in throughput over the reference pipeline in
both passes. In the first pass, throughput is 2232 triangles /
sec with 27% overall utilization. In the second pass, through-
put is 1800 triangles / sec with 28% overall utilization. It
is interesting to note that although overall chip utilization
has increased, the utilization in the rasterization stage has
actually decreased from 71% down to 49%. The final pass
is fragment processing limited due to the expensive texture
memory accesses, so we pipeline that stage. We use only
1 tile for vertex processing, and allocate 12 pixel pipelines,
with two tiles (pipelined) for the pixel shader: the first tile
retrieves the samples, the second performs the interpolation.
Using this configuration, throughput increased 13% to 779
triangles / second. Utilization of the rasterizer, first pixel
shader, and second pixel shader are 34%, 31%, and 32%,
respectively. The overall utilization is 25%.
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Triangle

Setup

Rasterizer Frame

Buffer Ops

Variable

Data Rate

Static

Data Rate

Input

Figure 4: Compiler generated layout for case study #2. It
has 1 vertex processor and 20 pixel pipelines. Unallocated
tiles have been omitted to clarify routing.

4.3. Case Study 3: Image Processing—Poisson
Depth-of-Field

Image processing requires a quite different pipeline architec-
ture than 3D rendering. Since we are using a general purpose
architecture, we do not need to map the computation onto a
traditional graphics pipeline. Consider the Poisson-disc fake
depth-of-field algorithm by ATI [Sch04]. In a GPU imple-
mentation, the final pass of the algorithm would require sub-
mitting a large screen-aligned quadrilateral and performing
the filtering in the pixel shader. The operation is extremely

c© The Eurographics Association 2005.



J. Chen & M. Gordon & W. Thies & M. Zwicker & K. Pulli & F. Durand / A Reconfigurable Architecture for Load-Balanced Rendering

fragment bound since the scene contains only 2 triangles and
the pixel shader must perform many texture accesses per out-
put pixel.

In the flexible pipeline, each tile is allocated as an im-
age filtering unit. We express the tile configuration using a
62-way StreamIt split-join. Currently, the StreamIt compiler
requires that split-joins have a source; hence, we “waste”
two tiles for data routing. The color and depth buffers are
split into 62 blocks. At 600x600 resolution, the blocks fit in
the data cache of a tile. We achieve a 38% utilization of the
chip and throughput of 130 frames per second. Due to the
memory-intensive nature of the operation, 100% utilization
is not reached—a cache hit still incurs a 3 cycle latency.

4.4. Case Study 4: Particle System

In our fourth experiment, we considered automatic tessella-
tion and procedural deformation of geometric primitives. We
ran a test where the vertex shaders are modified to receive a
complete triangle as input and output 4 complete triangles.
Each vertex is given a small random perturbation. The input
triangles comprised of a particle system, since these primi-
tives occupied little screen area and required no shading, we
expected this scene to be vertex-bound in performance on
the reference pipeline.

Reference Pipeline It turns out, however, that the bottle-
neck lies in the triangle setup stage. Triangle setup has a 49%
utilization, the rasterizer is at 22%, and the other units are
stalled (< 4%) (Figure 5). In retrospect, this is unsurprising;
our sort-middle architecture required output vertices to be
synchronized and contained only one triangle setup stage.
Since the triangles are small, setup takes a proportionally
large amount of computation relative to rasterization. Over-
all chip utilization was only 7.8%.

Flexible Pipeline Noticing that triangle setup was a bottle-
neck, we pipelined it by dividing the work onto two tiles and
forwarding the necessary data. We also adjusted the pipeline
to remove unnecessary computation, such as texture coordi-
nate interpolation in the rasterizer and computation of pa-
rameter vectors in triangle-setup. The pipelined version ob-
tained a performance increase of over 150% over the refer-
ence pipeline (see Figure 5). Even though we originally mis-
judged where the bottleneck would be, this case still illus-
trates the benefit of a flexible architecture: we can achieve a
substantial performance gain by transferring a tile originally
assigned to an idle stage to a busy one.

4.5. Discussion

In the above experiments, we have compared processor uti-
lization and triangle throughput achieved by a fixed and
a flexible resource allocation under several rendering sce-
narios. We have shown that flexible resource allocation in-
creases utilization and throughput up to 150%. We believe

these results are indicative for the speed-ups that could
be obtained by designing more flexible GPU architectures.
However, the absolute performance obtained by Raw is or-
ders of magnitude lower than current GPUs. As technology
improves, this can be addressed by integrating more tiles on
the Raw chip: Raw has a homogeneous and scalable design
that is free of global communication structures. Combining
the specialized computational resources of GPUs (e.g., the
rasterizers) with the flexible communications infrastructure
of Raw seems to be a promising research challenge.

5. Conclusions and Future Work

We have presented a graphics hardware architecture based
on a multicore processor, where load balancing is achieved
at compile-time, by reconfiguring the resource allocation.
Both the 3D rendering pipeline and shaders are expressed
in the same stream-based language, allowing for full pro-
grammability and load-balancing. Although our prototype
cannot compete with state-of-the-art GPUs, we believe it is
an important first step in addressing the load-balancing chal-
lenge in graphics architecture.

We are working on alleviating the current limitations of
our approach. We are studying the replacement of certain
computation tiles by specialized rasterizers since this is the
stage of the graphics pipeline that benefits most from spe-
cialization. We are also studying the memory hierarchy for
optimal graphics performance, in particular the pre-fetching
of textures. With prefetching, texture mapping performance
can be greatly improved. Dynamic load balancing is the most
exciting avenue of future work. A first intermediate step
might exploit the statistics from the previous frame to refine
resource allocation or switch between different pre-compiled
versions of the pipeline. In the future, we hope that graph-
ics hardware will be introspective and will be able to switch
resource allocation within a frame or rendering pass depend-
ing on the relative load of computation units and on the oc-
cupancy of its buffers. Achieving the proper granularity for
such changes and the appropriate state maintenance are the
biggest challenges.
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Figure 5: Steady-state usage graph.
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