
Synthetic content approach for benchmarking mobile 3D graphics

Kari J. Kangas∗

Nokia
Mika Qvist†

Nokia
Kari Pulli‡

Nokia

Abstract

This work-in-progress paper describes a synthetic content approach
for measuring OpenGL ES 3D graphics performance of mobile de-
vices. Our approach relies on a synthetic content tool that can create
different kinds of OpenGL ES graphics content according to a large
number of input parameters. The input parameters are obtained
by analyzing real OpenGL ES content with an OpenGL ES tracer.
The synthetic content is validated by comparing the performance of
the real and synthetic contents in the same platform. Although we
do not yet have all the required elements needed by our synthetic
benchmark approach, initial studies have produced promising re-
sults which demonstrate that the synthetic content can match quite
well the real content from the performance point of view.

1 Introduction

Being able to benchmark the OpenGL ES performance as early as
possible in the design cycle of a mobile device is important. For ex-
ample, the benchmark results can be used to guide performance op-
timization. Benchmarks can be used to understand the performance
of a particular mobile device and how the performance changes
with different content; this is especially important for understand-
ing the performance of an OpenGL ES solution obtained from an
outside supplier. We can also provide good estimates of the avail-
able graphics performance of an upcoming mobile device to content
developers so that they can start designing content before they have
seen the actual device.

However, benchmarking a device while it is still under development
can be challenging. The most obvious benchmarking approach
would be to use publicly available OpenGL ES games and other ap-
plications. Alternatively, we could use dedicated benchmark soft-
ware such as FutureMark’s SPMark04 or 3DMarkMobile06. These
approaches, however, have their shortcomings. Third-party bench-
mark applications usually require completely integrated operating
system with GUI support and such environments may not be avail-
able until quite late in the device development cycle. Software
binary breaks may make it impossible to run existing binaries in
new devices. The source code of benchmark applications may not
be available, or if it is, it typically requires continuous, non-trivial
porting efforts. Device manufacturers do not usually grant access
to software development environments to outside companies until
the product has been publicly launched, and some devices do not
even support third party native applications. Finally, the OpenGL
ES content in mobile devices ranges from simple 3D UI elements to

∗e-mail: kari.j.kangas@nokia.com
†e-mail: mika.qvist@nokia.com
‡e-mail: kari.pulli@nokia.com

Java M3G games to full-blown native OpenGL ES games. There-
fore, using only few benchmark applications does not cover the ex-
pected range of OpenGL ES use cases very well.

In order to avoid these problems, we have adopted a synthetic
benchmark content approach for measuring the OpenGL ES perfor-
mance of mobile devices. Our approach relies on a special synthetic
content tool that can create varying OpenGL ES graphics content
according to a large number of input parameters. For measuring
the OpenGL ES performance, the tool is executed on a target plat-
form with selected input parameters. When executed, the tool draws
the same synthetic content repeatedly and measures the steady-state
frames-per-second (FPS) performance of the particular platform we
are benchmarking.

The main input parameters for our synthetic content tool are trian-
gle count, triangle size, and overdraw factor (how many times each
pixel is written to, on the average). Triangles can be textured and
we can control, for example, the texture type and texture filtering
mode. The synthetic content tool has been written mostly using
platform-independent ANSI C, with a special emphasis on making
the software as easy to port as possible to different platforms. The
OpenGL ES content used in benchmarks is created completely dur-
ing run-time to keep the binary size small and to eliminate the need
for artistic work.

The main problem with synthetic benchmark content is the ques-
tion whether or not the synthetic content is similar enough (from
the performance point of view) to the real content to be usable for
benchmarking. The solution we present in this paper is that we
measure features such as triangle count, average triangle size, and
overdraw factor from real content, create synthetic benchmark con-
tent that has matching features, and then compare the performance
of the real content and the synthetic content on the same platform.
If the performance matches well enough, we conclude that we have
successfully synthesized the real content.

Characterizing real-world 3D graphics workload for benchmark-
ing purposes is described for example by Dunwoody and Linton
[1990], Mitra and Chiueh [1999], and more recently by Antochi et
al. [2004]. In our ongoing work, we are not focusing so much on
analyzing the workload features, but more on the question how the
analyzed workload features can be mapped into synthetic bench-
mark content so that the original workload and the synthetic work-
load are similar enough from the performance point of view. Our
work resembles also the work done in render-time estimation (see
for example [Funkhouser and Sequin 1993]) in a sense that we ap-
proximate real workload with a simplified synthetic workload (or
model).

Although we do not yet have all the required elements needed by
our synthetic benchmark approach, initial studies so far have pro-
duced promising results.

2 Creating synthetic benchmark content

The process of creating synthetic benchmark content is illustrated
in Figure 1. We begin the synthetic benchmark content creation by
running the OpenGL ES application we wish to synthesize on top
of an OpenGL ES tracer. The tracer is a special version of OpenGL



��������	


����
����

��������	

��
��
��
������

��
�

��
���

	�������

������������

��������	


�
�����

�������

��
�����

�������

��
�����

������� 
��

�
�


������� 
��

�
�


��
������

��
�

��
���
��
������

��� �
��

Figure 1: Synthetic benchmark content creation process.

ES library that captures the sequence of OpenGL ES calls, with the
corresponding input parameters, into a trace file and then forwards
the calls and parameters to the actual OpenGL ES library. To keep
the size of the trace reasonable, we can instruct the tracer to capture
only the OpenGL ES calls comprising the specific frames we are
interested in subsequent analysis. This also allows us to minimize
the delay caused by the trace capture as we can use a memory buffer
of limited size for trace storage instead of constantly writing the
trace into a memory card or similar mass storage.

The purpose of the tracer is to separate the OpenGL ES graphics
calls from the OpenGL ES application. We can use the OpenGL
ES trace player to replay the sequence of OpenGL ES calls, which
recreates the OpenGL ES graphics in a controlled environment. For
example, we can measure the performance of traced OpenGL ES
content potentially on any OpenGL ES platform.

To get the content features such as triangle count, average triangle
size, and overdraw factor for each frame in the traced OpenGL ES
content, we feed the trace to an OpenGL ES analyzer. The OpenGL
ES analyzer is a special version of the OpenGL ES library that
keeps track of various content features used during rendering. For
example, the analyzer records the number of incoming triangles,
the average size of triangles (in fragments), and the total number of
fragments written to the frame buffer for each OpenGL ES frame.

It is possible run the OpenGL ES application directly on top of the
OpenGL analyzer to get the content features immediately as the
application is run. However, the processing needed for the content
analysis may interfere with the rendering so that some applications
might, for example, skip frames to keep the rendering in sync with
the audio playback. Alternatively, the analyzer can be implemented
so that it analyzes the OpenGL ES calls directly without doing any
actual rendering.

After the content features are extracted from the trace, we create
synthetic benchmark content that has the matching content features.
We can either make a matching synthetic frame for each original
content frame, or we can make a single synthetic frame that repre-
sents a large combination of content frames. We can run the syn-
thetic content tool on top of our OpenGL ES analyzer to make sure
the content features are similar in both the original and synthetic
content. Synthetic content tool will not skip any frames even if the
rendering is very slow as the tool fully controls its own execution.

In order to verify and validate the synthetic benchmark content,
both the synthetic the actual OpenGL ES trace are rendered on the
same OpenGL ES platform. If the performance does not match
within desired limits, we can refine the models in which the syn-

thetic content tool creates OpenGL ES content from the input pa-
rameters. We can also modify the analyzer, if new types of input
parameters are needed. Once we have successfully synthesized the
content in one OpenGL ES platform, we can verify that the perfor-
mance matches also on different platforms.

Eventually, the performance of the synthetic benchmark content
should match the performance of the original OpenGL ES content
on all tested platforms. When this happens, we can use it for bench-
marking purposes instead of the original OpenGL ES content. We
can even extrapolate from existing content so that we can test sys-
tem responsiveness on content that has not been created yet.

3 Discussion and Future Work

We do not yet have a working OpenGL ES tracer, trace player,
or analyzer. Instead, we have these tools for (desktop) OpenGL,
and we have used them to analyze the content features of exist-
ing OpenGL games such as Quake and used the resulting features
to create synthetic OpenGL ES benchmark content. The synthetic
content tool works on top of both OpenGL (Win32) and OpenGL
ES (Win32, Symbian, and PocketPC).

To provide some evidence that our current synthetic content
tool can produce useful benchmark content, we have ana-
lyzed by hand the content features of one moderately complex
OpenGL ES application (Nokia E3 2005 demo, see http://web.n-
gage.com/e3/video/videos.html?ID=22). We created matching syn-
thetic benchmark content and compared the performance. The FPS
performance of the real application was around 20 FPS whereas the
FPS performance of the synthetic content was 24 FPS. This quick
comparison should be considered only as an early indication that
the performance of our synthetic benchmark content is roughly in
the same ballpark as the real OpenGL ES with the matching content
features.

During our work, we have found out that synthetic content tool is
a very handy tool for experimenting how a particular OpenGL ES
platform performs with different kinds of content. Our tool has
a large set of easily configurable input parameters so creating a
wide variety of synthetic content is easy. We have also developed
tools for rapid presentation and comparison of the benchmark re-
sults. Both the easy content configurability and the ability to rapidly
present the results have proved to be very valuable for understand-
ing and especially communicating the 3D performance issues. As
an example, if someone asks what happens to the performance once
we change the texture filtering mode from nearest to bilinear and
keep everything else as is, we can quickly measure it and present
the results in an easily understandable format.

We have also investigated the possibility of using the trace as bench-
mark content. The main problem with trace is that the benchmark
content (trace) cannot be modified very easily. For example we
cannot easily modify the triangle count per frame and see how that
affects the performance. However, once we analyze the content, we
can change some parameters to create speculative benchmark con-
tent estimating possible future OpenGL ES applications, which we
can use to see how the performance of a certain platform scales up.

Our future work comprises of developing the OpenGL ES tracer,
trace player, and analyzer. After these tools are in place, we
can properly analyze how well our synthetic benchmark content
matches the source OpenGL ES content using more applications
and different platforms. We are also studying different mechanisms
of how the analyzed content features are used best to create syn-



thetic content with matching content features and similar perfor-
mance characteristics.

We are also extending our synthetic content tool so that it can sup-
port other types of workloads besides OpenGL ES. For example,
the synthetic content tool can generate synthetic CPU and memory
load, play audio, and do game physics engine calculations while
rendering OpenGL ES graphics. The synthetic content tool is de-
signed so that diverse workloads can be mixed and matched easily
within the same benchmark frame. Having this kind of mixture of
workloads allows us to analyze the total system performance for
complete and more realistic applications and use cases instead of
concentrating on unrealistic graphics-only applications. As an ex-
ample, we can easily test whether a particular phone model is ca-
pable of simultaneously transmitting and receiving wireless data at
certain rate, playing mp3 with certain bit rate, calculating collision
detection for three objects, and rendering graphics similar to Quake
at 20 frame-per-second. By using a current analyzer, we can also
easily measure how much power the phone consumes while doing
all this. We feel that this flexibility allows us to use the synthetic
content tool in scenarios that are not supported directly by other
synthetic benchmark systems that concentrate only on one specific
performance area such as 3D graphics performance.

We have also investigated the possibility of analyzing the high level
structure of real-world OpenGL ES frames from the OpenGL ES
trace. This structure could highlight for example how the appli-
cation first draws the background and the background objects, fol-
lowed by the foreground objects, followed by a special effects layer.
We think that this structural information will allow us to better un-
derstand the important features of real OpenGL ES content. We
also think that we could use the structural information to improve
the quality of our synthetic content, for example by compositing the
synthetic benchmark content frame from a set of synthetic content
objects which are structured within a frame in a similar way as their
counterparts in the OpenGL ES trace.

Finally, we are also extending our synthetic benchmark tool to sup-
port OpenVG benchmarking.

4 Conclusion

We have presented an approach and some preliminary results for
estimating 3D performance of mobile devices while they are still
under development and even when there is little existing 3D content
available. Such a system is valuable both for engineers optimizing
the design as well as for content creators preparing applications for
the device. In both cases, performance estimates for applications
could be made available even before hardware to run them exists.
The crux of our future work lies in transferring our analysis tools
from OpenGL to OpenGL ES, extending the analysis of content
features and validating them with more experiments, and including
other workloads such as the use of CPU for application logic and
audio.

References

ANTOCHI, I., JUURLINK, B., VASSILIADIS, S., AND LIUHA, P.
2004. GraalBench: A 3D graphics benchmark suite for mobile
phones. In LCTES ’04: Proceedings of the 2004 ACM SIG-
PLAN/SIGBED conference on Languages, compilers, and tools
for embedded systems, ACM Press, New York, NY, USA, 1–9.

DUNWOODY, J. C., AND LINTON, M. A. 1990. Tracing interactive
3d graphics programs. In SI3D ’90: Proceedings of the 1990
symposium on Interactive 3D graphics, ACM Press, New York,
NY, USA, 155–163.

FUNKHOUSER, T. A., AND SEQUIN, C. H. 1993. Adaptive dis-
play algorithm for interactive frame rates during visualization of
complex virtual environments. In SIGGRAPH ’93: Proceedings
of the 20th annual conference on Computer graphics and inter-
active techniques, ACM Press, New York, NY, USA, 247–254.

MITRA, T., AND CHIUEH, T. 1999. Dynamic 3d graphics work-
load characterization and the architectural implications. In MI-
CRO 32: Proceedings of the 32nd annual ACM/IEEE interna-
tional symposium on Microarchitecture, IEEE Computer Soci-
ety, Washington, DC, USA, 62–71.


