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Abstract

We present a new method for registering multiple 3D scans
of a colored object. Each scan is regarded as a color and
range image of the object recorded by a pinhole camera.
Consider a pair of cameras that see overlapping parts of
the objects. For correct camera poses, the actual image of
the overlap area in one camera matches the rendition of
the overlap area as seen by the other camera. We define a
mismatch score summarizing discrepancies in color, range,
and silhouette between pairs of images, and we present an
algorithm to efficiently minimize this mismatch score over
camera poses.

1. Introduction

Merging parts of a surface scanned from different view-
points by transforming them into a common coordinate
system (registration) is a fundamental part of 3D scan-
ning. We want to choose registration transformations so
that the regions of the surface seen in multiple scans are
well-aligned—they should be geometrically close and their
colors should match.

Incorporating color information into the registration
process is important. First, geometry alone may not suf-
ficiently constrain the transformations. For instance, if the
overlap between scans is flat, then the surface pieces can
slide past each other without penalty. However, color pat-
terns may provide sufficient information to uniquely deter-
mine the registration. Second, merging color information
is necessary for creating consistent texture maps for the re-
constructed surface. Misregistrations that might be barely
visible in the geometry may lead to unacceptable blurring
or ghosting of color features.

1.1. Previous work

Previous approaches for aligning colored range scans
[2, 9, 16, 20] usually solve this problem by a variant of
the Iterated Closest Point (ICP) method [3]. First, using a
heuristic, points are paired, and then using the paired points

a rigid 3D transformation that best aligns the pairs is calcu-
lated. The hope is that now the scans move into better reg-
istration, the points that are matched next are more likely to
correspond to the same object surface point, a better align-
ment can be computed, and the iterated process converges
to a good registration. This approach has been generalized
to work with several views instead of just two [15].

The original ICP method used the 3D distance as the cor-
respondence heuristic, pairing a point with the closest point
in the other data set. Several enhancements to this heuris-
tic have been proposed. The color can be used as an extra
constraint such that points can only be paired with nearby
points of similar color [9]. Another variant is to include the
color difference or the difference in the local normal vector
orientation as part of the distance metric [8]. Combining
various heuristics allows quite fast implementations [17].

Another approach to solve the correspondence problem
is to project the data sets onto the image plane of one of
the range sensors. The simplest approach is to pair points
projecting to the same location [4, 13]. If color or intensity
data is available, it can be used to improve matches, e.g., by
using the intensity gradients and differences to find a bet-
ter match on the projection plane, and back-projecting to
get a 3D point pair [20]. Taking this idea forward, one can
try to do a more thorough matching on the projected color
data by using 2D image registration to apply a planar pro-
jective warp that aligns the color images and then pairing
the points [16], or by searching the neighborhood and pair-
ing locations that maximize the cross-correlations withina
small window [2]. In all these methods the matched 3D
points are passed to the alignment stage that finds the rigid
3D motion that best aligns the matched point pairs.

The empty-space constraint (no part of another well-
registered scan can lie in front of the visible surface or out-
side its silhouette) has been used in surface modeling (e.g.,
[6]). Lenschet al. [11] use the silhouette information exclu-
sively when registering color images to a 3D model that has
accurate geometry but no color information. They extract
the silhouette from a color image, project the 3D model us-
ing the camera model of the color camera, and match the
projected silhouette with the extracted one.



Also related to our work are methods that use projection
to reconstruct range data from stereo image pairs [7, 10].

1.2. Projective Surface Matching

Previous approaches to registration using both color and
range data amount to solving an alternating sequence of two
different optimization problems. In the first optimization
step, color and geometric information are used to find point
correspondences; in the second step, the registration trans-
formation is then determined using point correspondences
alone. However, there is no guarantee that this procedure
will converge because the procedure does not optimize a
well defined objective function.

In our approach, which we call Projective Surface
Matching (PSM), we assess closeness of geometry and
color by projecting the data onto the image plane of an
imaginary pinhole camera. With perfect data and perfect
registration, points in different scans corresponding to the
same surface location project to the same location on the
image plane. However, there is no need for checking the
match on every imaginary camera plane; associating a cam-
era with each scan is sufficient.

We define a mismatch score summarizing discrepancies
in color, range, and silhouette between images of different
surface pieces, and we present an algorithm to efficiently
minimize this mismatch score over camera poses.

In addition to the range and color information, we use an
empty space constraint penalizing registrations for which
registered data project outside of the actually observed sil-
houettes.

For simplicity of exposition we restrict ourselves to the
case of two scans. However, our approach generalizes to
registration of multiple scans.

1.3. Outline of the paper

In the next section we set up the geometric description
of the registration problem, define a mismatch score mea-
suring registration error, and present an algorithm for mini-
mizing the mismatch score. In Section 3 we describe im-
plementation details of our method, such as hierarchical
processing to avoid local minima and choice of relative
weights for the components of the mismatch score. Sec-
tion 4 presents experimental results. The remaining sec-
tions contain a discussion and a summary of the method. In
an appendix we derive formulas for the gradients of various
functions required by the optimization algorithm.

2. Description of Projective Surface Matching

We model a scanner by a pinhole camera with focal
lengthf , center of projectiono, and an orthonormal frame
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Figure 1. Two scans and their virtual cameras.

e = (e1, e2, e3), wheree1 ande2 span the image plane and
e3 points away from the scene. For a given pose(o, e), a
camera maps a pointx ∈ IR3 in its field of view into a point
u = (u, v) = Π(x) on its image plane:

Π(x) = f

(

(x − o) · e1

(x − o) · e3
,
(x − o) · e2

(x − o) · e3

)

. (1)

Imaging a colored surfaceS gives rise to a range function
r(u) = (x − o) · e3 and a color functionc(u) defined on
Ω = Π(S). On the other hand, an image(Ω, r, c) and a
pose together define a (part of a) colored surface in IR3. A
pointu ∈ Ω corresponds to a pointx = P(u) ∈ IR3:

P(u) = o +
r(u)

f
(u e1 + v e2 + fe3). (2)

The color atx = P(u) is c(u).

2.1. Definition of the mismatch score

Suppose that we have imagedS with two cameras as il-
lustrated in Figure 1, but we do not know their poses. We
assume that (i) the field of view of each camera contains the
entire object, and (ii) the parts ofS seen by the two cam-
eras overlap. LetI1 be the image recorded by camera 1.
Our goal is to estimate the pose of camera 2. Given an ini-
tial guess(o2, e2) for the pose of camera 2, we can convert
the imageI2 into a colored surfaceS2.

Mapping S2 into camera 1 produces an imageI1,2 =
(Ω̄, r̄, c̄). Note that sinceS2 is only a partial view of the
surfaceS, some parts ofS2 must be occluded from camera
1. Correctly dealing with occlusions is critical; we returnto
this point in Section 2.3.

If the guess for the pose of camera 2 is correct, thenΩ̄ ⊂
Ω andr(u) = r̄(u), c(u) = c̄(u) for all u ∈ Ω ∩ Ω̄. If the
guess is not correct, we want to change the pose or, equiv-
alently, apply a Euclidian transformationT : IR3 → IR3

to S2. MappingT(S2) into camera 1 gives a new image
I1,2(T) = (Ω̄T , r̄T , c̄T ). We define a loss function measur-



ing the mismatch between the imagesI1 andI1,2(T):

L(T) =

Z
Ω∩Ω̄T

�
(r − r̄T )2 + κ1‖c− c̄T ‖

2
�

(3)

+ κ2

Z̄
ΩT

d
2(u,Ω).

The first term measures mismatch of the range and color
functions; the last term measures the extent to which the
domainΩ̄T of I1,2 extends beyond the domainΩ of I1.
Hered(u,Ω) is the distance between a pointu and its clos-
est point inΩ.

Reversing the roles of cameras 1 and 2, we can analo-
gously define a loss function̄L(T−1). Our final mismatch
score isM(T) = L(T) + L̄(T−1). Our goal is to find
the transformation̂T = argminTM(T) minimizing the mis-
match score.

2.2. Minimizing the mismatch score

Minimizing M(T) is a nonlinear optimization problem
which we solve by an iterative algorithm. We first find a
small Euclidian transformationT1 close to the identityI
with M(T1) < M(I). We then update the poses and
repeat the process untilM fails to decrease. Updating
the poses ensures that at any step of the algorithm we are
only searching for a transformation near the identity. Af-
tern iterations our estimate of the optimal transformation is
Tn ◦ Tn−1 ◦ · · · ◦ T1.

One approach to reducing the mismatch is gradient de-
scent: compute a finite difference approximationG to
∇TM(T) at T = I and then search for a step sizes min-
imizing M(I − sG). With three rotation and three trans-
lation parameters, a robust finite difference approximation
requires 12 evaluations; moreover, gradient descent tendsto
be slow.

We have used an alternative approach, which is hard to
rigorously justify but is much more efficient.

Consider for the moment the termL(T); L̄(T−1) can be
treated analogously. Define theoptical flowψT : Ω̄ →

Ω̄T by
ψT (u) = Π ◦ T ◦ P̄(u) . (4)

Optical flow translates movement of a point onS2 under the
transformationT into movement on the image plane. Us-
ing the definition of optical flow we can rewrite the second
component ofL(T) (Eqn. (3)). Applying a change of vari-
ablesu = ψT (v) yields the approximation

∫

Ω̄T

d2(u,Ω)du ≈

∫

Ω̄

d2(ψT (v),Ω)dv (5)

where the domain of integration no longer depends onT.
We neglect the Jacobian|∂u

∂v | which is close to1 for T ≈ I .

Replacing the integrals in Eqn. (3) by sums over pixels,
the approximation toL(T) becomes

L∗(T) =
∑

ui∈Ω∩Ω̄T

(

(r − r̄T )2 + κ1‖c− c̄T ‖
2
)

+ κ2

∑

ui∈Ω̄

d2(ψT (ui),Ω). (6)

Except for the dependence of the first summation domain
on the parameterT, L∗(T) looks like the objective func-
tion of a nonlinear least squares problem — it is of the form
∑

i f
2
i (T) where thefi are nonlinear functions ofT. The

approximation̄L∗(T−1) to the other component of the mis-
match score can be expressed in a similar way. Therefore,
for some functionsfi andgj,

M(T) ≈M∗(T) =
∑

i

f2

i (T) +
∑

j

g2

j (T−1) .

We use the Levenberg-Marquardt method [14] to find an
incremental transformation atT = I that reducesM∗(T).
Strictly speaking, the way in which Levenberg-Marquardt
generates its search directions is only justified if the summa-
tion domains do not depend on the parameterT. In practice,
however, this does not seem to matter here.

To apply Levenberg-Marquardt we need the gradients of
the functionsfi(T) andgi(T−1) at T = I . Notice that

∇T gi(T−1) = −∇T gi(T)

whenT = I . Examination of the formulas forfi andgj

shows that their gradients can be expressed in terms of the
gradients of̄rT , c̄T , andψT , which we derive in the appen-
dix.

2.3. Dealing with occlusions

The occlusion problem is illustrated in Figure 2. It shows
an object (colored in grey) seen by two cameras, labeledc1

andc2. Cameras1 and2 see the red and blue parts of the
object’s surface, respectively. Notice that pointsa andc are
visible in both cameras (and can therefore be considered
both red and blue), while pointb is only visible in camera2
andd is only visible in camera1. Mapping the blue parts of
the surface into camera1 correctly identifies the reda with
the bluea—they project onto the same point in the image
plane. However, matching of points based on their images
in camera 1 also erroneously identifies the blue pointb with
the red pointd. The problem is that camera 2 cannot see the
part of the red surface containingd that occludes the point
b from camera 1.
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Figure 2. Extruding silhouettes prevents two dif-
ferent surfaces from projecting to the same pixel.

One approach to eliminating false matches is to identify
points on the red and blue surfaces projecting onto the same
location in the image plane only if their distances differ by
no more than a given threshold [2, 16]. We have taken an
alternative approach that does not require thresholds. It is
inspired byshadow volumes[5]. If camera 2 is treated as
the light source, the shadow volume is the interior of the
region defined by the visible (blue) surface and its extruded
silhouette. The shadow volume is the union of the green
and grey areas in Figure 2.

Based on the information available from camera 2, the
object could be any region in the shadow volume whose
boundary contains the blue surface. To get a conservative
criterion for deciding which of the blue points are visible to
camera 1, we assume that the object fills the entire shadow
volume. Note that in Figure 2 the extruded silhouette oc-
cludes the pointb from camera 1, preventing a mismatch.
Note also that the approach is conservative; even though
point c is actually visible in both cameras, it is flagged as
occluded.

We implement the occlusion calculation by rendering the
extruded silhouettes in a color that we do not expect to find
on the object.

3. Implementation

In this section we describe various implementation de-
tails.

3.1. Projecting the data

We convert the range scans into triangle meshes which
are texture mapped with the color data.

A virtual pinhole camera is associated with each scan
using the scanner’s parameters if those are available. Other-
wise, we fit a camera model directly to the data; range maps
give a dense mapping from 3D points to 2D image points,
and we can estimate the pose of the pinhole camera that best
reproduces that mapping [19].

Each scan is then projected to the image plane of its vir-
tual camera by rendering it using the OpenGL graphics li-
brary. For each pixel we obtain the color and range by read-
ing the color and z-buffers. We calculate image plane gra-
dients using finite differences (a3 × 3 Sobel operator). For
each pixel outside the silhouette we find the closest silhou-
ette pixel.

3.2. Hierarchical processing

We perform the optimization using a hierarchy of scales,
starting with a small image size (low resolution), optimiz-
ing while the mismatch score increases rapidly and then
moving to a larger image size until the original resolution
is reached. This hierarchical approach saves time: process-
ing smaller images is quicker. In addition, the hierarchical
approach decreases the likelihood of getting stuck in a local
minimum.

3.3. Scaling the different components

It is important to balance the translation and rotation
components ofT so that they have similar effect on the op-
tical flow. First we have to choose the location of the pivot
of rotationm. The best place is at the intersection of sur-
face normals, e.g., for a spherical object that would be the
center of the sphere. In practice we take the center of mass
of the scan, and since that often is very close to the surface,
we displace it further behind the data. Second, we scale the
scan so that on average the data are at unit distance fromm.
That way, unit changes in either angle or translation have
commensurate effects [18]. Color values need to be scaled
so that they have the same magnitude as range values.

The weightκ2 of the silhouette error should be set so
that it drives the scans behind the silhouettes. However, it
should not be so large that color and range errors cannot
be minimized because an intermediate step would move the
scans so that they project slightly beyond the silhouettes.
We scale the silhouette error so that at the distance of one
third of the image width the error is one unit. That is, if the
image width isw, κ2 = (w/3)−2.

Since range and color data are usually unreliable near
silhouettes, we attenuate the pixel contribution by a smooth
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Figure 3. Registering a scan against itself.

weighting function that is zero at the boundary, quickly ap-
proaches one inside the boundary, and grows more gradu-
ally to one outside the boundary.

4. Results

As a sanity check, we registered a scan of a toy rab-
bit against a displaced copy of itself. Figure 3 shows the
progress of the registration starting from a poor guess for
initial registration. The progress is fast, and a good registra-
tion is obtained.

We tested our method with scans from various sources.
Figure 4 shows the errors and transformations parameters
when registering the two scans in Figure 5. The top row in
Figure 5 showsI1 andI2, while the bottom row showsI1,2

andI2,1. We see that, initially,S2 projects mostly outside
Ω1, andS1 projects mostly outsideΩ2. The cyan “shadow”
in I1,2 andI2,1 is the occlusion volume. Recall that the oc-
clusion volume is like a shadow cone that covers the parts
of the scan that we want to exclude from the error evalua-
tion. In the error graph (Figure 4), we see that at first the
silhouette error dominates, and, as a larger percentage of
the scan projects within the silhouette, the color and range
errors increase though the total error decreases.

By iteration 4 the scans have moved so that they mostly
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Figure 4. Progress of the registration.

Figure 5. The starting configuration. Top-down,
left-right: I1, I2, I1,2, I2,1.



Figure 6. Intermediate (left) and final (right) con-
figuration.

fall within the silhouettes, but are misaligned. This situa-
tion is illustrated on the left side of Figure 6. In the next
few iterations the scans are rotated to improve the fit. By
the 10th iteration, the registration is good and the rotations
and translation do not change by much in subsequent iter-
ations. Color and range errors diminish until the algorithm
achieves convergence at around iteration 15. The final con-
figuration is shown on the right side of Figure 6. Some error
remains as the scans are not perfect in geometry (range er-
ror), color (e.g., slightly different illumination conditions),
or silhouette (scanner did not scan all visible surfaces, for
example the right leg of the bunny was missing from the left
scan).

To demonstrate how using color information can help
where geometry alone fails we created synthetic scans of
an undulating cylindrical vase that we texture mapped with
a color image. The upper block in Figure 7 shows the reg-
istration results from the two cameras (first row) as well as
the error images (second row) when all three of the error
terms (range, color, silhouette) were used. The registration
is quite good, though some color error remains. This is due
to the different sampling of color and geometry in the two
scans, which is an inherent problem with any scanner, real
or simulated. The bottom block shows the result of using
only the range and silhouette error terms. The geometry
aligns well, but there is significant misalignment in the color
data.

5. Discussion

5.1. Initial registration

In general, nonlinear optimization methods require a rea-
sonable initial guess for the parameters. However, we have
observed that our method is robust and can cope with large
initial registration errors. For the most part, this is due to the
empty-space constraint. Another reason is our hierarchical
coarse-to-fine approach. In some examples (e.g., Figure 8),
optimization at the fine level of detail does not converge to

Figure 7. Registering with color works (top two
rows; color data and differences), without color
fails. Different samplings of the same data still
produce some color error after registration (sec-
ond row).



Figure 8. At this starting configuration only the hi-
erarchical approach finds the correct solution.

a good solution, while the hierarchical optimization does.
Initial errors in rotation angles pose greater problem than
errors in translation parameters. Nevertheless, errors upto
30 degrees can still be consistently tolerated, and in Figure 8
the initial rotation error about the y-axis was 40 degrees.

5.2. Changes in the lighting

The simple color comparison that we used in Section 2
works well when the illumination is constant over scans and
the surface of the object is diffuse. If these assumptions are
violated, more sophisticated color processing is required.
Matching colors under different illumination is a non-trivial
problem. Simplistic approaches, such as using HVS color
space (hue, value, saturation) and ignoring the value com-
ponent or dividing out the luminance of RGB, do not work
reliably. With the former, colors close to gray give essen-
tially a random hue, while the latter has similar problems
with all dark colors. If the lighting is calibrated, one can
try to compensate for the effects of direct illumination and
extract the diffuse reflectance [12]. Another possibility is to
use normalized cross-correlation of colors, which is more
robust to illumination changes than the direct color value
[1].

5.3. Use of normal vectors

Our method is not limited to using only range and color
data. We can incorporate any other function on the surface,
such as the normal vector field to the surface. Figure 9 il-
lustrates why using normals can improve registration. The
figure shows two scans that are close to each other, so that

Figure 9. Pieces of scans are close to each other,
but the corners are not aligned.

range data would not necessarily align the corners. How-
ever, the large differences between normal vectors close to
the corners might help to pull the scans into a better align-
ment.

One way to include normal vectors into our algorithm
would be to encode them as texture maps. We include the
analysis of normal vectors in the appendix.

6. Summary

We have presented a registration method that measures
registration accuracy by projecting range scans, along with
associated color information, onto the image planes of
virtual cameras. While previous methods use color in-
formation to determine correspondences between surface
points, we minimize a single error function measuring mis-
alignment in both color and range.

The use of the empty-space constraint (silhouette
penalty), the use of the occlusion volume to prevent false
matches, and the hierarchical coarse-to-fine processing,
make the algorithm robust against errors in the initial regis-
tration.
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Appendix

Our goal is to derive the gradients of colorc̄T , rangērT ,
normal n̄T , and optical flowψT at T = I . Ignoring the
effects of occlusion and disocclusion, we can expressc̄T ,
r̄T , andn̄T in terms of the optical flow:

c̄T (u) = c̄ ◦ψT−1(u), (7)

r̄T (u) = e3 · (T ◦ P̄ ◦ψT−1(u)). (8)

n̄T (u) = R · n̄ ◦ ψT−1(u). (9)

A Euclidean transformationT for a pointx = (x, y, z)
is composed of a rotationR around some pivotm =



(mx,my,mz) followed by a translationt:

T(x) = R · (x − m) + m + t. (10)

For the normaln it is simply

T(n) = R · n. (11)

We parameterize Euclidean transformations by the6-
dimensional vectord = (α, β, γ, t1, t2, t3) of rotation an-
gles around the three coordinate axes and translations.

Using the chain rule we get

∇dc̄d = −∇uc̄ · ∇dψd, (12)

∇dr̄d = −∇ur̄ · ∇dψd + e3 · (∇dT ◦ P̄) , (13)

∇dn̄d = −∇un̄ · ∇dψd + ∇dR · n̄. (14)

Recall that we evaluate all gradients atT = I , i.e., atd = 0
and that∇dψT−1 = −∇dψT (again atT = I ).

The gradients∇uc̄,∇ur̄, and∇dnd are the derivatives of
the data with respect to image coordinates and are estimated
numerically.

By the chain rule,∇dψ = ∇xΠ · ∇d(T ◦ P̄), where

∇xΠ =
1

r(u)

[

fe1 − ue3

fe2 − ve3

]

(15)

and

∇dT(x) =

24 0 z −mz −(y −my) 1 0 0
−(z −mz) 0 (x−mx) 0 1 0
(y −my) −(x−mx) 0 0 0 1

35 .
(16)

Hence, writingP(u) = x yields the formula

∇dψ =
1

r(u)

�
fe1 − ue3

fe2 − ve3

�
·24 0 z −mz −(y −my) 1 0 0

−(z −mz) 0 (x−mx) 0 1 0
(y −my) −(x−mx) 0 0 0 1

35 .
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