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Abstract

Range imagery produces the kind of geometric information about the environment that an
autonomous machine needs for operation. Not only does the range data provide explicit
information about the obstacles that might hinder movements, but it also provides a
means of recognizing objects that should be manipulated.

TULKO, the \Machine of the Future" project, has chosen laser range imagery as it
main source of vision data. In TULKO the location and orientation of the work space is
determined with respect to a paper roll manipulator. The locations of individual paper
rolls must also be determined in such a way that the manipulator can transfer them. In
the actual application the manipulator can autonomously load the rolls from a platform
to a ship.

This thesis presents a Hough transform based method for locating standing paper rolls
of a known radius directly from the depth data. The locations are transferred into the
manipulator coordinate system by calibrating the sensor and manipulator coordinator
systems.

For object recognition from depth maps, a new method for range image segmentation
was created. The method �rst calculates local surface normals from the depth data using
robust methods, and decomposes the normal vector into three orthogonal components.
Based on two of the components it is possible to determine discontinuities in the surface
orientation. A third component, a scaled depth value, is added to the two normal compo-
nents, and the resulting triplets are considered as a single color vector with three \color"
bands. This multi-band image is then segmented using a hierarchical connected compo-
nent method. The resulting segmentation is re�ned by robustly �tting surface equations
to the segments and thereby determining at the region borders to which segment the
individual pixels belong.

Keywords: machine vision, range image, object recognition, intelligent
robots, segmentation
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1. INTRODUCTION

Autonomous machines are turning from science �ction into real science. Modern
machines do more and more by themselves, needing less and less supervision by an
operator. Machines are able to do repetitive chores without getting tired. They
can complete di�cult and dangerous tasks, such as the repairing of nuclear reactors
or a space station, without endangering human lives.
For a machine to be called autonomous, it has to be able to cope with its

tasks without human intervention. Usually, it must observe its environment in
order to understand what other factors apart from itself a�ect the surroundings.
Sometimes, in very controlled surroundings, such as an assembly line of a car
factory, where one knows where each object is located, the observation of new
things can be reduced to minimum, but in a changing environment one needs to
sense the changes. Vision is man's most important sense | it has a very wide
bandwidth in conveying information, and it allows one to inspect things without
touching them. It seems therefore natural that autonomous machines should also
be endowed with the ability to see.
Although humans see by sensing photons and registering the intensities and the

variations of colors in the light, it is by no means self-evident that arti�cial beings,
robots, should also see using the same method. In many robotic applications, it
is very important to deduce the geometric or spatial structure of the environment,
and the locations and orientations (i.e. the poses) of various objects. The robot
may need to be able to recognize objects based on their form, manipulate them,
or just move around without bouncing onto walls or other obstacles. The human
brain can deduce three-dimensional relations of the objects and entities a person
sees, but the process of matching the images of two eyes and deducing range by
stereo vision, or using depth cues such as perspective distortion, are very complex.
If in most cases what is really needed is geometrical information, would it not be
better to obtain this knowledge directly, without intervening processes?
Methods have been developed for directly obtaining range information that ac-

tually present the continuous geometry of the environment in a digitized form. In
addition to deducing range information from intensity information, it can be pro-
duced, for example, by laser ranging devices. Ladar, laser radar, is a technique that
sends short laser pulses to the environment and measures the range to an obstacle
by measuring the time of 
ight of the light pulse. Many other techniques exist in
addition to the ladar.
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The TULKO project, or the \Machine of the Future" project, aims to develop
a concept for an autonomous machine. Not only concepts, but the project also
produces a prototype of an autonomous paper roll manipulator which uses laser
ranging as its mainmeans of observing the environment. The project began in 1989,
and it ran in three phases. The �rst phase of the project contained the de�nition
of the problem to be solved, and a survey of methods for solving the problem.
Tests were performed by simulating a robot on a computer. The second phase, the
laboratory phase, performed tests using real hardware, such as an industrial robot
and a laboratory range detector. In the third phase, a prototype of a functioning
paper roll manipulator utilizing a laser pointer range detector was constructed.
This thesis concentrates on the object recognition problems encountered in

robotic vision when range information is used. During the research, a quick, Hough
transform based method for locating paper rolls was devised. Standing paper rolls
of a known radius are detected and located using sparse range data from a range
pointer. The range device and the paper roll manipulator coordinates are calibrated
so that the results can be transferred to the manipulator.
A new method for segmenting range images was also created. The segmenta-

tion is based on calculating local surface normal vectors and a scene is segmented
into continuous and homogeneous regions that correspond to a natural division of
objects into surface patches. The inclusion of direct range information into the
process makes the segmentation more robust. Surface equations can be easily �t-
ted into the regions, and ultimately objects can be recognized on the basis of the
surface segments and their interrelationships.
The structure of this thesis is divided as follows: chapter 2 presents the TULKO

project and the range based imaging as the basis for its vision system; chapter
3 studies the problem of object recognition in three-dimensional vision; chapter 4
presents our method for locating the paper rolls from range data; chapter 5 explains
the new segmentation method for range images; and �nally chapter 6 contains a
discussion and the conclusions of the thesis.



2. A VISION SYSTEM FOR AN AUTONOMOUS MACHINE

Vision is our most powerful, and most complicated sense. It provides us with in-
formation about our surroundings and enables us to interact with our environment
in an intelligent manner. Although full vision systems for robots are still out of
our reach, many important tasks of a vision system can be realized with today's
technology. In this chapter, we �rst consider the goals of a machine vision system.
We also take a general look at the TULKO paper roll manipulating autonomous
machine, and then a closer look at the vision system.

2.1. Tasks of a vision system

A vision system for an autonomous machine can have several tasks that it should
attend to. Some of the tasks, such as navigation and obstacle avoidance, are needed
only for a mobile machine, whereas all kinds of robots need to be able to recognize
and locate objects.
Obstacle sensing. All the autonomous machines we are interested in have

moving actuators or they can move as a whole. In such a case, the robot should
be able to determine if it is about to run into some obstacle. Once the danger
of collision is detected, the robot can react by either halting or by modifying its
trajectory. A blind robot can easily damage not only itself but also objects and
persons in its vicinity.
Object recognition. For the machine to know how to react to the objects it

senses, the objects must be recognized. The machine must be able to distinquish a
person walking in the working area from the paper rolls it is supposed to load into a
container for obvious safety reasons. The word recognition implies that something
is already known about the object: a machine cannot recognize an object for which
it does not have an internal model.
Object pose. Autonomousmachines operate on objects by moving, assembling,

etc., which usually requires direct contact with the object. The object's pose, i.e.
its location and orientation, are important pieces of information when planning
how it should be gripped or pushed.
Environment Modeling. For a machine to be able make plans it has to have

some kind of model of its environment. If an environment model has not been
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given beforehand, the machine has to create it by itself by sensing and locating,
possibly even recognizing, objects.
Navigation. Mobile autonomous machines must be able to navigate within

their surroundings. In navigation the environment model, or map, must be updated
and the robot needs to deduce its own position in relation to the map by observing
and locating beacons.

2.2. TULKO

2.2.1. An autonomous paper roll manipulator

In 1989 the TULKO project began. This is a joint project between the University
of Oulu and the Technical Centre of Finland, and it will continue until May 1993
(Piesk�a et al. 1991). The name TULKO is an abbreviation of the project's Finnish
name \Tulevaisuuden Kone" or \The Machine of the Future", and it is supported
by the Technology Development Centre of Finland (TEKES) and by several private
companies.

AAAAAAA

Fig. 2.1 The TULKO manipulator and its main parts, including the control
system.

The main goal of the research in TULKO is to increase the autonomy of machines
by developing intelligent control systems and sensors. The control system is part
of a larger system, which includes a high-level goal-oriented planner (Riekki et al.
1991). We have applied the integrated control system to pick-and-place guidance,
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utilizing structured light ranging. Other sensors used include force sensors and
sonars.

As an instance of an autonomous machine we have implemented a prototype of a
paper roll manipulator (see Fig. 2.1). Its intended task is the loading and unloading
of paper rolls onto and from ships, railroad wagons, etc. The basic ideas of the con-
trol method were �rst tested with a simulator of an indoor mobile robot (R�oning et
al. 1990). In the second phase, experiments were performed with industrial robots
equipped with range and force sensors (Riekki et al. 1991). Having concluded
the laboratory experiments we expanded our research to an outdoor application
where the test equipment includes a large paper roll manipulator equipped with a
sophisticated gripping device and the appropriate controls.

2.2.2. System overview

The main task of the manipulator system is to move paper rolls of a known radius
from area A to area B in a changing and partially unknown environment. To
reach this goal, the system must be able to locate the robot and its gripper, collect
data about its environment, combine collected information with what is previously
known, and pick up, transport, and put down a paper roll.

2.2.2.1. PEM-model

The control scheme is based on a hierarchically organized set of Planning-Executing-
Monitoring (PEM) cycles (Heikkil�a & R�oning 1992). Every PEM cycle is a goal-
oriented module, which consists of three generic activities|planning, executing,
and monitoring|and a separate meta control mechanism, which takes care of the
control of generic activities inside a PEM cycle. This is illustrated in Fig. 2.2.
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Fig. 2.2 The basic components of the PEM-model.
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The planning activity encompasses task decomposition by hierarchical resource
or activity allocation, and produces plans that the executing activity then carries
out. While the plan is being executed, the monitoring activity monitors the system
and its environment, and it initiates replanning if it notices a deviation from the
original plan.

The PEM-triplets can be nested at several levels of the hierarchy: an executor
may contain in itself several PEM-triplets. This enables the abstraction of a prob-
lem so that the higher levels plan the task on a very abstract level, and the lower
levels progressively re�ne that plan.

2.2.2.2. Reactive system

In a traditional robot system, the control system includes all the intelligence re-
quired to move a robot arm. It has to notice all the deviations from the plan and
modify the plan each time, which slows down the real-time operation of the system.
In the TULKO, the goal-oriented planner does not have to take everything into
account since some of the intelligence is distributed to the actuators, as shown in
the Fig. 2.3. Below the planner there is a reactive system that can meet the goals
given by the planner and its role is to adapt locally to unexpected situations.

MAIN
CONTROLLER

MAIN
CONTROLLER

ROBOT
CONTROLLER

ROBOT
CONTROLLER

ROBOT ROBOT

CONTROL
SYSTEM

TRADITIONAL
APPROACH

CONTROL
SYSTEM

INTELLIGENT
ROBOT

TULKO
APPROACH

Fig. 2.3 Control of traditional and intelligent robots.

The reactive control is much simpler than the planner. As it is designed for a
particular actuator, it can better utilize the available resources. More importantly,
however, the reactive control can be made to function very quickly. For example, if
a robot is ramming its gripper through a concrete wall, it should be possible to halt
it without replanning. Or, if an obstacle is noticed to be in the way of a planned
trajectory of the gripper, the reactive system could de
ect the gripper's trajectory
so that the obstacle can be avoided.
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Fig. 2.4 Autonomous machine control system and device systems.

2.2.2.3. System components

The control system is distributed as shown in Fig. 2.4, and consists of the follow-
ing components: the main controller, the user interface controller, the visualizer
controller, the robot controller, the local range sensor controller, the global range
sensor controller, and the visualizer system. The components are loosely connected
by a message router. This makes the whole system easier to develop and maintain
because individual elements can be designed, tested, or changed separately.
The main controller includes the higher levels of the control hierarchy, i.e. the

goal-oriented planner, while the low level controls are located in the robot con-
troller. The user interface controller conveys the user's commands to the system
while the visualizer system provides a graphical representation of the system and
its status. The global range sensor, a laser pointer, is used to position the robot and
obtain coarse information about its environment. The local range sensor, a matrix
of ultrasonic sensors, provides more accurate information about the position and
orientation of selected objects close to the gripper. The force/torque sensor is used
to detect and to stop on contact with objects, to verify the success of gripping or
releasing an object, and to weigh objects. The limit switches form a safety system:
a set of ultrasonic sensors monitors the working area and slows down the system
or halts its operation if humans are detected to be too close to the manipulator.

2.3. Global sensor

The global sensor acts as the eyes of the manipulator system. Its tasks include the
positioning of the manipulator in respect to the partially known surroundings. To
do this, the global sensor should have some knowledge about the geometry of the
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possible beacons, such as walls, corners etc., sense them, deduce their locations,
and from this information infer its own position within the working area. Next,
the global sensor locates, using a priori knowledge, the areas to transfer objects
from and to in respect to its own coordinate system. Last, but most importantly,
the global sensor must, while the whole system is operating, locate the objects to
be transferred by matching sensor data to inner models.

The global sensor chosen for the TULKO is a laser-based range �nding device.
In this section, we �rst examine the characteristics of the range data, and compare
them with intensity data obtained from video cameras. The section concludes with
a study of di�erent kinds of global sensor hardware both used and planned for use
within the TULKO project.

2.3.1. Geometrical information

In three-dimensional (3D) vision geometrical informationabout objects is needed to
recognize those objects and especially to determine their location and orientation.
Range data is especially well suited for obtaining such geometrical information.

In the last decade, there has been a proliferation of techniques for producing
range images or depth maps and for analyzing them (Besl & Jain 1985; Besl 1988a).
Range data is often represented in the form of a matrix of numbers, where the
numbers quantify the distances to object surfaces along rays emanating from the
sensor focus point and passing through points on a regularly spaced grid. These
range data matrices can be used directly as approximations of the 3D shape of the
object surfaces within the �eld of view.

Although the geometry of the objects in a scene is one of the main contributor to
the intensity images obtained from video cameras, there are many other variables
that a�ect the result. The type of lighting of the scene, whether it is directed or
di�use, has a great e�ect on the appearance of an image. Neighboring objects may
cast shadows or re
ect light on other objects, and surface markings hamper the
image segmentation process. Di�erent materials have di�erent re
ectance charac-
teristics. Humans are able to compensate for the lack of depth information by the
use of higher level spatial reasoning and inference processes, but those processes,
along with the associated databases, are very di�cult to implement for deducing
surface geometry from intensity images. Range data can be used more quantita-
tively for object geometry reconstruction than the intensity data because of the
explicit shape information in range images.

Range imagery has yet another advantage over intensity images in robot vision.
Since range measuring devices measure the distance to the closest object surface
in each particular direction, it is possible to deduce whether certain locations are
free or occupied. Elfes (Elfes 1990) has produced occupancy grids, which explicitly
maintain probabilistic estimates of the occupancy state of each cell in a spatial
lattice. The information on occupancy can be used in a variety of robotic tasks
such as obstacle avoidance, map making, and multi-sensor integration, where the
occupance grid provides a common representation for di�erent kinds of sensor data.
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2.3.2. Global sensor hardware

Range imaging systems can be divided into two categories: passive and active
systems. Passive systems use an intensity image produced by a video camera,
while active systems send and receive a signal, often structured light or ultrasound.

The most important passive range imaging system is the binocular stereo, which
uses two cameras and deduces distances using the disparities between the camera
images. Other systems can be referred to as the shape-from-X techniques, where
the X can be replaced by one of the following list: motion, shading, texture, and
contours. Shirai (1987) gives a good presentation of passive range imaging tech-
niques.

There are at least six di�erent optical principles that have been used to actively
obtain range images: radar, triangulation, moire, holographic interferometry, fo-
cusing, and di�raction. Besl (1988b) has carried out an excellent survey of these
methods. Among the active methods, radar and triangulation can provide the
range and resolution acceptable for the purposes of the TULKO global sensors. In-
deed, both principles have also been applied. In the following, we brie
y describe
the range �nding equipment we have used.

2.3.2.1. Laser scanner

Ideally the global sensor in the TULKO is a laser scanner situated on top of the
manipulator as shown in Fig. 2.1. However, the laser ranging system we had is
suitable only for laboratory use. Here we describe our laboratory ranging system.
We also used range data from a data library (Rioux & Cournoyer 1989), and we
brie
y describe the ranging system used for obtaining the images in that library.

The scanner that was used in the laboratory phase is the Technical Arts 100 A or
the White Scanner (Technical Arts 1989). The White Scanner sends a laser beam
turned to a plane of light into the scene and calculates distances using triangulation.
Its �eld of depth is 150-300 cm, and the measuring volume at a distance of 225 cm
is 80 cm wide and 100 cm high (Riekki 1993).

The parts and the operation principle are presented in Fig. 2.5. The system
consists of a light source (10 mW Helium-Neon laser, wavelength 633 nm), three
mirrors, a video camera, a computing unit, a user interface, and a connection to
a workstation. The light source emits a light ray which is turned to a plane of
light using an oscillating mirror. The computing unit calculates points on object
surfaces in the scene using the video camera image, as well as knowledge about the
orientation and location of the light plane and the video camera.

The operation principle is shown in the left part of Fig. 2.5. If a surface is
moved within the scene, there is a corresponding translation of bright pixels in the
video camera image. The translation in the horizontal axis of the video image is
proportional to the translation of the surface in the z-axis in the sensor coordinates.
The x- and y-coordinates can be computed using the light plane orientation, z-
coordinate, and the vertical position of a pixel on the screen. Hence, each pixel on
the screen maps unambiguously to a (x; y; z) point in the sensor coordinate system.
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Fig. 2.5 The White Scanner system components and operation.

240 horizontal measurements can be performed at once, and the vertical scanning
is implemented by re-orienting the light plane by turning one of the mirrors.

Figure 2.6 shows the optical arrangement of the NRCC ranging device (Rioux
& Cournoyer 1989). The device is based on the concept for active triangulation in
which the horizontal position detector and the beam projector are both scanned.
A turning double-sided mirror produces synchronized projection and detection. As
shown in the Fig. 2.6, the beam leaves the source, hits the rotated mirror, and
bounces o� another mirror and impinges on an object surface. The illuminated
spot is viewed via the opposite side of the mirror (and another �xed mirror) by a
CCD camera. The CCD array is tilted in order to compensate for defocusing that
happens along the z-axis.

LENS

CCD

SOURCE

FIXED
MIRROR

SCANNING
MIRROR

Fig. 2.6 3D measurements using triangulation through synchronized scanners.
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θ

Fig. 2.7 The laser pointer in its operating environment, the returned infor-
mation.

This system yields a high angular resolution with a small baseline. A 256� 256
range image is created in about a second. For a total working volume of 250 mm�
250 mm � 100 mm, the x, y, and z resolutions are 1, 2, and 0.4 mm, respectively.

2.3.2.2. Laser pointer

In the �nal demonstration version of the TULKO, a manually operated laser pointer
developed at VTT was used. The user aims the VTT pointer at the scene, presses
a trigger, and turns the pointer back and forth over the scene. The device measures
single points at regular time intervals. Each measurement consists of the following
information: the x-, y-, and z-coordinates, spherical elevation angle �, azimuth
angle �, and distance r. The pointer rests on a tripod where it can see the working
area of the paper roll manipulator and the manipulator itself (see Fig. 2.7).
The operation principle of the laser pointer is time-of-
ight measurement. Sev-

eral light pulses are sent, their re
ections measured, and the results are averaged.
The measuring range of the laser pointer is from 1.5 meters to 10 meters in all
directions at a resolution of 1 cm. The measuring accuracy varies from 0.5 cm to
2 cm.
The laser pointer does not produce a depth map, but a number of independent

point measurements. Hence, many depth image analysis methods cannot be used
with this kind of data.



3. OBJECT RECOGNITION

3.1. Introduction

The ultimate goal of robotic vision is the same as the role of vision for humans: un-
derstanding scenes and the spatial relations between the objects within the scene.
This involves partitioning the scene into meaningful entities, recognizing individ-
ual objects in 3D, and determining the location and orientation of those objects.
These results can be used when forming a cohesive interpretation of the visible
surroundings. Higher level processes combine the newly deduced information into
the beliefs the vision system already has about the structure of the environment,
and having recognized objects, make deductions about their purpose and about
their potential e�ect on the robot's own functions.
The word recognition implies that something is already known about the object.

If there is no previous knowledge about the object, it can only be described in terms
of volume, height, etc., or possibly with vague notions like \roughly spherical" or
\cylinder-like", but it cannot be recognized. Hence, an object recognizing system
needs to have some kind of models about the objects it knows. These models
should, in 3D vision, allow object recognition from an arbitrary view point, i.e.
the model should be view independent. These object models are stored in a world

model, a necessary component in a object recognition system.
How should one begin to interprete the abundant digitized sensor data? A brute

force method to determine the presence of objects would be to transfer all possible
combinations of all known objects in any orientation into the digitized sensor data
format and try to minimize the matching error. Clearly, even for very simple scenes,
this would take an enormous amount of processing time. We need to have a better
way of proceeding.
A much better approach is to reduce the large dimensionality of the input data

by transforming it into some kind of symbolic form. If the object models can also
be described in this common intermediate domain, subsets of data can be matched
against individual objects or parts of objects. The quantities used for matching in
the intermediate domain are called features.
In this chapter, we �rst present the components for a recognition system, along

with the mathematical description for object recognition and the characteristics
a recognition system should have. We also take a look at the object models and
intermediate representation possibilities. Segmentation is a natural way of reaching
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the intermediate representation from the sensor data. Having achieved this, the
object matching can continue in the intermediate domain. We then continue with
the presentation of the Hough transform, a powerful tool for object recognition.
Although the Hough transform can be directly used to recognize objects, it is more
e�cient to �rst organize the input data and then to provide the Hough transform
with the resulting structured information. The generalized Hough transform is
shown to implement object-feature graph matching e�ciently.

3.2. Recognition system

3.2.1. Recognition system components

The logical components of a complete object recognition system and their inter-
actions can be depicted as in Fig. 3.1 (Besl & Jain 1985). The four fundamental
system domains are: the real world domain, the digitized sensor data domain, the
symbolic description domain, and the modeling domain. Several processes map
information from one domain to another. The image formation process (I) creates
intensity or range data based purely on physical principles. The description process
(D) extracts relevant application-independent features from the sensor data. This
part should not use any a priori information about the particular objects likely to
be seen in the image but be totally data-driven, i.e. only information about the
image formation process and some basic information about real-world geometrics
should be included. The modeling process (M) provides the system with models
of real-world objects. Modeling can be totally automated with the use of sensors
and methods for organizing sensor data, or more commonly, the models are formed
by people, using CAD-systems, for example. The recognition or understanding
process (U) matches the symbolic descriptions or features with the object models.
Finally, the rendering process (R) can be used for veri�cation. The rendering pro-
cess produces synthetic data from object models and enables us to �nd out how
closely the current scene interpretation corresponds to the actual measured data.

World
Model

Real
World

Symbolic
Description

Sensor
Data

Fig. 3.1 General object recognition system structure. The processes are: I,
image formation; M, world-modeling; D, description; U, understanding; R,
model rendering.
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3.2.2. Characteristics of a recognition system

An object recognition system, on the whole, has to meet several criteria. Besl
(1988a) has proposed a list of characteristics that an ideal object recognition system
should have:

� The system must be able to handle data from an arbitrary viewing direction.

� The system must handle arbitrarily complicated real-world objects.

� Arbitrary combinations of objects should be handled without being sensitive
to minor occlusions.

� A certain amount of noise should be tolerated.

� The scenes must be analyzed quickly and correctly.

� The system should be able to express its con�dence of its interpretation of
sensor data.

� The system should be able to analyze, model, and describe new objects.

The last requirement includes a learning capability, which is a di�cult research
issue in its own right.

3.2.3. Mathematical description

Object recognition from depth maps can be de�ned as generalized inverse set map-
ping (Besl 1988a). The world can be approximated to consist of Nobj objects, the
ith object being denoted Ai. Each object has its own coordinate system so that
the origin lies at the center of its mass and the three orthogonal axes are aligned
with the principal axes of the object. There is also a world coordinate system
which is used to describe the spatial relationships between each object and the rest
of the world. Each object can be located within the world coordinate system by
means of six parameters: three for translation (� = (�; �; 
)) and three for rota-
tion (� = (�; �;  )). The coordinate systems and their parameters are illustrated
in Fig. 3.2 (a).
The world model W is now de�ned as a set of ordered triplets

W = f(Ai; �i; �i)g; 0 � i � Nobj; (3..1)

where A0 is the sensor at �0 and orientated to �0. A time-varying object model
can be represented as having the elements of each triplet as a function of time. The
set of all objects, the object list, is denoted as L = fAig. The sets of translations
and rotations are denoted as <t and <r, respectively, where < is the set of all real
numbers and t = r = 3. Now the depth map projection of a scene can be modeled
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Fig. 3.2 (a) Rigid objects in 3D have 6 degrees of freedom: translation (�; �;
)
and orientation (�; �;  ). (b) Di�erent valid interpretations of a simple scene:
P�1 = ff1g; f2; 3;4g; f4; 3;2gg.

as a mathematical operator P , which maps elements in the set 
 = L � <t � <r

into elements in the set of all scalar functions F of t� 1 variables:

P : 
! F: (3..2)

The projection P uses sensor location �0 and orientation �0 as implicit arguments
and it produces a function f(x), where x is the vector of t � 1 spatial variables
of the sensor's focal plane. The value of the f(x) is the distance to the object
surface, and in the case, where the point (x; f(x)) cannot lie on an object surface,
we assign f(x) =1. Therefore, in the presence of multiple objects, we de�ne f(x)

f(x) = min
1�i�M

P (Ai; �i; �i): (3..3)

The depth-map object recognition problem can be now stated: given a depth
map function f(x), determine all the possible sets of objects and corresponding
translation and orientation parameters that could have caused such a projected
function. This corresponds to inverse mapping

P�1(f(x)) = f!j � 2
 j min
j2J

P (Aj; �j; �j) = f(x)g: (3..4)

Each !j is a set of objects that projects the f(x). However, the P�1(�) is a one-
to-many mapping, as several di�erent sets of objects can produce the same f(x)
(see Fig. 3.2 (b)). The inverse mapping takes elements of the depth-map function
space into the power set of the power set of 
:

P�1 : F ! 22



: (3..5)
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denotes all the possible sets of all the possible combinations of all objects.

3.2.4. Models of objects

What kinds of models do we need within an object recognition system? Fan (1990)
has given a set of criteria for 3D object shape description:

� View-point invariance. The description should enable recognition from an
arbitrary viewing direction.

� Richness. The object description should contain enough information for
similar objects to be recognized. It should also be possible to recreate rea-
sonably similar objects from that description.

� Stability. Minor local changes caused by noise, slight deformations, and
digitization errors should not radically alter the description.

� Local support. Real scenes always contain occlusion, but objects should be
recognized even if they are only partly visible.

� Naturalness. The description should correspond to physical features.

� Reliability. The error in computation must be always reasonably small.

� E�ciency. One must be able to perform the computation within a reason-
able space and time.

Unfortunately, some of the requirements are mutually exclusive: the richer the
description, the more costly it is manipulate.
Objects can be described at di�erent levels, with low level descriptions such as

a set of points or pixels, at intermediate levels such as edges and contours, or with
high level descriptions such as surface descriptions or even volume descriptions.
With lower level descriptions the dimensionality of the description is very high, i.e.
a large number of parameters is needed for the object description, and they are not
very stable in respect to viewing directions. Further, they are often sensitive to
occlusion. Higher level descriptions have lower dimensionality and they maintain
their invariance in di�erent surroundings, but the algorithms for manipulating them
are often very expensive or cumbersome. For example, volume descriptions are of
a very high level, but currently techniques for computing them exist mostly for
simple and regular shapes.
In general, one should choose the description at as high a level as possible while

still maintaining robustness of description and e�ciency of manipulation. From
previous methods, surface description is a good compromise: it is much richer
than point-wise or edge-based descriptions, but it is still fairly easy to work with.
There is still the question what kind of surface descriptions to use. Global surface
descriptions describing the whole of the object surface at a time are not very
practical: in the case of complex objects they tend not be stable, furthermore,
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they tend to be very sensitive to occlusion. Segmented surface descriptions, on the
other hand, describe parts of an object, and the whole object description consists
of a set of surfaces and their mutual relationships. This approach is less sensitive
to occlusion. One question still remains: how is the surface segmentation to be
achieved? One possibility is to approximate the surface by planar or simple curved
patches. If the approximation is not good enough, the segmentation is re�ned until
the �tting error falls below a preset threshold. This method, however, is rather
unstable, as the description is likely to change considerably even if the described
surface changes only slightly. The number of patches is often quite large, and the
points and lines where the approximating patches are joined do not necessarily
correspond to physically prominent features. A better choice is to have surface
patches that are segmented along physically signi�cant features, such as surface
orientation discontinuities. If the sensor data can be similarly segmented, the
matching of the data against the inner models will be greatly eased.

3.3. Segmentation

An image segmentation is the partitioning of an image into a set of non-overlapping
regions whose union is the entire image (Haralick & Shapiro 1992). The purpose
of image segmentation is to decompose the image into parts that are meaningful
with respect to a particular application. For example, in two-dimensional (2D)
part recognition, a segmentation might be performed to separate 2D objects from
the background as in Fig. 3.3. In 3D object recognition, the segmentation may
help in matching sensor data against object surface patch descriptions.

Segmentation is used to simplify the visual input to the level that is required
for the speci�c task. In robotic vision, to simplify means to partition images into
entities that correspond to individual regions, objects, and parts in the real world
and to describe these entities only in su�cient detail for performing a required
task (Bajcsy et al. 1990). Thus, the segmentation can be seen as a compression of
abundant measurement data into a symbolic form to facilitate higher-level scene

Fig. 3.3 Tools lying on a table have been �rst separated from the background
and then the di�erent regions have been labeled.
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analysis processes.
Although it is in general di�cult to say what constitutes a meaningful segmen-

tation, some basic rules exist (Haralick & Shapiro 1992):

� Regions of a segmented image should be uniform and homogeneous with re-
spect to some characteristics, such as gray level in intensity images or surface
continuity in range images.

� Region interiors should be simple and without many small holes.

� Adjacent regions of a segmentation should have signi�cantly di�erent values
with respect to the characteristic on which they are uniform (e.g., they belong
to di�erent surfaces or objects).

� Boundaries of each segment should be simple, not ragged, and must be spa-
tially accurate.

It is often di�cult, if not impossible, to achieve all the stated properties. Strictly
uniform and homogeneous regions tend to be full of small holes and have ragged
boundaries. Insisting that adjacent regions have large di�erences in values may
cause regions to merge and boundaries to be lost.

3.3.1. Mathematical description

The general segmentation problem can be mathematically stated as follows (Horo-
witz & Pavlidis 1974; Zucker 1976; Besl 1988a): Given the set of all image pixels
I and a logical uniformity predicate P (�), �nd a segmentation S of the image I in
terms of a set of regions Ri. The following segmentation conditions must hold for
the set S:

NRS
i=1

Ri = I; where Ri � I for each i

Ri \Rj = ; = Null Set for all i 6= j

Ri is a 4-connected set of pixels (3..6)

Uniformity predicate P (Ri) = TRUE for all i

If Ri adjacent to Rj =) P (Ri [Rj) = FALSE:

NR is the number of regions in the segmentation. The result of the segmentation
process is the list of regions denoted

S = fRig; 1 � i � NR; (3..7)

which is usually accompanied by an adjacent regions list SA where the pair (i; j)
indicates the adjacency of the ith region and the jth region:

(i; j) 2 SA () Ri adjacent to Rj: (3..8)

The pair (S; SA) is known as the region adjacency graph (RAG), where the regions
are the nodes of the graph and the adjacency relationships are the arcs of the graph.
A more detailed description of RAG's will be given in 5.5.2..
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3.4. Hough transform

Hough transform (Hough 1962) is a robust method for detecting patterns in images
by transforming image features into points in parameter space and locating clusters
thus formed. Good sources for Hough transform are the survey of Illingworth and
Kittler (1988), and Davies (1990), which presents Hough transform as the most
important intermediate level machine vision method.
In this section, we �rst study the basic Hough transform for line detection in in-

tensity images. We then proceed to the generalized Hough transform, and conclude
with methods for improving the e�ectivity of the Hough transform.

3.4.1. Introduction into Hough transform

The Hough transform (HT) (Hough 1962) was �rst introduced for detecting curves
in bubble chamber photographs. The key ideas of the method can be illustrated
by studying an example where the line passing through colinear image points is
detected.
Image points (x; y) that lie on a straight line can be described by a relation

f((â; b̂); (x; y)) = y � âx� b̂ = 0; (3..9)

where the parameters a and b characterize the line (the hats denote that the pa-
rameters are kept constant). Equation 3..9 performs a one-to-many mapping from
the space of parameter values to the space of image points. The HT's main idea is
to invert the mapping of Eq. 3..9 and backproject an image point to the parameter

space, i.e. the set of possible parameter values, resulting in a many-to-one mapping

g((x̂; ŷ); (a; b)) = ŷ � ax̂� b = 0: (3..10)

Figures 3.4 (a) and (b) illustrate the backprojection: each image point (x; y) of a
straight line backprojects a straight line in the parameter space (a; b). These lines
intersect at a common point, the coordinates of which characterize the straight line
connecting the image points.
In order to represent the continuous parameter space on a digital computer the

parameter space is usually tesselated into a set of regular �nite-sized regions. In
the previous line detection example, the parameter space can be represented as
a two-dimensional array (see Fig. 3.4 (c)). This array is called the accumulator

array and its elements are called the parameter cells. The size of the cells is chosen
to correspond to the desired precision of parameter estimation. Each image point
casts votes that are then accumulated into cells when a backprojected line passes
through the parameter space region associated with the element. These votes peak
in the cell where the backprojected lines intercept. Hence, the task of �nding the
interception points can be transformed to the easier task of detecting local peaks
in the number of accumulated votes.
The HT can be easily extended to detect other parametrically de�ned curves. A

curve of n parameters
f((â1; : : : ; ân); (x; y)) = 0 (3..11)
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Fig. 3.4 The basis of the Hough transform for line detection: (a) (x;y) point
image space; (b) (a;b) parameter space; (c) (a;b) accumulator space.

can be regarded as the backpropagation equation

g((x̂; ŷ); (a1; : : : ; an)) = 0: (3..12)

This equation maps out a (n � 1)-dimensional hypersurface in the n-dimensional
parameter space. Again, the intersection point of those hypersurfaces determine
the most probable parameters for image curves.
The Hough transform can be generalized to detect arbitrary shapes for any orien-

tation and scale (Merlin & Farber 1975; Ballard 1981). In the following description
we assume that edge points and edge directions have been detected using some
edge detectors (c.f. (Canny 1986)).
The generalized Hough transform (GHT) begins with selecting a localization

point L within a template of the idealized shape. From each point on the edge
we move a variable distance R, in a variable direction ', so as to arrive at L.
Notice that the parameter space is congruent now with the image space. Both R
and ' are then functions of the local edge normal direction � (see Fig. 3.5). With
this arrangement, the votes will peak at the preselected localization point L. The
functions R(�) and '(�) can be stored either analytically, or, for totally arbitrary
shapes, they can be stored as a look-up table. However, shapes with concavities
and holes require R(�) and '(�) to have multiple values for some values of of �
(Fig. 3.6).
What the HT really does is gather evidence: for each image point, it is assumed

that it belongs to the sought-after shape, and a vote is cast for each parameter
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ϕ
θ

Fig. 3.5 Computation of the generalized Hough transform.

Fig. 3.6 A shape with a concavity: points P1 and P2 have the same �.

combination that includes that point as part of the shape. The accumulated votes
then indicate the relative likelihood of shapes described by parameters within the
corresponding parameter cell.
The HT method has many desirable features:

� Each image point is processed individually, which enables parallel processing
implementation for real time applications.

� Partial or slightly deformed shapes can be recognized because the evidence
is gathered independently. For example, in the case of occlusion the HT
degrades gracefully because the visible parts still contribute to the correct
parameter values.

� The HT method is robust to the addition of random noisy data. This random
noise is more likely to cause a low level of background of cell counts than to
concentrate on a single cell. However, structured background noise can more
easily cause spurious false peaks in the accumulator array, and some care
must be taken to eliminate or identify such situations.

� Several instances of a particular shape occurring in the same image can be de-
tected simultaneously. Each instance produces its own peak in the parameter
space.
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The main drawback of the basic HT implementation is its large storage and
computational requirements. In order to resolve n parameters each divided to �
intervals, an accumulator array of �n cells is needed. This can be much too large,
especially as the n grows. The bulk of the computational costs comes from the
calculation of the intersections of accumulator cells and the (n � 1)-dimensional
parameter surface, and it grows exponentially with the dimensionality of the prob-
lem. Also the e�ort needed to �nd the peaks in the parameter space grows with
the size of the accumulator array.

3.4.2. Improving Hough transform e�ciency

The examples of the HT or the GHT have so far been for 2D intensity images. 2D
images have only three degrees of freedom (DOF): two for translation and one for
the rotation. The situation changes considerably when 3D objects are considered
| they have six DOF: three for translation and three for orientation. Conceptu-
ally there is no di�erence, but the computational and storage requirements grow
signi�cantly. Here we study some methods for reducing those requirements and for
making HT more e�ective.

The Hough transform problem solution becomes simpler if the problem can be
constrained so that the problem dimensionality becomes lower. In the line de-
tection example such constraint could be the line orientation. If both the point
location and the line orientation for a point is known, the backprojection into the
parameter space results in a point instead of a line. Thus, the dimensionality of
the backprojected hyperplane is lowered from one (line) to zero (point). A method
called random sample consensus (RANSAC) (Fischler & Bolles 1981) is similar
in spirit to this kind of constraint utilization. The original RANSAC, however,
randomly picks n pixels for determining the n parameters of a curve and tests
the result against the other data, but the application of RANSAC into the HT is
straightforward.

Another possibility for lowering the high dimensionality is to decompose the
problem into smaller sets of parameters which can be determined sequentially. For
example, circles are usually described by 3 parameters, their center coordinates
(a; b) and the circle radius r. This 3D problem can, however, be solved in two stages:
the �rst stage involves a 2D HT for determining the center parameters (a; b), while
the second stage solves the radius using a 1D HT. Cylinders, which are described
by �ve parameters (two for orientation, two for (x; y) location with z = 0, one
for radius), could be decomposed into three simpler stages: orientation detection,
followed by location detection, and �nally the determination of the radius. Hence,
a O(n5) problem is reduced to O(n2).

The other source for high resource demand for the HT is the size of the accu-
mulator array, which directly grows with the resolution. Many techniques have
been proposed that employ non-uniform or multiple resolutions | they have high
resolution only in places where a high density of votes accumulate (Li & Lavin
1986; Illingworth & Kittler 1987). Typically these techniques begin the voting
process using a coarse parameter space with uniform resolution. Cells with high
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counts will then be further inspected at higher resolution. Very high parameter
resolutions can be reached with only a few iterations. High precision can also be
achieved by combining the HT with a least-squares method: �rst a coarse solution
is obtained using the HT, and then outliers, i.e. pixels or measurements not be-
longing to the sought-after shape, are discarded, based on the results of the HT. A
LSQ �tting is performed for the remaining inliers.
Often potentially very large accumulators are needed, but actually only a small

fraction of the cells will receive any votes. In such a case, the storage requirements
can be alleviated by using techniques for sparse matrices. Xu et al. (1990) have
presented a dynamic tree structure for the accumulator array. With this method
a high resolution can be achieved without a large memory consumption. Also the
maxima searching becomes quicker when a far smaller accumulator array has to be
sought.
Intensity images, or dense range maps, often contain a large number of possible

edge points which can contribute to the HT. It is usually not necessary to process
all the edge points | often a small fraction will produce similar results much more
quickly. If random samples are taken and their votes are accumulated, the correct
peaks denoting instance parameters of the sought-after shape will be formed and
can be detected long before processing all the possible contributors (Fischler &
Firschein 1987; Xu et al. 1990; Shvaytser & Bergen 1991).

3.5. Matching whole objects

In the previous section we studied the Hough Transform and how it could be applied
to recognize and locate rather simple objects. For complex shapes, the basic HT
or GHT requires a large amount of computation. The task is made easier by
recognizing objects from their features. Suitable features are, for example, holes,
corners, segmented surface patches etc.; i.e. any readily localizable subpattern.
Somehow these features must be organized so that they can be used for recognizing
and locating objects. Methods for accomplishing this form the subject of this
section.
We begin by examining a graph-theoretic maximal clique approach to object

location using point pattern matching, i.e. the features have no other attributes
than their x; y; z coordinates. Then, we proceed to show the equivalence of the
GHT and the maximal clique approach, and �nally we show how the attributes of
more complex features can be included in the recognition process.

3.5.1. Detecting objects by matching graphs

In general, we need at least three unique point features to be able to determine
both location and orientation of an object in 3D, although with more matched
features we can be surer of correct interpretation. There are several reasons for
the direct and complete matching of features proving di�cult when analyzing 3D
data:
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Fig. 3.7 Simple matching of a triangle: (a) basic labeling of the model (top)
and the features (bottom); (b) match graph; (c) placement of votes in param-
eter space.

� Many similar feature points may be present in the data because of multiple
instances of similar objects in the data.

� Noise or clutter from irrelevant objects may create additional spurious feature
points.

� Certain features of an object are missing because of noise or occlusion.

These problems are best tackled by trying to match as many features as possible
so that these matches are consistent with each other. If the matched features are
considered to form graphs with the matched features as nodes, the task can be
seen as the mathematical problem of subgraph-subgraph isomorphism, i.e. �nding
which subgraphs in the match graph have a similar structure to a subgraph of
the idealized template graph. The arcs of the match graph represent pairwise
compatibilities between matched features.
The match graph can be systematically constructed by numbering the features,

labeling the template nodes with letters, and making a node of every possible
matching of a detected feature to a feature in the template graph. Arcs will be
created between nodes that are consistent with each other, i.e. if node A is a
correct match and it is possible that in that case also node B can be a correct
match, an arc will connect A and B. A clique in a graph is a complete subgraph in
the sense that all pairs of nodes are connected by an arc. Maximal cliques are the
largest internally consistent sets of matched features, and therefore they are the
most reliable matches between the data and the object model.
The maximal cliques approach is illustrated in Fig. 3.7. We have found three

features 1, 2, and 3, and they are matched against an object model with features
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A, B, and C. There are nine possible feature matches, six valid compatibilities, and
four maximal cliques, of which the largest one is the correct match.
In general, if a feature is occluded, the number of possible feature matches and

valid compatibilities will be reduced, as will also the size of the largest maximal
clique, but the maximal clique will still point to the most reliable interpretation. On
the other hand, if extraneous features caused by noise or clutter from other objects
is present, the number of possible feature matches will grow. The number of the
compatibilities will also grow if the extra features happen to appear at permissible
locations in comparison to other located features. The size of the maximal clique
will remain the same, but the graph will become more tedious to analyze.
As the number of nodes and arcs, and the maximum clique size in the match

graph grow, the execution time of the maximal clique problem grows exponentially,
i.e. the problem is NP-complete (Aho et al. 1974). There are some methods to
simplify the problem. One such method is to take advantage of possible symmetries
within the object, which may reduce the problem drastically. Another method
is called the local-feature-focus (LFF) (Bolles & Cain 1982), which has certain
similarities to the RANSAC (Fischler & Bolles 1981). In the LFF one searches for
special subsets of features of an object, hypothesizes an object, and veri�es the
hypothesis against the original image. Because of possible occlusions one may need
to search for several di�erent subsets.
The maximal clique approach performs essentially an exhaustive search of �tting

matches, and it is e�ectively a parallel algorithm. This is the source for both its
robustness and its slowness.

3.5.2. Object location using GHT

The generalized Hough transform (GHT) is essentially equivalent to the maximal
clique approach in that it also performs a complete search. However, the GHT
is not NP-complete. This is possible because the GHT solves the maximal clique
problem in real space; it does not solve the abstract maximal clique problem.
The GHT can be applied by listing all features and then by accumulating votes

in parameter space at each possible localization point, L, consistent with pairs of
features (2D problem) or with triplets of features (3D problem). These feature
pairs correspond to arcs in the match graph. When using point features, one only
needs an R-table indexed by the interfeature distances. Each feature pair gives rise
to two votes (or more, if symmetries exist) in the parameter space so that one of
the votes is at the correct location. Every peak in the parameter space corresponds
to a maximal clique in the match graph: there is a one-to-one relationship between
the two concepts. The correct locations all add up to give a large maximal clique
and a large parameter peak in the parameter space. This is illustrated in Fig. 3.7
(c).
This basic GHT method is able to locate the objects from their features but not

able to determine their orientation. However, it is possible to detect which pixels
or measurements belong to the object once the location is known, and then run
the HT again to determine the orientation. In the object location, the parameter
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space is congruent with the image or 3D space; in the orientation detection one can
use the Gaussian sphere, where a point on the surface of a unit sphere corresponds
to a direction vector. The sphere can be tesselated into triangles of the same area,
so that a speci�c triangle corresponds to two components (�; �, see Fig. 3.2 (a))
of the orientation vector. The third component ( ) can be realized with a 1D HT
vector within each triangular cell.
If there is more information available about the features than their mere location

(e.g., type of the feature, orientation), the maximal clique problem and its GHT
solution become easier. The extra information can help to prune some false com-
patibilities that could not have been detected from inter-feature distances alone.
Not only do the extra feature attributes reduce the computation, they also make
the interpretation less ambiguous.

3.6. Summary

In this chapter we have addressed the problem of object recognition in computer
vision. An ideal system and its characteristics have been described along with
the mathematical description of the object recognition problem. The rest of the
chapter concentrates on the Symbolic description and World model domains, and
especially on the understanding process between them.
The objects are represented by surface patches and graphs that describe the

relationships between di�erent patches of the same object. The object model can
also include a list of features, e.g., corners or edges, that could facilitate the object
recognition.
Segmentation is often used to preprocess the image. Segmentation reduces the

huge dimensionality of the input data into a set of homogeneous segments. These
segments can then be used as features for recognizing whole objects.
We have presented the Hough transform and the generalized Hough transform,

powerful methods for feature extraction and for object recognition. However, if the
HT is directly used for recognizing complex objects, the e�ort needed may become
overwhelming. The situation is alleviated by not recognizing objects directly, but
by using their prominent features.
The maximal cliques method is a graph theoretical and very robust approach for

object recognition using features. Unfortunately, the maximal cliques algorithms
are NP-complete. The GHT, however, can be used to solve the maximal cliques
problem for the subset of real space representation problems in a polynomial time.



4. LOCATING PAPER ROLLS FOR THE MANIPULATOR

In this chapter, we present the paper roll �nding system implemented for the
TULKO paper roll manipulator prototype. The system uses sparse range data
obtained with the VTT laser pointer range detector. Upright paper rolls of a
known radius are quickly and reliably located, and their position is described in
the manipulator's coordinate system
The global sensor of the TULKO project, the VTT range detector pointer, was

introduced earlier, in section 2.3.2.2.. The pointer produces sparse range data. We
de�ne the sparse range data to mean range measurements consisting of a set of less
than or not much more than 100 range measurements. Furthermore, in our case
the pointer is manually operated, and the data it produces is structureless, i.e. it
consists of independent (x; y; z) measurements of object surfaces in the environment
of the laser pointer.
In the TULKO, the main task of the global detector is to locate the paper rolls for

the manipulator to be able to grab them and pile them into, for example, a railway
container. It also has to locate some beacons in the partially known environment
so that the manipulator's planner knows where to transfer the paper rolls. This is
implemented simply by locating the walls with a few measurements and calculating
the locations of the corners.
The range sensor has a di�erent coordinate system from the manipulator's coor-

dinate system. Calibration enables locations expressed in one system to be trans-
formed into the other coordinate system.
We �rst describe our method for locating the paper rolls from the sparse range

data, and then we describe how the coordinate systems of the range detector and
the paper roll manipulator were calibrated.

4.1. Finding cylinders using the Hough transform

Our task was to locate paper rolls within the working space of the manipulator
using 3D range information. The following constraints in the problem make the
task easier to accomplish: the paper rolls are rotationally symmetrical, they are
assumed to be standing up (their orientation is parallel to the z-axis), and their
radius is known. Thus the problem is reduced to a 2D problem: determine the
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(x; y) location of an upright cylinder, or if the z-coordinates are ignored, determine
the center of a circle with a known radius.
In the laboratory phase of the TULKO project, we used the basic GHT: for each

measurement, a vote is cast for all the possible locations of a circle. As we know
that valid measurements can be only obtained from one side of the circle or cylinder
when using ranging methods, the possible locations in the parameter space, which
is congruent to the real space, make a half-circle shaped curve. Figure 4.1 illustrates
the voting scheme.
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Fig. 4.1 A peak in the Hough accumulator indicates the cylinder's location.

The laboratory phase experiments were performed with the White Scanner range
detector (see section 2.3.2.1.). Local tests were made to �nd out whether a mea-
surement could possibly lie on a vertical surface. Only such points were used to
vote for the cylinder location. Figure 4.2 demonstrates how a cylinder is found
from the 3D data.

(a) (b)

(a) original depth map
(b) points possibly on vertical sur-
face
(c) points close to cylinder center (c)

Fig. 4.2 Results from White Scanner data.

As we moved on to implement the prototype of the TULKO paper roll manipula-
tor, we noticed how our scheme could be improved: instead of drawing a half-circle
into the parameter space based on single measurements, we can constrain the voting
scheme further. In the improved method we vote for the location of a hypothesized
circle center based on a pair of measurements. Figure 4.3 illustrates how the center
of the circle is deduced from a pair of measurements.
Two measurements give rise to two positions for a circle of a known radius. Only

a position that is farther away from the sensor than either measurement can be
accepted. Hence, the dimension of a hyperplane to be updated in the parameter
space is lowered to from 1D to 0D, from a curve to a point. Our method can be
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a

b

Fig. 4.3 The crosses mark the possible locations of the circle center when
only the measurements marked with grey color are considered. The cross b
is discarded as it lies closer than the measurements.

easily extended to detecting circles of an unknown radius. Three points lying on a
circle uniquely determine all the circle parameters. So, instead of choosing pairs,
triplets of measurements are picked up, and the count of the accumulator cell lying
on the center of the circle is increased.

The number of possible pairs for n measurements is
�
n

2

�
� n2. However, many

of these pairs cannot contribute to a vote about the location of a circle simply
because their distance is larger than the diameter of the circle, i.e. they cannot
possibly both lie on the same circle of a known size. On the other hand, if very
close measurements are used, small errors in the measurements will cause large
errors in the estimate for the center of the circle. The following algorithm chooses
pairs of measurements from the VTT laser pointer data:

sort (pointlist, n)

FOR i = 1 TO n-1

BEGIN

paircounter = 1

j = i + 1

DO

d = distance (pointlist[i], pointlist[j])

IF (d > mindist * paircounter) AND (d < maxdist) THEN

BEGIN

vote (pointlist[i], pointlist[j])

paircounter = paircounter + 1

END

j = j + 1

UNTIL (paircounter > limit) OR (j > n)

END
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Fig. 4.4 Five points on the circle give ten votes.

First the measurements are sorted from left to right in respect to the �eld of view
of the range pointer. Then each point in the list of measurements is considered,
one at a time. A pair is sought in such a way that the points are neither too
close nor too far away. When such a point is found, the accumulator is updated
based on the point pair. For each point maximally limit pairs are considered. The
constant maxdist states the maximum allowed distance within the point pair, and
it is equal to the circle diameter. The mindist expresses the minimum allowed
distance between the pair of points, so distance between the �rst pair of points
is once the mindist, then twice the mindist for the second pair, and so on. We
have set its value to 1=4 of the circle radius. In our implementation, maximally
four points to the right of the current point can be paired with the current point;
therefore limit is set to four.

Our choice for the values for mindist and limit permits us to analyze the
minimumnumber of votes that a cylinder, at least half of which is visible, will cast
to its center's location in the parameter space. In this case, we assume that at least
�ve points lie evenly spread on the circle (see Fig. 4.4). Out of these �ve points, we
obtain ten pairs of points that will each cast a vote for the location of the circle's
center.
In practice, we analyze the measurement data using the previous algorithm. We

then search for the cell with the highest number of votes. If the vote count exceeds
ten, we deduce the presence of a paper roll. However, there may be more rolls
present, and they are searched for next. For each local peak in the accumulator,
if the vote count exceeds the threshold 10, and the peak's location is not within
the circle diameter of a previously found circle center, an instance of a paper roll
is deduced.

If the accumulator would be implemented directly as a two dimensional matrix
of 16 bit integers, it would require 80 Kbytes of memory for a manipulator work
space of 10 m � 10 m with a resolution of 5 cm. With a resolution of 1 cm the
memory requirements would rise to 2 Mbytes. In a single measuring session, only
a small fraction of the accumulator cells will receive any votes, and most of the
accumulator space is wasted. We have tackled this problem by implementing the
accumulator with a dynamic structure similar to the one used by Xu et al. (1990).

The dynamic accumulator (depicted in Fig 4.5) consists of a root, a list of x
values, and for each x value a list of y values (called a column). The lists are
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Fig. 4.5 The dynamic accumulator structure.

implemented as one-way linked lists. Each y element contains space for the cell
vote count. Each x element contains space for the maximumcount for that column.
In the beginning, only the root exists and the desired resolution is chosen. For each
vote the column and row of the virtual accumulator is deduced. The element is
sought by traversing �rst the x list and then the y list. In the case where the
column (x element) does not previously exist, it is created | the same is done
with the row (y element) | if it exists, its vote count is increased. At the same
time, if the new vote count is greater than the previous maximum count of that
row, the counter of the x element is also increased.

On the whole, the space requirements drop dramatically in comparison to the
direct implementation of the accumulator. The dynamic accumulator is also un-
limited in the sense that it is not necessary to set beforehand any maximum or
minimum values for the parameters. The peaks in the parameter space can be
found very e�ectively by �rst �nding the maximum count of the x elements and
then the maximum y element in that column. The cost of the dynamic implemen-
tation is the greater e�ort needed for casting a vote to an accumulator cell.

4.2. Calibration of coordinate systems

It is not enough to locate the paper rolls with reference to the laser pointer | the
location has to be conveyed to the manipulator in a form which the manipulator
understands. The coordinates expressed in the coordinate system of the laser
pointer can be transformed to the manipulator coordinate system if the orientation
and location of one coordinate system is known with reference to the other.

This transformation can be expressed as follows (Pulli 1991): we de�ne Mi j

as the transformation matrix which converts a point Pj in coordinate system j to
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a point Pi in coordinate system i; i.e.

Pi = Mi j � Pj: (4..1)

The points P are expressed in homogeneous (4D) coordinates, i.e. a fourth
component w is added to the x, y, and z components. The transformation matrix
Mi j can be derived from the position of the origin of the system j (dx; dy; dz) and
from the normalized direction vectors for principal axes of the system j (column
vectors ~xj, ~yj , and ~zj), all expressed in the system i (homogeneous) coordinates.
The axes are direction vectors (w = 0), whereas the origin is a point (w = 1).
Collecting these four column vectors in a 4 � 4 matrix yields the transformation
matrix

Mi j =

2
664
xxj xyj xzj dx
yxj yyj yzj dy
zxj zyj zzj dz
0 0 0 1

3
775 : (4..2)

Mi j can be interpreted so that the upper left 3� 3 matrix aligns the principal
axes of the two systems, after which the rightmost column aligns the origins.
Instead of determining the transformation matrix from the relationships of the

coordinate systems, we chose to perform a series of coordinate measurements, so
that for each point, the location in both of the coordinate systems is known.
Let Pj = [X Y Z 1]T be a point in the sensor coordinate system and Pi =

[X0 Y 0 Z0 1]T its coordinates in the manipulator coordinate system. Also, let the
matrices A and B be made of several points:

A =

2
664
X1 Xn

Y1 : : : Yn
Z1 Zn
1 1

3
775 ; B =

2
664
X01 X0n
Y 01 : : : Y 0n
Z01 Z0n
1 1

3
775 : (4..3)

Now the simultaneous transformation of several points can be expressed as

Mi j �A = B: (4..4)

If we can �nd the pseudoinverse A+ of matrix A,

Mi j = B �A+ (4..5)

is the best approximation for the transformation matrix in the least-squares sense
(Lawson & Hanson 1974).
The pseudoinverse A+ of an arbitrary real matrix A is de�ned to be the unique

real matrix with the following properties:

AA+A = A;

A+AA+ = A+;

AA+ = (AA+)T ; (4..6)

A+A = (A+A)T :

(4..7)
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Matrix A+ is reduced to the conventional matrix inverse A�1 when A is square
and non-singular.
The Ben-Israel-Greville algorithm (Ben-Israel & Greville 1974) is a stable, reli-

able, and deterministic way of computing the pseudoinverse matrix. The algorithm
iterates beginning with

X0 = �AT ; 0 < � <
2

trace(AAT )
; (4..8)

where trace is the sum of the diagonal elements of the matrix. The iteration

Xk+1 = Xk(2I �AXk) (4..9)

is performed until kXk+1�Xkk � 0. We have taken the same norm for the ending
condition as in (Krishnamurthy & Ziavras 1988), i.e. the absolute value of the
maximum element of the di�erence matrix should be less than 10�n. We chose the
n = 10, and we break the iteration after 100 iteration if the convergence has not
been achieved.
The measurement of the corresponding points has been implemented as follows:

a number of locations all over the working area of the robot are chosen. The robot
gripper is guided to those locations, and the position of the gripper at each location
is measured by manually aiming the laser pointer.
In order to determine the pseudoinverse matrix, we need at least four location

pairs. We have tested the system with up to ten point pairs, which seems to be a
totally adequate number. No four points should be on the same plane; having four
or more points on the same plane makes the matrix A non-singular and e�ectively
reduces the number of useful point pairs in the coordinate system transformation.
We have achieved accuracies in the neighborhood of 20 cm within a working area

of about 5 � 8 meters. The inaccuracies are caused mainly by the fact that the
point that should be measured by the pointer lies in the middle of the gripper's
wrist joint, and for some gripper positions it is possible to measure its location only
with an accuracy of 20-30 cm.

4.3. Summary

An e�cient and robust method for locating cylinders of constrained orientation
was created. The method is based on the generalized Hough transform concept,
and it is able to utilize the structureless range data produced by the VTT laser
pointer.
Several improvements over the basic GHT were introduced. The algorithm con-

strained the accumulator voting scheme by considering several measurements si-
multaneously. The pair candidates for each measurement were chosen intelligently
so that only measurement pairs likely to lie on the same cylinder were considered;
this speeds up the algorithm. The potentially large memory requirements were
reduced by using a dynamic structure for the voting accumulator. This was impor-
tant because the whole TULKO manipulator controlling system runs on the same
micro computer.
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The cylinder locations are found in the sensor's coordinate system, but it is the
manipulator that needs to know the cylinder positions. The coordinate system
transitions can be carried out using a transformation matrix. By obtaining a set
of points, whose coordinates are known in both of the coordinate systems, the
transformation matrix can be calculated. The pseudoinverse solution gives the
least squares solution for the transformation matrix.



5. SEGMENTATION OF RANGE IMAGES

5.1. Introduction

Range image segmentation di�ers from intensity image segmentation. In intensity
image segmentation the uniformity predicate P (�) (introduced in section 3.3.1.)
is usually based on direct intensity values or perhaps textures, i.e. certain local
intensity patterns. When range images are segmented based on (depth) value alone,
only step edges (see Fig. 5.1), where values suddenly change, can be found. Thus,
only objects not touching can be separated. To segment touching surfaces of two
objects or di�erent neighboring faces of a single object (roof edges, see Fig. 5.1),
one needs to take orientation, which really is a derivative of depth values, into
consideration. Hence, the reason why range images cannot in general be segmented
using the same algorithms as for intensity images is the uniformity predicate P (�),
which needs to consider both the values and their derivatives.
The literature abounds with di�erent approaches to the range image segmenta-

tion problem. The two main approaches are region and edge-based segmentation
methods. Region segmentation attempts to group pixels into surface regions based
on some homogeneity or similarity criterion of regions. Some of the methods detect
only planar surfaces (Shirai & Suwa 1971; Pong et al. 1981; Taylor et al. 1989),
while others include also quadric surfaces (Faugeras et al. 1983; Oshima & Shirai

Viewing
Direction

Convex
Roof Edge

Concave
Roof Edge

Step Edge

Fig. 5.1 Edge types of interest in range images.
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1983). There are also methods that characterize surfaces using tools from di�er-
ential geometry (Besl & Jain 1988). Edge detection tries to extract discontinuities
and form a closed boundary around components (Bhanu et al. 1986; Tomita &
Kanade 1984; Fan et al. 1987). Methods exist that combine region segmentation
with edge detection, gaining robustness from independent redundant information
(Yokoya & Levine 1989; Koivunen & Pietik�ainen 1992; Davignon 1992).

Oshima and Shirai (1983) �rst detect small planar regions, and then combine
them into planar surfaces. Small and slender regions with large variance are com-
bined into quadratic surfaces. Besl and Jain (1988) estimate view-invariant Gaus-
sian and mean curvatures of surfaces, and on the basis of their signs, classify
surfaces into eight classes. The centers of large regions with similar characteristics
are chosen as seed regions, where segmentation by region growing is initiated. Fan
et al. (1987) calculate the surface curvature and locate step and roof edges, as well
as ridges (smooth extrema), using the zero-crossings and extrema of the curvature
along several directions. Separate edge points are then combined into a closed
boundary. Yokoya and Levine (Yokoya & Levine 1989) use a hybrid of the region
and edge-based methods. They combine three methods: the di�erential geometry
approach of Besl, step edges derived from depth values, and roof edges from the
partial derivatives of the depth values.

Some methods are mainly based on the homogeneity of surface normals. Dane
and Bajcsy (1981) form Gaussian images for segmentation. Jiang and Bunke (1989)
operate directly on needle maps and form �rst surface patches, which are then
merged into planar regions, and some of those regions are in the end merged into
curved regions. The segmentation method of Taylor et al. (1989) is a split-and-
merge method, where the homogeneity criterion is based on the comparison of two
angles describing the normal orientation and the original range value. Merging
is based on a simple minimum and maximum value comparison of neighboring
regions. Sabata et al. (1990) use the homogeneity of normal vectors and their
three projections onto the xy-plane, the yz-plane, and the zx-plane. After the initial
clustering the method proceeds to re�ne the clustering iteratively using a pyramidal
algorithm. Four independent segmentations are made to form an oversegmented
image. These are then merged by higher-level routines (e.g., variable order bivariate
polynomial �tting).

Edge-based methods have to connect points of discontinuity into borders, and
these into closed region boundaries, which is not a trivial task. Region based
methods that are not limited to planar patches, even when aided by information
about discontinuities, produce a segmentation only after �tting a surface equation
to each resulting region. Clearly, even assuming that explicit surface description
is needed for each region of an image, that description is easier to obtain after the
segmentation.

In the rest of the chapter we present a simple but powerful range image segmen-
tation method based on fusing local approximations of normal vectors with depth
information (Pulli and Pietik�ainen 1993). The result of the segmentation is a set
of homogeneous surface regions that need not be planar|they can also be curved.
The algorithm converts a depth map to local normal vectors, using their x- and
y-components to detect orientation discontinuities, and the depth map to detect
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Fig. 5.2 Range image segmentation through decomposition of normal vectors.

depth discontinuities. These three components are treated as three color bands,
and the resulting image can be segmented using a region growing type color image
segmentation method. We use a method consisting of connected component anal-
ysis (Haralick & Shapiro 1992) followed by merging of a region adjacency graph
(Zucker 1976) which was developed for color images (Westman et al. 1990). Using
the results of the connected component analysis, we show that polynomial surface
equations describing the surface geometry can be easily found, and they can in
turn be used to further re�ne the earlier segmentation result. Figure 5.2 presents
a diagram of the segmentation method.

5.2. Surface normal vectors

5.2.1. Normal extraction

There are several methods for obtaining local surface normals from range data.
The basic approach would be to �t a continuous di�erentiable function to data, and
compute its derivatives analytically. If the data is clean enough, computationally
more e�cient methods su�ce, such as the local quadratic surface least squares
(LSQ) approach presented in (Besl 1988a). Another possibility is to use the slightly
more complex local LSQ planar �tting method of Taylor et al. (1989).

The problem in the LSQ methods is that the orientation discontinuities get
blurred. Further, if there is noise present in the measurement data, the data must
�rst be �ltered, which often blurs images even more. Gaussian �ltering (or approxi-
mately Gaussian such as binomial �ltering (Besl 1988a)) attenuates Gaussian noise
well but blurs sharp edges. Median �ltering removes shot noise without blurring
edges, but it also makes roof edges 
at.
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Fig. 5.3 The solid line depicts a least squares �t, while the broken line results
from a robust �t. In image (a) there is a step edge, in image (b) a roof edge.

More reliable alternatives to direct LSQ methods and pre-�ltering are the so-
called robust methods, such as M-estimators (Huber 1981), iterative reweighting
least squares (Besl et al. 1989), least median squares (LMedS) (Rousseeuw & Leroy
1987) and least trimmed squares (LTS) (Rousseeuw & Leroy 1987; Koivunen &
Pietik�ainen 1992). Because LSQ methods try to �t a function to all of the data,
the outliers that deviate a lot from the bulk of the data pull the �t towards them.
Robust methods, on the other hand, �t a function to the majority of the data
disregarding outliers. Formally this can be described with the breakdown point, the
smallest percent of outliers that causes incorrect estimates. LSQ methods have a
breakdown point at 0%, while Rousseeuw's LMedS and LTS have the breakdown
point close to 50%.

The outliers are not necessarily just bad measurements, they often originate from
another data population. In the context of plane �tting, this other data population
can be measurements from a di�erent object (step edge) or measurements from a
di�erent surface of the same object (roof edge). The e�ect of outliers in an LSQ
�t versus a robust �t can be examined in Fig. 5.3, where the robust �t conforms
to the majority of the data, while the LSQ �t is perturbed by measurements from
a neighboring surface.

We chose to use LTS as our principal method for obtaining normal vectors. It has
a high breakdown point, and compared to the LMedS, it has a better convergence
rate and a smoother objective function (Rousseeuw & van Zomeren 1990). In LTS
we try to �nd a plane such that the function

hX
i=1

(r2)i:n (5..1)

is minimized, where (r2)1:n � � � � � (r2)n:n are the ordered squares of residuals (a
residual is here the distance of the measurement from the plane along the z-axis)
and n is the number of measurements. Optimal robustness properties are achieved
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Fig. 5.4 A constant change in the orientation of a normal vector does not map
to a constant change in the y-component's value.

when

h = bn=2c + dp=2e; (5..2)

where p is the dimension of the function that is �tted (for a plane p = 3) (Rousseeuw
& Leroy 1987), and b�c and d�e denote rounding to the closest lower or higher
integer, respectively. We �nd the planes used for calculating the residuals (and
eventually the surface normals) by choosing, within a local neighborhood, sets of
three measurements, and by determining the planes spanned by those point sets.
The normal of the plane with the smallest trimmed sum of squared residuals is
chosen. The normal vectors are normalized, and if a normal vector points away
from the view point, it is 
ipped.

5.2.2. Normal decomposition

Once we have calculated the local normal vectors, we decompose them into orthog-
onal x-, y-, and z-components. Later, when we search for homogeneous regions
in the image, we do not directly compare the normals, rather these components.
Here we notice that the information on the z-component is redundant: since the
normal vector has been normalized into unit length, and it has been 
ipped so
that it points towards the viewer, the x- and y-components totally determine the
z-component. Therefore, it can be ignored in the later phases.
Taking the x- and y-components apart corresponds physically to having two

intensity images of the scene. Both of the images can be thought of as being
illuminated by an arti�cial directed light source, where the light shines from the
positive x-axis in one image and from the positive y-axis in the other. The intensity
re
ected from a Lambertian surface, when lit from the positive x-axis, is the scalar
product of the light source direction vector (~l = [1; 0; 0]) with the normal vector.
This is equal to the x-component of the normal vector. In our case, we consider
both of the images simultaneously, so the situation could also be thought of as
having one image with two light sources of di�erent color.
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Fig. 5.5 The linearized x- and y-normal components.

We have digressed from the pure physical illumination model on two accounts.
First, in our lighting scheme there is no self or other shadowing, i.e. the objects
neither cast shadows on their reverse-sides nor over other objects. The negative
normal components face away from the light source at the positive in�nity, so
the corresponding pixels should really be black if the illumination model were to
be employed. Instead, the same Lambertian re
ection rule that is applied to the
surfaces visible to the light is also applied to the surfaces looking away from the
light. Another way of looking at this situation is to retain self-occlusion and have
another two light sources from the negative x- and y-axes that cast \negative"
light.

The second digression lies in the fact that we linearize the change of the Lam-
bertian re
ectance within curved surfaces. As can be seen in Fig. 5.4, if a normal
vector is rotated by a constant angle �, the resulting change in the y-component's
value (or similarly in the x-component's value) is not constant (�1 6= �2). How-
ever, a linear mapping can be obtained by applying the arcus cosine-function to
each component. This results in a smooth transition of the normal components'
values for surfaces with a constant curvature. Figure 5.5 shows images of the lin-
earized x and y normal vector components of a scene of a pile of blocks. The
component values are scaled so that normal vectors facing south (with x) and east
(with y) will be lighter than vectors facing north or west.

5.3. Depth component

Knowledge about surface orientation is often enough in order to segment images.
Take, for example, a black-and-white photograph of an abstract plaster sculpture:
a person can usually easily segment that image well, although all the information
available is that di�erent surfaces have di�erent levels of brightness, depending on
the surface orientation. However, the segmentation process can be aided by the
inclusion of depth information. Especially di�erent objects can be easily segmented
apart, based on whether they seem to be in the foreground, somewhere in the
middle, or in the background. Figure 5.6 shows a scaled depth map.
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Fig. 5.6 The scaled depth values.

The depth information is directly available from the measured data. However,
in order to reduce the impact of random salt-and-pepper noise, i.e. occasional
gross errors in depth, we use the robust estimates of local surfaces calculated for
determining surface normals: we simply insert the x- and y-coordinates of each
measurement to the corresponding plane equation and calculate the z or depth
value.

With a view to scaling the depth information and saying what \near" and \far"
mean, we need an estimate of the range of depth values. Since the original depth
data may contain some grossly wrong measurements, and the depth estimates of the
previous paragraph may err at some step edges, we do not just take the absolute
maximum and minimum depths. Instead, we tesselate the original data into a
number of non-overlapping windows, calculate the median depth in each window,
and use the maximum and minimum of these medians to approximate the total
range of depth values.

5.4. Fusing normal and depth components into a color image

Wewish to �nd homogeneous regions, i.e. regions with no sudden changes of surface
orientation or continuity, based on the x- and y-components of normal vectors and
distances to surfaces. To avoid the need to have several comparison methods for
determining homogeneity, we fuse the di�erent data into a common representation.
That common representation is similar to the RGB-model used to represent colors
as combinations of three basic colors. Instead of representing red, green, and blue,
the \color bands" represent x and y normal components and a depth value.

In the computer representation, each \color band" has the range [0; 255], so the
data has to be scaled accordingly. The domain of the x- and y-components is a real
scalar [�1; 1], which becomes, after the normalization with the arc cos-function,
[0:0�; 180:0�]. This means that the components' resolution is 180:0�=256 = 0:7�.

The depth values are scaled using the robust estimates of maximum and mini-
mum distances; in this way we obtain the best contrast. If the scene is very 
at, i.e.
the maximum and minimum distances do not di�er much, we expand the distance
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Fig. 5.7 The Euclidean distance between two orientations remain the same
when rotated.

span used for scaling in order to prevent too swift a change of contrasts within very
inclined surfaces. On the other hand, if the depth values span a large distance, the
contrasts may become weak. For this reason the scaling uses also a maximum al-
lowed distance span, which can be obtained from the depth-of-�eld of the ranging
device.
The homogeneity criterion is now the di�erence, or rather, the similarity, of the

\color vector" of neighboring pixels. The Euclidean distance is the correct choice
for the metrics of the contrast calculation. Fig. 5.7 shows graphically that the
contrasts of normal vector components, when calculated by the Euclidean distance,
are rotationally invariant. The solid arrows denote the normalized and combined
x- and y-components of two neighboring surfaces. Their di�erence, or contrast, is
marked by the dotted line. The broken arrows denote the surface orientations after
the image has been rotated around the z-axis through the angle of �. The contrast
between the two surfaces remains the same. This would not be the case if some
other metrics, such as city-block or maximum distances, were to be used.
The process of fusing the information about the surface orientation and distance

into a single representation can be viewed as the front-end of the segmentation pro-
cess. For the back-end, a region growing type color image segmentation algorithm
should be preferred, because it tolerates smooth color variations caused by curved
surfaces. The hierarchical connected component analysis approach described in the
following section seems to be especially suitable for this purpose.

5.5. Segmentation by hierarchical connected component analysis

The segmentation procedure in (Westman et al. 1990) is a robust and iterative con-
nected component analysis method for color images, which works by �rst merging
pixels and then regions, depending on their average boundary contrast in the color
space. Each successive stage recomputes connected components by a transitive
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Fig. 5.8 (a) Marked dots are 4-connected to the center pixel x; (b) marked dots
are 8-connected to the center pixel x. (c) Pixel connected to two neighbors
with di�erent labels.

closure of connectivity among adjacent regions, uniquely identifying the result-
ing maximal connected components. Usually two stages su�ce to produce good
segmentation results.

Because the merging criterion is based on the average edge contrasts rather
than the maximum and minimum contrasts of the neighboring regions, the method
combines into one segment regions where the contrast changes smoothly. This is
desirable, as this causes also curved but locally smooth regions to be segmented
correctly into a single region. The method results in a reliable and robust segmen-
tation, which can also be e�ciently implemented in parallel hardware (Alapuranen
& Westman 1992). In the following subsections, we �rst describe the basic con-
nected component analysis and then the merging of the resulting region adjacency
graph (RAG).

5.5.1. Connected component analysis

The �rst stage computes the initial image segmentation based on the connectivity
of the adjacent pixels. The connectivity is determined by calculating the contrasts
or the di�erences in their colors.

Two adjacent pixels p and q are connected if their color di�erence is lower than a
pre-determined threshold value, �. They belong to the same connected component
C if there is a sequence of pixels (p0; p1; : : : ; pn) of C where p0 = p, pn = q, and pi
is a neighbor of pi�1 for i = 1; : : :n (Haralick & Shapiro 1992). Thus, the de�nition
of a connected component depends on the de�nition of the neighbor. When only
the abutting adjacent pixels are considered neighbors, the regions are called 4-

connected, but when pixels with common corners are also considered neighbors,
the regions are called 8-connected (see Fig. 5.8 (a) and (b)).

Let us consider an algorithm for a 4-connected connection analysis. The algo-
rithm makes two passes scanning the image from top to bottom and left to right.
In the �rst pass we examine whether the current pixel is connected to its left or
upper neighbor. In such a case, the current pixel receives the same label as the
neighbor to which it is connected. If it is connected to neither of them, a new label
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is created for it. A problem occurs when the current pixel is connected to both
neighbors, and the neighbors possess di�ering labels (see Fig. 5.8 (c)). Then the
smaller of the labels is chosen and an entry about the equivalence of the two labels
is made to an equivalence table.

After the �rst pass, the equivalence classes are found by taking the transitive clo-
sure of the set of equivalences recorded in the equivalence table. Each equivalence
class is assigned a unique label, usually the minimum label in the class. Finally, a
second pass through the image performs a translation, assigning to each pixel the
label of the equivalence class of its �rst pass label.

5.5.2. Region adjacency graph

After obtaining the basic connected components the procedure is iterated in a
second stage, where two components are merged if their average boundary contrast
falls below the threshold � (� > �). The information that is needed for the merging
process, i.e. region labels, average border contrasts, and lengths of the borders
between adjacent regions, is stored in a region adjacency graph (RAG).

A RAG can be described as a 4-tuple G = (V;E; L; �), where V is a set of
vertices; E 2 V � V is a set of edges; L is a set of labels; and � : V [E ! L is a
function that assigns a label to each arc and vertex of G (Zucker 1976). The ver-
tices correspond to regions, and the edges represent the spatial adjacency of these
regions, i.e. for two adjacent regions there is a connecting edge. Associated with
vertices is regional information, such as area of the region, etc. Edge labels corre-
spond to biregional information, in our case the average border contrast between
regions.

The process of region growing can now be modeled in terms of a merging operator
de�ned on these graphs. Let G be a RAG with vertices i; j 2 VG joined by an
edge (i; j) 2 EG. The merging operator M (i; j; G) constructs a new graph G0

similar to G except that the two vertices i and j are joined into a single vertex
i _ j so that all edges (i; k) and (j; k) 2 EG are mapped into (i _ j; k) 2 EG0 .
The vertex i _ j information is combined from the i's and j's local information,
i.e. �i_j = f(�i; �j; �(i;j)); similarly the a�ected edge labels will be updated, i.e.
�(i_j;k) = f(�i; �j; �k; �(i;j); �(i;k)�(j;k)). In our case the new vertex information
consists of the new label, and the new edge information is the new border length
and average border length contrast, which is obtained from old border contrasts
and border lengths.

The growth controlling predicate P (i; j; G) is de�ned to be true whenever �(i;j) <
�, where � is the threshold. Now the region growing by a merging algorithm, called
the local cluster analysis algorithm, can be written down:

SET G0 = G
FOR ALL (i; j) 2 EG0 DO

IF P (i; j; G0) THEN G0 =M (i; j; G0).

Figure 5.9 shows the result of connected component analysis and the subsequent
region merging for the scene already presented in Figs. 5.5 and 5.6.
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5.6. Surface �tting

To be able to describe the regions produced by the connected component analysis,
and also re�ne the segmentation result, we �t surfaces to the measurements within
each region. The surface representation we have chosen is a second order bivariate
polynomial surface of the form

f(x; y) = ax2 + by2 + cxy + dx+ ey + f = z: (5..3)

We have to use at least the second order if we want to be able to represent curved
surfaces. Equations of a higher order, or quadrics, where z is also of the second
order, could be better �tted to follow the actual surfaces more closely, but the
e�ort needed to �t them to the data grows with the order. In addition, in higher
order representations the surface easily begins to oscillate or undulate.

Earlier, when obtaining the surface normals, we used robust methods in order to
reduce the adverse e�ects of noisy measurements and of measurements belonging
to another surface or object. The same policy is followed in the surface �tting.
For each large enough region we randomly pick up sets of measurements, and �t
surfaces that are close to the measurements in a set. The minimum size of a region
is 6 for a second order bivariate surface to be �tted at all, but then locating outliers
becomes impossible. Rousseeuw and Leroy (1987) recommend using set sizes that
are much larger than 2p, where p is the dimensionality of the surface (6 in our
case)|we use 20 as the minimum size of an area to be �tted. Then, for each
surface candidate, all the measurements in a region are compared to the surface
equation and the residuals or the �tting errors are computed. Using the residuals
we calculate the LTS of Eq. (5..1) and the median of the squared residuals for each
surface candidate, and choose the one with the smallest LTS.

Having obtained a good estimate for the surface equation, we �t the surface
against all the surface points, except the outliers, using a least-squares �tting.
Here, we de�ne outliers as measurements having residuals at least 2.5 times the
scale estimate s0. The scale estimate s0 corresponds to an estimate for the standard
deviation of the data from the surface, and Rousseeuw and Leroy (1987) give a

Fig. 5.9 The segmentation result using connected component analysis.
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formula for obtaining it:

s0 = 1:4826

�
1 +

5

n� p

�q
med
i
r2i : (5..4)

The factor 1.4826 is used to make medi jzi j a consistent estimate of the standard
deviation when the zi are normally distributed. The second term, which approaches
1 when the sample size n grows, is a correction term for small samples.

For surface �tting, we chose Pratt's (1987) approach. He has presented a direct,
i.e. non-iterative and thus fast method for a least-squares algebraic surface �t.
First, we have to choose a basis for the surface, and in our case it is 1; x; y; xy; x2; y2,
and z. Each point pi to be �tted forms a row [1 xi yi xiyi x2i y

2
i zi] of the n � 7

matrix A:

A =

2
6664

1 x1 y1 x1y1 x21 y21 z1
1 x2 y2 x2y2 x22 y22 z2
...

...
...

1 xn yn xnyn x2n y2n zn

3
7775 : (5..5)

We then have to calculate the 7 � 7 matrix ATA and compute its Cholesky de-
composition without square roots UTD U , where D is a diagonal matrix and U
is an upper triangular matrix with diagonal entries equal to 1. The result will be
obtained from the U by deleting its last row and inserting the basis polynomials in
their place. The determinant of that matrix is the LSQ �tted surface equation.

The ATA matrix can be computed incrementally: one starts with an empty
matrix, and for each point pi one calculates A

T
i Ai, where Ai is the i

th point, and
add it to the ATA matrix of the earlier points. Another possibility is to multiply

Fig. 5.10 The re�ned segmentation result using the surface equations.
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and inspect its terms. Here we notice that the ATA matrix is symmetrical, and
some of its terms within the upper part appear more than once, so we only need to
calculate a few sums of polynomials, from which the ATA matrix can be formed.
Our LSQ-approach has a singularity in the coe�cient of the last basis term: the

last coe�cient always equals 1. In the functions of our basis, the z's coe�cient
should always be non-zero. For this reason, A's columns must be ordered so that
z is in the last column.
After the connected component analysis, there are typically some large regions

and between them many tiny regions. When we have �tted a surface to the large
regions, we can merge the pixels belonging to the small regions by comparing to
see if they �t the surface equation of a neighboring large region well. This pixel-
wise merging is continued until there are no more pixels left without an associated
surface description. Figure 5.10 presents a re�ned segmentation result which is
achieved with the help of the �tted surface equations.

5.7. Results

We have tested our segmentation method on several range images containing both
planar and curved objects. The images were obtained from the NRCC (National
Research Council of Canada) range image library (Rioux & Cournoyer 1989). The
images are of good quality, but we have tested the e�ect of adding salt-and-pepper
noise to the images.
Normal vectors are approximated both by using the LTS method (Rousseeuw

& Leroy 1987) and by using a local quadratic surface LSQ method (Besl 1988a).
The methods were implemented for 3 � 3, 5 � 5, and 7 � 7 neighborhoods. The
LSQ method is a very fast mask-based method. The full implementation of the
LTS method, on the other hand, would mean processing through all the possible
triangles within a neighborhood.
In order to accelerate the processing, only 5, 10, and 20 preselected triplets for

3�3, 5�5, and 7�7 neighborhoods, respectively, were used. The triplets were not
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Fig. 5.11 The segmentation of a few blocks using a 5 � 5 operator size (LTS
method). From left to right, top to bottom: original depth map, normal x-
and y-components, scaled robust depth map, segmentation before and after
surface �tting, and error image.

selected randomly for two reasons: to avoid selecting the same triplets again, and
to avoid degenerated triangles that do not span a triangle (i.e. the measurements
form a straight line). A third reason is speed: it is faster to consult a look-up table
for triangle vertices than to generate them randomly.

When using the robust LTS method for normal extraction, we obtain also a
robust estimate for the current range measurement from the plane equation by
using the x and y values of the current measurement. With the LSQ method we
already have traded robustness for speed and we have no plane equations to use
for estimating robust depths. With the LSQ normal extraction we therefore take
the measured depths as they are.

We obtain a robust estimate of the dynamic depth range by tesselating the depth
image of the image into 5 � 5 pixel non-overlapping windows, and calculating the
median depth in each window. The minimum and maximum values are used for
linear scaling of the depth values to [0; 255].

Some examples of the results, using LTS normal extraction, are presented in
Figs. 5.11 and 5.12. The images from left to right, top to bottom contain the origi-
nal range image (with added noise in Fig. 5.12), the linearized x- and y-components
of the normals, the depth image, the segmentation results before and after surface
�tting, and an error image. In the examples, the �rst image in the bottom row is
the result of the segmentation by connected component analysis. The error image
has been calculated from the surfaces that were �tted and from the original mea-
sured depths before adding any noise. Dark areas correspond to a good �t, and
white means a �tting error of one millimeter or more.

The segmentation result can be seen to be good, although there are many small
regions between large, solid segments. Based on this segmentation, we �t surface
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Fig. 5.12 The segmentation of a few blocks using a 5 � 5 operator size (LTS
method). 10 % of the data is contaminated by impulse noise. From left
to right, top to bottom: original depth map, normal x- and y-components,
scaled robust depth map, segmentation before and after surface �tting, and
error image.

equations to the measurements within large segments. These equations are then
used to further re�ne segmentation, the results of which can be seen in the second
bottom row image. Fig. 5.13 shows a wireframe image of the noisy data used in
Fig. 5.12 along with the resulting surfaces.

The normalization of the normal components was found to be very important;
if the x and y components were left unnormalized, curved surfaces were often
fragmented into several regions. The resolution of the depth components varies
depending on the dynamic range of the depth values in a scene, but we have put
limits on the accepted depth range. The upper limit is due to the depth of �eld
or useful operating range of the range �nding device, and the lower limit is set in
order to avoid too swift change of contrasts within very inclined surfaces. In such
a case, the connected component analysis would break that surface into separate
segments.

When using the robust LTS method for normal extraction, the segmentation
does not seem to be sensitive to the choice of thresholds. Too low thresholds
result in several tiny isolated regions, while setting thresholds too high leads to
undersegmentation. A safe way is to use smaller thresholds and more merging
iterations. There are also ways of choosing thresholds based on image complexity
using a cumulative di�erence histogram (Westman et al. 1990). In all the images
one basic segmentation and one merging phase were used. We used 4-connectivity,
and the thresholds used were 7 (�) and 15 (�). They correspond to 4:9� and 10:5�,
respectively, in the surface orientation di�erences. In the depth component, the
thresholds correspond to, for Fig. 5.11, � = 2:2 mm and � = 4:8 mm, and in
Fig. 5.12, 2.5 mm and 5.3 mm depth di�erences.
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Fig. 5.13 Two wireframe images: the left image shows the noise contaminated
data and the right image shows the �tted surfaces.

The LSQ method tends to blur images and smoothen the transition from one
surface to another, which makes it more di�cult for the connected component
analysis part to separate slightly inclined surfaces. This blurring can be observed
by thicker region borders (many small regions) between large homogeneous regions
in Fig. 5.14, though a smaller operator size (3�3) was employed. If larger operator
sizes are used, the blurring e�ect is also obvious to the eye in the normal component
images. Also in the LTS method the normals tend to sway when close to step
edges, but the barrier thus formed is narrow and may contain holes, so the depth
information is needed to keep the regions apart.

Figure 5.14 demonstrates that a good segmentation result can often be achieved
based only on surface orientation information. Still, the depth component should
be used, as it adds to the robustness of segmentation, especially in the case of
parallel surfaces at di�erent depths.

The LTS method tolerates impulse noise very well, but LSQ based methods do
not. On the other hand, LSQ methods tolerate small Gaussian noise better than
LTS. In order to get the best of both worlds, one would �rst have to apply LTS,
determine the outliers (very noisy measurements or measurements belonging to
another surface), remove them and use some LSQ method to determine the surface
orientation. Of course, this would have wide repercussions on the processing costs.

The di�erent parts of our method, at least up until the surface �tting, can
be realized quite straightforwardly in real time. The normal estimation for each
measurement neighborhood is inherently parallel, and requires only limited local
information. The hardware implementation of the LTS method is more involved
than that of the LSQ method, but possible. In the LTS implementation, the
most demanding part is associated with median calculation, for which hardware
implementations exist. Hardware implementation for the hierarchical connected
component analysis has been studied recently in our laboratory (Alapuranen &
Westman 1992).
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Fig. 5.14 The segmentation of a pile of planar and curved blocks using a
3 � 3 operator size and the LSQ method. Depth information is not used in
segmentation.

5.8. Summary

A simple but powerful method for range image segmentation has been presented.
Range images are segmented into homogeneous regions consisting of planar and
curved surfaces. The comparison of surface normal vectors is decomposed into
the comparison of normal vector x and y components, which are normalized with
respect to angular changes. The depth component is also included in the segmen-
tation process.
The results of the decomposition are treated as a three-band color image which

is segmented using a hierarchical connected component method. The decisions
about merging neighboring regions are based on the average contrast between those
regions; this results in a more robust segmentation than if the merging decision
was based on the regions' maximal contrast di�erences. The merging criterion
also connects curved surfaces instead of splitting them into planar patches. The
normalization of the normal vector components and using the Euclidean distance
as the metrics for contrast calculation produces a rotationally invariant and view-
point independent segmentation result.
The segmentation method presented consists of rather simple components, and

all the decisions made need only local information, be it the local depth values or
local contrast di�erences. The processing e�ort needed is therefore quite constant,
and does not depend on the image complexity.
The method yields a robust segmentation without the need for applying resource

consuming variable order surface �tting. However, once segmentation has been
obtained, surface �tting can be carried out quite easily. The method is suited to
scene analysis processes used by, e.g., intelligent robots: it is rather simple and can
thus be made to function fast, and it reliably separates di�erent objects.



6. DISCUSSION AND CONCLUSIONS

Image interpretation is a very di�cult process. More than 20 years of research have
not yet revealed a coherent methodology for vision and image understanding. This
is probably due to the nature of the process|also human vision seems to consist
of a large set of di�erent processes, competing and co-operating ones, each giving
clues that are somehow combined to form an opinion of what is seen. At least the
current state of the computer vision research seems to be very much like this: a set
of competing and sometimes co-operating methods, the results of which should be
drawn together | somehow.
For a robot that is to operate on objects within its environment, it is important

to be able to model its surroundings. This should happen even if the scene could
not be understood in the sense that the identity and pose of individual objects
could be determined. The reason for this is the avoidance of collisions when the
robot or other objects move. Therefore, also quite unre�ned geometrical knowledge
about the surroundings is very important for a moving robot. A range device
can acquire this kind of information directly, whereas most depth cues, such as
perspective distortion, are available from intensity images only after images are at
least partially understood.
In this thesis, we have concentrated on the problems associated with the prob-

lems of object recognition. It is very important to have a knowledge base of the
objects that the robot is likely to encounter. Without such a knowledge base, ob-
ject recognition is impossible, as the recognition process is basically a comparison
of input data against models of objects and reporting the matches. At the level
of individual objects we chose to represent objects with a set of surface patches.
The borders of the patches should follow the natural edges of the objects, i.e. lines
formed by discontinuities of the surface orientation. There are several methods
for representing the individual surface patches; we use second degree polynomial
equations mainly because they are simple to operate with computationally, and
they allow curved surface representation. The object surfaces denote the nodes in
the graph that represents the whole object, the arcs of the graph mark the rela-
tions between surface patches. In addition to this graph, features useful in object
matching, such as holes or prominent corners, can also be added to the object
model.
A method that seems to be very general and useful in many di�erent phases of the

object recognition process is the Hough transform (HT), especially the generalized
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Hough transform (GHT). It has been shown to be equivalent to template matching
(Stockman & Agrawala 1977) and also to spatial matched �lter (Sklansky 1978).
The GHT can locate features from the images by mapping the image data to a
parameter space. It is a robust method, that is able to perform well in the presence
of noise and occlusions. The GHT can also be used to e�ectively solve the maximal
clique problem in determining which subset of image features is most consistent
with the object template graph.

We have used the GHT for detecting paper rolls in an industrial application.
An autonomous paper roll manipulator detects standing paper rolls by using range
measurements. The measurements are obtained from a manually operated range
detector. The range detector could be automated as well: the operator does not
have to speci�cally aim the detector at the rolls, it is su�cient if the scene is panned
so that measurements will spread out evenly. Our method locates the paper rolls
from this unorganized depth data quickly and reliably. The algorithm is robust and
works in the presence of minor occlusions. Furthermore, the space requirements
of the algorithm have been reduced so that the whole manipulator control system
and the paper roll detection system can both operate on the same micro computer.
The paper roll locations are initially known only in respect to the range sensor,
but after the manipulator and the range sensor have been calibrated, the locations
can be transformed to the manipulator coordinate system.

In a more general system, where we could use a dense depth map, other methods
for more general object recognition should be devised. We already know that
objects can be recognized by matching surface patches, and their relations, to the
models in the vision system's knowledge base using the GHT method. How do we
obtain the patches from the depth map? The answer is depth map segmentation
by discontinuities in both the depth and surface orientation.

In this thesis, a simple but powerful method for range image segmentation was
presented. Range images are segmented into homogeneous regions consisting of pla-
nar and curved surfaces. The comparison of surface normal vectors is decomposed
into the comparison of normal vector x and y components, which are normalized
in respect to angular changes. Also the depth component is included in the seg-
mentation process.

The results of the decomposition are treated as a three-band color image which
is segmented using a hierarchical connected component method. The decisions
about merging neighboring regions are based on the average contrast between those
regions, which results in a more robust segmentation than if the merging decision
was based on the regions' maximal contrast di�erences. The merging criterion
also connects curved surfaces instead of splitting them into planar patches. The
normalization of the normal vector components and using the Euclidean distance
as the metrics for contrast calculation produces a rotationally invariant and view-
point independent segmentation result.

The method yields a robust segmentation without the need for applying resource
consuming variable order surface �tting. However, we have demonstrated that once
we have obtained the segmentation, surface �tting can be performed quite easily.
The method is suited for scene analysis processes used by, e.g., intelligent robots:
it is rather simple and can thus be made to function fast, and it reliably separates
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di�erent objects. All the decisions made need only local information, be it the
local depth values or local contrast di�erences. The processing e�ort needed is
quite constant and does not depend on the image complexity.

Since our segmentation method concentrates on �nding discontinuities in sur-
faces or in their orientation, it is much better suited to analyzing a scene of multiple
objects, than to modeling a single, smoothly varying curved object, such as a per-
son's face. In such a case, one should either use higher order surface descriptions, or
try to �nd segments with a constant curvature type (paraboloids, saddle surfaces,
etc.) (Besl & Jain 1988; Koivunen & Pietik�ainen 1992).

To implement a general vision system is a formidable task, and so far it has
not been done. However, a more limited version suitable for an autonomous robot
operating in industrial surroundings is possible, and indeed, has also been often
done. For a moving manipulator we propose the use of direct depth information
obtained from a laser range device. The depth map can be segmented using the
new range image segmentation method presented here, and the resulting surface
patches can be matched against the object models using the GHT.
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