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ABSTRACT

We present an image enhancement algorithm based on fusing the vi-
sual information present in two images of the same scene, captured
with different exposure times. The main idea is to exploit the dif-
ferences between the image degradations that affect the two images.
On one hand the short-exposed image is less affected by motion blur,
whereas the long-exposed image is less affected by noise. Different
fusion rules are designed for the luminance and chrominance com-
ponents to preserve the desirable properties from each input image.
We also present a method for estimating the brightness transfer func-
tion between the input images. As no global blur PSF is assumed,
our method can deal with blur from both camera and object motions.
We demonstrate the algorithm by a series of experiments and simu-
lations.

Index Terms— low light imaging, motion blur, noise filtering,
photometric calibration, brightness transfer function

1. INTRODUCTION

Image degradation due to motion blur is caused by a relative mo-
tion between the camera and the scene during the image integration
time. This degradation is particularly significant when long expo-
sure times are needed, like for instance in low-light conditions, or in
high-dynamic-range (HDR) imaging.

Several solutions to image blur degradation have been proposed.
If there is a blur point spread function (PSF) that is constant over
the image and that is known, the original image of the scene can
be restored, to some extent, by applying an image de-convolution
routine. In such a case, the key challenge in restoring the original
image is caused by the zeros of the PSF in the frequency domain,
resulting in lost spatial frequencies in the original image. However,
in most practical situations the motion blur PSF is not known, and
since it depends of the arbitrary camera motion during the expo-
sure time, it is also different for each image. One can try using
blind de-convolution approaches to restore the motion blurred im-
ages [2, 3]. Unfortunately, most such methods are computationally
prohibitive for consumer devices equipped with limited computa-
tional resources, such as camera phones. Measurements of the cam-
era motion during the exposure time could help in estimating the
motion blur PSF and eventually in restoring the original image of
the scene. Ezra and Nayar [4] used a secondary video camera to es-
timate the motion during the exposure time of the principal camera.
Others have estimated the PSF [5, 6, 7] from a second image with a
short exposure. Although noisy, the secondary image is much less
affected by motion blur and it can be used as a reference for estimat-
ing the motion blur PSF which degraded the principal image. How-
ever, even if the camera is completely stationary during the image
capture, objects such as people may move. This results in a spatially
variant blur PSF making the restoration problem much more difficult
if not even impossible with current techniques.

We propose a solution based on fusing visual information in
two differently exposed images: a short-exposed image affected by
noise, and a long-exposed image that may be affected by motion
blur. Unlike the earlier solutions [5, 6, 7], our result is obtained
without de-convolving the long-exposed image, which would be too
computationally expensive for some devices and infeasible for a spa-
tially varying PSF. Our method can deal both with camera and object
motion blur in the long-exposed image. Our image fusion method
gathers the desired visual properties from both the noisy and blurry
images into a final, higher-quality picture.

2. THE PROPOSED ALGORITHM

Our algorithm can be summarized in the following three steps: (i)
image registration, (ii) photometric calibration, and (iii) image fu-
sion. Image registration should be achieved with an algorithm that is
able to cope with the different degradations affecting the two images,
as well as with their different brightness. We used the algorithm pro-
posed in [9]. This paper describes the remaining two steps, namely
photometric calibration and image fusion.

The photometric calibration, presented in Sec. 2.1, is a pre-
processing step that compensates for different exposures, as well
as for other differences between the processing of the two images.
Most processing steps such as color matrix interpolation and gamma
correction introduce many non-linearities, but especially auto-white
balancing result often in different color shades and temperatures
when the amount of light coming to the sensor varies. In our work
we calibrate each color channel separately by estimating a so-called
brightness transfer function (BTF) for each of them. We chose to
do this operation in RGB color space because there is typically a
large, yet different correlation between the two differently exposed
images within each of the three color channels. In contrast, there
is no similar clear correlation of the chrominance channels of CIE
L*a*b*, or YUV color spaces.

The image fusion procedure should preserve the edge sharpness
from the short-exposed image and the reduced noise characteristics
of the long-exposed image, both reflected mainly in the luminance
data of the two images. Colors, however, are much better sampled
in the long-exposed image, and because of the way the human visual
system works, the blur is less perceived in the chrominance data than
in the luminance. We propose thereby different rules for fusing the
luminance and chrominance data as detailed in Sections 2.2 and 2.3.

2.1. Photometric calibration

For each color channel, we estimate a brightness transfer function
(BTF) by analyzing the joint histogram of pixel values in the two im-
ages, also called comparagram [12]. The advantages of doing so, in-
stead converting both images in the radiance domain (e.g., [10, 11])
are that we do not need precise knowledge of the individual image
exposures or prior knowledge about the imaging system response
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Fig. 1. Photometric calibration example.

function. In addition, the separate BTF estimation for each color
channel automatically compensates for color balance differences be-
tween the two images, which we observed that often occurs on im-
ages of the same scene with different exposure times.

We expect the BTF of a single color channel between the two im-
ages to be a smooth monotonically increasing function between the
limits of saturation and under-exposure. We estimate the BTF from
the comparagram that has been cleaned from saturated pixels by fit-
ting a low-order polynomial to the data. Fig. 1 shows an example of
photometric calibration achieved with the algorithm presented in this
section. On the top row, from left to right, the figure represents: the
short and long-exposed images, followed by the photometrically cal-
ibrated short-exposed image. On the bottom row are represented the
estimated BTF curves of the three color channels overlapped over
their corresponding comparagrams. The horizontal and vertical axes
in these plots correspond to short- and long-exposed image respec-
tively.

The following steps summarize our BTF estimation algorithm:
1. Estimate the comparagram between the two images as aK×K ar-
ray, where K denotes the number of intensity levels (typically 256).
On large images it is sufficient to sub-sample the images (e.g., every
4th row and column).
2. Calculate a smooth version of the comparagram by applying a
spatial low-pass filter onto the original K ×K joint histogram.
3. Truncate small entries (threshold = 1% of the maximum value)
as they have the most noise, and large entries (> 245) as they are
getting saturated, from the comparagram. 10.
4. Identify a set of points that are likely to belong to the BTF. We
interpret the comparagram as a joint probability density function
(pdf) between two random variables X and Y , i.e., p(x, y) denotes
the comparagram entry at x, y ∈ {0, . . . ,K − 1}, where Y repre-
sents the brightness in the long-exposed image, andX represents the
brightness in the short exposed image. Now, as Y has larger entropy,
for each value yi of Y the most probable value xi of X is the mini-
mum mean squared error estimate (MMSE) yi = E[yi|xi], which is
the weighted average xi =

∑K−1

x=0
x p(x, yi) /

∑K−1

x=0
p(x, yi).

5. Fit a smooth curve over the set of selected points. We first calcu-
late the principal component axes of the selected points {(xi, yi)},
and transform their coordinates into the system defined by their prin-
cipal axes. Next, a least-squares polynomial curve is fitted in the new
system to approximate the selected points. In our work we used a 5th
order polynomial for this approximation.
6. Returning into the original coordinate system, we need to ensure
the monotonicity of the estimated polynomial curve segment, and to
extrapolate it to cover the entire range (0, . . . ,K − 1) of Y that cor-

responds to the longer exposed image. Defining xk to correspond
to each value k ∈ {0, . . . ,K − 1} such that the point (xk, k) is
a point on the estimated curve segment, we analyze the set of val-
ues xk starting from the middle, i.e., xK/2, in both directions, to-
wards xK−1 and towards x0. Whenever we encounter a value that
breaks the monotonicity requirement, i.e., x` < x`−1, the value is
re-estimated by fitting a line onto a number of previously analyzed
points. In our experiments we used up to 10 points to perform this
linear fitting.
7. Finally, the BTF is defined by the modified set of points {(xk, k)},
which are converted into a look-up table for faster computation.

2.2. Luminance fusion

Once the two input images are geometrically and photometrically
aligned, the differences between their intensities are due to the
presence of noise in the short-exposed image, and blur in the long-
exposed image. The absolute difference between the two images
is typically larger close to the image edges than in smooth image
areas, as illustrated in Fig. 2. Therefore we aim for an estimator
that emphasizes more the short-exposed image where the absolute
difference between the two images is larger, and the long-exposed
image otherwise.

Formally, denoting the two images as gl and gs, we can write
the following model:

gl(x) = fb(x), and gs(x) = f(x) + n(x), (1)

where x = (x, y) denotes the coordinates of an image pixel, f de-
notes the original image, fb denotes a blurred version of the original
image, and n(x) denotes a zero-mean additive Gaussian noise term.

In order to achieve a better separation between signal and noise
we derive an image estimator in the wavelet domain. The edge lo-
cations (i.e., large values in the difference signal), are emphasized
at specific scales, whereas the noise variance is evenly distributed
across the scale space. Considering an orthonormal wavelet trans-
form of the two images, and denoting by Gi(k) the k-th wavelet
coefficient of an image, the model (1) becomes

Gl(k) = Fb(k), and Gs(k) = F (k) +N(k), (2)

where Fb(k) and F (k) denote the k-th wavelet coefficients of the
blurred and original images, and N is an additive white Gaussian
noise of variance σ2.

We can now fuse the images together using different weights
at different scales. Taking advantage of the de-correlation in the
wavelet domain, we propose an MMSE diagonal estimator of the
original image in the form of a linear combination between the
wavelet coefficients of the two images

F̂ (k) = Gs(k) +W (k)D(k), (3)

where F̂ (k) stands for the wavelet coefficients of the restored im-
age, D(k) = Gl(k)−Gs(k) denotes the difference signal between
the wavelet coefficients of the two observed images, and W (k) is
a weight value. We can estimate the best weight W (k) for each
wavelet coefficient by minimizing the mean squared error

E[||F̂ (k)−F (k)||22] = E[||Gs(k)−F (k) +W (k)D(k)||22], (4)

whose derivative with respect to W (k), equated with zero gives

W (k)E[|D(k)|2] = E[D(k)N(k)]. (5)



Fig. 2. Absolute difference (bottom plot) between the noisy and
blurred versions of a step function (upper plot).
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Fig. 3. Color weighting: weight function, short-exposed image,
weight image, and a long-exposed image.

Expanding the right hand side of this equation we have

E[D(k)N(k)] = E[(Fb(k)− F (k))N(k)] + E[|N(k)|2], (6)

where using the assumption of white Gaussian noise model for
N(k), we can approximate the first term with zero and the second
term with σ2. Finally, replacing this result in (Eq. 5) we obtain

W (k) = σ2/E[|D(k)|2]. (7)

The computation of the weight W (k) requires an estimate of the
noise variance in the short-exposed image, and an estimate of the
expectation E[|D(k)|2]. In order to estimate the noise variance in
the short-exposed image we extend the approach presented by Mal-
lat [8] (p. 459). Noting that in practice the noise is spatially variant
over the image, our extension consists of applying the wavelet-based
noise estimate in the pixel neighborhood (e.g., 7×7). Finally, we ap-
proximateE[|D(k)|2] with max(σ2(k), avg(|D(k)|2)), where avg
stands for local spatial average, and σ2(k) is the noise variance at the
spatial location that corresponds to the k-th wavelet coefficient.

The weight W (k) emphasizes the short-exposed image in areas
where the absolute difference signal is larger than the noise variance.
Consequently, in accordance to our initial observation, the proposed
estimator acts by emphasizing the short-exposed image close to the
image edges, and the long-exposed image in the smooth areas.

2.3. Chrominance fusion

As discussed before, we want to fuse colors in a color space that
de-correlates chrominance from luminance. We experimented with
both YUV and CIE L*a*b* color spaces without noticing much dif-
ference, our experiments shown in this paper use the CIE L*a*b*
color space.

We fuse the two color channels based on a weighted average
between their values in the two images, where the weight assigned to
the short-exposed image is a function of the fused luminance value:
ws(L) = (L/255)6, and the weight of the long-exposed image is
wl(L) = 1−ws(L), for L ∈ [0, 255]. This results in taking almost
all the color from the long-exposed image, except the areas where
this image is almost saturated. Figure 3 shows the weight for the
short-exposed image colors as a function of the estimated luminance,
the boosted short-exposed image, the per-pixel weight for the short-
exposed image, and the long-exposed image.
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Fig. 4. Performance for different degradation levels: restored image
(o), noisy image (x), and blurry image (+).

3. EXPERIMENTAL RESULTS

A first set of experiments has been conducted in order to verify the
performance of the estimate (Eq. 3), proposed for luminance fusion.
We simulated pairs of noisy and blur images by adding white Gaus-
sian noise and smoothing the original image with uniform blur ker-
nels. Figure 4 shows the performance achieved at different levels of
degradations in the two input images. We note that the restoration
result is significantly improved with respect to both input images.
We remark also a lower sensitivity to the amount of blur, which sug-
gests that after some level of blur, the longer exposed image has less
contribution to the result than the shorter exposed image. Next, we
carried out a series of comparisons with respect to different noise
filtering approaches applied onto the short-exposed image. The re-
sults of these comparisons are shown in Table 1, and they reveal
the effectiveness of the proposed algorithm compared to de-noising
the short-exposed image independent of the long-exposed image. In
this case we used a 10 × 10 uniform blur kernel for simulating the
blurry image. The de-noising approaches used for comparison are
Matlab’s spatial local Wiener filtering, hard thresholding of wavelet
coefficients [14], and hard thresholding of curvelet coefficients [15].

Noise standard deviation
10 15 20 25 30 35

Lena (blurred image: 26 dB)
Noisy 28.13 24.62 22.12 20.18 18.61 17.24
Proposed 35.19 33.42 32.18 31.15 31.00 30.58
Wiener 33.71 31.21 29.11 27.31 25.81 24.48
wavelet 29.92 28.38 27.24 26.44 25.73 25.17
curvelet 33.70 32.32 31.27 30.41 29.68 29.07

Barbara (blurred image: 22 dB)
Noisy 28.13 24.62 22.09 20.17 18.58 17.26
Proposed 33.29 30.98 29.40 28.25 27.35 27.00
Wiener 29.79 28.22 26.73 25.43 24.26 23.22
wavelet 26.12 24.51 23.51 22.80 22.33 21.89
curvelet 29.15 26.62 25.30 24.68 24.31 24.00

Table 1. PSNR (dB) results achieved with different approaches.

Two results of the proposed algorithm on real examples are
shown in Figs. 5 and 6. In both figures we may note that the result
image is highly improved in comparison with both inputs. Our algo-
rithm can also deal with spatially varying blur in the long-exposed
image, as seen in Fig. 6 (top-right image), where the blur caused
by moving people in the lower-left corner of the image is very
different from the blur process in the rest of the image. This is a
major advantage compared to earlier methods for blur/noisy image
combination (e.g., [7]). These methods cannot solve blur caused by
moving objects because they are based on the assumption that the
blur process is spatially invariant.



Fig. 5. Image enhancement result: short- and long-exposed im-
ages (upper row), the photometrically calibrated short-exposed im-
age (bottom left), and the result (bottom right).

4. CONCLUSIONS

We introduced an approach to image fusion that relies on preserv-
ing the desirable properties found in two differently exposed im-
ages. The luminance channels are fused using rules emphasizing
the sharpness of the short-exposed image while denoising using in-
formation from the long-exposed image, and the color channels are
fused by mostly taking the better color data of the long-exposed im-
age, except where its colors are about to saturate, in which case
we get the colors mostly from the photometrically calibrated col-
ors of the short-exposed image. In contrast to earlier approaches
of blurry/noisy image pair combination we neither apply an image
de-convolution procedure nor assume a spatially invariant uniform
blur model for the long-exposed image, allowing us to deal with
both camera and object motion blur simultaneously. The proposed
algorithm has been demonstrated through several experiments and
comparisons.
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