
1

2

Using M3GUsing M3G

Mark Callow

Chief Architect

3

AgendaAgenda

• Game Development Process

• Asset Creation

• Program Development

• MIDlet Structure

• A MIDlet Example

• Challenges in Mobile Game Development

• Publishing Your Content

4

M3G Game DemoM3G Game Demo

Copyright 2005, Digital Chocolate Inc.

5

Game Development ProcessGame Development Process

• Traditional Java Game

Let’s have a quick look at the various steps involved in creating a traditional Java
game. We have a game platform such as MIDP 2 in the mobile device. We need to
write our game code targeted for this platform and compile it to a MIDlet. We
package this into a JAR file together with the game assets such as images, sounds
and music. Finally we distribute the game package to the customers.

I’ll be discussing each of these steps during the presentation.

6

M3G Development ProcessM3G Development Process

• How M3G Fits

Now what does M3G bring to the party? First and foremost of course is 3D graphics.
This means your assets will include 3d models or a 3d scene. You also have the
opportunity to expand your game logic. Effective use of 3D influences all aspects of
a game’s design and must be considered from the beginning of the design process.

7

Assets
3D World

Expanded
game logic Compile Java MIDlet Package JAR file

Images Sounds Music

D
istribute

Game Platform

3D Graphics

Sound

2D Graphics

Network

Proprietary

Asset CreationAsset Creation

• Textures & Backgrounds

Images

Image EditorImage Editor with PNG with PNG
output. E. g:output. E. g:

••Macromedia FireworksMacromedia Fireworks

••Adobe PhotoshopAdobe Photoshop

For any real m3g application, some art assets have to be created before the
program can do anything useful. So let’s look first at creating the assets and then at
the programming.

Textures and background images can be provided as PNG format files or the image
data can be included directly in an M3G file. We recommend creating these assets
in PNG format. PNG compresses better than plain zlib.

Some M3G plug-ins for 3d modeling tools automatically convert texture maps to
PNG format. If so, you can use any texture map format supported by your modeling
tool.

Do not use GIF files. Some M3G implementations appear to support GIF files as an
accidental side-effect of the underlying MIDP implementation. Do not be fooled. The
spec. does not require GIF support and many implementations do not support the
format.

8

Asset CreationAsset Creation

• Audio Tools

Assets
3D World

Expanded
game logic Compile Java MIDlet Package JAR file

Images Sounds Music

D
istribute

Audio Production Tool; e. g.Audio Production Tool; e. g.

••Sony Sound ForgeSony Sound Forge®®

Commonly Used Formats:Commonly Used Formats:

••Wave, AU, MP3, SMAFWave, AU, MP3, SMAF

Sounds

Game Platform

3D Graphics

Sound

2D Graphics

Network

Proprietary

The J2ME (MIDP 2.0) specification does not seem to have a list of formats for which
support is required. The formats listed here are commonly used.

SMAF (Synthetic music Mobile Application Format) is a Yamaha invented format
directly supported by chips used in many handheld portable devices. The file
extension is .mmf. SMAF files can have contain both recorded audio and
synthesizer sequences.

9

• Music Tools

Asset CreationAsset Creation

Assets
3D World

Expanded
game logic Compile Java MIDlet Package JAR file

Images Sounds Music

D
istribute

MIDI Sequencer; e. g.MIDI Sequencer; e. g.

••Steinberg Steinberg CubaseCubase

Formats:Formats:

••SMAF, MIDI, SMAF, MIDI, cMIDIcMIDI, , MFiMFi

Music

Game Platform

3D Graphics

Sound

2D Graphics

Network

Proprietary

MFi (Melody Format for i-Mode) is supported on all i-Mode phones worldwide. As
with SMAF, MFi can hold both MIDI-like data (cMIDI) and custom samples.

cMIDI is compact MIDI which reduces the range of allowed MIDI data thereby
reducing the file size.

For all of your audio , you will mostly be dealing with hardware designed for ring
tones. It is important that you understand the capabilities of the chip in your target
phone.

10

Asset CreationAsset Creation

• 3D Models

Assets
3D World

Expanded
game logic Compile Java MIDlet Package JAR file

Images Sounds Music

D
istribute

Game Platform

3D Graphics

Sound

2D Graphics

Network

Proprietary

3D World

3d Modeler with M3G plug3d Modeler with M3G plug--in; e.g.in; e.g.

••LightwaveLightwave

••MayaMaya

••3d studio max3d studio max

••Softimage|XSISoftimage|XSI

A beta version of HI’s SoftImage|XSI plug-in is expected by the end of August.

A new release of HI’s 3d studio max plug-in is also expected by the end of August.

11

Demo: Export 3d Model to M3GDemo: Export 3d Model to M3G

12

Demo: M3G File CheckDemo: M3G File Check

13

Demo: On a Real PhoneDemo: On a Real Phone

14

Tips for Designers 1Tips for Designers 1

• TIP: Don’t use GIF files
– The specification does not require their support

• TIP: Create the best possible quality audio & music
– It’s much easier to reduce the quality later than increase it

• TIP: Polygon reduction tools & polygon counters
are your friends
– Use the minimum number of polygons that conveys your

vision satisfactorily

Since we are looking at creating the 3D model assets, this is a good time for some
tips for designers.
As mentioned earlier, when designing sound it is important to be aware of the
capabilities of the target phone. Since these vary widely, it is best to create the
original audio assets at the best possible quality.

15

Tips for Designers 2Tips for Designers 2

• TIP: Use light maps for lighting effects
– Usually faster than per-vertex lighting

– Use luminance textures, not RGB

– Multitexturing is your friend

• TIP: Try LINEAR interpolation for Quaternions
– Faster than SLERP

– But less smooth

16

Tips for Designers 3Tips for Designers 3

• TIP: Use background images
– Can be scaled, tiled and scrolled very flexibly

– Generally much faster than sky boxes or similar

• TIP: Use sprites as impostors & labels
– Generally faster than textured quads

– Unscaled mode is (much) faster than scaled

• LIMITATION: Sprites are not useful for particle
systems

Sprites may not be faster than textured quads when a GPU is
used for rendering.

In some implementations Loader.load(“/img.png”) will load the
image file via a MIDP image because native code is unable to
read from a java stream. This requires more memory during
loading.

17

AgendaAgenda

• Game Development Process

• Asset Creation

• Program Development

• MIDlet Structure

• A MIDlet Example

• Challenges in Mobile Game Development

• Publishing Your Content

18

Program DevelopmentProgram Development

For the edit, compile build cycle you can use a traditional pipeline with a command
line shell, programmer’s editor, make and the standard java compiler from JDK 1.4.x.

You can also use Sun’s Wireless Tool Kit, or similar, which saves you from having
to write a make file and let’s you build your MIDlet with the push of a button.

Alternatively you can use a full IDE such as Borland’s JBuilder or Sun’s Java Studio.

19

Program DevelopmentProgram Development

• Test & Debug

For testing and debugging you need to use an SDK supplied by either the carrier or
the handset maker. These SDKs contain an “emulator”, usually a PC application
that provides the functional environment of the real device. In at least one case,
Sony Ericsson, the SDK includes a way to link to a real handset allowing
applications to be tested and debugged on the real device. This is the ideal
arrangement.

Sun’s J2ME Wireless Toolkit (WTK 2.2) provides a generic emulator for
MIDP/CLDC. Two are at least two known problems with this emulator.
•It will load GIF files as textures. This is permitted but not required by the M3G spec.
As I noted earlier, you should avoid GIF files.
•It will not load M3G files that encode KeyframeSequence values as short. They
must be encoded as float.

It is important to note that “emulators” can be quite different from the real devices. In
many cases a different JVM and a different 3D renderer are used in the “emulator”
than in the real device. There is typically no relationship between performance in an
“emulator” and performance on the real device.

20

AgendaAgenda

• Game Development Process
• Asset Creation
• Program Development
• MIDlet Structure
• A MIDlet Example
• Challenges in Mobile Game Development
• Publishing Your Content

21

• Derived from MIDlet,
• Overrides three methods

• And that’s it.

The Simplest MIDletThe Simplest MIDlet

Canvas.paint() performs rendering
using Graphics3D
object.

MIDlet.StartApp()

[initialize]
[request redraw]

MIDlet.destroyApp()

[shut down]
Ｔｉｄｙ ｕｐ； exit MIDlet.

Create canvas; load
world.

We’ve looked at creating assets and tools to use writing and debugging the
programs. What does an actual program look like? Here we’ll look at the
structure of a MIDlet, beginning with the simplest possible example? It’s a
class derived from MIDlet that overrides just 3 methods.
startApp just creates a canvas for display and loads the world to display; it
requests a redraw which results in the overridden paint method being called
which renders a view to the screen. destroyApp does some tidying up. And
that’s it. Of course, that’s not very interesting. We don’t get any updates,
and the display is static, but it shows the absolute basics. By modifying the
world and repainting, you can easily create animated 3D scenes. Let’s have
a look at the structure of a MIDlet with an update loop.

22

A More Interesting MIDletA More Interesting MIDlet
MIDlet.StartApp()

Create canvas; load
world, start update
thread

draw

Canvas.paint()

performs rendering
using Graphics3D
object

initialize

user input

scene update

request
redraw

wait

shut down

Get any user input via
Canvas.commandListener

Game logic, animate,
align if necessary

Wait to ensure
consistent
frame rate

MIDlet.destroyApp()
Ｔｉｄｙ ｕｐ； exit MIDlet

Exit request

Update loop.

Runnable.run()

Read user input,
update scene

Flow-chart courtesy of Sean Ellis, Superscape

So, here’s the diagram updated to shown the main update loop. The MIDlet
implements the Runnable interface, which means providing one more
method, run() which contains the update loop.

The update loop reads user input, updates the scene, requests a redraw and
then waits until the next frame is scheduled. Waiting ensures a consistent
frame rate.

23

MIDlet PhasesMIDlet Phases

• Initialize

• Update

• Draw

• Shutdown

Let’s look at each of these phases in more detail.

24

InitializeInitialize

• Load assets: world, other 3D objects, sounds, etc.

• Find any objects that are frequently used

• Perform game logic initialization

• Initialize display

• Initialize timers to drive main update loop

Initialization gets us into a state where we can start the game. First, we load
all the assets we need, both for the 3D scene and any other UI elements,
music, sounds, etc. We should then look up any frequently used objects in
the World, to save time in the main game loop. For example, we can find the
player’s object, any non-player characters, etc. Of course, we need to
initialize anything that the actual game logic requires (monster strengths,
high-score tables, network connections to other players, or whatever). Then
we initialize the display, and the timers we use to drive the main update loop,
and kick off our first update.

25

UpdateUpdate

• Usually a thread driven by timer events

• Get user input

• Get current time

• Run game logic based on user input

• Game logic updates world objects if necessary

• Animate

• Request redraw

The update is usually attached to timer and other events. Obviously, we
need to respond to the user, so getting any input from them is the first thing
to do, and get the current time. We get the current time once to avoid
problems if the various steps here take significant time. The next thing to do
is to run the game logic based on the user input. While this will be different
for each game, the net effect of this is that it updates the state of objects in
the world as necessary. Opened a door? Rotate the door object. Picked up a
health bonus? Make it invisible, update your health, change size of health
bar. One tip here that works well is to divorce the logic from the
representation. Instead of rotating the door object to open it, just start the
“Open Door” animation. This creates fewer dependencies between the
assets and the logic, and allows the asset designers to use rotating, sliding,
dilating or exploding doors as they see fit. Call animate to ensure that any
animations actually run, then request a redraw.

26

Update TipsUpdate Tips

• TIP: Don’t create or release objects if possible

• TIP: Call system.gc() regularly to avoid long
pauses

• TIP: cache any value that may not change every
frame; compute only what is absolutely necessary

If at all possible, don’t create or release objects in the main loop. If you do have to
do this, call system.gc() regularly to ensure that you don’t get large garbage
collections that ruin the flow of the game. Cache any values that are not changing
every frame in order to avoid unnecessary recomputation.

27

DrawDraw

• Usually on overridden paint method

• Bind Graphics3D to screen

• Render 3D world or objects

• Release Graphics3D

– …whatever happens!

• Perform any other drawing (UI, score, etc)

• Request next timed update

After each update, we request a redraw. This usually results in a call to an
overridden paint method on a canvas. This is fairly simple – we just need to
bind the Graphics3D to the screen, render the world, and release it.
Remember that there is only one Graphics3D so we need to release it
whatever happens! (The best way to do this is in a finally clause.) Then we
can do any 2D UI drawing (score, health, etc) and request another update in
an appropriate amount of time.

28

Draw TipsDraw Tips

• TIP: Don’t do 2D drawing while Graphics3D is
bound

One restriction is that you can’t do 2D drawing while the Graphics3D is bound to the
screen, so you have to do it either before or after (or both).

29

ShutdownShutdown

• Tidy up all unused objects

• Ensure once again that Graphics3D is released

• Exit cleanly

• Graphics3D should also be released during
pauseApp

On shutdown, we just need to tidy up. It’s usually friendly to ensure that the
Graphics3D really has been released before exiting. This should also
happen if a call is made to pauseApp, since the new application that is taking
over the screen may also need to use 3D.

30

MIDlet ReviewMIDlet Review

draw

Graphics3D object
performs rendering

initialize

user input

scene update

request
redraw

wait

shut down

Get any user input,
network play, etc.

Game logic,
animate, align if
necessary

Wait to ensure
consistent
frame rate

Release assets,
tidy up

Exit request

Main loop.

Don’t create/destroy
objects if possible

Throttle to consistent
frame rate

Keep paint() as simple
as possible

Be careful with threads

Diagram courtesy of Sean Ellis, Superscape

Set up display, load
assets, find commonly
used objects, initiate
update thread.

So, here’s a diagram recapping what we have learned. Note that if nothing is
happening, we don’t need to continually redraw the screen – this will reduce
processor load and extend battery life. Similarly, simple scenes on powerful
hardware may run very fast; by throttling the framerate to something
reasonable, we extend battery life and are more friendly to background
processes.

Let’s look at a real example

31

AgendaAgenda

• Game Development Process
• Asset Creation
• Program Development
• MIDlet Structure
• A MIDlet Example
• Challenges in Mobile Game Development
• Publishing Your Content

32

Demo: UsingM3G MIDletDemo: UsingM3G MIDlet

Let’s have a look at the MIDlet in action before diving into the code.

33

UsingM3G MIDletUsingM3G MIDlet

• Display Mesh, MorphingMesh and SkinnedMesh

• Meshes loaded from .m3g files

• View can be changed with arrow keys

• Animation of individual meshes can be stopped and
started.

• Animation can be stopped and started with a button
push.

• Displays frames per second.

34

UsingM3G FrameworkUsingM3G Framework

import java.io.IOException;
import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;

public class Cans extends MIDlet implements CommandListener {
Command cmdExit = new Command("Exit", Command.SCREEN, 1);
Command cmdPlayPause = new Command("Ctrl",Command.SCREEN,1);
private TargetCanvas tcanvas = null;
Thread renderingT = null;
private String Filename = "/coffee.m3g";

public void startApp() {
if (tcanvas == null)
init();

renderingT = new Thread(tcanvas);
renderingT.start();
tcanvas.startPlay();

}

We’ve called our MIDlet class Cans. Here we see the override of startApp(). It
initializes everything then kicks off the rendering thread. We can also see the
declaration & initialization of a couple of command objects to handle our commads.

Thread.start() calls the thread’s run() method. We’ll look at that a bit later.

35

UsingM3G FrameworkUsingM3G Framework

public void pauseApp() {
if (tcanvas.isPlaying)
tcanvas.pausePlay();

renderingT.yield();
renderingT = null;

}

public void destroyApp(boolean u) {
pauseApp()
tcanvas = null;

}

Here are the overrides of pauseApp() & destroyApp(). They are very similar.

36

UsingM3G FrameworkUsingM3G Framework

synchronized public void commandAction(Command c,
Displayable d)

{
if (c==cmdExit) {
notifyDestroyed();
return;

} else if (c==cmdPlayPause) {
if (tcanvas.isPlaying)
tcanvas.pausePlay();

else
tcanvas.startPlay();

}
}

Here we see how the command notifications are handled. These are the commands
we initialized at the beginning of the class definition. We’ll see how to set up
command processing in the next slide.

37

UsingM3G InitializationUsingM3G Initialization

// From class Cans
public void init() {
Display disp = Display.getDisplay(this);
tcanvas = new TargetCanvas(Filename);
if (tcanvas.hasException)
notifyDestroyed();

tcanvas.setCommandListener(this);
tcanvas.addCommand(cmdExit);
tcanvas.addCommand(cmdPlayPause);
disp.setCurrent(tcanvas);

}

This initializes the canvas, and sets up a command listener to which it adds the exit
& play-pause commands.

38

UsingM3G InitializationUsingM3G Initialization

class TargetCanvas extends Canvas implements Runnable
… // instance variable declarations elided
public TargetCanvas(String m3gFile)
{
try
{
fileName = m3gFile;
g3d = Graphics3D.getInstance();
Load();
w = getWidth();
h = getHeight();
cameraManip = new CameraManip(gWorld);

}
catch(IOException e)
{
System.out.println("loading fails:"+fileName);
hasException = true;

}
}

Now we begin to see the real work of initialization beginning to take place. The
canvas constructor loads the 3d data and creates a CameraManip object. This
handles rotation of the scene-graph camera.

Note that TargetCanvas extends Canvas not GameCanvas because GameCanvas
swallows key strokes from the number keys and we use the number keys to as
controls. It also implements the Runnable interface so we can run it from a Thread.

39

Loading the 3D dataLoading the 3D data

// class TargetCanvas
void Load() throws IOException {
loadObjs = Loader.load(fileName);
if (loadObjs==null)
throw new RuntimeException("M3g file error");

/* find the world node */
for (int i=0; i<loadObjs.length; ++i) {
if (loadObjs[i] instanceof World) {
gWorld = (World)loadObjs[i];
hasWorld = true;
break;
}

}

if (!hasWorld)
throw new RuntimeException(

"World node not found; incorrect m3g file?“);

This method loads the m3g file using the M3G Loader and verifies that it contains a
World node.

40

Loading the 3D Data (Cont.)Loading the 3D Data (Cont.)

meshController =
(AnimationController)gWorld.find(meshControllerId);

morphingMeshController =
(AnimationController)gWorld.find(morphingMeshControll

erId);
skinnedMeshController =

(AnimationController)gWorld.find(skinnedMeshControlle
rId);

/* Clean up after the loading process. */
System.gc();

}

After loading the file successfully, the Load method finds some scene-graph objects
we’ll need while the MIDlet is running.

The two methods we’ve just examined are from the TargetCanvas class. Now let’s
look at the rest of it.

41

TargetCanvas run methodTargetCanvas run method

public void run()
{
for(;;) {
long start, elapsed;
start = System.currentTimeMillis();
handleInput();
repaint(); // Request paint()
elapsed = System.currentTimeMillis() - start;
// if (want to measure true frame rate)
// Unfriendly to system!!
//renderTime += (int)elapsed;
// else {
renderTime += (elapsed < 50) ? 50 : (int)elapsed;
try {
if (elapsed < 50) Thread.sleep(50-elapsed);

} catch (InterruptedException e) { }
//}

}
}

This is the Thread’s run method, the heartbeat of the MIDlet.

Basically we have an infinite loop. First it checks the input at which point the scene
may be modified. Then it initiates rendering by requesting a repaint. After this the
thread will sleep, provided rendering the frame did not take too long.

An alternative option is to just increment the render time and return to the top of the
loop. This is very unfriendly to the system but is necessary in order to measure the
true frame rate.

42

TargetCanvas paint methodTargetCanvas paint method

synchronized protected void paint(Graphics g)
{
if(loadObjs == null) return;
g.setClip(0, 0, w, h);
try
{
g3d.bindTarget(g);
g3d.setViewport(0, 0, w, h);
render();

} finally { g3d.releaseTarget(); }

g.setColor(0xffffffff);
g.drawString("fps: " + fps, 2, 2, g.TOP|g.LEFT);

}

Here’s the paint method. We bind the graphics to the rendering target, set up the
viewport and then render the 3D scene. Note that we make sure to always call
releaseTarget(). After that we use the 2D api to draw the frame rate.

43

TargetCanvas render
method
TargetCanvas render
method

void render()
{

if (isPlaying) {
frameCount++;
fps = (int)((1000*frameCount) / renderTime) ;
/* update the scene */
gWorld.animate((int)renderTime);

}
g3d.render(gWorld);

}

Here’s the render method. It’s very simple. The world is animated to update
everything to the current renderTime, then it is rendered.

44

Receiving Key PressesReceiving Key Presses

protected void keyPressed(int keyCode) {

int action;

switch (keyCode) {

case KEY_NUM1: animState ^= MESH_ANIM; break;

case KEY_NUM2: animState ^= SKINM_ANIM; break;

case KEY_NUM3: animState ^= MORPHM_ANIM; break;

default: {

action = getGameAction(keyCode);

switch (action) {

case DOWN: keyState |= DOWN_PRESSED; break;

case LEFT: keyState |= LEFT_PRESSED; break;

case RIGHT: keyState |= RIGHT_PRESSED; break;

case UP: keyState |= UP_PRESSED; break;

default: break;

} } } }

Here’s the override of keyPressed. First the keyCode is checked and flags are set in
the instance variable animState to indicate which parts of the scene should be
animated. This handles presses of the 1, 2 & 3 keys.

Then the method checks for possible game actions and sets flags in the instance
variable keyState when actions of interest are pressed.

Now let’s check what we do with keyState & animState.

45

HandleInput methodHandleInput method

protected void handleInput()
{

int start = 0, end;
int keyState = getKeyStates();
int deltaX = 0, deltaY = 0;

/* Stop & start animation of individual objects by setting
* active interval on AnimationControllers.
*/
if (meshController != null) {

end = (animState & MESH_ANIM) != 0 ? 0 : 1;
meshController.setActiveInterval(start, end);

}
if (skinnedMeshController != null) {

end = (animState & SKINM_ANIM) != 0 ? 0 : 1;
skinnedMeshController.setActiveInterval(start, end);

}
if (morphingMeshController != null) {

end = (animState & MORPHM_ANIM) != 0 ? 0 : 1;
morphingMeshController.setActiveInterval(start, end);

}

getKeyStates works like the similarly named function on a GameCanvas. It returns
the value of instance variable keyState clears it.

The animState flags are checked and the corresponding AnimationController’s
activeInterval is set to enable or disable the animation of the controlled objects.
When start == end, the controller is always active.

46

HandleInput method (Cont.)HandleInput method (Cont.)

if ((keyState & DOWN_PRESSED) != 0) {
deltaY -= DELTA;

}
if ((keyState & LEFT_PRESSED) != 0) {

deltaX += DELTA;
}
if ((keyState & RIGHT_PRESSED) != 0) {

deltaX -= DELTA;
}
if ((keyState & UP_PRESSED) != 0) {

deltaY += DELTA;
}
if (deltaX != 0 || deltaY != 0)

cameraManip.rotate(deltaY, deltaX, 0);
}

Then the keyState is checked and rotation delta values are incremented or
decremented as appropriate. Up & down rotate around the x axis. Left & right rotate
around the Y axis. The delta values are passed to the CameraManip’s rotate
method which carries out the camera rotation.

Study of CameraManip is left as a class exercise.

47

AgendaAgenda

• Game Development Process
• Asset Creation
• Program Development
• MIDlet Structure
• A MIDlet Example
• Challenges in Mobile Game Development
• Publishing Your Content

Now we’ll move on to look at the special challenges of developing games for mobile
phone handsets.

48

Why Mobile Game
Development is Difficult
Why Mobile Game
Development is Difficult

• Application size severely limited
– Download size limits

– Small Heap memory

• Small screen

• Poor input devices

• Poor quality sound

• Slow system bus and memory system

Download size limits are increasing thanks to 3G but 256k is still a common size
limit.

Poor Input Devices: Input devices are typically limited to the 12 key-pad plus a
navigation array and a few extra buttons. Yes game console style pads are coming
but they are still the rare exception.

49

Why Mobile Game
Development is Difficult
Why Mobile Game
Development is Difficult

• No floating point hardware

• No integer divide hardware

• Many tasks other than application itself
– Incoming calls or mail

– Other applications

• Short development period

• Tight budget, typically $100k – 250k

50

MemoryMemory

• Problems
①Small application/download size

②Small heap memory size

• Solutions
– Compress data ①

– Use single large file ①

– Use separately downloadable levels ①

– Limit contents ②

– Get makers to increase memory ②

51

PerformancePerformance

• Problems
① Slow system bus & memory

② No integer divide hardware

• Solutions
– Use smaller textures ①

– Use mipmapping ①

– Use byte or short coordinates and key values ①
– Use shifts ②

– Let the compiler do it ②

52

User-Friendly OperationUser-Friendly Operation

• Problems
– Button layouts differ

– Diagonal input may be impossible

– Multiple simultaneous button presses not recognized

• Solutions
– Plan carefully

– Different difficulty levels

– Same features on multiple buttons

– Key customize feature

What is most important in the game is the operation, which functions as a communication line
between the game and the player. Even within the same group of the mobile terminals, the sense of
operation differs by how the buttons are placed, which as a result changes the difficulty of the game
itself. These issues must be considered very carefully from the planning stage.

When porting onto other types of terminals, game operation is one of the items that generates
problems in the development. For example, diagonal input may have worked on the original mobile
terminal whereas it may be unavailable on the mobile terminal to which the game is being ported.
Also there are some cases where terminals fails to recognize more than one button being pressed at
the same time.

We cannot provide you with overall solution; however, I would like to introduce you some examples
on how we coped with these issues in our past contents.
1) Types of mobile terminals can be discerned to diversify the difficulty of the contents.
2) Let the player play in a lower difficulty level when diagonal input is ineffective by keeping a
diagonal input flag in the program. When the diagonal input becomes effective, then the game can
switch to its normal level of the difficulty.
3) Allocate the same features, such as “jump” and “attack” to multiple buttons or embed a key
customize feature.

With these countermeasures, the problems can be alleviated to a certain extent. Depending on the
types of the game, I surmise there may be more efficient way to solve the problem. So this is where
planners and programmers can leverage their ideas.

53

Many Other TasksMany Other Tasks

• Problem
– Incoming calls or mail

– Other applications

• Solution
– Create library for each handset terminal

54

AgendaAgenda

• Game Development Process
• Asset Creation
• Program Development
• MIDlet Structure
• A MIDlet Example
• Challenges in Mobile Game Development
• Publishing Your Content

55

Publishing Your ContentPublishing Your Content

• Can try setting up own site but
– it will be difficult for customers to find you

– impossible to get paid

– may be impossible to install MIDlets from own site

• Must use a carrier approved publisher
• Publishers often run own download sites but

always with link from carrier’s game menu.
• As with books, publishers help with distribution

and marketing

This section describes the situation for the mobile phone market.

Don’t even think about non-over-the-air distribution for mobile. It’s not the way
mobile works. Some carriers have MIDlet downloads from PC’s disabled in their
handsets.

Some carriers disable MIDlet downloads from anywhere but their own web sites.
The villains may mostly be Japanese carriers. Perhaps the anti-monopoly
authorities are more effective in other parts of the world. Vodafone KK does both of
these things and, reportedly SIM-locks their handsets.

The bottom line is you must use a carrier approved publisher.

56

Publishing Your ContentPublishing Your Content

• Typical end-user cost is $2 - $5.
• Sometimes a subscription model is used.
• Carrier provides billing services

– Carriers in Japan take around 6%
– Carriers in Europe have been known to demand as much as

40%! They drive away content providers.

• In some cases, only carrier approved games can be
downloaded to phones
– Enforced by handsets that only download applets OTA
– Developers must have their handsets modified by the carrier

Common subscription model is a flat monthly fee for access to the publisher’s entire
game library.
Game add-ons are often used. For example, connection to game site to record high
scores, chat with fellow players etc. Some sites even sell game upgrades (either for
points won in the game or for cash) that will help you do better. A motorcycle racing
game for example provides upgrades that make the bikes go faster.

57

PublishersPublishers

• Find a publisher and build a good relationship with
them

• Japan: Square Enix, Bandai Networks, Sega,
Namco, Infocom, etc.

• America: Bandai America, Digital Chocolate,
Jamdat, MForma, Glu Mobile (formerly Sorrent)

• Europe: Digital Chocolate, Superscape, Glu Mobile
(formerly Macrospace), Upstart Games

58

Other 3D Java Mobile APIsOther 3D Java Mobile APIs

Mascot Capsule Micro3D Family APIs

• Motorola iDEN, Sony Ericsson, Sprint, etc.)

– com.mascotcapsule.micro3d.v3 (V3)

• Vodafone KK JSCL

– com.j_phone.amuse.j3d (V2), com.jblend.graphics.j3d (V3)

• Vodafone Global

– com.vodafone.amuse.j3d (V2)

• NTT Docomo (DoJa)

– com.nttdocomo.opt.ui.j3d (DoJa 2, DoJa 3) (V2, V3)

– com.nttdocomo.ui.graphics3D (DoJa 4) (V4)

Mascot Capsule Micro3D Version Number

For sake of completeness, I’ll mention some other 3D Java APIs you will find on
various mobile devices. These are all based on HI’s Mascot Capsule Micro3D
Engine. Mascot Capsule Micro3D Version 3 pre-dates M3G by 1 year. Version 4
supports M3G. The APIs above are found on many handsets.

59

Mascot Capsule V3 Game
Demo
Mascot Capsule V3 Game
Demo

Copyright 2005, by Interactive Brains, Co., Ltd.

Just because it’s a really cool game…

60

SummarySummary

• Use standard tools to create assets

• Basic M3G MIDlet is relatively easy

• Programming 3D Games for mobile is hard

• Need good relations with carriers and publishers to
get your content distributed

61

ExportersExporters

3ds max
– Simple built-in exporter since 7.0

– www.digi-element.com/Export184/

– www.mascotcapsule.com/M3G/

– www.m3gexporter.com

Maya
– www.mascotcapsule.com/M3G/

– www.m3gexport.com

Softimage|XSI
– www.mascotcapsule.com/M3G/

Cinema 4D
– www.c4d2m3g.com

Lightwave
– www.mascotcapsule.com/M3G/

Blender
– www.bight.ca

62

SDKsSDKs

• Motorola iDEN J2ME SDK
– idenphones.motorola.com/iden/developer/developer_tools.jsp

• Nokia Series 40, Series 60 & J2ME
– www.forum.nokia.com/java

• Sony Ericsson
– developer.sonyericsson.com/java

• Sprint Wireless Toolkit for Java
– developer.sprintpcs.com

• Sun Wireless Toolkit
– java.sun.com/products/j2mewtoolkit/download-2_2.html

63

SDKsSDKs

• VFX SDK (Vodafone Global)
– http://via.vodafone.com/vodafone/via/Home.do

• VFX & WTKforJSCL (Vodafone KK)
– http://developers.vodafone.jp/dp/tool_dl/java/emu.php

Vodafone global requires you become a partner of Via Vodafone. You have to
submit a questionnaire before they will even talk to you. Very unfriendly.

Vodafone KK is a little more friendly. You just need to complete a simple registration
before you can download the SDK. But the web page is in Japanese. There are 2
SDKs. VFX is Vodafone Global’s SDK. WTKforJSCL has JSCL instead of M3G.
Both are based on Sun’s Wireless Toolkit (WTK).

64

IDE’s for Java MobileIDE’s for Java Mobile

• Eclipse Open Source IDE
– www.eclipse.org

• JBuilder 2005 Developer
– www.borland.com/jbuilder/developer/index.html

• Sun Java Studio Mobility
– www.sun.com/software/products/jsmobility

• Comparison of IDE’s for J2ME
– www.microjava.com/articles/J2ME_IDE_Comparison.pdf

Although Eclipse is largely written in Java and has many java development tools, it
is not clear at the time of writing that Eclipse has a specific set of tools for
supporting J2ME.

Sun Java Studio Mobility is available at no cost by “simply register[ing] for a Sun
online account”.

65

Other ToolsOther Tools

• Macromedia Fireworks
– http://www.macromedia.com/software/fireworks/

• Adobe Photoshop
– http://www.adobe.com/products/photoshop/main.html

• Sony SoundForge
– http://www.sonymediasoftware.com/products/showproduct.asp?PID=961

• Steinberg Cubase
– http://www.steinberg.de/ProductPage_sb4b2a.html?Product_ID=2124&Langue_ID=4

• Yamaha SMAF Tools
– http://smaf-yamaha.com/

66

Publishers, JapanPublishers, Japan

• Square Enix
– http://www.square-enix.com/jp

• Bandai Networks
– http://www.bandai-net.com/

• Sega
– http://www.sega.co.jp/

• Namco
– http://www.namco.com

• Infocom
– http://www.infocom.co.jp/

67

Publishers, AmericaPublishers, America

• Bandai America
– http://www.bandai.com/

• Digital Chocolate
– http://www.digitalchocolate.com/

• Jamdat
– http://www.jamdat.com

• MForma
– http://www.mforma.com/

• Glu Mobile
– http://www.glumobile.com/

68

Publishers, EuropePublishers, Europe

– Digital Chocolate
– http://www.digitalchocolate.com/

• Superscape
– http://www.superscape.com/

• Glu Mobile
– http://www.glu.com

• Upstart Games
– http://www.upstartgames.com/

69

InuTomo (Dog Friend) DemoInuTomo (Dog Friend) Demo

While I take your questions, I’ll leave a final demo running. We created this to show
the richness that is technically possible with M3G. Unfortunately this particular
animation is too big to load into a real phone … today.

70

Thanks: HI Mascot Capsule Version 4
Development Team, Koichi Hatakeyama,

Sean Ellis, JSR-184 Expert Group

Demonstrate dog animation

