
1

2

M3G OverviewM3G Overview

Tomi Aarnio

Nokia Research Center

3

ObjectivesObjectives

• Get an idea of the API structure and feature set

• Learn practical tricks not found in the spec

4

PrerequisitesPrerequisites

• Fundamentals of 3D graphics

• Some knowledge of OpenGL ES

• Some knowledge of scene graphs

5

Mobile 3D Graphics APIsMobile 3D Graphics APIs

OpenGL ESOpenGL ESOpenGL ES

Java ApplicationsJava ApplicationsJava Applications

M3G (JSR-184)M3G (JSRM3G (JSR--184)184)

Native C/C++
Applications

Native C/C++Native C/C++
ApplicationsApplications

Graphics HardwareGraphics HardwareGraphics Hardware

6

Why Should You Use Java?Why Should You Use Java?

• It has the largest and fastest-growing installed base
– 580M Java phones sold by Feb 2005 (source: Sun Microsystems)

– Nokia alone shipped 125M Java-enabled phones in 2004

– Less than 12M also supported native Symbian applications

• It increases productivity compared to C/C++
– Memory protection, type safety fewer bugs

– Fewer bugs, object orientation better productivity

7

0.07 0.04

0.22 0.26

0.4

0.25

0.0

0.5

1.0

Vertex transformation Image downsampling

R
el

at
iv

e
sp

ee
d

Assembly
KVM
Jazelle™
HotSpot

Java Will Remain SlowerJava Will Remain Slower

Benchmarked on an ARM926EJ-S processor with hand-optimized Java and assembly code

8

Why?Why?

• Array bounds & type checking

• Garbage collection

• Expensive Java-to-native calls

• No access to CPU internals

• Stack-based virtual machine

• Unpredictable HotSpot compilers

No Java compiler or
accelerator can fully
resolve these issues

So why is it that not even hardware acceleration can make Java run as fast
as native code? Some reasons are listed on this slide.
First we have things like array bounds checking, dynamic type checking,
garbage collection. These are built-in features of Java that you can’t avoid.
Then we have expensive native calls. I should mention that you can’t even
have native code in your own app, but the built-in libraries often need to call
native functions.
One important thing is that you get no access to SIMD instructions and other
special CPU features. When you’re working in native code, you can get a big
performance boost by writing some of your critical routines in assembly and
using the ARM equivalents of Intel’s MMX and SSE.
Then finally, there’s the problem Java bytecode has a stack-based execution
model, whereas all CPUs are using registers. It’s hard for the VM to compile
stack-based code into fast register-based code, and that’s probably one of
the reasons why the HotSpot VM performs so badly. But there are other
reasons, too.
So the bottom line is that Java will remain slower than native code, and we
just have to live with that fact. The performance gap will become smaller, but
it will not go away.

9

M3G OverviewM3G Overview

Design principles

Getting started

Low-level features

The scene graph

Deforming meshes

Keyframe animation

Summary & demos

10

M3G Design PrinciplesM3G Design Principles

#1#1#1 No Java code along critical pathsNo Java code along critical pathsNo Java code along critical paths

• Move all graphics processing to native code
– Not only rasterization and transformations

– Also morphing, skinning, and keyframe animation

– Keep all data on the native side to avoid Java-native traffic

11

M3G Design PrinciplesM3G Design Principles

• Do not add features that are too heavy for software engines

– Such as per-pixel mipmapping or floating-point vertices

• Do not add features that break the OpenGL 1.x pipeline

– Such as hardcoded transparency shaders

#2#2#2 Cater for both software and hardwareCater for both software and hardwareCater for both software and hardware

12

M3G Design PrinciplesM3G Design Principles

• Address content creation and tool chain issues
– Export art assets into a compressed file (.m3g)

– Load and manipulate the content at run time

– Need scene graph and animation support for that

• Minimize the amount of “boilerplate code”

#3#3#3 Maximize developer productivityMaximize developer productivityMaximize developer productivity

13

M3G Design PrinciplesM3G Design Principles

#4#4#4 Minimize engine complexityMinimize engine complexityMinimize engine complexity

#5#5#5 Minimize fragmentationMinimize fragmentationMinimize fragmentation

#6#6#6 Plan for future expansionPlan for future expansionPlan for future expansion

Here are some more design issues that we had to keep in mind.
Number four, minimize engine complexity. This meant that a commercial
implementation should be doable in 150k, including the rasterizer.
Number five, minimize fragmentation. This means that we wanted to have a
tight spec, so that you don’t have to query the availability of each and every
feature. There are no optional parts or extensions in the API, although some
quality hints were left optional. For instance, perspective correction.
And finally, we wanted to have a compact API that can be deployed right
away, but so that adding more features in the future won’t cause ugly legacy.

14

Why a New Standard?Why a New Standard?

• OpenGL ES is too low-level
– Lots of Java code, function calls needed for simple things

– No support for animation and scene management

– Fails on Design Principles 1 (performance) and 3 (productivity)

– …but becomes more practical as Java performance increases

• Java 3D is too bloated
– A hundred times larger (!) than M3G

– Still lacks a file format, skinning, etc.

– Fails on Design Principles 1, 3, and 4 (code size)

Okay, so why did we have to define yet another API, why not just pick an
existing one?
OpenGL ES would be the obvious choice, but it didn’t fit the Java space very
well, because you’d need a lot of that slow Java code to get anything on the
screen. Also, you’d have to do animation yourself, and keep all your scene
data on the Java side. Basically you’d spend more time writing your code,
and yet the code would run slower in the end. That might change in the
future, when Java VMs become faster, but don’t hold your breath.

The other choice that we had was Java 3D. At first it seemed to match our
requirements, and we gave it a serious try. But then it turned out that the
structure of Java 3D was simply too bloated, and we just couldn’t simplify it
enough to fit out target devices. Besides, even though the Java 3D is
something like a hundred times larger than M3G, it still lacks crucial things
like a file format and skinning. It’s also too damn difficult to use.

15

M3G OverviewM3G Overview

Design principles

Getting started

Low-level features

The scene graph

Deforming meshes

Keyframe animation

Summary & demos

16

The Programming ModelThe Programming Model

• Not an “extensible scene graph”
– Rather a black box – much like OpenGL

– No interfaces, events, or render callbacks

– No threads; all methods return only when done

• Scene update is decoupled from rendering
– render Draws an object or scene, no side-effects

– animate Updates an object or scene to the given time

– align Aligns scene graph nodes to others

17

WorldWorld

Graphics3DGraphics3D

LoaderLoader

3D graphics context
Performs all rendering

Scene graph root node

Loads individual objects
and entire scene graphs
(.m3g and .png files)

Key ClassesKey Classes

18

Rendering StateRendering State

• Graphics3D contains global state
– Frame buffer, depth buffer

– Viewport, depth range

– Rendering quality hints

• Most rendering state is in the scene graph
– Vertex buffers, textures, matrices, materials, …

– Packaged into Java objects, referenced by meshes

– Minimizes Java-native data traffic, enables caching

19

Graphics3D: How To UseGraphics3D: How To Use

• Bind a target to it, render, release the target

• Tip: Do not mix 2D and 3D rendering

void paint(Graphics g) {

myGraphics3D.bindTarget(g);

myGraphics3D.render(world);

myGraphics3D.releaseTarget();

}

20

M3G OverviewM3G Overview

Design principles

Getting started

Low-level features

The scene graph

Deforming meshes

Keyframe animation

Summary & demos

21

Renderable ObjectsRenderable Objects

MeshMesh
Made of triangles
Base class for meshes

Sprite3DSprite3D
2D image placed in 3D space
Always facing the camera

22

Sprite3DSprite3D

• 2D image with a position in 3D space

• Scaled mode for billboards, trees, etc.

• Unscaled mode for text labels, icons, etc.

Image2D

Sprite3DSprite3D AppearanceAppearance

Image2DImage2D

CompositingModeCompositingMode

FogFog

23

MeshMesh

• A common VertexBuffer, referencing VertexArrays

• IndexBuffers (submeshes) and Appearances match 1:1

MeshMesh VertexBufferVertexBuffer coordinatescoordinates

normalsnormals

colorscolors

texcoordstexcoords

IndexBufferIndexBuffer

AppearanceAppearance

VertexArraysVertexArrays

24

VertexBuffer TypesVertexBuffer Types

Float8-bit 16-bit 32-bit

Colors

Normals

Texcoords

Vertices

4D3D2D

Relative to OpenGL ES 1.1

Floating point vertex arrays were excluded for performance and code size
reasons. To compensate, there are floating point scale and bias terms for
vertex and texcoord arrays. They cause no overhead, since they can be
implemented with the modelview or texture matrix.

Homogeneous 4D coordinates were dropped to get rid of nasty special
cases in the scene graph, and to speed up skinning, morphing, lighting and
vertex transformations in general.

25

IndexBuffer TypesIndexBuffer Types

im
plicit

8-bit 16-bit Strip Fan List

Point sprites

Points

Lines

Triangles

Relative to OpenGL ES 1.1 + point sprite extension

The set of rendering primitives was reduced to a minimum: triangle strips
with 16-bit indices (equivalent to glDrawElements) or implicit indices
(glDrawArrays).

Point sprites are missing for a good reason: The M3G spec had been
publicly available for almost a year until point sprites were added into
OpenGL ES, and even then, only as an extension.

26

Buffer ObjectsBuffer Objects

• Vertices and indices are stored on server side
– Very similar to OpenGL Buffer Objects

– Allows caching and preprocessing (e.g., bounding volumes)

• Tradeoff – Dynamic updates have some overhead
– At the minimum, just copying in the Java array contents

27

Tip: Particle EffectsTip: Particle Effects

3
5

4

6

1

2

Triangle strip
starts here

Particles glued into
one tri-strip using

degenerate triangles

Use additive
alpha blend and
per-vertex colors

• Several problems
– Point sprites are not supported

– Sprite3D has too much overhead

• Put all particles in one Mesh
– One particle == two triangles

– All glued into one triangle strip

– Update vertices to animate

• XYZ, RGBA, maybe UV

So how should you implement a particle system, given that points and point
sprites are not supported?

The first idea that comes to mind is to use Sprite3D. However, that would
make every particle an independent object, each with its own modelview
matrix, texture, and other rendering state. This implies a separate OpenGL
draw call and lots of overhead for each particle.

It is more efficient to represent particles as textured quads, all glued into one
big triangle strip that can be drawn in a single call. To make the particles
face the viewer, set up automatic node alignment for the Mesh that encloses
the particle system.

At run time, just update the particles’ x, y, z coordinates and colors in their
respective VertexArrays.

28

Appearance ComponentsAppearance Components

CompositingModeCompositingMode

Material colors for lighting
Can track per-vertex colors

PolygonModePolygonMode

FogFog

Texture2DTexture2D

MaterialMaterial
Blending, depth buffering
Alpha testing, color masking

Winding, culling, shading
Perspective correction hint

Fades colors based on distance
Linear and exponential mode

Texture matrix, blending, filtering
Multitexturing: One Texture2D for each unit

Functionally related blocks of rendering state are grouped together.
Appearances as well as individual Appearance components can be shared
by arbitrary number of meshes.

This saves memory space, reduces garbage collection, and allows
implementations to quickly sort objects based on their rendering state.

29

The Fragment PipelineThe Fragment Pipeline

Alpha TestAlpha Test Depth TestDepth TestFogFog BlendBlend

TextureTexture
BlendBlend

TexelTexel
FetchFetch

TextureTexture
BlendBlend

FrameFrame
BufferBuffer

DepthDepth
BufferBuffer

Colored
Fragment

TexelTexel
FetchFetch

CompositingMode

Texture2D

Fog

30

Rendering TipsRendering Tips

• Most OpenGL ES performance tips apply
– Use mipmapping to save in memory bandwidth

– Use multitexturing to save in T&L and triangle setup

– SW: Minimize per-pixel operations

– HW: Minimize shading state changes

• Some of the tips are used by M3G engines
– Rendering state sorting

– View frustum culling

Most OpenGL ES performance tips given by Ville in the previous
presentation apply also for M3G applications. A few of the most important
and universally applicable tips are repeated here.

M3G engines generally perform shader state sorting and view frustum culling
in retained mode. However, any culling done by the engine is very
conservative. The engine does not know which polygon mesh is a wall that’s
going to stay where it is, for instance. If you have a scene that could be
efficiently represented as a BSP tree, you can’t expect the engine to figure
that out. You need to construct the tree yourself, and keep it in the
application side.

31

Rendering TipsRendering Tips

• Use layers to impose rendering order
– Appearance contains a layer index (integer)

– Defines a global ordering for submeshes & sprites

– Useful for multipass rendering, background geometry, etc.

• Use the perspective correction hint – but wisely
– Usually much faster than increasing triangle count

– Nokia: 2% fixed overhead, 20% in the worst case

– Use the hint where necessary, and nowhere else

32

M3G OverviewM3G Overview

Design principles

Getting started

Low-level features

The scene graph

Deforming meshes

Keyframe animation

Summary & demos

33

The Scene GraphThe Scene Graph

SkinnedMeshSkinnedMesh

GroupGroup

GroupGroup

GroupGroup

MeshMesh

SpriteSprite

LightLight

WorldWorld

GroupGroup CameraCamera

GroupGroup MorphingMeshMorphingMesh

Not allowed!

Scene graph nodes can’t have more than one parent, so the scene graph is
actually just a tree.

Even though nodes can’t be instanced, their component objects can.
Textures, vertices, and all other substantial data is in the components, and
only referenced by the nodes.

34

Node TransformationsNode Transformations

• From this node to the parent node

• Composed of four parts
– Translation T

– Orientation R

– Non-uniform scale S

– Generic 3x4 matrix M

• Composite: C = T R S M
GroupGroup

GroupGroup

GroupGroup

MeshMesh

SpriteSprite

C

CC

C C

WorldWorld

35

Node TransformationsNode Transformations

Tip: Keep the transformations simple
– Favor the T R S components over M

– Avoid non-uniform scales in S

Tip: Rotating about an arbitrary point (pivot)
– No direct support for pivot translation: C = T P-1 R P S M

– Method 1: Combine T’ = T P-1 and M’ = P S M C = T’ R M’

• Drawback: Does not allow S to be animated

– Method 2: Use extra Group nodes

36

Terrain RenderingTerrain Rendering

Tip: Easy terrain rendering
– Split the terrain into tiles (Meshes)

– Put the meshes into a scene graph

– The engine will do view frustum culling

Tip: Terrain rendering with LOD
– Preprocess the terrain into a quadtree

– Quadtree leaf node == Mesh object

– Quadtree inner node == Group object

– Enable nodes yourself, based on the view frustum

Since the modelview matrix of each tile will be unique, small rounding errors
in the vertex pipeline may cause cracks between tiles. A simple solution is to
make the tiles overlap each other a bit.

37

The File FormatThe File Format

• Characteristics
– Individual objects, entire scene graphs, anything in between

– Object types match 1:1 with those in the API

– Optional ZLIB compression of selected sections

– Can be decoded in one pass – no forward references

– Can reference external files or URIs (e.g. textures)

– Strong error checking

38

M3G OverviewM3G Overview

Design principles

Getting started

Low-level features

The scene graph

Deforming meshes

Keyframe animation

Summary & demos

39

Deforming MeshesDeforming Meshes

SkinnedMeshSkinnedMesh
Skeletally animated mesh

MorphingMeshMorphingMesh
Vertex morphing mesh

40

MorphingMeshMorphingMesh

• Traditional vertex morphing animation
– Can morph any vertex attribute(s)

– A base mesh B and any number of morph targets Ti

– Result = weighted sum of morph deltas

• Change the weights wi to animate

()∑ −+=
i

iiw BTBR

41

MorphingMeshMorphingMesh

Base Target 1
eyes closed

Target 2
mouth closed

Animate eyes
and mouth

independently

42

SkinnedMeshSkinnedMesh

• Articulated characters without cracks at joints
• Stretch a mesh over a hierarchic “skeleton”

– The skeleton consists of scene graph nodes

– Each node (“bone”) defines a transformation

– Each vertex is linked to one or more bones

– Mi are the node transforms – v, w, B are constant

∑=
i

iii vwv BM'

In the equation,
• v is the vertex position in the SkinnedMesh node’s coordinates
• Bi is the fixed at-rest transformation from SkinnedMesh to bone Ni

• Mi is the dynamic transformation from bone Ni to SkinnedMesh
• wi is the weight of bone Ni (the weights are normalized)
• 0 ≤ i ≤ N, where N is the number of bones associated with v
• v’ is the final position in the SkinnedMesh coordinate system

43

SkinnedMeshSkinnedMesh

Neutral pose, bones at restNeutral pose, bones at rest

Bone BBone A

"skin"shared vertex,
weights = (0.5, 0.5)

non-shared
vertex

44

SkinnedMeshSkinnedMesh

Bone A

B
one B

position in A's
coordinate system

position in B's
coordinate system

interpolated
position

Bone B rotated 90 degreesBone B rotated 90 degrees

The empty dots show where the vertex would end up if it were associated
with just one of the bones, respectively.

As the vertex is weighted equally by bones A and B, the final interpolated
vertex lies in between the empty dots.

45

SkinnedMeshSkinnedMesh

No skinning Smooth skinning
two bones per vertex

46

M3G OverviewM3G Overview

Design principles

Getting started

Low-level features

The scene graph

Deforming meshes

Keyframe animation

Summary & demos

47

Animation ClassesAnimation Classes

KeyframeSequenceKeyframeSequence

AnimationControllerAnimationController

AnimationTrackAnimationTrack
A link between sequence,
controller and target

Object3DObject3D
Base class for all objects
that can be animated

Controls the playback of
one or more sequences

Storage for keyframes
Defines interpolation mode

48

AnimationControllerAnimationController

Animation ClassesAnimation Classes

Identifies
animated
property on
this object

Object3DObject3D

AnimationTrackAnimationTrack

KeyframeSequenceKeyframeSequence

49

KeyframeSequenceKeyframeSequence

sequence time

KeyframeSequenceKeyframeSequence

Diagram courtesy of Sean Ellis, Superscape

Keyframe is a time and the value of a property at that time

Can store any number of keyframes

Several keyframe interpolation modes

Can be open or closed (looping)

50

KeyframeSequenceKeyframeSequence

sequence time

KeyframeSequenceKeyframeSequence

Diagram courtesy of Sean Ellis, Superscape

Keyframe is a time and the value of a property at that time

Can store any number of keyframes

Several keyframe interpolation modes

Can be open or closed (looping)

51

KeyframeSequenceKeyframeSequence

Keyframe is a time and the value of a property at that time

Can store any number of keyframes

Several keyframe interpolation modes

Can be open or closed (looping)

sequence timet

v

KeyframeSequenceKeyframeSequence

Diagram courtesy of Sean Ellis, Superscape

52

AnimationControllerAnimationController

Can control several animation sequences together

Defines a linear mapping from world time to sequence time

Multiple controllers can target the same property

0 dsequence time

world timet

0

0 dsequence time

AnimationControllerAnimationController

Diagram courtesy of Sean Ellis, Superscape

53

AnimationControllerAnimationController

AnimationAnimation

4. Apply value to
animated property

0 dsequence time

1. Call animate(worldTime)

s
v

2. Calculate sequence
time from world time

3. Look up value at
this sequence time

Object3DObject3D

AnimationTrackAnimationTrack

KeyframeSequenceKeyframeSequence

Diagram courtesy of Sean Ellis, Superscape

54

AnimationAnimation

Tip: You can read back the animated values
– Much faster than Java if you need floating point interpolation

– Target N-dimensional tracks (N > 4) to a dummy MorphingMesh

Tip: Interpolate quaternions as ordinary 4-vectors
– SLERP and SQUAD are slower, but need less keyframes

– Quaternions are automatically normalized before use

Almost any property in the API can be targeted by keyframe animation.
Once you have called animate(), you can read back the updated values with
the usual get() methods.

If you need to do interpolation with floating point quantities elsewhere in your
application, you can use the M3G animation engine for that. Set up your
keyframes and a dummy object as the animation target, animate it, and read
out the result.

Then what if you have a large array with N elements that you need to
interpolate? There is only one animation target that can take keyframes with
more than four components, and that’s the MorphingMesh weights array. So,
you need to set up a dummy MorphingMesh with N morph targets, and
target your animation to that.

Although that’s inconvenient and somewhat ridiculous, it doesn’t really cost
you that much in terms of memory. The size of the dummy mesh will be a
few dozen bytes per morph target. You will probably run out of CPU cycles –
doing floating point interpolation – before you run out of memory.

55

M3G OverviewM3G Overview

Design principles

Getting started

Low-level features

The scene graph

Deforming meshes

Keyframe animation

Summary & demos

56

PredictionsPredictions

• Resolutions will grow rapidly from 128x128 to VGA
– Drives graphics hardware into all high-resolution devices

– Software rasterizers can’t compete above 128x128

• Bottlenecks will shift to Physics and AI
– Bottlenecks today: Rasterization and any Java code

– Graphics hardware will take care of geometry and rasterization

– Java hardware will increase performance to within 50% of C/C++

• Java will reinforce its position as the dominant platform

57

SummarySummary

• M3G enables real-time 3D on mobile Java
– By minimizing the amount of Java code along critical paths

– Designed for both software and hardware implementations

• Flexible design leaves the developer in control
– Subset of OpenGL ES features at the foundation

– Animation & scene graph features layered on top

Installed base growing by the millions each monthInstalled base growing by the millions each monthInstalled base growing by the millions each month

58

DemosDemos

59

Q&AQ&A

Thanks: Sean Ellis, Kimmo Roimela,
Nokia M3G team, JSR-184 Expert Group

60

