Parallel Processor Scheduling with Delay Constraints

Daniel W. Engels Jon Feldmah David R. Karget ~ Matthias Ruhi

MIT Laboratory for Computer Science
Cambridge, MA 02139, USA

Abstract job j cannot begin execution until at le@s} time steps after

We consider the problem of scheduling unit-length jobs ol?bi completes.

identical parallel machines such that the makespan of the. Prewous algo_rlthms forschsdu!mg jobs on parallel ma-
. chines consider either communication delays or precedence

resulting schedule is minimized. Precedence constraints i | but not both. In thi lize both t
pose a partial order on the jobs, and both communicati ays, but hot both. In this paper we generaize both lypes
delays to a singleseparation delay; j ,n, where jobj

and precedence delays impose relative timing constraimnts g' de . .))
dependent jobs. The combination of these two types of tinj!""""9 ON mgchm@ cannot begin execut|on.untll at least
ing constraints naturally models the instruction schexyli “i.j.ab ime units aftertg]ob co:n.pistes cfm machir Morte-l
problem that occurs during software compilation for statec-?}[/r?r’ Wehoverdcolme N lrc(jas r'IC Ik?n c_)thpre(;nouis exact algo-
of-the-art VLIW (Very Long Instruction Word) processors” ms where delays could only be elther U or L.

and multiprocessor parallel machines. We give a polynomial algorithm for the case where the

We present the first known polynomial-time aIgorithmpremmlem:e graph is a forésind the delays are bounded

for the case where the precedence constraint graph is & for Y a constanD. We also give a useful structgral theore”.‘
or instances where the precedence graph is a collection

of in-trees (or a forest of out-trees), the number of machine™, .]

mis fixed, and the delays (which are a function of both th f independent dags; we ShOW_ th_at any sch_edif@r the

job pair and the machines on which they run) are bound grgestdags can b_e convert_ed, in lineartime, into a complet

by a constanb. schedule thst is e|th_er optlmal or has the same makespan
mass Our interest in this problem is motivated by the

Our algorithm relies on a new structural theore ructi hedull bl tered b |
for scheduling jobs with arbitrary precedence constraint struction scheaquling problem encountered by compiiers
for emerging system architectures.

Given an instance with many independent dags, the the
rem shows how to convert, in linear time, a schedsifer Instruction scheduling for parallel machine and VLIW
only the largest dags into a complete schedule that is eithesmpilation. VLIW (Very Long Instruction Word) ar-

optimal or has the same makesparsas chitectures have recently begun to appear in a variety of
commercial processor and embedded system designs. In
1 Introduction these architectures, the processor contains multiple-func

: : : fional units capable of executing basic operations in pelral
In this paper we consider the problem of scheduling unit- P 9 P e

; : .) .2 ~in one clock cycle. The VLIW processor is controlled by
length jobs onm identical parallel machines to minimize . . : ; . .
: : meta-instructionghat combine the instructions for the in-
the makespan in the presence mecedence constraints

S dividual functional units into one single instruction word
precedence delay@nd communication delaysPrecedence h h VLIW.
constraints model dependencies between the tasks; if jogncet & hame VLIVV. . , .
k The VLIW architecture is the basis for Intel’s Itanium

J depends on job, ther_1 jobj must .be e_xe_cuted after_ JOb_ chip (formerly code-named Merced), which is scheduled
i. Precedence delays impose relative timing constraints; ; . . .
o : L : : for commercial release in 2000. It uses a new instruction
job j cannot begin execution until at ledst time steps after)

iob i completes. Communication delags impose delavs set named 1A-64 [9], which was developed by Intel and
J b ' 93 1Mp y Hewlett-Packard, and is based on EPIC (Explicitly Parallel

across machines; if jotisand j run on different machines, Instruction Computing) — Intel’s adaptation of VLIW. VLIW

architectures have also been used in state-of-the-artaDigi
*E-Mail: dr agon@cs. mi t. edu
TE-Mail: j onf el d@heory. |l cs.nit.edu

*E-Mail: kar ger @ heory. | cs. nit. edu TWhen we say that the precedence graph is a forest, we meaihitat
8E-Mail: r uhl @ heory.lcs.nit.edu either a collection of in-trees, or a collection of out-gsee

Signal Processor (DSP) designs, such as the popular Texiase unitsbetweerthem).
Instruments TMS320C6x series [15]. We denote the completion time of jgbasC;. We are

The role of the compiler is much more crucial forconcerned with minimizing the makesp&ax = max; C;.
VLIW architectures than it is for traditional processorsLet Cy .. be the optimal value oCyax. Extending the
To exploit the inherent hardware parallelism, the compilenotation introduced by Graham et al. [8], we can denote
must combine basic operations into meta-instructions ithe problems considered in this paperRm | prec p; =
an efficient way. When doing so, it has to observe th&;¢; jap € {0,1,...,D} | Cnax.
data dependencies between the operations and the time it We can also allow multiple instances of the same job
takes to transfer data from one functional unit to anotheto be scheduled on different machines; this is caltzul
Since hardware based acceleration schemes such as brashaplication Allowing job duplication can make a difference
prediction or speculative execution become less powerful the makespan of a schedule when computing the same
on these implicitly parallel architectures, it is the cohlapi value twice is more efficient than transferring the value
that really determines the quality of the resulting codasTh across machines (see section 4.1).
quality is espeC|_aIIy |mportar_1t in embedded_ system de&g&ur contribution.
where the code is only compiled once (making even lengt
pompllgtlon times acce_ptable), but an optimal performanqgm | tree p; = 161 ap € {0,1,...,D} | Cmax. The algo-
is required of the resulting system. . . . ; S

:) . rithm works with or without job duplication allowed on a

Our scheduling problem exactly fits this model. EaChob-b -iob basis

meta-instruction can be thought of as a slice of time, and tHe> Y i

functional units correspond to machines. Pipelining atlow Our result is more general than previous known poly-
P - 1P 9 nomial algorithms in both the precedence delay and the

all jobs to have unit execution time. Precedence consgaint I o .
ommunication delay communities for optimally schedul-

encode the data dependencies, and delays encode the Iafen- X .
I . L o . INg trees on a fixed number of processors. Previous re-
cies: variable pipeline lengths and limited bypassing cre- L) .
: sults assumed at most unit time delays: Varvarigou, Roy-
ate variable precedence delays, and data movement between . .
) . s : chowdhury and Kailath [17] solvem | treg p; = 1;¢j =
functional units creates communication delays. Sincénall t . '
.) 1 | Cmax. Bernstein and Gertner [1] solve |1treg pj =
functional units are part of the same processor, precede :
e i.j €{0,1} | Cmax Our algorithm solves both these prob-
delays and communication delays are on the same order gr’ . . Lo
. . lems as special cases. Another important contributionisf th
magnitude, and should be considered together. Furthermorée . .
per is the Merge theorem:

fixing the number of machines and imposing a bound on tkﬁaa

delays makes sense in this context; these quantities areF@aeorem 1.1. (THE MERGE THEOREM) Consider an in-
function of the physical characteristics of the chip, arel arstance of Pm preg pj = 1;4i jap € {0,1,...,D} | Crmax
usually smaf. where the precedence graph G contains at leas{D +
Determining a minimum makespan schedule for arbit) — 1 independent dags. Given a schedule with makespan
trary instruction dependencies is a long-standing opeb-proT for only the jobs from the large@m(D + 1) — 1 dags,

lem (see section 1.1). We therefore focus on schedune can construct in linear time a schedule for all jobs with
ing forests, which often occur in practice, for examplemakespamnax{[],T}.

n
. . L m
when processing expression trees or divide-and-conqueral))
gorithms. Since this theorem holds fany dag, not just trees,

.] it shows that any heuristic or approximation algorithm for
Problem statement. We are given a set ofi jobs and gcheduling only the jobs from large dags can be extended
m machines on which to execute the jobs, whareés a inio an algorithm for scheduling all jobs. The theorem might
cor!stant. Each_Job has unit processing time. The_re eXistfso pe applied to single dags after they have been broken
a directed acyclic precedence grapk= (V,E) on the jobs jniq independent pieces. Furthermore, since a schedule of
V. With each precedence-constrained job faif) € E, |ength [L] is clearly optimal, the new algorithm will have

and pair of machinega,b), there is an associated non-the same performance guarantee as the original algorithm
negative delay; j ., bounded by a constadt. The output \yith only a linear time additive cost in running time.
is a schedule assigning a job to each processor and time

slot. A schedule is legal iff it includes all jobs, and forq 1 Related Work

all precedence-constrained job pdirg) € E, if job j runs

on machineb at timet, job i must be scheduled on somePolynomial algorithms: precedence delays. Precedence

machinea beforetimet — /4 j o (i.€., there must bé; j o, delays have been used to model single-processor latencies
that arise due to pipelined architectures. Bernstein and

" ZAs an example, Intel’s Itanium chip has six functional uritsd Texas Gertner [1] use a modification of the Coffman-Graham

Instruments’ TMS320C6x has eight. algorithm [3] to solve 1 prec p; = 1;lij € {0,1} | Cmax-

2

We give a polynomial-time algorithm
hf%r the problem where the precedence gr&pls a forest:

Finta and Liu [5] give a polynomial time algorithm for hard problems is the generalization to arbitrary preceglenc
the more general 1 prec pj;lij € {0,1} | Cmax. Both of structures on a fixed number of machines, i.e., the prob-
these algorithms crucially depend on assuming unit-delaysm Pm| preg pj = 1;4i jap € {0,1,...,D} | Cnax. How-
between jobs. ever, this gap comes as no surprise, since the famous 3-

Polynomial algorithms: communication delays. In the processor scheduling problem ([7], problem [QPENS]) IS
a special case. It turns out that even an algorithm for the

classical models of parallel computation, communication)
ne-processor version where all delays are equal to three

delays are orders of magnitude larger than precedence (iﬂ prec p; = 1:6.1 = 3| Cia) could be used to solve in
] — =t = a -

lays, so algorithms for scheduling on parallel machlnestances of 3-processor schedulifg({ prec p; = 1| Cmay.

hav/e _generally |g_n0red prece(_jence delays_. A survey %e reduction is straightforward.
Chrétienne and Piccoleau [2] gives an overview of the work

in this area.

All previous polynomial-time algorithms for a bounded
number of machines work only for the special case of unithe remainder of the paper is organized as follows. In
communication delays. Varvarigou, Roychowdhury angéction 2 we give the proof of the Merge Theorem. In
Kailath [17] show thatPm | treecj = 1;pj = 1 | Cmax SECtiON 3 we use t.he Merge Theorem as the foundation for
is solvable in timeO(n?™) by converting the tree into one a scheduling algorithm that solves the single processey, cas
without delays. This conversion relies heavily on the facthere the precedence graph is a collection of chains. We
that that the delays are unit-length. The special case2 Present the full algorithm in section 4. We conclude in
was shown to be solvable @(n?) time by Picouleau [14], section 5 with a brief discussion of our results.
and was later improved to linear time by Lenstra, Veldhorst
and Veltman [11], using a type of list scheduling. 2 Proof of the Merge Theorem

Finta and Liu [6] give a quadratic algorithm for \ye hegin by proving the Merge Theorem for the case
P2 | SPLipj = 1:¢ij = 1 | Cmax, whereSPL areseries- nare we have chain precedence constraints and only one
parallel-1graphs, a subclass of senes-_pargllel graphs. Theﬁ?ocessor(@ is a collection ok independent pathay = 1).
has als_o been some work on_approxwat_mn algorlthms fShis proof establishes all of the techniques used for the
an arbitrary number of machines. Mohring and Schafft€§enera| case and is less obscured by details. We then sketch

[12] give a good overview of this area. _ the natural generalization to dags, parallel processais an
Several authors (e.g. [10, 13]) have considered relat%%neral separation delays.

problems where the number of processors is unbounded,
i.e. the schedule can use as many processors as desikggl. Special Case: chain precedence constraints, one
However, that model is fundamentally different from the one processor

we study, since optimal schedules usually make extensi\(/)e N foll . Gi hedule of the 2 1
use of the unlimited parallelism. ur goal is as follows: Given a schedule of thB 2

largest chains that finishes at tinfe we must construct

Hardnessresults. Even without any delays, the problemisa complete schedule for a chains that finishes at time
NP-hard if the precedence relation is arbitrary and the nurinax{n,T}. As a running example consider the instance
ber of machines is part of the input. This is the classic reshown in figure 1. This example consists of 7 chains with
sult of Ullman [16], showing NP-hardnessf prec pj = a total ofn = 21 jobs. The maximum precedence delay
1| Cmax Lenstra, Veldhorst and Veltman [11] show theis D = 2. Figure 1a shows a feasible schedule for the
problem is still NP-hard when the precedence graph is 2D + 1 =5 largest chains with makesp@p,., = n. We will
tree and there are unit communication deldy$tfee cij = construct the new schedule in four steps.
1;pj =1|Cmax)-

Engels [4] proves NP-hardness for the single—machirﬁ

case when the precedence constraints form chains, and @ﬁstfc?]am. ;]NG; ble%ln Ey, rerrf10vmghthe lags.1 Jorl?sdm|
delays are restricted to be either zero or a single inputslvalufeac of the scheduled chains from the current schedule (as

i.e., he shows 1 chainp; = 1;li; € {0,d} | Cmax to be in figure 1b, where R +1 =5 andns = 2). We call these
strongly NP-hard, where iJs an inSut to the problem deleted sub-chains thmils. Note that we have removed

When the processing times are not unit, the proble|%D"'1taIIS with exactlynzo.1 jobs in each tail.
is also NP-hard. Engels [4] shows that scheduling chair&ep 2: Shifting operations. Next, we modify the schedule
with job processing times of either one or two and constaniith the tails removed by shifting jobs so that they are
precedence delays, i.e., |Ichainp; € {1,2};lij; = D > executed as early as possible. Beginning at the first time
2| Cmax, is strongly NP-hard. slot, we traverse the schedule through tifhe Whenever
Thus the only natural gap between our result and NRve encounter a hole (time slot that does not have a job

1.2 Organization

ep 1: Truncating. Letn; be the number of jobs in theth

3

Job chains

l\)-bH‘o_

nel [o]
SIS
N

ESIENE

e lolsln] @
(SIS

| [elwe]sle]
AN

NSNS

NP (W N

ol feo o

NSRS

N
N
n)

2]
1

]
N
=
=]

1 1

HFHHHH
o o [& lo v
ESRRrSIN
)
™)

-]

lelolole ols v w~obo]slwh o s | -

el] v [sloliwbslolvlslnls] »

2
1]

Figure 1:Problem instance (on left) and construction of an optimhesale (on right), foD = 2. The instance is composed of two chains with 5 jobs,
two chains with three jobs, two chains with two jobs and or&irchwith one job. All delays between consecutive jobs in d@rcheae 2. Constructing the
schedulea) A schedule for the large chaink) Step 1, deleting the tails of the large chaingg) Step 2, shifting jobs earlier in the schedule until at most
D chains remain activeh) Step 3, Putting the tails of the active chains back into thedale.i) An optimal schedule after inserting the remaining jobs
using the round-robin of Step 4.

scheduled in it) in the schedule, we try to fill that hole byStep 3: Re-inserting some of the tails. We now reinsert
moving a job earlier in the schedule (as in figure 1c-g). the tails of the (at modD) chains that are still active at the

We can always fill a hole with a job that is currentlyfirst hole (as in figure 1h). We reinsert these jobs at their
scheduled later, if, at the position of the hole, at leagtositions given by the original schedule. These positions
D + 1 of the chains aractive,i.e., they have not yet been in the schedule are still unoccupied, since jobs were only
scheduled up to the point at which they were truncated. Tmoved to time slots earlier than the first hole. Moreover, the
see why this is possible, note thatDf+ 1 chains are still makespan of the total schedule is still at mbst

active, at least one of these chains has not been executed . i . . .
during the lasD time steps before the hole. Therefore, ifg?; :s AVF\e/gu;ri F:g\?vlr;gfct)rw?;]hfﬁglItgﬁs-rggzs?:a;hfi

we move the next job of that chain into the current hole, i, . o .
. . . . chains, each containing exactlyb, 1 jobs, whose truncated
will be executed at leadd time units after its predecessor. . L " :
versions finished before the first hole (call these tails the

The precedence delay is satisfied after this move since tBFue chains) and— (2D + 1) short chains, each containing

delay is at mosD. at mostnyp 1 jobs (call these theed chains). The red

After repeatedly moving jobs to fill holes, we will either .
finish shifting all of the truncated chains or reach the firs}:halns are the ones that were not among fe-2 largest.

hole that we cannot fill without violating a delay constrain n_the e_xamp!e, the sub-chains consisting of theﬂgﬁl -

L : o jobs in chains 3, 4 and 5 are blue, and chains 6 and 7 are
(as in figure 1g). The resulting schedule is tight before tha
hole (i.e. there are no holes before it), and there are at most™
D of the truncated chains active at that position (recall th%

A . . e

we can always move a job if more th@nchains are still
active). In the example (figure 1g), chains 1 and 2 are st
active at the first hole.

Completing the schedule is done by filling holes with
remaining jobs in a round-robin fashion, i.e., we cycle
i}Prough the chains (both the red and blue chains) in some
ixed order, inserting the next job of each one, until they are
all scheduled.

We have to be a bit careful about the fibsholes we fill case (the round-robin fill-in step), notice that we made no
in this process, since the blue chains cannot start too cloassumptions about the delays between the jobs in the red and
to their predecessors from their original chain. blue chains other than that they were bounde®byso for

This problem can be solved by systematically choosindags, we first topologically sort the dags in an arbitrary,way
the order we cycle through the chains. Since there are iaaking them chains. Then we perform the round-robin as
leastD + 1 blue chains, one of their predecessors has nbefore. The red chains finish first, the blue chains all finish
been executed during the labBt steps, so we can safely on the same round, and we have either finished before time
schedule that chain first. Among the remaining blue chaing,, or filled every hole. The running time of each step is still
one has not been executed in the |&st- 1 steps, and linear in the number of job4.
therefore it can be scheduled second, and so on. We fix this

order of the blue chains (in the example, we let this orde3 A Dynamic Program for Chains
be 3,4,5), and then follow it with der of the red chai . i . . .
©), and then follow it with any order of the red ¢ am?/\/e will now state a first simple version of our algorithm

(6,7 in the example). : .)
Since all blue chains have the same length, they a{l?r the case wher& is a collection of chains, and there

finish on the same round. Furthermore, the red chains finié?] only one processom(= 1). In the next section, we

on or before this round, since they are no longer than t1ive a more general version that works for trees on parallel

blue chains. Therefore, every round consists of at |eagr£ocessors. The algorithm given here is slightly less efiiti
’ than we can achieve; it runs in tim@(n*°*1). We will

D + 1 different chains, and we can fill every hole until the ! .
- ame I W 1 every Hnt briefly sketch how to improve this t@(n?®+1) at the end
round-robin ends. . . L . .
of the section. We give this slightly less efficient algomith
laecause it establishes some of the machinery used for the
qﬁ general case.
The Merge Theorem shows how to construct an optimal
hedule, assuming we know how to optimally schedule the
m(D + 1) — 1 largest chains in the precedence graph. This

iImmediately suggests an algorithm:

Thus, we have scheduled all jobs, obeying the chai
precedence constraints and the precedence delays (a§
figure 1i). If this step 4 did not fill all the holes that
existed after step 3, then we know that our schedule st
has makespan at most Otherwise, the new schedule ha
no idle time, and has makespan Also, the running time
of each step of this construction can be made linear in thel. Dynamic Program. Use a dynamic program to opti-
number of jobs. mally schedule ther®(D + 1) — 1 largest chains in the

input, setting aside the other chains for the moment.
2.2 Dags, parallel processors, and general separation
delays

There is a natural generalization of the above construttion _ _
dags, parallel processors and general separation delays. w The dynamic program we will use can be thought of as

sketch the necessary changes, and leave the details for #ling the shortest path through a state space, where state
full version of the paper. transitions correspond to the scheduling of jobs on a single

Given a schedule with makespah for the largest time step. Every state encodes ‘where we are’ in the current
2m(D + 1) — 1 dags, we must construct a schedule for an;chedu_le; it_ records the jobs available to I_Je scheduledeon th
the dags with makespan mgh],T}. We follow the same upcoming time step, as well as a recent history of the current
four basic steps as before. schedule, which we will use to determine when jobs become

Previously, for chains, the first step of the constructiogvailable in the future. More precisely, states have thefor
removed the lastyp. 1 jobs from the large scheduled chains.(A, P), where
Now, in the general case we remove ifigyp, 1)1 jobs e Ais a set we call theactive set This is the set
from each dag that arecheduledlast (ties are broken of currently active jobs, i.e. the jobs which can be
arbitrarily). In step 2 of the chains case, we shifted jobs to gcheduled in the next time step.
earlier in the schedule as long as at ldast 1 of the chains
were still active. To be able to shift jobs in the general case ® P is a vector of lengttD, whose entries either contain
we now needn(D + 1) dags active. Step 3 is identical; we ~ jobs or are empty. These are thast jobs the jobs
reinsert the jobs from the dags that are still active at tise fir ~ that have been scheduled within the IBstime steps.
hole we cannot fill. EssentiallyP is a ‘window’ into the lastD time steps

Now at step 4 in the general case, there are at least ©f the schedule.

m(D + 1) blue dags, each containing the same number The following operations define both the legal transi-

of jobs, and several smallered dags (the ones which tions hetween states and the scheduling/status updatirey do

2. Merging. Apply the Merge Theorem to schedule the
chains we set aside during the dynamic program.

5

1. Schedule a jolj in A. Shift the windowP one time tion delay constraints, it sometimes pays to execute a job
step forward, yieldindgPhew, Whose last entry ig. Itis multiple times on different processors. This is especially
also possible to not schedule any job (this is the onlyrue if many other jobs depend on this one job, and it is time-
possibility if the active set is empty). In that cafgew CONsuming to move data from one processor to another.
will have an empty last entry. The simplest example is an out-tree consisting of three

. L . nodes: a root with two children. The delay between the root

2. .Use the- information |rP_to determlqe the qu of and its children is 0 if they run on the same processor, and
jOrE)S (;NT'Ch fbecon;e_ available hon t_h|s nlew t|r(;1e ;Fe"lo otherwise. Suppose we want to schedule this instance on
Ert1ee deei;;/yssa:(;nl;;uilégc?g]ttsheﬁf](lf;:t%%sieng.is N0 processors. Clearly, without duplication, the shortes

. . T solution uses three time steps (schedule all three jobs on
sufficient to make this determination. one processor). However, if we execute the root on both

3. SetAnewequal to the new set of active jolf#,\ {j})U processors, we can execute both children in the next time
B. The new state iAnew, Pnew)- step, resulting in a schedule of length two.
While duplication is clearly useful, it does not appear

_ Creating an optimal schedule now corresponds to findy completely arbitrary ways in a schedule. In fact, there
ing a shortest path from tretart state(A, P) (whereA con- 4ays exists an optimal schedule in which no two copies
sists of the roots of the[2+ 1 largest chains, anB is an ¢ 5 job are executed more thahtime steps apart. To
empty vector), to arend statelone whereA is empty, and geq this, consider a job that is executed twice, where the

all jobs inP have no children that are not alsofi. second execution is more th&ntime steps after the first.
The above dynamic program is enough to schedul@ ot case we can just delete the second one, since all its

chains on a single processon & 1) in polynomial time. cpijgren were already available at the time the second copy
This is because we can bound the size of the activé\set ;o5 executed.

The setA can contain at most one job per chain, since no
two jobs from the same chain can be active atthe same timgs oyerview of the Algorithm

Since the size oA is therefore limited by B + 1, there are Wi wrn to th heduli lqorithm for t Th
only O(n?P+1) possible values foA. Since there ar®(nP) ¢ how turn 1o the scheduling aigoriinm for trees. - the

possible values foP, the number of states is bounded byalgorlthm consists of the same two .ph:'ylses as thg algorithm
O(n®+1). This bound is polynomial, and therefore we Car1‘or chains given in the previous section: a dynamic program

find the optimal schedule for the largedd 2 1 chains in and a merging step. The states in our dynamic program will
polynomial time be similar to the ones in the previous section. They are

The second step (Merging) in our algorithm for chainé)f the form <A’§>’ wthe_reA ‘30’.“3'”3,1.0?3 tarl]vallalzflpetpn all
is quite simple. Suppose the resulting schedule for th%trocessfct)rr]s anh cdonl ans a windownto the pasb ime
largest D + 1 chains has lengtii. We then apply the S ep_S”:) te sc.t.e ule. in th . . i
Merge Theorem to construct a schedule of all jobs of length € transitions given In e previous section are no
max{n,T}. SinceT was a lower-bound on the optimal so-general enough_ o sch_edule trees, since the number of
lution for the whole problem, the schedule must be optimafom_:urrently active]qbs 1A may grow without bqund, €9,

As a side note, we can reduce the size of the state spa{tzé‘ JOb. has many chﬂdreq that all become avaﬂable at the
for chains and one processoi@n2>+1). Each state stores same time. If the size ok is not bounded, the size of our
for each chain, the last job executed and how long ago it W%%_

executed. This is enough information to determdnandP is problem, we fimit the maximum ”“_mbef of jobs An
as above. to be 2n(D + 1) — 1. Whenever a transition increases the

number of active jobs above that number, st asidethe

. jobs from all but the largestraD + 1) — 1 trees rooted at

4 TheAlgorithm for Trees these potentially active jobs. In the Merging step we will
In this section we give a polynomial time algorithm forinclude the jobs from these set aside trees into the schedule
scheduling jobs with tree precedence constraints, separat To simplify the presentation, we introduce the notion of
delays, and possible duplication of jobs. We assume thtite statusof a job. This status is not explicitly stored in the
the precedence graghforms a collection of out-trees. By state, but is useful when we think about how the dynamic
reversing the time-line, the algorithm can also be used frogram creates a schedule. We say a job is:

schedule a collection of in-trees. N .
e active, if it can be scheduled right away @fl proces-

41 Noteson Job Duplication sors, since all delays from its predecessor have elapsed,

Before we turn to the actual algorithm, we will briefly dis- e waiting, if it has not been scheduled, and there is
cuss job duplication. When scheduling jobs under separa- a processor on which it cannot run yet (because its

6

1]4] 1]4
< 2|3 >"F§ <2 3 >
. 5 - = F%,
Schedule: 5,-
A, = {5} As =1{6,7,...,.16}

(Set aside on this transition)

Figure 2:Example of an input tree and a state transition fi@m, P2) to (As, P3). The maximum delafD is 2 and all delay$; j » are equal to 2. There
are two machinemf= 2). The active set, consists of only job 5, as it is the only one available. Thedition schedules job 5 on the first machine, and
nothing on the second machine. Jobs 6 through 18 all becoailalate, but only (D + 1) — 1= 11 can be imAz, so jobs 17 and 18, the ones with the
fewest number of jobs in their subtree, are set aside, aldthgtie jobs in their subtrees. The new activeAets {6,7,...,16}.

predecessor has not been executed yet, or not long. Using the information i, determine the set of jol®
enough ago), that onthis step become available all processors,

o and have not been executed before, andAgg}, to
e scheduled, if it has already been scheduled on some (A\ {j1,j2,---,im}) UB.

processor, or
4. If Apewhas more thanr®(D + 1) — 1 elements, remove

e setaside, if the dynamic program has decided to ignore all but the 2n(D + 1) — 1 ‘largest’ jobs from the set,
it, and will be scheduled only later in the Merging step. where ‘largest’ is measured in terms of the size of the
sub-tree rooted at the job. These removed jobs, along

4.3 A new dynamic program with all the jobs contained in their sub-trees, st
The state space contains all paifsP), whereA is the ac- aside They will be dealt with in the Merging phase.
tive set, limited to (D + 1) — 1 jobs, andP is anmx D
matrix recording the lasb time steps of the schedule. This
means that we hav®(n®mP+2M-1) states in the dynamic

program, making finding a shortest path possible in po'X"orm (A,P) whereA is empty, and all jobs ifP either have

nomial time. " . no children, or their children are alsofh
The state transitions are more complex than in the
. . : As we traverse the path from a start state to an end state,
algorithm from the previous section. An example stat . - .
e status of each job evolves as in figure 3. It is not hard

transition can be found in figure 2. If we are at.as(aﬁt,eP), to see that at the end of the path, every job is classified as
we can go to a new stat@new, Prew), as follows: eitherscheduledr set aside

The start stateof the dynamic program iAo, Po),
whereAg consists of the roots of the®D + 1) — 1 largest
trees, andP is the empty matrix. Thend statedave the

1. Choose jobsji, j2,...,jm to be executed on then .
processors. Set their statusscheduled Each jobj; 44 Merging and Correctness
can be one of the following: A path of lengthT from a start state to an end state in the
state-space defined above gives a schedule of lehdt
e nothing (no job scheduled) part of the tree. We need to show how the jales aside
e any job in the seA by the path can be merged back into the schedule. In the
e any job in the matrixP that is executable on pro- .
cessol at the current time step (job duplication) wartin
e any child of a job in matri¥P that is executable on l
processor (but not all processors) at the current .
time step (partially available job) aCth\
2. The new matriPey is P shifted forward by one row, /
with the new last rowju, jz,. .., jm). All jobs that were scheduled set aside
in the first row ofP (the one that got shifted out) that
are still in Pyew (due to job duplication) are removed Figure 3:The life of a job.

from Phew

remainder of this section, we will show two lemmas. The has no unnecessary job duplications (jobs whose removal

first lemma will establish that we can find a path in the statfrom the schedule would maintain feasibility).

space that can be converted into an optimal schedule via We will proceed along the schedule, and at #ath

Merging. The second lemma will show how to perform thistep take the state transition frogr_1 = (A, P) to gx that

Merging step. corresponds to executing the jobs in théh time slice of
Before stating the lemmas, we need three definition& that are inPUUg, ,. There must be such a transition,

First, we define the seélq for a stateq, which contains all because for every job iRUU,, , thatis executed ifat that

the jobs whichmustappear after statgin any legal schedule time slice, it is either imA, or its parent appears in at the

(these are the jobs which aewailable or waiting at that same position as it appearsSifeasily shown by induction).

state). This set is completely determined by the infornmatio It remains to show that the so constructed path is

contained infA, P). admissible. Note that when we are at stgiealong the
path, then all jobs ilJg, have to appear after time slat
DEFINITION 4.1. (DEPENDENTJOBS) For a state = in the schedule&S. Because we are executing ‘down’ the

(A,P), letUg contain all jobs in A, all descendants of jobs intrees, and we never add to a gf to obtainUg,,, we have
A, and all descendants of jobs in P that are not yet availablgqx C Uy, if x>y. So, ifx >y, and a job irJg,_, appears
on all processors, and that are not in P themselés. in Sat time stepy (and so is not iJg, by construction), it
will not be inUg,. This means that none of the jobslilg,
can appear at or before tleh time step irS, and therefore
all appear after it. But this implie§Uq,|/m] < Chax— X,
which shows that the path is admissibile.

Now we define the deadline of statigto be the latest
possible point on a path whegecan appear so that all the
dependent jobs off can still fit into the schedule without
making it longer thalC;, .

DEFINITION 4.2. (DEADLINE) Let g= (A,P) be a state. Nowthatwe haveaschedule for pgrt of the tree, we need t(_)
i] i Ug| merge the jobs we set aside back into the schedule. Here is
Thedeadlineof g is the vaIue{Cmax— TJ - u where we use the Merge Theorem.

In any path in state space that corresponds to an opti
schedule, every state must appear before its deadline.
formalize this in a definition. op

r:)%MI\AA 4.2. (MERGING) Given an admissible path, an
timal schedule can be constructed in tim@?).

DEFINITION 4.3. (ADMISSIBLE PATH) A path in the state Proof: An admissible path can be directly converted into a

space from a start state to an end state is caliddhissible scheduleS of the same length that contains all but the jobs

iff for all x from 0 to G, the x-th state on the path has awhich wereset aside We now show how to incorporate the

deadline of at least X1 set aside jobs into the schedule, while making it not longer
than the optimal schedule.

We will now show that an admissible path always exists, We do this by traversing the path from its end to its
that it can be found in polynomial time, and how to converpeginning. When we reach a stakeat which jobs were set
itinto an optimal schedule. aside, we include them into the schedule as follows. Since

trees were set aside at that state, there mustifp2- 1) — 1
LEMMA 4.1. (D{,NAM'C PRO,GR_AM CORRECTNESY larger trees rooted at the jobsdg's active set. The jobs in
There always exists an admissible path that can be found {Rege “active’ trees are already in the schedule, sincereith
polynomial time. they were scheduled by the admissible path, or they were set

Proof: An admissible path, if it exists, can easily beas'de later, in which case we a_lrea_ldy merged them into the
chedule (recall we are traversing it backwards).

found by breadth-first search through the state space of tRE This means we can apply the Merge Theorem to merge

dynamic program we just constructed. The deadline of ea
y prog J ?ﬂe set aside trees into the schedule. Since we started with
state can be determined beforenAnd\t depthx of the - .
X an admissible path, we know that the number of jobs not yet
search, we extend the search only to states with a deadlin . .
scheduleat gy does not exceeth- (Ci . — X), the available

of at leastx+- 1. room in the schedule. Therefore, merging the set aside

Now we show that such a path always exists. We Sho¥‘r’ees does not make the schedule longer than the optimal

this by constructing an admissible .-, Qcx) ;
S by : 9 Palto, -, Uiy t'schedule. We repeat this procedure for all states and obtain
using an optimal schedulgas a template. We assume tha X
an optimal schedule.

3Note that we have to knoW:,,, to compute the deadline. But since Since applying the Merge Theorem for every state costs

Ctax < ND, we can find the value using binary search with a multipkeati linear time, and there might be uprtates on the path, the
increase oD(logn) in running time. total time for the merging operation@®(n?). O

8

5 Conclusion

In this paper we have given the first polynomial-time multi- 3]
processor scheduling algorithm for tree-based precedenée
constraints that impose precedence and communication d(F4]

lays.

As opposed to previous results, separation delays

¢ ;. ap can depend on jobs and machines, and can have val-
ues other than 0 and 1, as long as they are bounded by [g]
constantD. That makes our algorithm more general and

applicable to the instruction scheduling for VLIW architec

tures. The potentially long running time of the algorithm

ware is compiled only once and an optimal performance is

required of the resulting system.

The algorithm for trees uses an unconventional dynamig-,
program, where partial paths in state space do not corre-
spond to partial schedules, but rather have to be transtbrme
into a solution during the Merging phase. The running time[g]
of our algorithm depends exponentially on the number of

processorsn and maximum delayp, making it impracti-

cal for large values of these constants. However, it is the

dynamic programming part of the algorithm that incurs this 0]
runtime; the merging step only tak€gn?) time. This sug-
gests using an heuristic instead of the optimal dynamic pr(glo]
gram to produce a path through the state space. The Merge
Theorem can then be used to incorporate the remaining trees

into the schedule. Finding good heuristics, from both a thg;;

oretical and an experimental point of view, is a very inter-
esting open problem. We plan to continue our work in this

direction.

[12]

Another intriguing question is whether our techniques
can be extended to the case whéris an arbitrary dag. The
Merge Theorem still holds for these inputs. But our dynamic
program critically uses the fact that once a branch occurLl,3]
the subtrees are completely independent. A more compli-
cated dynamic program might get around this problem with-
out a large increase in the size of the state space. As alream]
mentioned in the introduction, this is very likely a hardipro
lem, since an algorithm for just the single-processor case
with D = 3 can be used to solve the famous open 3-processas]

scheduling problem.

Acknowledgments

[16]

[17]

We would like to thank John Dunagan, Ryan O’Donnell and

April Rasala for their helpful comments on this paper.
References

[1] David Bernstein and Izidor Gertner. Scheduling expicss

on a pipelined processor with a maximal delay of one cycle.
ACM Transactions on Programming Languages and Systems
11(1):57-66, January 1989.

[2] P. Chrétienne and C. Picouleau. Scheduling with comimun

cation delays: A survey. In P. Chrétienne, Jr. E. G. Coffman

9

J. K. Lenstra, and Z. Liu, editor§cheduling Theory and its
Applications pages 65-90. John Wiley & Sons Ltd, 1995.
E.G. Coffman, Jr. and R.L. Graham. Optimal sequencing fo
two-processor systemécta Informatica 1:200-213, 1972.
Daniel W. Engels. Scheduling for Hardware-Software Par-
titioning in Embedded System DesigrPhD thesis, Mas-
sachusetts Institute of Technology, 2000.

Lucian Finta and Zhen Liu. Single machine scheduling
subject to precedence delayRAMATH: Discrete Applied
Mathematics and Combinatorial Operations Research and
Computer Scienc&0, 1996.

is acceptable to embedded system designers since the soff] Lucian Finta, Zhen Liu, loannis Milis, and Evripidis Bas.

Scheduling UET-UCT series—parallel graphs on two proces-
sors. Theoretical Computer Scienc&62(2):323-340, Au-
gust 1996.

Michael R. Garey and David S. JohnsorComputers and
Intractability: A Guide to the Theory of NP-Completeness
Freeman, 1979.

R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rin-
nooy Kan. Optimization and approximation in deterministic
sequencing and scheduling: A Survefnnals of Discrete
Mathematics5:287-326, 1979.

Intel Corporation. The 1A-64 Architecture Software Devel-
oper's Manua) January 2000.

Hermann Jung, Lefteris Kirousis, and Paul Spirakiswep
bounds and efficient algorithms for multiprocessor schedul
ing of dags with communication delays. Rroceedings of
SPAA pages 254-264, 1989.

] Jan Karel Lenstra, Marinus Veldhorst, and Bart Veltma@he

complexity of scheduling trees with communication delays.
Journal of Algorithms20(1):157-173, January 1996.

Rolf H. Mdhring and Markus W. Schaffter. A simple apgr
imation algorithm for scheduling forests with unit prodegs
times and zero-one communication delays. Technical Report
506, Technische Universitat Berlin, Germany, 1995.
Christos H. Papadimitriou and Mihalis Yannakakis. ©pt
mization, approximation, and complexity classes (extdnde
abstract). IrProceedings of the Twentieth Annual ACM Sym-
posium on Theory of Computingages 229-234, May 1988.
C. Picouleau. Etude de problemes les systemes distrubés
PhD thesis, Univ. Pierre et Madame Curie, Paris, France,
1992.

Texas Instruments. TMS320C6000 Programmer’'s Guide
March 2000.

J. D. Ullman.NP-complete scheduling problem3dournal of
Computer and System Scienct®(3):384—-393, June 1975.
Theodora A. Varvarigou, Vwani P. Roychowdhury, Thomas
Kailath, and Eugene Lawler. Scheduling in and out forests in
the presence of communication delay€EE Transactions
on Parallel and Distributed System#(10):1065-1074, Oc-
tober 1996.

