
Opportunities for Automating Email Processing: A
Need-Finding Study

Soya Park
MIT CSAIL

soya@mit.edu

Amy X. Zhang
MIT CSAIL
axz@mit.edu

Luke S. Murray
MIT CSAIL

lsmurray@mit.edu

David R. Karger
MIT CSAIL

karger@mit.edu

ABSTRACT
Email management consumes significant effort from senders
and recipients. Some of this work might be automatable. We
performed a mixed-methods need-finding study to learn: (i)
what sort of automatic email handling users want, and (ii)
what kinds of information and computation are needed to
support that automation. Our investigation included a de-
sign workshop to identify categories of needs, a survey to
better understand those categories, and a classification of ex-
isting email automation software to determine which needs
have been addressed. Our results highlight the need for: a
richer data model for rules, more ways to manage attention,
leveraging internal and external email context, complex pro-
cessing such as response aggregation, and affordances for
senders. To further investigate our findings, we developed a
platform for authoring small scripts over a user’s inbox. Of
the automations found in our studies, half are impossible in
popular email clients, motivating new design directions.

CCS CONCEPTS
• Social and professional topics → Automation; • In-
formation systems → Email;

KEYWORDS
email; task management; personal information management

ACM Reference Format:
Soya Park, Amy X. Zhang, Luke S. Murray, and David R. Karger.
2019. Opportunities for Automating Email Processing: A Need-
Finding Study. In CHI Conference on Human Factors in Computing
Systems Proceedings (CHI 2019), May 4–9, 2019, Glasgow, Scotland
UK. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3290605.3300604

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
CHI 2019, May 4–9, 2019, Glasgow, Scotland UK
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5970-2/19/05.
https://doi.org/10.1145/3290605.3300604

1 INTRODUCTION
In the 50 years since email was invented, it has become
not only a ubiquitous tool for private and group commu-
nication [6, 32, 58] but also a place for managing personal
information [10], activities and events [5, 56], and tasks [12].
As a result, email today has become closely associated with
work, and for many people, a majority of their workday is
spent within email [21, 56].
Given the workload it generates, there has been a long-

standing desire to automate various aspects of email process-
ing, reaching at least as far back as procmail, released in
1990, which let authors write regular-expression scripts to
filter email into chosen folders. Over time, richer automation
functionalities have emerged. For example, Boomerang [8]
permits users to defer received emails, pushing them off to
be re-received at a later date. Different apps offer different
automation features, forcing a user to juggle a suite of 3rd
party plugins to manage all their needs, rely on a human
assistant, or simply do everything manually [5].

Approach. In this work, we sought to explore the breadth
of needs that users have regarding automating their email
experience, with the eventual goal of designing a useful,
general purpose email automation system. We conducted
this work through a series of three distinct need-finding
probes as shown in Table 1. First, we aimed to gather from a
broad audience of users wishful thinking ideas for automat-
ing email in their own inboxes. From a formative design
workshop with 13 email users who were asked to brainstorm
commands in natural language that they would like to exe-
cute, we developed a series of common categories of needs,
including attention management and prioritization, filing
and labeling, automated content processing, and rules based
on contextual modes. These categories informed the design
of a survey that we distributed to 77 additional people. The
survey contained sections dedicated to each category with
open-ended prompts asking for more ideas for automations
users would like to perform.

Moving from users’ ideas regarding automation, we next
sought to identify the ways in which users were already au-
tomating aspects of their email to see which needs have been
addressed. As automation capabilities available to end users

https://doi.org/10.1145/3290605.3300604
https://doi.org/10.1145/3290605.3300604
https://doi.org/10.1145/3290605.3300604

CHI 2019, May 4–9, 2019, Glasgow, Scotland UK S. Park et al.

in many email clients are limited, we instead examined au-
tomations implemented by programmers, who have greater
ability to carry out their desires for personalized automation.
We conducted this probe by mining public repositories on
Github that make use of the IMAP (Internet Message Ac-
cess Protocol) API. From around 500 scripts, we developed a
taxonomy of 8 types of automated email processing tools.

Even for programmers, writing a standalone mail automa-
tion program is a substantial task. This could deter many
automations from ever being created. Therefore, informed by
these two probes, we developed a platform called YouPS that
makes it possible for users to write, test, debug, save, and
continually execute simple Python scripts that can manipu-
late emails arriving in their inbox. YouPS exposes a small set
of Python functions for basic actions such as accessing an
email field or moving an email to a particular folder, hiding
all the complexity of turning these function calls into invo-
cations of the IMAP API to manipulate the users’ email on
their server. This platform served as a probe into what kinds
of scripts email users would write given the opportunity to
easily test and run them over their own email. We invited 12
subjects to write and execute scripts on YouPS for a week;
we then examined their scripts and interviewed them about
their experiences.

Results. Our design workshop identified several common
categories of needs in email automation, which were eluci-
dated through our later studies. The first was a richer data
model for an email to capture latent structured information
such as priority, topic, deadline, and need for a reply. The
next was automation leveraging the context of an email, both
within and beyond the email inbox. Some examples include
the time of day, characteristics of the email thread (e.g., pre-
vious replies by a recipient, number or rate of responses by
others), and the state of the recipient (e.g., busy, sleeping, in
the office, on vacation). These attributes and contextual infor-
mation are needed to drive automations that help recipients
with attention management of email through the configu-
ration of different forms of notifications and presentations
of messages. In an interesting inversion, we also found that
senders wanted to leverage rich data and context to reduce
load on recipients, for example by automatically delaying an
email from being sent until the recipient is in a not-busy
context or at a suitable location. Finally, users sought auto-
mated content processing, for example to aggregate replies
to an invitation or to extract attached photos into a relevant
storage location.

From these findings, we consider how email systems could
better allow users to automate and customize email handling.
We found that many users’ needs required information and
affordances that are not currently available in email sys-
tems. From our three studies, 47%, 90%, and 40% respectively

Probe Method
of

Participants
or Scripts

% of Needs
Impossible to

Express in
Current Interfaces

Open-ended survey 77 47.1%
Large-scale email
scripts review 499 90.6%

Email programming
deployment 12 40.4%

Table 1: Three different probes of email need-finding.

could not be expressed using common email clients today,
for instance with Gmail and Outlook tools for writing fil-
ter rules. Thus, meeting those needs requires new features
within email systems, such as expanding email’s data model
to add latent structure, as well as incorporating more context.
In addition, systems need new mechanisms for users to be
able to express how they want emails to be presented and
processed.
On the other hand, we also found that over half of the

automation examples from the survey and the deployment
of YouPS could already be implemented in today’s email sys-
tems, as shown in Table 1. However, some implementations
are not straightforward, involving hacks that repurpose ex-
isting email features like the read/unread signal. This lack
of usage coupled with workarounds using existing features
suggest that email users are not satisfied with existing tools
for automation in current email interfaces. We touch on fu-
ture work towards designing interfaces for general purpose
email automation authoring.

2 RELATEDWORK
Email management has been explored through many differ-
ent lenses by the HCI community. Some of the categories
identified in our probes have been touched on by prior work.

Organizing Email. While there has been substantial research
on email users, much of it has focused on organization and re-
trieval needs rather than automation needs. Email users view
email as a repository for personal information management
(PIM) [55], where they have different strategies for retrieving
information [3, 40, 47, 49, 51]. For instance, users frequently
send emails to themselves as a way to store information [10].
Szostek et al. [50] identified six needs for information or-
ganization: email annotation, reliable structure, prioritizing
emails, informative overview, flexible sorting, and efficient
search. Finally, others study usage beyond PIM, including
shared inboxes jointly accessed by a team [39]. Our research
builds upon this work by identifying additional needs as well

Opportunities for Automating Email Processing: A Need-Finding Study CHI 2019, May 4–9, 2019, Glasgow, Scotland UK

as considering how systems could address such needs, given
that current email clients do not fully address them.

Systems for Triaging Messages. When it comes to existing
automations, automatic classification is one that is widely
offered in email clients. Many email clients automatically
classify and prioritize emails using machine learning tech-
niques [25, 29, 57]. Beyond spam classification, clients like
Gmail offer additional classifications by default such as “So-
cial” or “Promotions”. However, users may wish to classify
their emails in a different or more fine-grained manner than
the default classes email clients provide. So many clients pro-
vide simple explicit rule-authoring interfaces for end-users
and programmers [23, 44]; for example, users can specify
rules for placing messages in folders.
While most existing filter interfaces are focused on ex-

plicit metadata within messages, other ways of classification
and sorting of messages have been proposed [15, 42, 50].
For instance, research has found that email users tend to see
messages as tasks and have a desire to conceptualize email as
a task management tool [4, 13, 27]. In this work, we provide
empirical examples of the kinds of alternative classifications,
prioritizations, and actions following from these that email
users would like, in order to guide the design of future sys-
tems. We also demonstrate how desired classifications and
priorities can be time-varying based on the user’s state.

Automation for Recipients & Senders. Email users are both
senders and recipients, and systems provide automation ca-
pabilities addressing both roles. For instance, email clients
provide two types of reminders. Email users can set a re-
minder for messages to get back to it later (reminder as a
recipient) and remind their recipients to solicit responses
(reminder as a sender) [1, 8, 18, 19, 34]. There are also plat-
forms that allow users to write simple triggers and actions
to integrate with different applications [26, 37].
As recipients, users want to easily draft responses [28],

automatically adjust views for different email data [16], and
organize clutteredmessages [17]. Email users also want to ag-
gregate replies to manage bulk emails [30] and automatically
process responses using pre-defined queries [36]. Senders
on the other hand would like to hint to their recipients how
to respond [20]. Borenstein et al. [9] suggested Tcl language-
enabled email to deliver executable contents (e.g., a prompt
window) to recipients. In this work, we draw from and build
upon this prior work to explore the general space of email
automation for both email recipients and senders.

3 PROBE 1: WISHFUL THINKING
To identify common categories of desired automations that
are difficult or impossible to recreate with current email
inbox technology, we began by asking email users to come up
with ideas for ways they would like to automate their email

that they were not already doing. As open-ended articulation
of needs can be challenging for users, we began with a small,
in-person, formative workshop to develop initial categories
of needs that then informed the structure, questions, and
examples in a survey that we distributed at a larger scale.
The survey aimed to determine whether the needs identified
in the workshop would be reflected in a broader and more
diverse population as well as gain deeper insight into user
desires for automation.

Formative Design Workshop. We conducted a design work-
shop with 13 participants (10 females, 3 males). Subjects were
all computer science students with knowledge of program-
ming. We asked them to use natural language or pseudocode
to write email rules that they would like to execute on their
inbox as either senders or receivers of email, invoking any
methods or objects that they could imagine existing. Over
the course of 45 minutes, participants came up with 42 dif-
ferent rules. Afterwards, the authors as a group analyzed the
rules that participants generated and identified five major
categories of needs.

Survey. Based on the needs identified from the design work-
shop, we designed a survey to explore each category of needs
in more depth. We asked open-ended questions about how
the user would like to automate their email. To prompt users
to think outside the realm of what is currently possible but
also be explicit in their descriptions, we told participants to
imagine using a smart robot that can organize their email and
change how it is presented to them. The questions offered
rules drawn from the workshop as examples. The survey
was structured into eight randomly ordered sections based
on the needs identified in the workshop:

• Triaging and prioritizing incoming emails
• Moving incoming emails to different locations
• Labeling emails with richer data as sender or receiver
• Sending email only at a particular time or context
• Sending email to only the right people
• Different email modes that can be toggled (vacation, etc.)
• Altering the presentation of emails in the inbox
• Aggregating or processing multiple emails or email replies

The survey was distributed through various mailing lists
within a private university and by word of mouth. It was
taken by 77 people (31 females, 41 males, 1 other, rest unan-
swered). The median age range was 20–29. While most of
our respondents were affiliated with the university, 34.5%
of our respondents were not students or faculty. In addi-
tion, 48% of respondents did not have technical backgrounds,
instead working as administrative staff or as students in non-
technical majors. All of our participants fall into the general
category of “knowledge workers”, an important category
that has been the focus of much study [11, 46].

CHI 2019, May 4–9, 2019, Glasgow, Scotland UK S. Park et al.

We used a grounded theory approach [48] to identify
themes in the survey answers. Two authors individually
open-coded the responses, then discussed them after the
fact, merging similar codes and grouping codes into distinct
themes. To validate the merged codes, we selected 10 survey
participants at random, and the two authors independently
re-labeled each of their survey responses using the merged
codes. From the 90 responses that were coded, we found an
inter-rater reliability (IRR) of 79% using Cohen’s κ.

Results
We describe the main categories of needs uncovered in the
workshop and the analysis of the different survey responses
within each category. In the survey, we compared responses
between academics and non-academics, as well as between
people with and without technical backgrounds, overall find-
ing no major differences between these groups. Thus, we
present survey results across all participants.

Richer Data Models. Many of the email rules that partici-
pants devised required access to latent information about the
message that was not explicitly given in the email headers
or in attributes of each message like sender or date. From
the survey, we identified the following desired latent data:
progress (e.g., pending, done), deadline, topic, priority, task.
Users desired automatic annotation of messages with these
latent attributes that could be used to drive rules. For exam-
ple, there were rules such as: “If the content of the
message seems like it requires an action, label
it as ‘pending’” and “If the email has a deadline,
tag the deadline”.
Because prioritization was a commonly articulated need

in the workshop, in the survey we asked users to describe
attributes that signal priority specifically. Respondents used
information about the sender, assigning high priority for
messages from important contacts and lowering the priority
of automated or blast emails. Respondents also wanted to
prioritize by the number of follow-up tasks, so a message
requiring no action (e.g., an FYI) would have a lower prior-
ity. Finally, 14% of users wanted to take into account their
previous interactions with a person or organization when
prioritizing an email. For example, some respondents wanted
to have emails marked as high priority if they had sent re-
sponses to the last several emails from the same sender and
low priority if they had not opened or sent a response.

Using Internal/External Context. While some attributes
of an email such as deadline can be determined by examining
the message in question, others require access to a broader
context [2, 53] around the message. This includes both inter-
nal context involving other messages within the inbox of the
sender or receiver generally, as well as external context [60]
regarding the state of the user and the world (which is often

time-varying). For example, the rule “Send a message if I
haven’t touched base for a month” requires interaction
history with the recipient of the message (internal context),
as mentioned in the prior category. Another state that was
often referenced was whether a recipient had replied to the
original message: “If the recipient hasn’t replied
for n days, send them a reminder”.

In contrast, “Don’t notify emails from these campus
mailing lists during my summer vacation” requires
external context that involves determining whether the ar-
rival time of an email is during a user’s summer vacation.
The external context may also change more frequently, for
instance when one respondent said: “I don’t think priority is
a consistent definition. For 30-40 hours per week, my research,
colleagues, advisors are high on my priorities. However, out-
side of that time, my priorities shift around a little: my side
project becomes my focus...one idea is to have these incoming
messages reflect this ebb and flow of priorities.” Motivated
by several rules during the workshop referencing different
external contexts, we asked survey participants to come up
with email modes that could trigger different behavior in
their inbox. Respondents thought of many types of modes:

conference, work, vacation, home/family, busy,
study, distraction, class, important, person, block-
/harassment, waiting, application, sleep, week-
end, evening, summer, semester, daytime, emotion,
recreation, meeting, ignore

Each of these modes came with distinct rules for behav-
ior. For example, a user’s conference mode had a rule that
highlighted only conference-related emails (e.g., meet-ups,
announcements). The emotion mode came from a user who
proposed having different modes that would kick in depend-
ing on their mood, such as when they felt anxious or tired.

AttentionManagement. Many users’ needs for richer data
models and context related to the end goal of managing at-
tention as a recipient of email. Users described many ways to
leverage these priorities to change the notification behavior
or presentation of emails, including (automatically) marking
them as read or unread, moving them to other less or more
attended folders, hiding emails until a particular time, and
bringing them to the top of the inbox or pushing them farther
down. The way users repurposed interface affordances for at-
tention management—for example, marking a read message
as unread in order to make it stand out—raises the question
of whether there might be other attention-getting techniques
that would be a better fit.

How to configure push notifications also arose frequently,
reflecting that email (once an asynchronous communication
medium) has taken on some attributes of more synchronous
communications such as instant messaging. Users overall did
not want to be notified about every email, but did want to

Opportunities for Automating Email Processing: A Need-Finding Study CHI 2019, May 4–9, 2019, Glasgow, Scotland UK

be immediately notified about certain prioritized emails [35].
Users considered a variety of push notification channels such
as buzzing the phone and sending SMSmessages. Other users
came up with automatic rules to mark-as-read emails that
should not trigger such notifications. Still others wanted to
mute notifications entirely or receive digest notifications
after they had accumulated for a while instead of for every
email. Examples of notification rules users wrote include:

• Don’t notify me about emails from these campus
mailing lists during my summer vacation

• If this sender sends me too many emails within a
short period, mute emails from the sender

Sender Affordances. While email research generally fo-
cuses on users reducing their own email workload, evidence
shows that users care significantly about the impact their
email sending has on others’ workloads, and seek ways to
reduce that impact [58]. Some subjects asked for a reaction
or upvote feature to signal that they saw a message with-
out burdening the recipient with another response. As an-
other example, senders wanted to be able to set emails to
expire at a certain time or when other conditions were met:
“For event announcement emails, self-destruct the
emails from recipients’ inbox after the event”.
Context regarding a recipient’s availability or responsive-
ness [52] could also be used by a sender to decide when
or how to send a message. Unfortunately, today, such con-
text is often delivered to senders in a catchall fashion using
auto-replies (e.g., out-of-office replies), which forces an ex-
tra message. For instance, one person wanted to send an
automatic response to incoming emails if their inbox had
surpassed a certain number of unread emails.

As an additional way to reduce load on recipients, senders
wanted a way to target only the right recipient subset of
a mailing list. In particular, in the workshop there was a
high demand for querying particular groups of recipients
(e.g., people I have exchanged email with more than three
times, people who reside in a particular city, people in my
address book). These queries typically required metadata
from previous emails (internal context) or even from 3rd
party applications such as a calendar (external context):

• If I reply to an email thread, send my reply only
to those who expressed interest

• Send only to people in lab right now because I
need a stapler

Recognizing that recipients may not always be paying
attention to the group thread or mailing list, several users
also wanted the tagging feature common in social media to
signal importance to certain recipients.

Altering Inbox Presentation. In addition to the existing
capabilities in email clients for managing presentation, such

as moving, hiding, or sorting emails, we asked survey par-
ticipants to consider potential new presentations of their
inbox [14, 22, 54]. We found many interested in alternative
views for email threading. Participants suggested different
presentations such as a tree-like network visualization of
replies per email thread, echoing prior work [45]. Partici-
pants also wanted to break up long messages, group together
short messages, or group by different attributes like sender.
One participant said: “In Slack, you can send individual sen-
tences/thoughts one-by-one as you’re typing a larger message,
so it’s easier to divide big thoughts into bite-sized chunks. I
mean, who wants to send a one-line email?” Connected to
message segmentation, another participant said she’d like
to be able to reference or quote from prior emails so that
recipients could follow the source.

Content Processing and Aggregation. Finally, we found
many rules regarding complex processing of content within
emails in order to make decisions about forwarding emails to
other people [33] or extracting information to send to other
platforms or store in other formats. For instance, several
subjects said that they wanted to extract event information to
store within a calendar application. Other examples include:

• If I forward this email to a certain email address,
parse the content and add it as a note

• If a message contains attachments, add them to
one of my cloud folders

Survey respondents additionally came up with ideas for
response aggregation [30]. For example, when scheduling a
meeting, attendees can either respond to everyone, or to
the sender, but a sender cannot collectively aggregate re-
sponses into a poll. Respondents said they would like to see
a summary of a group of responses rather than a series of
different emails containing all of the original responses. Also,
others mentioned interest in some sort of chart, calendar, or
other aggregate visualization of responses. Besides the novel
presentation required, this demands a richer data model for
email to represent the data to be aggregated.

4 PROBE 2: EXISTING AUTOMATION SOFTWARE
Our second probe aimed to identify email automation needs
that (programmer) users have taken into their own hands to
address. To do so, we mined Github to identify and examine
code written to automate email processing. In contrast to
our first probe which only called for (lightweight) wishful
thinking, this probe allows us to identify needs that were
important enough to actually implement. Of course, our
focus on code means our user population has narrowed to
programmers. Probe 1 did suggest that overall, programmers
and non-programmers recognize similar needs, so seeing
what programmers implemented may suggest automations
of value to non-programmers. We also did find that Probe 2

CHI 2019, May 4–9, 2019, Glasgow, Scotland UK S. Park et al.

Category Count
Triggering actions based on content 134
Altering default presentation of email client 118
Archiving emails to new locations 110
Email as middleware 48
Customized notifications 39
Email analytics and productivity tools 25
Detecting and removing spam 25
Inbox cleanup and “Inbox Zero” 23

Table 2: 8 major functions of email scripts on Github.

revealed some needs that a non-programmer may not have
or may not realize can be resolved by automation.

Method. On Github, we searched for code that made use
of IMAP (Internet Message Access Protocol), the standard
protocol for connecting to a user’s mail-server account and
accessing and manipulating email on it. We focused our
search to code written in Python, which has a built in library
called imaplib. We also included searches for two particu-
larly popular wrapper libraries for imaplib called imappy
and imapclient. To exclude the many artifacts that used
IMAP simply to send application notifications, we also lim-
ited the search to repositories that included the term “email”
in their README documentation.

From an initial 524 scripts, we excluded 25 that were code-
example skeletons that had not been filled in, resulting in
499 scripts. The first author went through each script using
an open-coding approach as in the survey to identify the
main functions performed. Eight codes emerged, with each
script labeledwith one ormore codes. To validate our codes, a
second author used the identified categories to independently
re-label a random sample of 30 scripts, achieving an inter-
rater reliability of 64.9% using Cohen’s κ.

Results
In Table 2, we present the 8 major categories of functions and
their frequency in our dataset. Some scripts performed two
or more functions and so had multiple labels. While many
of the scripts addressed needs that were found in the first
probe, we also noticed some new categories of needs.

Processing, organizing, and archiving content. Over a
fifth of the scripts triggered some sort of action (e.g., send
auto-responses, mark read, move to a folder) based on infor-
mation parsed from an email. The most popular example was
extracting part of an email and then replying with or send-
ing the processed content to another user. Almost equally
popular were scripts that exported content from the email

system. Some scripts attempted to download message con-
tents, particularly attachments (e.g. receipts, contact info),
to places such as their desktop or the cloud.

Many of these scripts echoed the need for content process-
ing and aggregation in Probe 1 to automate repetitive tasks.
Many scripts also extracted latent structure from emails,
reflecting the desire for richer data models. Overall, we
found complex processing needs were prevalent, comprising
around 50% of scripts. This may be because people who pro-
cess large amounts of information via email were compelled
to write scripts to save themselves time and effort and thus
were more represented in Probe 2 than in Probe 1.

Altering the default presentation of email clients. Echo-
ing survey results on altering inbox presentation, a number
of scripts focused on displaying email threads in a different
way, mimicking applications like Slack or Facebook. We also
found scripts with more minor tweaks to current email client
presentations. For instance, there were scripts that displayed
one’s inbox not by email subject lines but rather by some
metadata of the email content. Several scripts also aimed
to personalize push notifications for new emails, similar to
rules in Probe 1 regarding attention management. For exam-
ple, one script interfaced with a Raspberry PI and displayed
visual effects when an email arrived in the user’s inbox.

Email as middleware. In a divergence from the survey, we
found scripts that attempted to use the inbox as middleware,
towards performing actions outside of a user’s inbox. Given
the accessible and ubiquitous nature of email, some scripts
enable users to use email as a form of cloud storage. Others
enable users to trigger defined actions via email, such as
uploading pictures to an online library, or controlling soft-
ware remotely through the use of keywords. This technique
is relatively technical, so it is understandable that it didn’t
occur to our survey respondents as a possibility. Previous
studies [38] have found similar uses, such as users using a
folder to label emails that have to be printed.

Inbox cleaning and spam removal. We saw a number of
scripts focused on inbox cleanup to remove unimportant or
spam emails. Some scripts attempted to delete unimportant
messages regularly so that users could focus their attention
on important messages. For instance, we encountered scripts
concerned with the “Inbox Zero” approach to email man-
agement. The goal of this approach is to achieve as close
to zero messages in a user’s inbox at any given time. These
scripts offer similar functionality to the sweep rule feature
in Outlook, which runs at regular intervals to delete emails
based on a user’s rules.
Some scripts were also focused on auto-removing spam

emails. Unlike the survey respondents, programmers in-
corporated engineering techniques to automatically extract

Opportunities for Automating Email Processing: A Need-Finding Study CHI 2019, May 4–9, 2019, Glasgow, Scotland UK

spam-related attributes of emails at a fine-grained level. Some
of these scripts used machine learning libraries to train spam
filters. It was unclear based on the scripts alone whether the
programmers were attempting to replace current spam filter
functionality in common email clients, or whether they were
simply trying to implement basic machine learning models.
Spam was not mentioned as frequently in Probe 1, possibly
because users were satisfied with their existing spam filters.

Email analytics and productivity tools. Finally, we ob-
served instances of the reflective conversation [24] when it
came to tasks within emails, such as scripts that collected
analytics such as response rate or frequency of recipients.
The scripts provided statistics and insights to the users about
how well they accomplished and completed email actions.
Popular statistics like response rate were used as a mea-
sure of productivity week-to-week. This category was not
mentioned as often in Probe 1, again possibly due to an over-
representation of users in Probe 2 who have more intense
workloads within email, or due to a correlation between pro-
gramming skills and an interest in visualizing data about or
optimizing one’s own activities (i.e., the “quantified self”).

5 PROBE 3: FIELD DEPLOYMENT OF SIMPLE
INBOX SCRIPTING

Our final probe involved having users author rules to ad-
dress their needs in a real environment over time. Even for
programmers, writing an email automation is a significant
programming task, which will likely deter many of them
from undertaking the work. Thus, to inspect how program-
mers might customize email handling if it were less work, we
deployed an experimental email engine that aims to dramat-
ically simplify the task of authoring email rules. In contrast
to Probe 1, we can see the rules users would actually write,
as well as revise, over the course of a week on real emails,
as opposed to simply users’ ideas for automation.
To facilitate this probe, we developed YouPS, a system

that lets users write email processing rules in Python and ex-
ecutes them over their IMAP API mailboxes. YouPS provides
a Python environment populated with objects representing
the user’s email and folders, and methods that can access and
manipulate them; it implements those methods by interact-
ing with the user’s IMAP server. Table 3 lists some example
methods of YouPS. Given the importance of context in our
prior probes, we provided access to their inbox’s status and
interaction histories with specific contacts (internal context)
and modes that let users indicate and leverage a variety of
external contexts.

Design of YouPS. YouPS provides an editor for writing so-
called filter rules for incoming emails. Each rule is triggered
only when there is a new email at the user’s inbox. Users can
add multiple editor tabs, each corresponding to a separate

Method Description
[get, set]_mode() Managing email modes
get_history(contact) Return interaction history with

the given contact
get_[content, date,
label, sender, subject,
recipient]()

Return metadata of the email

Table 3: Examples of YouPS methods

 Subject: [calendar] Seminar announcement on Thu, 20 Sep 2018 00:30:15
 >> Forwarded to work contacts
 >>

Figure 1: The YouPS interface. Users can program and debug
their email rules with interactive editors and a console.

@Clerkbot
https://github.repo#L10
“To engine facilitate..”

Added the
conversation to
the code repository!

Why did you implement
the code this way?

YouPSEmail Server

Email client

IMAP API

Email client

Figure 2: YouPS accesses each user’s inbox through IMAP
and generates a sandbox environment to execute their rule.

email mode. Users can write different rules for each mode
so that their inbox behaves differently depending on the
current mode. User can set their active email mode using a
dropdown menu on the YouPS web interface or by calling
methods to change the mode programmatically. Users can
view execution logs and rule output in a console window
below the editor as seen in Figure 2.
Each YouPS method prints logs when it is executed, and

users can also choose to print logs using Python’s native
print methods. Before actually running their rules over
their inbox, users can test out their rules by telling YouPS to
print out all logs from a user’s rules but not actually execute
the action. Users can also enable and disable different email
rules. If an error occurs while processing a user’s rules, YouPS

CHI 2019, May 4–9, 2019, Glasgow, Scotland UK S. Park et al.

notifies users by sending them email and logging the error
to the interface.

Deployment. We recruited 12 email users (3 females, 9 males,
mean age=23.5) through a university lab mailing list and
word-of-mouth. Participants were undergraduate or gradu-
ate students studying fields in engineering who could pro-
gram in Python. We introduced participants to YouPS and
had them link their email to the system and author scripts
for their inbox. Over the course of the week, they could re-
turn to the interface to edit, debug, or create new scripts.
After the deployment, we had a one-on-one interview with
each participant. Participants were compensated $35 for their
time.

Results
We present our analysis of rules made by participants as well
as themes from the interviews, where users described their
experience writing, editing, and testing email rules over time.
Almost all the rules that participants wrote were comprised
of chained conditionals. Participants wrote 4.8 if conditions
on average per script. The conditions involved the subject
line 60 times, the sender information 49 times, contents of
the email 41 times, and interaction history 25 times. Actions
performed on a condition included moving to a folder (40 in-
stances), marking as read (22), labeling (6), programmatically
switching a mode (6), and deleting a message (3).
Of the YouPS rules that our users created, we found that

40.4% could not be expressed using common email clients
today, while the rest were common capabilities (e.g., filtering
by keyword or sender). Below is an example of a script trig-
gered by a sender and email body that performs the action
of moving to a folder. It is possible to do this using email
filter tools today.
1 auto_read_sender = [" LevelUp", "Twitter "..]

2 if get_sender () in auto_read_sender

3 or auto_read_sender in get_content ():
4 mark_read(True)

Example 1: Mark as read a message depending on a
sender and email body

However, other scripts had more complicated conditions.
For instance, similar to our survey, we saw rules that per-
formed actions only during certain time periods:

1 hour = datetime.now(). hour

2 if hour in range (12 ,14)

3 and "free food" in ge t_sub jec t ():
4 dele te ()

Example 2: Remove irrelevant emails during a cer-
tain time range

Email modes. During the deployment, 24 unique modes
were created by the participants. One user said that he didn’t
use standard filters in email clients because he couldn’t ac-
tivate them only for particular periods. In comparison, he
found YouPS email modes useful for temporarily activat-
ing rules. Another user described the modes they created in
YouPS as: “I have a research mode (active from 9am-5pm) and
sleep mode (active from 11pm to 8am). In my research mode, I
mark all emails as read and move them to the TODO label. I do
this so that I don’t notice my new emails right away...and I can
go through the new emails in my TODO folder periodically.”
One participant wrote a script to programmatically change
their mode to “concentration mode” after the arrival of an
important email:
1 urgentWords = [" important", "deadline "]

2 for w in urgentWords:

3 if w in ge t_sub jec t (). lower()
4 or w in get_content (). lower ():
5 move(" Important ")
6 set_mode(" Concentration ")

Example 3: Switch modes after receiving an email

Another user described how they could configure fine-
grained filters using email modes: “This [is] a way to write
auto-replies that will be sent to co-workers, but not to family
members, when going on vacation...Or, to snooze work-related
email during the evening, but still allow family-related email...”

Leveraging interaction history. Echoing our survey re-
sults, users incorporated interaction history to triage emails.
Prior interactions implied that the email they were receiving
from a person was likely to be important. One user said:
“If I’ve talked to someone via email, then their later messages
are important to me”, while another said: “You have different
interaction periods with a person and those lead to different
priorities.”. Conversely, users could automatically disregard
messages from certain senders if there were too many mes-
sages within a short time period:
1 interaction = get_his tory (get_sender ())
2 if interaction['received_emails '] > 5

3 and get_sender () in mailing_list:

4 mark_read(True)

Example 4: Disregard if too many emails within
short time

(Non-)use of existing email client features. From inter-
views, we found that many users still manually process
emails, even repetitive ones, despite the fact that current
features within email clients can automate some of this ac-
tivity. Similarly, during the deployment, more than half the
rules written by participants could have been done already
in their current client. We asked users why they didn’t use

Opportunities for Automating Email Processing: A Need-Finding Study CHI 2019, May 4–9, 2019, Glasgow, Scotland UK

features in their current interface. Some participants said
that it was difficult to write proper rules: “I’d select the option
to take emails from a certain address & marking them as read,
but it didn’t always work.” This suggests that we need better
ways to debug and test automations.

One surprise from YouPS was that many of our subjects
(10 out of 12) preferred writing rules in Python to using their
mail clients’ rule-authoring interfaces. One said the reason
they didn’t like email interfaces for rule authoring is that
they are cumbersome: “Adding a new one often takes a lot of
clicks and typing, even when there is an obvious pattern.” In
contrast, a second said “(YouPS is) so much lower friction. I
can copy-paste rules or even produce similar rules in a loop,
and use familiar programming concepts to combine their logic
or make exceptions.”
Clearly, a programming language offers more flexibility

than typical interfaces, but YouPS hides the complexity of
talking to an IMAP server, so it may offer an attractive sweet-
spot on the simplicity versus power tradeoff; this requires
further investigation.

6 DISCUSSION
Our findings demonstrate that users would like more au-
tomation in their email management. The three distinct need-
finding probes we carried out consistently identified certain
common categories of email needs: capturing richer data
models and internal and (time-varying) external context, us-
ing them for recipients tomanage attention and for senders to
reduce load on recipients, and automated content processing
to, for example, aggregate replies to an invitation or extract
attached photos into a relevant storage location.

Hacks that overload existing email features. As a way
to manage attention, we noticed users coming up with hacks
that repurpose existing email functionalities. For instance,
several probes saw users marking emails unread as a way
to remind themselves to revisit those emails. Several scripts
from Probe 2 and 3 also tried to develop customized notifica-
tions by marking incoming emails as read and moving them
to different folders to suppress the default notification.

This kind of overloading of existing features suggests that
email systems could provide a richer data model for email
users to manage attention. Is binary marking (e.g. marking as
read/unread or starred) enough to imply different intensities
of attention? Is labeling messages with priority effective
given the eventual need for updates? One survey respondent
said she often forgot to update her ‘todo’ labels, ending up
with too many labels after a while. This suggests we need
more dynamic or automated ways to mark emails, including
ways to signal different and intersecting forms of priority.

Linking inboxes to other applications. We repeatedly
encountered a desire to leverage internal and external con-
text. Breaking with current email clients, this requires un-
derstanding users’ inboxes beyond a single message and
even further, beyond information stored within the inbox.
Some of this context could be inferred rather than explicit,
such as using number of unresponded emails or average
response time to estimate a user’s current load. However,
context could also be determined explicitly, given the ability
to link to other applications like calendars. As another exam-
ple, some participants wanted to incorporate context such
as current geolocation from their phone. This suggests that
email systems should make it easier for users to leverage
data from other applications when generating rules.
We also saw a need for complex content processing and

interfacing with other applications, including use of email
as middleware for other activities or to archive information
to other places. Existing tools for task automation [26, 37]
demonstrate one way to make it easier for email systems to
interface with other systems, though some of these features
may have greater adoption if integrated into email clients
themselves.

Features fromother social platforms. We found that email
users wanted to incorporate features that are common on
other social platforms. Indeed, prior work has pointed to
ways that email usage, for instance within mailing lists, and
social media usage, for instance on Facebook Groups, have
become more similar [58]. This suggests additional ways
that email systems could be adapted to suit how people
conduct online discussion today. For instance, senders said
they wanted to be more aware of their recipients, such as
whether they were online or busy [41]. Users wanted more
lightweight and casual ways of interacting as well as push
notifications for certain content, blurring the lines between
chat systems like Slack and email [59]. Users also wanted
richer data models for their contacts in order to target mes-
sages, much like the user profiles that social media sites keep
today. Finally, participants mentioned wanting community
Q&A features like designating contacts to respond to a query,
following or unfollowing threads, and the “average time to
respond” metric available in tools like Piazza. They said see-
ing information about their own responsiveness would help
increase productivity; we saw examples of this in Probe 2.

Customizing inbox presentation. Email has a broad spec-
trum of users from various backgrounds and contexts. A fixed
interface for an email client cannot meet the diverse needs
of email users. We noticed a desire to customize email in-
terfaces in all three probes. This ranged from sorting emails
in other than chronological order, highlighting important
emails, and hiding some emails depending on time. Probes 1
and 2 also identified more structural changes to email clients,

CHI 2019, May 4–9, 2019, Glasgow, Scotland UK S. Park et al.

permitting alternative ways of viewing threads or messages.
Since changing the interface requires manipulating users’
email client, we need to further investigate ways to allow
email users to customize their interface.

7 LIMITATIONS
Two of our three studies explicitly focused on programmers
due to the lack of existing non-programmer tools for automat-
ing email, while the other skewed towards engineers due to
our sampled population. This raises questions of external
validity. However, the needs we identified did not make ref-
erence to any programming-specific topics, and were similar
between programmers and non-programmers.

So far, we have developed YouPS as a system for program-
mers. Its successful deployment validated our initial vocabu-
lary of actions and data model drawn from our first probe,
demonstrating that users’ desired rules were easily and con-
cisely described using this richer vocabulary. This offers the
hope that new graphical interfaces (and machine learning
tools) leveraging this richer vocabulary could permit even
non-programmers to create their own email automations.
Because the questions in our survey were influenced by

the design workshop, the survey responses may have been
artificially steered to match the design workshop. At a mini-
mum, however, the survey did reveal that many users shared
the needs of those in the design workshop, even if we failed
to identify some other needs. YouPS exposes a generic and
obvious set of actions such as metadata access and email
foldering; our subjects were not specifically constrained to
address the same categories of needs as those found in the
other studies, but they did so.

Although our studies revealed many needs that cannot be
met by current clients, we cannot conclude what numerical
proportion of needs are not beingmet. It is possible that users
primarily focused on unmet needs, artificially amplifying
that portion; alternatively, it is possible that familiarity with
existing capabilities led users to focus more on needs that
could already be met. But regardless of the proportion, we
believe we have identified a number of interesting categories
of needs that are not currently addressed.

Probe 2 identified scripts where programmers wrote code
to address needs. One could therefore argue that these needs
have beenmet by the extant code. However, of the 499 scripts,
only 12 provided pre-packaged applications (e.g. browser ex-
tension or desktop application) that could be used in turnkey
fashion by non-programmers. The remainder were either
code libraries or scripts that other programmers would need
to configure for their own environments by editing the source.
It seems unlikely that exactly one person needed each script’s
solution, but the average number of non-author “watchers”
of a project was 1.3, suggesting most of the projects are one-
off and not widely used. Thus, it is still important to consider

why more generally-accessible solutions do not exist, forcing
programmers to write one-off scripts. YouPS aims to lower
the bar for this.

8 FUTUREWORK
Our preliminary deployment of YouPS yielded evidence that
our extended email vocabulary is suitable for scripting the
rules users want. But we need a larger-scale deployment
to gain confidence in this evidence. By deploying YouPS
to more users over a larger duration, we hope to inspire
participants to bemore ambitious in their automations. Users’
descriptions of things they would like to do with YouPS
but cannot will reveal gaps in our vocabulary and ways to
fill them. As the rules written in YouPS become large and
complicated, we will look for common patterns in those rules
capture them in new vocabulary that makes it possible to
simplify those rules. We will also seek insight from prior
tools for end-user programming [7, 31].

At the same time, we aim to extend the email automation
capabilities of YouPS to non-programmers by creating GUIs
for expressing rules that use the broader vocabulary. For
initial guidance we can look to existing email clients’ inter-
faces that permit non-programmers to create filters; these
interfaces generally offer drop down menus of attributes
and constraints that can be applied in filtering. We believe
such an interface could be augmented with the new concepts
identified in the work presented here. We will also consider
alternatives, e.g., block programming but with support for
reusing and remixing email rules [43], in a way that is usable
for non-programmers.

9 CONCLUSION
We conducted a series of need-finding probes regarding email
automation. First, we led a design workshop to identify cate-
gories of email needs, followed by a larger survey to deepen
our understanding of the needs we identified. We performed
a second probe by mining open source code on Github to see
what needs have already been enacted by programmers. Fi-
nally, we conducted a deployment of a programmable email
system YouPS which enables users to write custom email
rules through a simple programmatic API wrapper of IMAP,
as well as a study of users’ interaction with the system over
the course of a week. We found limitations in the implemen-
tation of current email clients that do not satisfy the complex
desires of email users. The needs discovered in our studies
will guide future designers and developers of email clients
and inbox management systems.

10 ACKNOWLEDGMENTS
We thank our participants and reviewers, particularly our
shepherd for their help improving the paper’s structure. Soya
Park is partly supported by the Kwanjeong fellowship.

Opportunities for Automating Email Processing: A Need-Finding Study CHI 2019, May 4–9, 2019, Glasgow, Scotland UK

REFERENCES
[1] Foundry 376. 2017. Mailspring. https://getmailspring.com.
[2] Gediminas Adomavicius and Alexander Tuzhilin. 2011. Context-Aware

Recommender Systems. Springer US, Boston, MA, 217–253. https:
//doi.org/10.1007/978-0-387-85820-3_7

[3] Tarfah Alrashed, Ahmed Hassan Awadallah, and Susan Dumais. 2018.
The Lifetime of Email Messages: A Large-Scale Analysis of Email Re-
visitation. In Proceedings of the 2018 Conference on Human Information
Interaction&Retrieval (CHIIR ’18). ACM, New York, NY, USA, 120–129.
https://doi.org/10.1145/3176349.3176398

[4] Victoria Bellotti, Nicolas Ducheneaut, Mark Howard, and Ian Smith.
2003. Taking email to task: the design and evaluation of a task man-
agement centered email tool. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’03). ACM, New York,
NY, USA, 345–352. https://doi.org/10.1145/642611.642672

[5] Frank Bentley, Nediyana Daskalova, and Nazanin Andalibi. 2017. If a
person is emailing you, it just doesn’t make sense: Exploring Changing
Consumer Behaviors in Email. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’17). ACM, New York,
NY, USA, 85–95. https://doi.org/10.1145/3025453.3025613

[6] Christian Bird, Alex Gourley, Prem Devanbu, Michael Gertz, and
Anand Swaminathan. 2006. Mining email social networks. In Proceed-
ings of the 2006 international workshop on Mining software repositories
(MSR ’06). ACM, New York, NY, USA, 137–143. https://doi.org/10.
1145/1137983.1138016

[7] Michael Bolin, MatthewWebber, Philip Rha, TomWilson, and Robert C.
Miller. 2005. Automation and customization of rendered web pages.
In Proceedings of the 13th international conference on Intelligent user
interfaces (IUI ’05). ACM, New York, NY, USA, 163–172. http://doi.
acm.org/10.1145/1095034.1095062

[8] boomerang. 2016. boomerang. http://www.boomeranggmail.com.
[9] Nathanial S. Borenstein. 1992. Computational mail as network in-

frastructure for computer-supported cooperative work. In Proceed-
ings of the 1992 ACM conference on Computer-supported coopera-
tive work. (CSCW ’92). ACM, New York, NY, USA, 67–74. https:
//doi.org/10.1145/143457.143463

[10] Horatiu Bota, Paul N. Bennett, Ahmed Hassan Awadallah, and Susan T.
Dumais. 2017. Self-Es: the role of emails-to-self in personal informa-
tion management. In Proceedings of the 2017 Conference on Human
Information Interaction&Retrieval (CHIIR ’17). ACM, New York, NY,
USA, 205–214. https://doi.org/10.1145/3020165.3020189

[11] Mary Czerwinski, Eric Horvitz, and Susan Wilhite. 2004. A diary
study of task switching and interruptions. In Proceedings of the SIGCHI
conference on Human factors in computing systems (CHI ’04). ACM, New
York, NY, USA, 175–182. http://doi.acm.org/10.1145/985692.985715

[12] Laura A. Dabbish, Robert E. Kraut, Susan Fussell, and Sara Kiesler.
2005. Understanding email use: predicting action on a message. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’05). ACM, New York, NY, USA, 691–700. http://doi.acm.
org/10.1145/1054972.1055068

[13] Senad Dizdar. 2011. CloudHQ. https://linux.die.net/man/1/procmail.
[14] Marian Dork, Daniel Gruen, Carey Williamson, and Sheelagh Carpen-

dale. 2010. A visual backchannel for large-scale events. In IEEE trans-
actions on visualization and computer graphics (Vis ’10), Vol. 16. IEEE,
1129–1138.

[15] Mark Dredze, Tessa Lau, and Nicholas Kushmerick. 2006. Automati-
cally classifying emails into activities. In Proceedings of the 11th inter-
national conference on Intelligent user interfaces (IUI ’06). ACM, New
York, NY, USA, 70–77. http://doi.acm.org/10.1145/1111449.1111471

[16] Mark Dredze, Bill N. Schilit, and Peter Norvig. 2009. Suggesting Email
View Filters for Triage and Search. In Proceedings of the Twenty-First In-
ternational Joint Conference on Artificial Intelligence (IJCAI ’09). AAAI,
Palo Alto, CA, USA, 1414–1419. https://www.aaai.org/ocs/index.php/
IJCAI/IJCAI-09/paper/viewFile/488/909

[17] Mark Dredze, Hanna M. Wallach, Danny Puller, and Fernando Pereira.
2008. Automatically classifying emails into activities. In Proceedings
of the 13th international conference on Intelligent user interfaces (IUI
’08). ACM, New York, NY, USA, 199–206. http://doi.acm.org/10.1145/
1378773.1378800

[18] Mozilla Foundation. 2004. Mozilla Thunderbird. https://www.
thunderbird.net/.

[19] Google. 2014. Google Inbox. https://inbox.google.com/.
[20] Sukeshini A. Grandhi and Lyndsey K. Lanagan-Leitzel. 2016. To

Reply or To Reply All: Understanding Replying Behavior in Group
Email Communication. In Proceedings of the 2016 ACM conference on
Computer-supported cooperative work. (CSCW ’16). ACM, New York,
NY, USA, 560–569. https://doi.org/10.1145/2818048.2819981

[21] Catherine Grevet, David Choi, Debra Kumar, and Eric Gilbert. 2014.
Overload is overloaded: email in the age of Gmail. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (CHI
’14). 793–802. https://doi.org/10.1145/2556288.2557013

[22] Daniel Gruen, Steven L. Rohall, Suzanne Minassian, Bernard Kerr,
Paul Moody, Bob Stachel, Martin Wattenberg, and Eric Wilcox. 2004.
Lessons from the reMail prototypes. In Proceedings of the 2004 ACM
conference on Computer supported cooperative work (CSCW ’04). ACM,
New York, NY, USA, 152–161. http://doi.acm.org/10.1145/1031607.
1031634

[23] Philip A. Guenther. 1990. procmail. https://linux.die.net/man/1/
procmail.

[24] William C. Hill, James D. Hollan, Dave Wroblewski, and Tim McCan-
dless. 1992. Edit wear and read wear. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ’92). ACM,
New York, NY, USA, 3–9. https://doi.org/10.1145/142750.142751

[25] Edward Hung. 2001. Deduction of Procmail Recipes from Classified
Emails. CMSC724 Database Management Systems, individual research
project report (2001).

[26] IFTTT. 2010. IFTTT Gmail. https://ifttt.com/gmail.
[27] GrexIt Inc. 2011. hiver. https://hiverhq.com.
[28] Anjuli Kannan, Karol Kurach, Sujith Ravi, Tobias Kaufmann, Andrew

Tomkins, Balint Miklos, Greg Corrado, Laszlo Lukacs, Marina Ganea,
Peter Young, et al. 2016. Smart reply: Automated response sugges-
tion for email. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD ’16). ACM,
New York, NY, USA, 955–964.

[29] Shih-Wen Ke, Chris Bowerman, and Michael Oakes. 2006. Perc: A
personal email classifier. European Conference on Information Retrieval
(2006), 460–463. https://doi.org/10.1007/11735106_41

[30] Nicolas Kokkalis, Johannes Roith Chengdiao Fan, Michael S. Bernstein,
and Scott Klemmer. 2017. MyriadHub: Efficiently Scaling Personalized
Email Conversations with Valet Crowdsourcing. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI ’17).
ACM, New York, NY, USA, 73–84. https://doi.org/10.1145/3025453.
3025954

[31] Gilly Leshed, Eben M. Haber, Tara Matthews, and Tessa Lau. 2008.
CoScripter: automating & sharing how-to knowledge in the enterprise.
In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’08). ACM, New York, NY, USA, 1719–1728. http://doi.
acm.org/10.1145/1357054.1357323

[32] Wendy E Mackay. 1998. More than just a communication system:
diversity in the use of electronic mail. In Proceedings of the 1998 ACM
conference on Computer supported cooperative work (CSCW ’98). ACM,

https://getmailspring.com
https://doi.org/10.1007/978-0-387-85820-3_7
https://doi.org/10.1007/978-0-387-85820-3_7
https://doi.org/10.1145/3176349.3176398
https://doi.org/10.1145/642611.642672
https://doi.org/10.1145/3025453.3025613
https://doi.org/10.1145/1137983.1138016
https://doi.org/10.1145/1137983.1138016
http://doi.acm.org/10.1145/1095034.1095062
http://doi.acm.org/10.1145/1095034.1095062
http://www.boomeranggmail.com
https://doi.org/10.1145/143457.143463
https://doi.org/10.1145/143457.143463
https://doi.org/10.1145/3020165.3020189
http://doi.acm.org/10.1145/985692.985715
http://doi.acm.org/10.1145/1054972.1055068
http://doi.acm.org/10.1145/1054972.1055068
https://linux.die.net/man/1/procmail
http://doi.acm.org/10.1145/1111449.1111471
https://www.aaai.org/ocs/index.php/IJCAI/IJCAI-09/paper/viewFile/488/909
https://www.aaai.org/ocs/index.php/IJCAI/IJCAI-09/paper/viewFile/488/909
http://doi.acm.org/10.1145/1378773.1378800
http://doi.acm.org/10.1145/1378773.1378800
https://www.thunderbird.net/
https://www.thunderbird.net/
https://inbox.google.com/
https://doi.org/10.1145/2818048.2819981
https://doi.org/10.1145/2556288.2557013
http://doi.acm.org/10.1145/1031607.1031634
http://doi.acm.org/10.1145/1031607.1031634
https://linux.die.net/man/1/procmail
https://linux.die.net/man/1/procmail
https://doi.org/10.1145/142750.142751
https://ifttt.com/gmail
https://hiverhq.com
https://doi.org/10.1007/11735106_41
https://doi.org/10.1145/3025453.3025954
https://doi.org/10.1145/3025453.3025954
http://doi.acm.org/10.1145/1357054.1357323
http://doi.acm.org/10.1145/1357054.1357323

CHI 2019, May 4–9, 2019, Glasgow, Scotland UK S. Park et al.

New York, NY, USA, 344–353. http://doi.acm.org/10.1145/62266.62293
[33] Kaitlin Mahar, Amy X Zhang, and David Karger. 2018. Squadbox: A

Tool to Combat Email Harassment Using FriendsourcedModeration. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems. ACM, 586–599.

[34] Mailbird. 2013. Mailbird. https://www.getmailbird.com.
[35] Gloria Mark, Shamsi T. Iqbal, Mary Czerwinski, Paul Johns, Akane

Sano, and Yuliya Lutchyn. 2016. Email duration, batching and self-
interruption: Patterns of email use on productivity and stress. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’16). ACM, New York, NY, USA, 1717–1728. https:
//doi.org/10.1145/2858036.2858262

[36] Luke McDowell, Oren Etzioni, Alon Halevy, and Henry Levy. 2004.
Semantic email. In Proceedings of the 13th international conference on
World Wide Web (WWW ’04). ACM, New York, NY, USA, 244–254.
https://doi.org/10.1145/988672.988706

[37] Microsoft. 2018. Microsoft Flow. https://flow.microsoft.com/en-us/.
[38] Michael Muller and Daniel Gruen. 2002. Collaborating within not

through email: Users reinvent a familiar technology.
[39] Michael J. Muller and Daniel M. Gruen. 2005. Working together in-

side an emailbox. In Proceedings ECSCW 2005 (ECSCW ’05). Springer,
Dordrecht, 103–122. https://doi.org/10.1007/1-4020-4023-7_6

[40] Kanika Narang, Susan T. Dumais, Nick Craswell, Dan Liebling, and
Qingyao Ai. 2017. Large-scale analysis of email search and organi-
zational strategies. In Proceedings of the 2017 Conference on Human
Information Interaction&Retrieval (CHIIR ’17). ACM, New York, NY,
USA, 215–223. https://doi.org/10.1145/3020165.3020175

[41] Bonnie A. Nardi, Steve Whittaker, and Erin Bradner. 2000. Interaction
and Outeraction: Instant Messaging in Action. In Proceedings of the
2000 ACM conference on Computer supported cooperative work (CSCW
’00). ACM, New York, NY, USA, 79–88. http://doi.acm.org/10.1145/
358916.358975

[42] Carman Neustaedter, A J. Bernheim Brush, Marc Smith, and Danyel
Fisher. 2005. The Social Network and Relationship Finder: Social
Sorting for Email Triage. Proceedings of the 2005 Conference on Email
and Anti-Spam (CEAS).

[43] Stephen Oney, Brad Myers, and Joel Brandt. 2014. InterState: a lan-
guage and environment for expressing interface behavior. In Pro-
ceedings of the 30th Annual ACM Symposium on User Interface Soft-
ware and Technology (UIST ’14). ACM, New York, NY, USA, 263–272.
https://doi.org/10.1145/2642918.2647358

[44] CMU Cyrus Project. 2008. sieve. http://sieve.info.
[45] Steven L. Rohall, Daniel Gruen, Paul Moody, and Seymour Kellerman.

2001. Email visualizations to aid communications. In Proceedings of
InfoVis 2001 The IEEE Symposium on Information Visualization (InfoVis
’01). IEEE, 15.

[46] Abigail J Sellen, Rachel Murphy, and Kate L Shaw. 2002. How knowl-
edge workers use the web. In Proceedings of the SIGCHI Conference on
Human Factors in Computing System (CHI ’02). ACM, New York, NY,
USA, 227–234. http://doi.acm.org/10.1145/503376.503418

[47] Nikash Singh, Martin Tomitsch, and Mary Lou Maher. 2006. Un-
derstanding the management and need for awareness of temporal
information in email. In Proceedings of the 2006 international workshop
on Mining software repositories (MSR ’06). ACM, New York, NY, USA,
137–143. https://doi.org/10.1145/1137983.1138016

[48] Anselm Strauss and Juliet M Corbin. 1990. Basics of qualitative research:
Grounded theory procedures and techniques. Sage Publications, Inc.

[49] Saiganesh Swaminathan, Raymond Fok, Fanglin Chen, Ting-Hao Ken-
neth Huang, Irene Lin, Rohan Jadvani, Walter S. Lasecki, and Jeffrey P.
Bigham. 2017. WearMail: On-the-Go Access to Information in Your
Email with a Privacy-Preserving Human Computation Workflow. In

Proceedings of the 30th Annual ACM Symposium on User Interface Soft-
ware and Technology (UIST ’17). ACM, New York, NY, USA, 807–815.
https://doi.org/10.1145/3126594.3126603

[50] Agnieszka Matysiak SzÃşstek. 2011. ’Dealing with My Emails’: Latent
user needs in email management. Computers in Human Behavior 27, 2
(2011), 723–729. https://doi.org/10.1016/j.chb.2010.09.019

[51] Jaime Teevan, Christine Alvarado, Mark S. Ackerman, and David R.
Karger. 2004. The perfect search engine is not enough: a study of
orienteering behavior in directed search. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ’04). ACM,
New York, NY, USA, 415–422. https://doi.org/10.1145/985692.985745

[52] Joshua R Tyler and John C Tang. 2003. When can I expect an email
response? A study of rhythms in email usage. In ECSCW 2003. Springer,
239–258.

[53] Stephen Voida, Elizabeth D. Mynatt, Blair MacIntyre, and Gregory M.
Corso. 2002. Integrating virtual and physical context to support knowl-
edge workers. IEEE Pervasive Computing 1 (2002), 73–79.

[54] Martin Wattenberg, Steven L. Rohall, Daniel Gruen, and Bernard
Kerr. 2005. E-mail research: Targeting the enterprise. Human-
Computer Interaction 20, 2 (2005), 139–162. https://doi.org/10.1207/
s15327051hci2001&2_5

[55] Steve Whittaker, Victoria Bellotti, and Jacek Gwizdka. 2006. Email in
personal information management. Commun. ACM 49, 1 (2006), 68–73.
https://doi.org/10.1145/1107458.1107494

[56] Steve Whittaker and Candace Sidner. 1996. Email overload: explor-
ing personal information management of email. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. 793–802.
https://doi.org/10.1145/238386.238530

[57] Shinjae Yoo, Yiming Yang, and Jaime Carbonell. 2011. Modeling person-
alized email prioritization: classification-based and regression-based
approaches. In Proceedings of the 20th ACM international conference on
Information and knowledge management (CIKM ’11). ACM, New York,
NY, USA, 729–738. https://doi.org/10.1145/2063576.2063683

[58] Amy X. Zhang, Mark S. Ackerman, and David R. Karger. 2015. Mailing
Lists: Why Are They Still Here, What’s Wrong With Them, and How
Can We Fix Them?. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’15). ACM, New York, NY, USA,
4009–4018. https://doi.org/10.1145/2702123.2702194

[59] AmyX. Zhang and Justin Cranshaw. 2018. Making Sense of Group Chat
Through Collaborative Tagging and Summarization. In Proceedings
of the 2018 ACM conference on Computer supported cooperative work
(CSCW ’18). ACM, New York, NY, USA, 196–223. http://doi.acm.org/
10.1145/3274465

[60] Qian Zhao, Paul Bennett, Adam Fourney, Anne Loomis Thompson,
Shane Williams, Adam D. Troy, and Susan Dumais. 2018. Calendar-
Aware Proactive Email Recommendation. In Proceedings of the 41st
Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval (SIGIR ’18). ACM, New York, NY, USA,
655–664. http://doi.acm.org/10.1145/3209978.3210001

http://doi.acm.org/10.1145/62266.62293
https://www.getmailbird.com
https://doi.org/10.1145/2858036.2858262
https://doi.org/10.1145/2858036.2858262
https://doi.org/10.1145/988672.988706
https://flow.microsoft.com/en-us/
https://doi.org/10.1007/1-4020-4023-7_6
https://doi.org/10.1145/3020165.3020175
http://doi.acm.org/10.1145/358916.358975
http://doi.acm.org/10.1145/358916.358975
https://doi.org/10.1145/2642918.2647358
http://sieve.info
http://doi.acm.org/10.1145/503376.503418
https://doi.org/10.1145/1137983.1138016
https://doi.org/10.1145/3126594.3126603
https://doi.org/10.1016/j.chb.2010.09.019
https://doi.org/10.1145/985692.985745
https://doi.org/10.1207/s15327051hci2001&2_5
https://doi.org/10.1207/s15327051hci2001&2_5
https://doi.org/10.1145/1107458.1107494
https://doi.org/10.1145/238386.238530
https://doi.org/10.1145/2063576.2063683
https://doi.org/10.1145/2702123.2702194
http://doi.acm.org/10.1145/3274465
http://doi.acm.org/10.1145/3274465
http://doi.acm.org/10.1145/3209978.3210001

	Abstract
	1 Introduction
	2 Related Work
	3 Probe 1: Wishful Thinking
	Results

	4 Probe 2: Existing Automation Software
	Results

	5 Probe 3: Field Deployment of Simple Inbox Scripting
	Results

	6 Discussion
	7 Limitations
	8 Future Work
	9 Conclusion
	10 ACKNOWLEDGMENTS
	References

