
Augmenting Undirected Edge Connectivity in~O(n2) Time

András A. Benczúr� David R. Kargery
June 7, 2000

Abstract

We give improved randomized (Monte Carlo) algorithms for undirected edge splitting and edge connectivity
augmentation problems. Our algorithms run in time~O(n2) on n-vertex graphs, making them an~
(m=n) factor
faster than the best known deterministic ones onm-edge graphs.

1 Introduction

Edge augmentation and edge splitting problems are special network designproblems [GGP+94, GW97] in which a
graph must be modified achieve specified edge connectivity properties whileminimizing the total weight of edges
used.

In theedge augmentation problem, one wants to add an (integer weighted) edge set of minimum total weight such
that the input graph becomesk-edge-connected (by weight). The valuek is called thetarget connectivity.

Edge splittingis a tool widely used to solve connectivity-related problems. The goal is to cut a given vertexs out
of the graph without decreasing the connectivity of the rest of the graph. We do so by repeated shortcutting,splitting
pairs of edges(u; s) and(v; s) to a new edge(u; v). By arranging for the graph created by splitting-off to preserve the
connectivity properties of the original graph, we can use the construction in inductive proofs of various connectivity
theorems [Fra93]. These inductive proofs can be turned into efficient recursive algorithms via splitting algorithms
based on flows [Gab94] or the Nagamochi–Ibaraki algorithm [NI96].

Unlike generic network design problems which are NP-complete, edge augmentation is tractable because each
edge’s cost is equal to its weight. This was first shown by Watanabe and Nakamura [WN87] for the unweighted case;
the first strongly polynomial algorithm was given by Frank [Fra92].Edge splitting can also be solved in polynomial
time. Progress has been made on improved time bounds for both problems, but prior to this paper the best known
bounds [NI96] were~O(nm).1
1.1 Our results

In this paper, we present new, faster algorithms for the edge augmentation and splitting off problems. We give ran-
domized algorithms that solve both of these problems (with high probability) in ~O(n2) time. With minor changes, our
algorithms also solve (or show unsolvable) thedegree constrainedaugmentation problem, a common generalization
of both problems in which there is an upper bound on the total weight ofedges that may be added incident to each
vertex.�Computer and Automation Institute, Hungarian Academy of Sciences. Also supported at the Department of Operations Research, Eötvös
University, Budapest. Supported from grants OTKA T-30132 and T-29772, FKFP 0206/1997 and AKP 98-19.
email: benczur@@cs.elte.huyMIT Laboratory for Computer Science, Cambridge, MA 02139. Supported by NSF contract CCR-9624239 and an Alfred P. SloaneFoundation
Fellowship.
email: karger@@lcs.mit.edu.
URL: http://theory.lcs.mit.edu/˜karger

1The notation~O(f) denotesO(f polylog n).
1

Our algorithms are Monte Carlo: although the are guaranteed to run fast,they have a small chance of giving the
wrong answer. However, they give the right answerwith high probability—that is, with probability1 � 1=nd for
some fixedd > 1 on problems of sizen. (In fact, d can be made arbitrarily large without affecting the asymptotic
running time by repeating the algorithm a fixed number of times and taking the best answer.) At present, Monte Carlo
algorithms are the only way even totestwhether a graph isk-connected ino(nm) time [KS96, Kar96].

Like many augmentation algorithms [WN87, NGM90, Gab91a, Ben94], ours manipulates theextreme setsof a
graph. A setX is extremeif its degree(outgoing edge weight)d(X) < d(W) for all proper subsetsW � X . It
thus has the “dominant” demand for additional outgoing edges in the augmentation or splitting process. Our improved
running time arises from two contributions.� We give a faster algorithm for finding extreme sets.� We give a faster algorithm for using the extreme sets to perform edge augmentation and splitting.

The extreme set algorithm is based on the Recursive Contraction Algorithm of Karger and Stein [KS96] for finding
minimum cuts and some degree-testing algorithms used by Karger [Kar96]. The algorithm for augmentation and
splitting given the extreme sets is based on work of Benczur [Ben94], andreflects the first time that extreme sets are
used directly for splitting.

Our algorithms run inO(n2 log5 n) time, which reflects the time needed to find the extreme set system. Given this
system our algorithm requires only anO(n2)-time deterministic computation and anO(n2 log3 n)-time randomized
minimum cut computation to perform the augmentation.

1.2 Related Work

Algorithms for solving the edge augmentation problem traditionally take two different approaches, one using edge
splitting [CS89, Fra92, Gab94, NI96] and another increasing connectivity one unit at a time [WN87, NGM90, Gab91a].
The idea of applying edge splitting in connectivity augmentation was first explored by Cai and Sun [CS89]. Frank [Fra92]
used this approach in the first strongly polynomial augmentation algorithm, which solves the weighted case inO(n5)
time. Gabow [Gab94] improved Frank’s running time to~O(n2m). In these algorithms, edge splitting was the com-
putational bottleneck. Faster edge splitting algorithms were later given; one running in~O(n3) time, followed by one
running in ~O(nm) time [NI96]. But ~O(mn) remained the best bound achieved for splitting-based edge augmentation.

Edge augmentation is slightly easier than splitting—augmentation is relatively easy given a splitting algorithm
but not vice versa. Several papers [WN87, NGM90, Gab91a] devise augmentation algorithms that do not use split-
ting. These algoritms are not strongly polynomial and are therefore efficient for small connectivity values and un-
weighted graphs only. The best known such algorithm, with runtime~O(nk2) for target connectivityk, is due to
Gabow [Gab91b]. Although it uses splitting, our edge augmentation algorithm is based on ideas from another non-
splitting augmentation algorithm [Ben94]. That Monte Carlo algorithm, in contrast to earlier algorithms using the
same approach, has a strongly polynomial~O(n3) running time.

Algorithms for finding extreme sets have been less well studied, perhaps because our augmentation algorithm is
the first where finding extreme sets is the computational bottleneck. Gabow [Gab91a] describes an efficient algorithm
for unweighted graphs. However the only previously known weighted-graph algorithm, that of Naor et al. [NGM90],
builds a Gomory–Hu tree [GH61] and thus runs in~O(n2m) time. Ours runs in~O(n2) time.

2 Problems and Definitions

In this section, we formally define the problems that we will be solving and show how they are related to one another.
We also provide additional definitions we will need later. Given a vertexsetU , we say that edgee crossesU if exactly
one endpoint ofe is in U . For a vertex setU , let thedegreed(U) be the weight of edges ofG crossingU . More
generally, given any set of edgesE, letdE(U) be the weight of edges ofE crossingU .

2

2.1 The Basic Problems

Definition 2.1 (Edge augmentation).Let G = (V;E) be an undirected graph with connectivityc. Given atarget
connectivityk the edge augmentation problemis to find an edge set of minimum total weight whose addition toG
increases its connectivity tok.

For reasons that will shortly become clear, we also refer to this problem asinternaledge augmentation because all
edges are added inside the graph. Without loss of generality, we assume the targetk > 1. Whenk = 1, we simply
want to add the minimum total edge weight necessary to connect the graph, which is trivial.

Definition 2.2 (Edge splitting). Let G be a weighted undirected graph with a distinguished vertexs. Given a pair
of edges(u; s) and(v; s) incident ons, we say that wesplit edges(u; s) and (v; s) by weightw if we decrease the
weights of these edges byw and increase that of edge(u; v) byw. We say that wesplit s off if, by a sequence of splits,
we isolates from the graph.

In this paper we concentrate on the following theorem concerning edge splitting.

Theorem 2.3 (Lov́asz [Lov93, problem 6.53]).LetG be a weighted undirected graph with a distinguished vertexs.
Letk be the minimum value among the cuts ofG other than(fsg; V �s). Then it is possible to splits off, such that the
resulting graph has connectivity at leastk. Furthermore if all edge weights are integers,k � 2, and the total weight
of edges incident tos is even, then it is possible to give a sequence of splits by integer weights.

Edge splitting is possible under stronger requirements as well [Mad78]; however that stronger edge splitting task
is algorithmically much harder [Gab94].

2.2 Degree-constrained augmentation: a common generalization

Although not explicit in the literature, it is known that the edge splitting and edge augmentation problems share a
common generalization to adegree-constrainedaugmentation problem defined next. In fact, the problem is a slight
generalization of the edge augmentation problem but is essentially equivalent to the edge splitting problem.

Definition 2.4. Given a non-negative integer weightw0(v) on the vertex setV and atarget connectivityk, thedegree-
constrained edge augmentation problemis to find an edge setE0 of minimum total weight whose addition toG
increases its connectivity tok and satisfiesdE0(v) � w0(v) for all v 2 V .

(Recall thatdE0(U) is the weight of edges ofE0 with exactly one endpoint inU .) Here and throughout the paper
we definew(U) =Pv2U w(v) for a weight functionw on the vertex setV (note that this notation does not apply to
the degree functiond(U)). The above degree-constrained augmentation problem is solvable only if d(U)+w0(U) � k
for all U � V , so throughout the paper we assume this inequality holds.

The edge augmentation problem reduces to the degree constrained one by setting w0(v) = 1 for all vertices.
The edge splitting problem can be reduced similarly by settingw0(v) = d(s; v); after solving the degree-constrained
augmentation problem, any unused weight can be paired to edges arbitrarily toobtain an edge splitting ats.

We will show below that our algorithms can be modified to solve (or show unsolvable) the degree constrained
version of edge augmentation with the same~O(n2) time bound.

2.3 External Augmentation: An intermediate step

Our algorithm (and others’ [Fra92]) for solving internal edge augmentation divides naturally into two stages. In the
first, we aim to solve an easier “external” version of the edge augmentation problem, in which all the new edges are
incident on a special new vertexs. In the second stage, we splits off to transform this external solution into an internal
one.

Definition 2.5 (External edge augmentation).LetG = (V;E) be an undirected graph with connectivityc. Given a
a target connectivityk = c+� , theexternal edge augmentation problemis to add an edge set of minimum total weight
connecting vertices ofG to some new external vertexs, such that every cut inG other than(fsg; V � s) has value at
leastk.

3

In other words, we want the connectivity of the new graphG [fsg to bek, with the possible exception of the
trivial cut arounds. There is an obvious degree-constrained variant of the problem.

We can also formulate the external augmentation problem as follows: givena graphG, give non-negative integer
weightsw to the vertices, minimizing the total weightw(V), such that the weightw(U) of any setU satisfiesd(U) +w(U) � k. The weight of vertexv represents the weight of edges betweenv ands.

The following well-known lemma shows the close connection between theinternal and external augmentation
problems.

Lemma 2.6 (cf. [Fra92]). Let w be the minimum weight of edges needed to solve the internal edge augmentation
problem, and letw0 be the minimum weight of edges needed to solve the external edge augmentation problem. Thenw = dw0=2e. The same holds for the degree-constrained problem variants.

Proof. We show that one can go back and forth between external and internal augmentationsolutions, doubling or
halving the total weight of edges used.

Suppose we have a set of edges that solves the internal augmentation problem. To solve the external augmentation
problem to a vertexs, replace each added edge(u; v) with two edges(s; u) and(s; v). This doubles the weight used
but preserves the desired connectivity.

Suppose we have a set of edges that solves the external augmentation problem to a vertexs. If the set is odd, add
one edge froms to an arbitrary vertex. According to Lemma 2.3 we can split offs, halving the weight of edges used
while preserving the desired connectivity.

For the degree constrained versions, simply note that our two-way transformation above does not change the degree
of any vertex other thans.

Our algorithms will use this internal-external transformation, solving the external augmentation problem and then
splitting it off; the above lemma shows this solution is optimal.

2.4 Extreme Sets

Both the external augmentation and splitting off stages of our algorithm rely on a concept ofextreme setsdeveloped by
Watanabe and Nakamura [WN87]. Suppose we wish to find a weight assignment w that solves the external augmen-
tation problem. Consider a setX with d(X) < k. ProvidedX has a subsetU with d(X) � d(U), the augmentation
condition imposed onX is automatically satisfied if it is satisfied forU . This motivates the following definition.

Definition 2.7. A setX is d-extremeif d(X) = d and no proper subsetU � X hasd(U) � d. For convenience, we
also declare the vertex setV to be extreme.

Extreme sets have a special structure that we will exploit frequently.To describe it, we need the following defini-
tions. We say that two setsmeetif their intersection is nonempty. Theynestif one is contained in the other. Two setsC andD are calledoverlappingif C \D, C �D andD � C are all nonempty—that is, they meet but do not nest. A
set system islaminar if it contains no overlapping pair—in other words, if any two sets that meet also nest.

Lemma 2.8 (cf. [WN87]). No two extreme sets overlap, so the extreme sets form a laminar system.

Proof. The proof of the laminar property uses thesubmodularityof the functiond over vertex subsets. We say that a
functiond on subsets ofV (the vertex set) issubmodularif, for all pairs of setsX andY ,d(X) + d(Y) � d(X \ Y) + d(X [Y) :
The cut value functiond is submodular. For undirected graphs, the cut value functiond is also symmetric, i.e.d(X) =d(V �X). Hence the submodular inequality also holds in a different form:d(X) + d(Y) � d(X � Y) + d(Y �X) :
In particular, it follows that eitherd(X � Y) � d(X) or d(Y �X) � d(Y).

4

Now suppose thatX andY are extreme but overlapping. Then by submodularity, without loss of generalityd(X � Y) � d(X). If X andY overlap, thenX � Y is a nonempty proper subset ofX ; sinced(X � Y) � d(X) it
must be thatX is not extreme.

Sets of the laminar extreme set systemF can be viewed as nodes of a tree where the children ofY 2 F are
the maximal extreme subsets ofY —that is,X 2 F is a child ofY 2 F if X � Y but there is noZ 2 F withX � Z � Y . We will refer to this tree as theextreme set tree. We call the sets in the treenodesin order to distinguish
them from the vertices ofG. Note that children must have degree greater than their parents’ (else they would make
the parent non-extreme). Since all individual vertices are vacuously extreme, the individual vertices form then leaves
of the extreme set tree. Since the children of a set partition the set, no set of the tree has less than 2 children. Thus the
tree hasO(n) nodes and gives a size-O(n) representation for the extreme sets, even though explicitly listingthem can
take�(n2) space.

2.5 Overview of Solution

With these definitions completed, we can outline the course of our algorithm for edge augmentation. In a first step, we
find the extreme set tree for the input graph. This step is randomized andtakesO(n2 log5 n) time. Using the extreme
set tree, we give a trivialO(n)-time greedy algorithm for the external augmentation problem. Once theexternal
augmentation problem is solved, we use a splitting off algorithm toturn the solution into an internal augmentation
solution. Splitting off again makes use of the extreme set tree, and involves anO(n2) time deterministic algorithm
plus a randomized minimum cut/cactus computation (which requiresO(n2 log3 n) time). Finding the extreme sets is
the bottleneck in our solution, and along with minimum cut computations is the only part that uses randomization.

We use the same approach to solve the degree constrained version of our problem, solving a degree constrained
external problem and then using splitting off (which preserves vertex degrees) to transform the external into an internal
version.

We begin in Section 3 by presenting the simplest part of our approach, the greedy external augmentation algorithm.
We then describe the splitting off algorithm in Section 4, and finally the extreme sets algorithm in Section 5.

3 An External Augmentation Algorithm

Naor, Gusfield and Martel [NGM90] use the extreme set tree to greedily solve the external augmentation problem.
We outline their approach here. As above, we formulate the problem as assigning weightsw to vertices so thatw(U) + d(U) � k for all U . Define thek-demandof a setU to be dem(U; k) = maxf0; k � d(U)g; this is the
minimum weightw(U) needed for setU in order to satisfy the external augmentation objective (thek-demand ofV
is 0). We omitk when it is clear from context.

3.1 Focusing on Extreme Sets

The following two lemmas formalize the argument that extreme sets are the only important sets for the augmentation
problem.

Lemma 3.1. Any vertex setU contains an extreme setX � U with d(X) � d(U).
Proof. Since a setU is either extreme or has a subsetX with d(X) � d(U), there is no minimal counterexample to
the lemma.

Lemma 3.2. Let a weight functionw on the vertex set be such thatw(X) � dem(X) for everyX 2 F , whereF is
the system of extreme sets inG. Thenw satisfies the external augmentation problem.

Proof. For everyU � V choose an extreme setX 2 F such thatX � U andd(X) � d(U). Thenw(U) � w(X) � dem(X) � dem(U)
which proves the claim.

5

Thus, to solve the external augmentation problem, we need only assign weights that satisfy the demands of the
extreme sets. Each extreme set therefore determines a lower bound on the total weight of the optimal solution.

3.2 Recursive demands and a compact min-max formula

To solve the external augmentation problem it helps to work with a somewhat stronger lower bound.

Definition 3.3. In the laminar extreme set treeF , let the recursive demandrdem(X; k) be dem(X; k) for all leaf
nodesfvg 2 F . Given rdem(Xi; k) for all childrenXi 2 F of X , let

rdem(X; k) = maxfdem(X; k);Xi rdem(Xi; k)g :
Lemma 3.4. Any external augmentation to valuek uses weight at leastrdem(V; k).
Proof. Letw(�) be a solution (assignment of weights) for the external augmentation problem. We prove by induction
on the laminar family that for every extreme setX , w(X) � rdem(X; k) for every extreme setX . The claim follows
by takingX = V . The leaf nodes of the tree (corresponding to vertices ofG) clearly must havew(v) � dem(v) =
rdem(v). For any non-leaf nodeX with childrenXi, we must havew(X) � dem(X). We must also havew(X) � Xw(Xi)� X

rdem(Xi)
where the second step is by induction on theXi. Thusw(X) � max(dem(X);P rdem(Xi)) = rdem(X).
3.3 The Algorithm

We now give an algorithm that solves the external augmentation problem using total weight rdem(V; k). By Lemma 3.4,
such an assignment is optimal.

Algorithm 3.5. Initially let w(v) = 0 for all verticesv 2 V . Process the laminar set tree in a postorder traversal, so
all children are processed before their parent. Consider all setsX 2 F , from the minimal sets ofF up to the extreme
set tree rootV . If whenX is considered we findw(X) < dem(X), then choose any vertex inX and increase its
weight untilw(X) = dem(X).

The above algorithm clearly assigns weights satisfying the demands of all extreme sets; we need only bound the
total weight assigned.

Lemma 3.6. The total weight assigned by Algorithm 3.5 isrdem(V; k).
Proof. We show by induction up the extreme set treeF that the amount of weight assigned to extreme setX and its
children is rdem(X; k). This is clear for the leaves ofF (vertices ofG). For setX with childrenXi, when we processXi we will (by induction) have assigned total weight

P
rdem(Xi) toX . If rdem(X) =P

rdem(Xi) then we assign
no further weight toX and the inductive step is done. If rdem(X) = dem(X), then we will increase the total weight
assigned toX , raising it to dem(X) = rdem(X).

It follows that Algorithm 3.5 yields an optimal solution. The algorithm can be implemented trivially inO(n) time
by walking up the extreme set tree.

3.4 Degree Constraints

The above algorithm generalizes to the degree constrained external augmentation problem. As we are adding weight
to sets to meet recursive demands, we only add to verticesv whose upper boundsw0(v) have not yet been met. The
assumption thatd(U) + w0(U) � k ensures that if we need to add weight to a set there will be a vertex in it whose
upper bound has not yet been met. For ifd(U) + w(U) < k (which is the only time we need to add weight) thenw0(U)� w(U) > 0, meaning some vertex inU has residual weight available.

6

4 A Splitting Off Algorithm

As was discussed in Lemma 2.6, the optimal external augmentation just found can be turned into an optimal internal
augmentation bysplitting off. Recall that the weightw(v) added in the external augmentation can be thought of as
the weight of edges connectingv to s in a splitting off problem (ifd(s) is odd, we add one more edge tos to make it
even). Previously, the best splitting off algorithm ran in~O(mn) time [NI96]. In this section, we show how the extreme
set system can be used to solve the splitting off problem inO(n2) time followed by anO(n2 log3 n)-time minimum
cut computation. We take k = min;�U�V (d(U) + w(U))
to be the goal-connectivity of the split-off graph (guaranteed to be achievable by Lemma 2.3). This goal connectivity
may be part of the problem instance (as in our problem) or can be found by aminimum cut computation. Note that
this turns splitting off into a kind of internal augmentation problem, but with the added constraint that each vertexv
have added degree exactlyw(v) at the end. Having these exact degree constraints makes the augmentation problem
easier to solve. We continue to refer to the demand of a setU—it is the difference between the goal connectivityk
and the current degree ofU in G (not including edges tos). By the assumption of our splitting off problem we have
dem(U) +w(U) � k for everyU � V . As before, for any edge setE0, we definedE0(U) to be weight of edges ofE0
crossingU .

Our algorithm is incremental in nature. It runs in phases. In each phase, it adds edges to reduce the demand of
certain extreme sets. The challenge is finding the right set of edges to add.Care must be taken because it is possible
to find edge sets that optimally reduce the demand part-way but cannot be extended to optimal solutions to the entire
problem. In the following sections, we give anO(n)-time deterministic algorithm to find a safe increment towards
the optimal solution. Our algorithm can be applied whenever the maximum remaining demand exceeds 1. We show
thatO(n) applications of our algorithm, taking total timeO(n2), suffice to reduce the maximum demand to 1. At this
point, we can use an algorithm of Naor, Gusfield and Martel [NGM90] that optimally increases connectivity by one to
finish solving the problem. Their algorithm runs inO(n) time given thecactus representationof all minimum cuts of
a graph, which we can find with high probability inO(n2 log3 n) time [KS96].

4.1 A partial split criterion

In the next lemma we give a sufficient condition for a “partial” splitting off to be continued to a valid solution.

Lemma 4.1. Let an edge setE0 satisfy that

1. dE0(v) � w(v) for all v 2 V ;

2. no edge ofE0 has both endpoints in any one extreme set; and

3. any extreme set ofG+E0 is extreme inG as well.

Then there exists an edge setE00 such thatE0 + E00 is a legal splitting-off ofs. The setE00 can be obtained by edge
splitting recursively, using the updated valuesw0(v) = w(v) � dE0(v) for v 2 V :
Remark.Condition 1 is forced upon us by the problem input and Condition 2 is a natural requirement that we not
“waste” an augmentation edge by putting it inside an extreme set. Condition 3 is also natural; it says that no new
extreme set arises to derail our progress towards an optimal solution. Conditions 1 and 2 are necessary for an optimum
solution while 3 is merely useful.

Proof. Observe thatE0 denotes a set of edges that, by Condition 1, can legally be split from theexternal vertexs.
Thus, we only need to show that after splittingE0 the criteria of the splitting lemma (2.3) remain true—that is, that for

7

every setU � V , we havedG[E0(U) + w0(U) � k. As before, it suffices to prove this holds for everyextremesetX
of G [E0, since every set contains an extreme set of no greater degree (by definition)and no greater totalw0 (since
all w0 are positive). By Condition 3, this extreme setX is also an extreme set ofG.

So consider any extreme setX ofG. The differencew(X)�w0(X) is equal to the number of endpoints of edges ofE0 in X . By Condition 2, no edge ofE0 has both endpoints inX . Thusw(X)�w0(X) is equal to the number of edges
of E0 with an endpoint inX . In other words,w(X) = w0(X)+dE0(X). By assumption we hadw(X)+dG(X) � k.
It follows that w0(X) + dE0[G(X) = w0(X) + dE0(X) + dG(X)= w(X) + dG(X)� k
4.2 A particular good partial split

We now give a rule for selecting a particular set of edgesE0 satisfying the criteria of Lemma 4.1. This rule applies
whenever some extreme set has demand at least 2. Select all inclusion-wise maximal extreme sets of the current graph
with k-demand at least 2. Number these setsXi for i � ` so thatX1 andX` have the smallest (and we will soon see
equal) degrees: that is, d(X`) = d(X1) � d(X2); : : : ; d(X`�1):
Connect eachXi toXi+1 by an edge fori < `. Doing so requires that we find one vertex in each ofX1 andX` that we
can use as an endpoint, and 2 vertices in each otherXi. These are guaranteed to exist sincew(Xi) � dem(Xi) � 2.
Note that we might use the same vertex (at most) twice to receive both edges incident on someXi. But nodE0(v) > 2,
soE0 is a collection of vertex-disjoint paths.

To see why the choiced(X1) = d(X`) is possible, notice that the minimum degreed(X1) of an extreme set is
equal to the (current) connectivityc of G. If we consider the two sides of a minimum cut, both sides must containc-extreme sets (which are clearly maximal extreme sets of minimum degree) andhence we may choose these sets asX1 andX`.

It is easy to see that this construction satisfies two of our requirements:

Lemma 4.2. The edge setE0 just described satisfies Conditions 1 and 2 of Lemma 4.1.

Proof. We have already argued that sincew(Xi) � dem(Xi) � 2 by choice of theXi, we can choose the endpoints
of the setE0 to satisfy Criterion 1. Since each edge connects two distinct maximal extreme sets, no edge has both of
its endpoints in the same extreme set, as required in Criterion 2.

Proving that Condition 3 is satisfied is harder. We assume that there issome setU that violates it, being extreme
in G0 = G [E0 but not inG, and derive a contradiction. We begin with some lemmas showing that the set of edgesE0 essentially can be thought of as a path with respect to the hypothetical setU ; then we show such a path must crossU several times, raising its degree and making it non-extreme.

Lemma 4.3. If U overlaps an extreme setX ofG thendE0(X) = dE0(X \ U;U �X) = 2.

Proof. By the definition of extreme sets,dG(X�U) � dG(X)+1. This implies by submodularity thatdG(U�X) �dG(U)�1. On the other hand, sinceU is extreme inG0, we havedG0(U�X) � dG0(U)+1. Combining the two latter
inequalities, we get thatdE0(U�X) � dE0(U)+2. Since all edges not counted indE0(U) but counted indE0(U�X)
connectU \ X andU � X , there are at least two such edges; furthermoredE0(X) � 2. SincedE0(X) � 2 by the
construction ofE0, equality must hold everywhere, proving the claims.

Corollary 4.4. X1 andX` do not overlapU .

Proof. dE0(X1) = dE0(X`) = 1, while any overlappingXi must havedE0(Xi) = 2 by the previous lemma.

8

Lemma 4.5. U contains (both endpoints of) an edge ofE0.
Proof. SinceU is not extreme inG, by definition there is some (extreme inG) setX � U such thatdG(X) � dG(U).
However,U is extreme inG0, which means thatE0 must increase the degree ofX more than that ofU . This implies
that some edgee of E0 crossesX but notU . Since one endpoint ofe is insideX � U , both endpoints must be inU .

Corollary 4.6. WriteE0 = f(ai; bi)g whereai 2 Xi andbi 2 Xi+1. Thenbi�1 2 U if and only ifai 2 U .

Proof. By Lemma 4.5, setU contains an edge ofE0. This edge is not contained in anyXi soU is not contained in
anyXi. SoU contains, is disjoint from, or overlaps everyXi. Bothai andbi�1 are inXi. If Xi is contained in or
disjoint fromU the claim is clear. IfXi overlapsU then (by Lemma 4.3) bothai andbi�1 are contained inXi \ U
and thus inU .

The previous corollary says that if we move along the sequencea1; b1; a2; b2; : : : , we will only cross into or out
of U by traversing one of the edges ofE0. So we can think ofE0 as a path with respect toU . We now show that this
path must crossU many times, raising its degree and making it nonextreme.

We argued above thatX1 andX` do not overlap or containU ; thus each is entirely inside our outside ofU . We
consider two cases:

At least one ofX1 or X` (sayX1) is insideU . Note thatdG0(X1) = c + 1, so the only wayU can be extreme is ifdG0(U) = dG(U) = c, meaning no edge ofE0 crossesU . If X1 � U thena1 2 U . Since no edge ofE0
can crossU , we must haveb1 2 U . Applying Corollary 4.6, we find thata2 2 U . Continuing inductively, we
deduce that allai andbi are insideU , meaning no endpoint ofE0 is inU .

But if dG(U) = c, thendG(U) = c as well, which meansU must contain or be ac-extreme set, which is a
maximal extreme set (with demand at least 2). So some edge ofE0 has an endpoint inU . This is a contradiction.

Both X1 andX` are outsideU . We have already argued that some edge ofE0 is inU . Thus the sequencea1; b1; a2; b2; : : :
must start inX1 (so outsideU), then cross into and back out ofU to reachX`. But Corollary 4.6 tells us that
each of these crossings must involve an(ai; bi) pair in the sequence rather than a(bi; ai+1) pair. In other words,dE0(U) � 2.

On the other hand,U was originally not extreme, so it contained some extremeX of no greater degree. Our
choice ofE0 ensures that no extreme set’s degree increases by more than 2. SodG0(X) � dG(X) + 2 �dG(U) + 2 � dG0(U). SoU is not extreme inG0

We arrived at a contradiction in both cases, soU cannot be extreme.

4.2.1 Motivation

While our splitting rule may seem a bit strange it is actually quite naturally motivated. A natural way to guarantee that
no end-vertices of some edge ofE0 belong to the same extreme set is to connect distinct maximal extreme sets.Some
previous edge augmentation algorithms [NGM90, Ben94] are also based onthis simple idea. The following argument
leads to our path-like construction.

We consider all minimum cuts first. Since the maximal (by containment) extreme sets include all minimal (by
containment) min-cut sides, at least one edge will be added across each minimal min-cut side. As a result, some
non-minimal min-cut sides will become minimal and thus extreme, unlesswe also add edges crossing these minimum
cuts. In other words, we must increase the connectivity ofG by at least one to avoid creating new extreme sets.

The next natural idea is that a cycle connecting either all maximal extreme sets or all minimal min-cut sides auto-
matically addstwo edges to each minimum cut. This is the main idea of Benczúr’s algorithm [Ben94]. Unfortunately
the addition of cycles may create new extreme sets if, for example, there areexactly three(c+1)-extreme subsetsX1,X2 andX3, each of which is the subset of the samec-extreme setX . Then without loss of generality edges ofE0 may
be added toX1 andX2 but not toX3. HenceX3 becomes the only extreme set ofG with dG+E0(X3) = c + 1. But
then the complement ofX3 must contain another (new)(c+ 1)-extreme set inG+E0.

9

The above example suggests the form of our algorithm: if we remove anedge from the cycle as above that connects
two c-extreme sets, these sets become(c+1)-extreme inG+E0. They prevent the formation of new(c+1)-extreme
sets.

4.3 An Algorithm

We now use our partial split rule repeatedly to get a splitting-off algorithm. Our algorithm actually settles for correctly
reducing the maximum extreme set demand to 1. At this point the graphG � s must be(k � 1)-connected, so the
remaining splitting off need only optimally increase the connectivity of G � s by one. This can be done using an
algorithm of Naor et al. [NGM90]. Their algorithm runs inO(n) time given thecactus representationof G, which can
be constructed inO(n2 log3 n) time by a Monte Carlo algorithm [KS96].

While the graph has demands exceeding 1, we move incrementally towards theoptimal solution. Since some
demands are at least 2, we can use an edge setE0 of the kind described in Section 4.2. Such an edge set is easy to find
using the extreme set tree. The children of the root form the maximal extreme sets, so we can easily find all maximal
setsXi with demand at least 2 inO(n) time. Within eachXi, any vertices with positive weight can serve as endpoints
for the edges ofE0 (of course, if 2 edges ofE0 share a vertex, that vertex needs to have weight 2). Such vertices are
always guaranteed to exist since (as shown in the previous section) the splits we perform preserve the solvability of
the problem (that is,

Pv2Xi w(v) � dem(Xi)). They can also be found inO(n) time.
Once we haveE0, we can split it off. But in order to make the algorithm efficient, we tryto avoid computing a new

edge set by reusing the same one many times. The same edge setE0 can be used again if after the split� the updated weightsw0 satisfyw0(v) � dE0(v) for all v 2 V ,� all Xi still have dem(Xi) > 1, and� all Xi remain extreme.

(Note that the relationd(X`) = d(X1) � d(X2); : : : ; d(X`�1) remains valid after the splitting ofE0 sinceX1 andX`
start with the smallest degrees and have them increased more slowly than the otherXi.) We compute the maximum
number of timest thatE0 can be reused without violating these constraints.

As a first step, we compute the quantitiesdE0(X) for every extreme setX . Since no edge has both endpoints in
any oneX , this is just the total weight of edges ofE0 with endpoints in each extreme set. This can be computed for
all X in O(n) time by working up the extreme set tree.

Given the quantitiesdE0 , to meet the first constraint, we computet1 = minv bw(v)=dE0 (v)c, We can uset1 copies
of E0 without dropping anyw(v) below 0. The same approach works for the second constraint.

For the third constraint, that allXi remain extreme, we need to identify the smallestt for which splittingt copies ofE0 makes someXi non-extreme. This happens when the demand ofXi drops to meet the demand of some (extreme)
setY contained inXi. Since no extreme sets are created as we add copies ofE0 (by induction on the number of
copies),Y must be a descendant ofXi in the starting extreme set tree. For each suchY descended fromXi the
number of copies at which dem(Y) overtakes dem(Xi) is�

dem(Xi)� dem(Y)dE0(Xi)� dE0(Y) � ;
since for such at we know that aftert � 1 splits ofE0, the setY still has demand less than that ofXi (note that if
the denominator is 0 then dem(Y) will never overtake dem(Xi) so we can ignore it). Since theXi are disjoint, we
compare eachY against exactly oneXi for a total ofO(n) comparisons, so finding the limiting set takesO(n) time.

Thus, inO(n) time, we can compute the maximum number of timest it is safe to useE0. Once we have done so,
we can split offt copies ofE0 in O(n) time by updating vertex weights and extreme set demands and removing all
sets that become non-extreme as a result.

Finally, we bound the number of times we need to find a new setE0. It is the 3 constraints above that prevent us
from splitting another copy ofE0, so one of the constraints must be “tight” for thet we used. If the first constraint is
tight, it is because somew(v) < dE0(v) when we finish. Sincemaxv dE0(v) � 2, this means thatw(v) has dropped to

10

1 or to 0. Similarly, the second constrain is tight only when the demandof someXi drops to 1 or 0. The third constraint
is tight if one of our extreme sets is made non-extreme. Each of these events—a weight drop, a demand drop, or the
disappearance of an extreme set—happensO(n) times. Thus we need to compute a new setE0 and correspondingt
onlyO(n) times. Since identifyingE0 and updating the data after splitting it takesO(n) time, we have shown:

Theorem 4.7. Given the extreme set system forG, in O(n2) time we can deterministically carry out edge splitting to
reduce the maximum set demand inG to 1, at which point we can finish splitting (with high probability) inO(n2 log3 n)
time using cactus-based algorithms [NGM90, KS96].

Oddly, only the last unit of splitting involves randomization.

5 Extreme set algorithms

The two previous sections assumed that we had the extreme set system available. In this section we give Monte
Carlo algorithms that find this system with high probability. To present our techniques one by one, we describe three
increasingly powerful extreme set algorithms. The first algorithm (Section 5.4) is based solely on finding minimum
cuts and serves as an illustration of the main ideas in our extreme set algorithm. Its running time is proportional to the
maximum vertex degree, which isO(nWmax) whereWmax is the largest edge weight in the input graph. The second
algorithm (Sections 5.5 and 5.6) usesnear-minimum cuts: extreme sets are repeatedly extracted from all cuts of value
between�i�1 � c and�i � c, for i = 1; 2; etc. The running time of this algorithm is thus dependent onlog(Wmax=c).
Our final algorithm (Section 5.7) achieves a strongly polynomial~O(n2) running time by dividing the edges according
to their weight into windows within whichWmax=c becomes polynomial inn. The ~O(n2) runtime follows from the
fact that each edge occurs in only a constant number of windows. A similar windowing scheme was used in other cut
algorithms [BK96].

5.1 The Recursive Contraction Algorithm

Our extreme set algorithms use theRecursive Contraction Algorithm(RCA) [KS96]. This is an algorithm for finding
all minimum cuts in a graph. It is based on contraction of graph edges. Contracting an edge causes its two endpoints to
be merged into a single “metavertex.” At any time, each existing metavertex represents a set of original graph vertices
that have been contracted into it. If metavertexv represents a set of original verticesS, then the degree ofv in the
contracted graph is equal to the value of the cut(S; S) in the original graph.

We need two definitions. We say that a cutsurvives the contractionof a set of graph edges if no edge connecting
the two cut sides gets contracted. Similarly we say that a setX survives the contractionif the same holds for the cut(X;X). If this occurs, then there is a set of metaverticesY containing exactly the vertices ofX ; we say thatX is
contractedto Y .

In rough outline,RCAhas the following form:

Algorithm RCA(G;n)
input: ann vertex graphG
if n � 7 then

Use brute force enumeration to find all cuts
else repeat twice

Contract randomly chosen edges ofG until we getG0 with 1 + n=p2 vertices
RCA(G0; 1 + n=p2)

The contractions at a given stage can be implemented inO(n2) time on ann-vertex graph [KS96], soRCAsatisfies
the running time recurrence T (n) = 2T (1 + n=p2) +O(n2)= O(n2 logn)

11

We can also prove thatRCA“encounters” any minimum cut ofG (by contracting all vertices on one side of it into a
metavertex whose degree is the minimum cut) with probability
(1= logn). More precisely, for any particular cut,
with probability
(1= logn) the cut survives the contractions to a 7-vertex graph along at least one ofthe execution
paths of the recursive algorithm, at which point it is found by the brute force enumeration of the base case. ThusO(log2 n) iterations of the above algorithm suffice to encounter all minimum cuts with high probability. We will refer
to these iterations ofRCAas AlgorithmiRCA. Since we can track the degrees of sets we encounter [KS96], we can
recognize a minimum cut when we encounter it. Thus the time to find all minimum cuts with high probability using
iRCA isO(n2 log3 n).
5.2 Finding Extreme Sets—Basic Approach

We will modify iRCA to identify extreme sets rather than minimum cuts. A key observation isthat, like minimum
cuts, extreme sets are likely to survive contraction byRCAto single metavertices. Unfortunately, unlike minimum
cuts, we have no trivial method (e.g. degree tests) for deciding whethera given metavertex represents an extreme set.
We therefore need to add a “verification” step that decides which of our candidate extreme set is truly extreme. We
use the following modificationES (Extreme Sets) ofRCA:

Algorithm ES(G;n)
input: ann vertex graphG
output: laminar familyF containing some extreme sets ofG
if n � 8 then

Use brute force enumeration to find and return all extreme sets
else

repeat twice(letting i = 1; 2)
Contract random edges ofG to getGi with 2 + n=p2 verticesFi ES(Gi; 2 + n=p2)
expand the extreme sets ofGi in Fi toG

(by uncontracting the metavertices ofGi to vertex sets ofG)F F1 [F2
add toF all vertices ofG as singleton extreme sets
cull some non-extreme sets fromF to makeF laminar
Return the resulting set system

Since all singleton vertices are returned, and since culling only removes nonextreme sets, any extreme sets “en-
countered” byES (that is, contracted to single metavertices at some point), will be returned byES.

We will actually need to callESO(log2 n) times, likeiRCA, to have a high probability of finding all extreme sets.
But we can cull theO(log2 n) resulting set systems by repeatedly merging and culling pairs of them. We will end up
with a laminar family that contains all extreme sets with high probability. We refer to this iteration ofESas Algorithm
iES .

5.3 An Easy Case

As a first demonstration of the above process, we find allc-extreme sets—that is, extreme sets that are also minimum
cuts. We can use the fact that ifU andX are (sides of) two different minimum cuts that overlap, thenU�X andX�U
are minimum cuts (this follows from the submodularity of the function d(U)). Thus, neitherU norX is c-extreme
and both can be discarded. It follows that thec-extreme sets ofG are actually disjoint, forming asubpartitionof the
vertex set—that is, a collection of disjoint subsets ofV .

Our culling procedure for the subpartitionsF1 andF2 returned by the recursive calls is therefore quite simple. We
represent a subpartitionfX1; : : : ; Xrg by a vector(x1; x2; : : :) wherexi = j if the i-th vertex ofG is contained inXj . We use a special null symbol for a vertex not in any of the sets. By referring to the vector representingF2, we can

12

decide inO(n) time whether a given setC 2 F1 overlaps or contains some element ofF2. If it does, we can discardC since it is not extreme. SinceF1 hasO(n) sets, checking allC 2 F1 takesO(n2) time as desired. We then repeat
the procedure, exchanging the roles ofF1 andF2, to cull non-extreme sets fromF2.

Since culling takesO(n2) time, it is dominated by the other operations ofiRCA at each recursion node; thus
iES has the same running time asiRCA. TheO(log2 n) culling calls needed to merge the families produced by theO(log2 n) iterations ofES take an additionalO(n2 log2 n) time, which is also dominated byiRCA.

SinceiRCA (and thusiES) contracts all minimum cuts (and thus allc-extreme sets) to metavertices with high
probability at some point in the recursion, all extreme sets will be introduced as singleton vertices at some point in the
recursion. Clearly they will never be culled. Thus the algorithm willoutput all extreme sets.

In fact, this algorithm may also output certain non-extreme sets (since it never checks their degrees), but it is
guaranteed that the output sets will be disjoint. Thus it takes onlyO(m) time to compute the degrees of all output sets.
We can discard all that have degree exceedingc.
5.4 A First Algorithm

We now build upon the above idea to find all extreme sets. Suppose thatwe have found alld0-extreme setsfXig ford0 < d, and wish to find alld-extreme sets. Since extreme sets are laminar, nod-extreme set can contain or overlap
anyXi. So defineMi to be the set of vertices contained inXi but not in any child of (i.e.d0-extreme set contained in)Xi. Also letM0 be the set of vertices not in anyXi. Then anyd-extreme set is contained in someMi. Note also that
theMi form a partition of the vertex setV . Thus, if for eachMi we find alld-extreme sets strictly contained in it in~O(jMij2) time then we will have found alld-extreme sets in~O(P jMij2) = ~O(n2) time (since

P jMij = n).
To process a single setMi in ~O(jMij2) time, we can contractV �Mi to a single vertexq. Any extreme set inMi will still be extreme in the contracted graph. But all extreme sets not in Mi have been contracted. In particular,

no set insideMi is d0-extreme for anyd0 < d. We might therefore aim to apply our previous algorithm for findingc-extreme sets toMi with c = d. One small problem is that potentiallyd(Mi) < d (this can happen ifMi is itself an
extreme set). This would make the cut(Mi; fqg) into the unique minimum cut of the contracted graph. Fortunately,
the existence of one such unusually small cut does not affect anything:

Lemma 5.1. Suppose that a graphG has a unique minimum cut and letc be the next smallest cut value inG. Then
with high probabilityiRCA encounters (contracts to a metavertex) all cuts of valuec in G, and iES encounters allc-extreme sets ofG.

Proof. The proof goes much as the proof that algorithmRCAis correct [KS96]. We lower bound the probability that
none of the edges crossing the extreme set get contracted. If this happens,the extreme set will eventually be noticed
when it gets contracted to a single vertex or the recursion bottoms out.

We begin by analyzing a sequence of random edge contractions fromn down to2 + n=p2 vertices. Consider a
particularc-extreme set. Suppose we have performed contractions untilG hasr vertices remaining. There is only one
cut of value less thanc, so in particular every vertex but one has degree at leastc. Thus there are at least(r � 1)c=2
edges in the graph, which means that the probability we pick an edge crossing the particularc-extreme set we want to
find is only2=(r� 1). It follows that as we contract fromn to 2+ n=p2 vertices, the probability we never pick a bad
edge is (c.f. [KS96]): (1� 2n� 1)(1� 2n� 2) � � � (1� 2n=p2 + 1) � 1=2:

It follows that the probabilityP (n) that algorithmES finds a particularc-extreme set in then-vertex graph satisfies
the recurrence P (n) = 1� (1� 12 � P (2 + n=p2))2 =
(1= logn):
The recurrence arises from the fact that forES to fail to find the set onn vertices, it must fail on both of its two
independent subproblems (thus the squaring in the recurrence). But it succeeds on a subproblem if the the particular

13

c-extreme set survives the contractions to2 + n=p2 vertices (probability 1/2) and then the recursive call finds it
(probabilityP (2 + n=p2)). This recurrence is solved in the earlier paper [KS96] to yield the claimed bound.

Since a single iteration encounters any particular set with probability
(1= logn), we can runO(log2 n) iterations
of ES to reduce the probability of missing the particular set toO(1=n3). Since there areO(n) extreme sets, we
encounterall of them with probability1�O(1=n2) as claimed.

The above lemma shows thatiES will still encounter (contract to a metavertex) alld-extreme sets with high
probability; it remains to show how to cull them. We can use the same technique as in Section 5.3. Suppose two
second-minimum cutsY andZ overlap. By submodularity,d(Y � Z) + d(Z � Y) � d(Y) + d(Z): SinceY andZ
are second minimum cuts, this inequality must in fact be an equality, and bothY andZ non-extreme as a result, unless
one ofY �Z orZ � Y is the unique minimum cut. So we cull our family in two steps: first,in O(n) time, we delete
all sets that contain the unique minimum cutfqg. Then we use theO(n2) time algorithm of Section 5.3 to eliminate
any pairs of sets that overlap. We omit additional details since we will shortly give a more powerful algorithm.

It follows that with high probability2 we will indeed encounter alld-extreme cuts in the contracted graphMi[fqg.
This gives a simple algorithm for finding extreme sets: starting with d = c and incrementingd each time, find all
minimum-degree extreme sets in each set of theMi partitions defined above. The running time of this algorithm can
be bounded two ways. For augmentation to connectivityk = c + � , we need only find extreme sets of degree up toc+ � ; thus we need only� iterations for an overall running time ofO(n2� log3 n). On the other hand, regardless of�
there areO(n) extreme sets, and a new one is found in each iteration. So there will beO(n) iterations for a running
time ofO(n3 log3 n).
5.5 Geometric Growth

The scheme described above will, in the worst case, add1 to to the degreed of extreme sets detected in each iteration.
We now show how instead we can multiplyd by some quantity exceeding 1 in each iteration. Thus will reduce the
number of iterations needed to reach connectivityk from k � c to log(k=c).
Lemma 5.2 ([KS96]). If, instead of contracting ton=p2 vertices, the recursion inRCAcontracts ton=21=2� vertices,
theniRCA runs inO(n2� log3 n) time and, with high probability, encounters all cuts of value less then�c in a graph
with minimum cutc.

The above lemma generalizes in a straightforward fashion to the case where we are looking for extreme sets using
ESand the graph has a unique minimum cut:

Corollary 5.3. If, instead of contracting ton=p2 vertices, the recursion inES contracts ton=21=2� vertices, then
(aside from culling)iES runs inO(n2� log3 n) time and, with high probability, encounters all extreme sets of degree
less than�c in a graph with minimum cutc. The result holds even if there is a unique cut of value less thanc.
Proof. Again, the proof matches that of the previous paper [KS96]. The running time obeysT (n) = 2T (n= �p2) +O(n2) = O(n2� logn):
Arguing as in Lemma 5.1, the probability that we never contract an edge crossing a particular�c-extreme set as we
reduce fromn to n= �p2 vertices is at least(1� 2�n� 1)(1� 2�n� 2) � � � (1� 2�n= �p2 + 1) � 1=2:
We continue exactly as before to deduce an
(1= logn) probability of encountering a particular extreme set in one
iteration ofES, and a high probability of success overO(log2 n) iterations.

2Note that regardless of the sizen0 ofMi, we will iterateESO(log n log n0) times, rather thanO(log2 n0) times, in order to keep the probability
of failure below1=n2 instead of1=n02, but this is already accounted for in our time bounds.

14

Now suppose that we choose� = 1+1= logn. Then the running time ofiES (aside from culling) isO(n2� log3 n) =O(n2 log3 n). Once we have found all extreme sets of degree less than�c, we can partition the vertices into setsMi
as we did in the previous section and recursively find all extreme sets of degree exceeding�c separately in eachMi.
Since the second-minimum cut value increases by a factor of at least1 + 1= logn when we recurse, and since the
maximum extreme set degree is at mostnWmax (the maximum vertex degree) for maximum edge weightWmax, the
recursion will find all extreme sets after(log n) log(nWmax=c) iterations.

Shortly we will develop a culling algorithm with running timeO(n2) that we can use in AlgorithmES. This time
is asymptotically dominated by the other timeES spends at each recursion node and thus does not affect the overall
running time ofES.

Combining these arguments leads to the following:

Lemma 5.4. In a graph with minimum cutc and maximum edge weightWmax, all extreme sets can be found with high
probability inO(n2 log4 n log(nWmax=c)) time (aside from culling). In particular, whenWmax = nO(1)c, the time
needed isO(n2 log5 n).
5.6 A general culling algorithm

It remains to describe a culling scheme that we can apply in our extreme set algorithm. The most obvious approach
is to work as before: whenever two degree-c sets overlap, we know that neither is extreme. But this idea only applies
when all candidate extreme sets being examined have the same degree; in the new approach, we might simultaneously
find sets with many different degrees. When two such sets overlap,oneof the overlapping sets might be extreme, and
we have no obvious way to tell which. So we take a more complicated approach. We exploit the fact that our culling
input is the union of two laminar families of sets. We will give a culling algorithm that runs inO(n2) time on a pair
of laminar families over ann vertex graph. Culling is therefore not the bottleneck iniES , so that algorithm’s running
time remains as claimed before.

Given that we use the extreme-set finding algorithm above, our culling task is as follows. We are given two
laminar set systemsS andT (the results from the two recursive calls inES). We wish to build a new, laminar system
that contains (at least) all extreme sets inS [T . We will do so by discarding certain non-extreme sets fromS or T .
The challenge is deciding which sets are not extreme. Recall that a family is non-laminar if and only if two sets in it
overlap. So suppose two setsX andY in the (merged) familyS [T do overlap. As was argued before in Lemma 2.8,
the submodularity of the degree function tells us thatd(X � Y) + d(Y �X) � d(X) + d(Y):
It follows that eitherd(X � Y) � d(X) or d(Y �X) � d(Y). So one ofX or Y is not extreme and can be discarded
from the family.

The above discussion reveals our plan for culling the input set family. For every overlapping pair of setsX andY
(where without loss of generalityX 2 S andY 2 T , sinceS andT are separately laminar) we computed(X � Y)
and compare it tod(X) to see if we can discardX . We then do the same symmetrically to identify discardable sets inT .

As a first step, we show how to quickly computed(X) for everyX 2 S. We use a method similar to one used for
finding minimum cuts [Kar96]. Recall that the laminar set systemS corresponds to a tree whose leaf nodes are the
vertices ofG and whose (leaf and internal) nodes each correspond to a set ofS. For clarity we will always refer to
nodes of the tree (laminar family) versus vertices of the graphG. We begin with some definitions.

Definition 5.5. X# is the set of nodes that are descendants of nodeX , includingX .

Definition 5.6. Given a functionf on the nodes of a tree, thetreefix sumof f , denotedf#, is the functionf#(X) = XU2X# f(U):
Lemma 5.7. Given the values of a functionf at the tree nodes, all values off# can be computed inO(n) time.

15

Proof. Perform a postorder traversal of the nodes. When we visit a nodeX we already will have computed (by
induction) the values at each of its children. Adding these values takes timeproportional to the number of children ofX ; adding inf(X) gives usf#(X). Thus, the overall computation time is proportional to the total number of children
in the tree, which is one less than the total number of nodes, soO(n).

We can compute the degreesd(X) via treefix sums. We define some functions on the nodes of the laminar settree
whose treefix sums we will use. First, let�(fvg) be the (weighted) degree of vertexv for each singleton set (leaf node)fvg of the laminar family, and let�(X) = 0 for all other sets. Then�#(X) is the sum of degrees of vertices inX .
Next, letA(X) denote the set of edges whose endpoints’ least common ancestor inS isX . Let�(X) denote the total
weight of edges inA(X). Then�#(X) is the total weight of edges with both endpoints inX .

Lemma 5.8. d(X) = �#(X)� 2�#(X):
Proof. The term�#(X) counts all the edges with endpoints inX . This correctly counts each edge crossing the cut
defined byX , but also double-counts all edges with both endpoints insideX . But an edge has both endpoints insideX if and only if its least common ancestor is inX#. Thus the total weight of such edges is�#(X). We “uncount” both
endpoints of these edges.

Since treefix sums takeO(n) time, it follows that the valuesd(X) for all setsX 2 S can be computed inO(n)
time given the functions� and�. But both� and� can be computed inO(m) time. To compute�, scan the edges once
and accumulate their weights into their endpoints. ComputingA(X), and from it the function�, is equally easy if we
know the least common ancestor (inS) of each edge; these can be determined inO(m) time [GT85, BV93, SV88].
We summarize our argument in the following lemma:

Lemma 5.9. Given a set ofn vertices, a laminar familyS of sets of these vertices, and a collection ofm edges on
these vertices, inO(m + n) time we can compute:� The degree sum of vertices in each setX 2 S� The set of edges with both endpoint in each setX 2 S.

and from these two quantities,d(X) for eachX 2 S using lemma 5.8.

We now extend this approach to calculate the quantitiesd(X � Y) for all X andY . For now we assume thatY is
fixed and computed(X � Y) (as a function ofX) for eachX 2 S. That is, we compute degrees for the sets in the
family fX � Y j X 2 Sg:
Noting that this is again a laminar family, we can apply the same procedure asbefore. First, let�Y (fvg) equald(v) ifv =2 Y , and 0 otherwise. Then�#Y (X) is the sum of degrees of vertices inX � Y . Next, let�Y (X) be the weight of
edges inA(X) that have neither endpoint inY . It follows that�#Y (X) is the weight of edges with both endpoints inX � Y . Therefore,d(X � Y) = �#Y (X)� 2�#Y (X). So given�Y (X) and�Y (X) for all X 2 S, we can compute the
desired valuesd(X � Y) for all X in O(n) time.

It remains to show how to compute the functions�Y and�Y for each setY 2 T . We assume that we have already
computedd(v) for eachv andA(X) and�(X) for eachX (this takesO(m) time by Lemma 5.9). Given the degreesd(v) for each vertex (leaf node)v, we compute�Y (fvg) for all v in O(n) time by checking ifv 2 Y and setting�Y (fvg) to be0 or d(v) accordingly. On non-leaf nodesX , �Y (X) is 0 as is�(X). Thus for a given setY , we can
compute the function�Y in O(n) time.

Computing�Y (X) is somewhat trickier. Recall that this is the weight of edges inA(X) that have neither endpoint
in Y . Since we previously computed�(X), it suffices to compute the complementary weight of edges inA(X) that
have at least one endpoint inY . But this is just the sum of degrees (inA(X)) of vertices inY , minus the weight of
edges with both endpoints inY (since these are double-counted in the degree sum). Now note that thesetwo quantities
are precisely the quantities listed in Lemma 5.9 if we consider the laminarfamily to beT and the set of edges to be

16

A(X). It follows from Lemma 5.9 that we can compute the desired quantities forX inO(n+kA(X)k) time. Carrying
out this computation for everyX 2 T requiresXX O(n + kA(X)k) = O(n2 +m) = O(n2)
time since

P kA(X)k = O(m).
ComputeA(X) for every nodeX 2 S in O(m) time using LCA computations.
Compute�(X) and�(X) for eachX in O(m) time
Computed(X) using treefix computations on the above quantities inO(n) time

for eachnodeX 2 S
Select edge setA(X) and laminar familyT
Use Lemma 5.9 to compute, simultaneously for everyY 2 T in O(n+ kA(X)k) time,

(i) the weight of edges ofA(X) with both ends inY and
(ii) the sum of degrees of vertices inY

From the above quantities, determine�Y (X) in constant time for each nodeY (total timeO(n)).
for eachY 2 T

compute treefix sums overX 2 S of �Y (X) and�Y (X) in O(n) time
use them to determined(X � Y) for all X 2 S in O(n) time.

Given allO(n2) valuesd(X � Y), cull any setX for whichd(X � Y) � d(X) for anyY that meetsX
Figure 1: The culling algorithm

Now that we have worked backwards to a full solution, we can restate it inexecution order in Figure 1. The sets
that survive this culling algorithm will form a laminar family—if two overlap, then by submodularity one will fail the
degree test in our culling algorithm. This completes the culling algorithm and shows:

Theorem 5.10. Given two laminar families, a subset of their union containing all the extreme sets they contain can
be constructed deterministically inO(n2) time.

If we use this culling algorithm in our extreme set algorithm, we will at the end output a laminar family containing
all extreme sets ofG that we have encountered. Our implementation ofiES makes it highly probable (Corollary 5.3
that this will be all extreme sets ofG. We can quickly remove non-extreme sets from this laminar family since each
contains an extreme set—we compute the degrees of all sets in the family (asdescribed in our culling algorithm) and
discard any set that contains a set of smaller degree. Since our culling algorithm takesO(n2) time onn vertices, using
it does not affect theO(n2 log3 n) running time of the extreme set algorithmiES described in Corollary 5.3. This fills
in the final piece of Lemma 5.4.

5.7 The strongly polynomial ~O(n2)-time algorithm

In a final step, we eliminate thelog(k=c) factor from the running time of our extreme sets algorithm. We use a
windowing scheme(similar to one used previously [BK96]) that restricts the search ford-extreme sets only to a small
“window” of relevant edge weights in the range[d=n3; d]. Once all edge weights are in this range, the range of
extreme set values that exist in the graph becomes polynomial, so we can replacelog(k=c) by logn in the statement
of Lemma 5.4. The final running time of our algorithm thus becomesO(n2 log5 n).
5.7.1 The Core Idea

We define the followingW -windowingprocedure. LetT be a maximum weight spanning tree ofG. Suppose that
we delete all edges ofT with weight less thanW=n3 and then contract all edges ofT with weightW or more. This

17

partitionsT into subtrees, each containing some metavertices ofG. The metavertices in each tree of the forest define
a vertex-induced subgraph on the contraction ofG that we call apane.

Lemma 5.11. LetX be anyd-extreme set withW=n � d < W . ThenW -windowing contractsX to some setY that
is an extreme set in one of the panes.

Proof. Every edge crossingX has weight at mostd(X) < W , so no edge crossingX is contracted. This proves
thatX is contracted to some set of metaverticesY . We need only show thatY is entirely contained in one of the
panes—that is, that the partition defined by the subtrees ofT does not splitX .

Recall the following fact about maximum spanning trees [Tar83]: ife is an edge of weightw, then the path in the
maximum spanning tree connecting the endpoints ofe is made up entirely of edges with weight at leastw. SupposeX is split into multiple pieces in different components of the forest. If X is in at least two pieces, some piece, sayX1 � X , must have edge-weight at mostd(X)=2 crossing from it toX. At the same time, there is no edge of weight
at leastW=n3 connectingX1 andX2 = X � X1 (if there were, thenT would have to contain a path of edges of
weight at leastW=n3 connectingX1 toX2, so they would not be split). Thus, the total weight connectingX1 toX2
is at most

�n2�(W=n3) < W=2n. Thus,d(X1) = d(X1; X2) + d(X1; X) � d=2 +W=2n � d;
contradicting the assumption thatX is d-extreme.

We will use the above theorem in a strongly polynomial extreme set algorithm. For each integer value ofi, we
separately seek alld-extreme sets forni�1 � d � ni by looking at the panes in the window atW = ni. Each such
pane is spanned by a tree of MST edges of weight at leastW=n3 � d=n3, so the minimum cut of the pane is at least
this large. So the ratio of extreme set value to minimum cut is polynomial in n. Thus within the pane the weakly
polynomial algorithm given in Lemma 5.4 has a strongly polynomial running time.

We will shortly argue that total size
Pnj of panes in windows that we need to solve isO(n) metavertices; it

follows that we can find the extreme sets in all the windows with high probability in ~O(Pn2j) = ~O(n2) time.
At the conclusion of this windowing procedure, we will have a collection ofO(n) laminar familiesF1; : : : ;Fr,

one for each value ofW we used. These families together contain all the extreme sets ofG, but may also contain some
other sets that are extreme in some pane but not inG. We need to merge these families and remove the non-extreme
sets.

In the following subsections, we will fill in three details of this algorithmic outline:� We need to show that the total number of metavertices in our windows isO(n),� We need to efficiently construct the various windows, and� We need to efficiently merge the laminar families from the various windows.

We will discuss anO(n2)-time implementation that meets these goals. While we are confident that anO(m)-time
algorithm is possible, theO(n2) bound is already dominated by the time to find extreme sets. Settling for the slower
bound lets us give simpler algorithms.

5.7.2 An Evolutionary Model

To analyze and implement our algorithm we imagine an evolutionary model of our graph. Recall the parameterW = nk from our windowing procedure, and consider what happens ifk starts at1 and decreases through the
integers to�1. Initially, all maximum spanning tree edges are too small to be in the window so the panes are just
the singleton vertices. Ask decreases, certain MST edges “arrive” in the window. This causes certain panes to merge.
Later, MST edges that entered the window get contracted, creating new metavertices.

This arrival and contraction of MST edges affects the other edges ofG. Edges move through 3 stages. Initially, an
edge connects two separate panes; we say this edge ispending.At some time, the endpoints of the edge are connected
into the same pane; we say the edge isactive.Finally, the endpoints of this edge are contracted into a single metavertex,

18

turning the edge into an irrelevant loop; we say the edge isfinished.Note that these definitions also apply consistently
to the MST edges themselves. Note also that an edge’s state is determined not by its own weight, but by the weight of
the MST edges connecting its endpoints.

5.7.3 Size Analysis

We use our evolutionary model to bound the total size (in number of metavertices) of the panes we need to analyze.
We distinguish two kinds of pane: atrivial pane is a single metavertex, while anontrivial pane is made up of more
than one metavertex. An isolated metavertex is extreme by definition, so we need spend no time analyzing it. We only
need to bound the total size of the nontrivial panes. Each nontrivial paneis a component spanned by some active MST
edges; the number of metavertices in the pane is at most twice the number ofMST edges in it. Thus, the total size
(in number of metavertices) of the panes for a given window valueW is proportional to the number of active MST
edges—that is, the number of MST edges with weight betweenW andW=n3. An MST edge of weightw contributes
to this count only whenW=n3 � w �W , which happens for at most 4 values ofW = nk. Thus, over allW , the total
size (in metavertices) of problems solved isO(n).

We can similarly bound the total number of edges in all panes. The endpoints of an edge end up in the same pane,
activating the edge, when all edges on the MST path connecting them have arrived; the last such edge to arrive is the
lightest edge on the MST path. The endpoints of the edge are contracted, finishing the edge, when all edges on this
MST path are contracted; again the last edge to be contracted is the lightest one on the MST path. There are only four
phases between the arrival and contraction of this lightest MST edge, so each edgeis active for only 4 phases. Thus,
over all phases, the total number of active edges isO(m).

In summary, we have panesj with O(nj) metavertices andO(mj) edges, such that
Pnj = O(n) and

Pmj =O(m). Some of the panes might have multiple edges with the same endpoints, which could invalidate our~O(n2) time
bound analysis for extreme sets; however, we can merge all parallel edges of panej in O(mj) time, taking a total ofO(Pmj) = O(m) time over all panes. It follows that the total time spent to find extremesets inall panes using the
algorithm of the previous section isO(Pn2j log5 n) = O(n2 log5 n) as claimed.

5.7.4 Building the Windows

Of course, we must actually generate the windows whose panes are passed to our extreme set algorithm. We implement
the evolutionary model just introduced, in which MST edges arrive and get contracted over time.

As was discussed above, the activation and finishing time of an edge are determined by the lightest edge on the
MST path between its endpoints. Thus, to determine the evolution of every edge we need merely find, for every
edge, the weight of the lightest edge on the MST path between its endpoints. This is the MST verification problem,
which can be solved inO(m) time [DRT92], or inO(m logn2=m) time by more practical algorithms [Tar83]. Note
that since the MST path between an edge’s endpoints, rather than the edge’s ownweight, determines its arrival time,
edges’ activation order may be quite different from their order by weight.

We would like to output the panes that arise as the graph evolves. Of course, the graph evolves through infinitely
many phases, but we only need to consider those phases in which some MST edge is active, as these are the only
phases for which some nontrivial (with more than one metavertex) paneexists. There areO(n) such relevant phases,
and we can determine them from the list of MST edge weights. If we sort the MST edges by weight, we can run
through the phases in temporal order.

We consider the graph at a certain phase of its evolution, and show how tooutput the panes from that phase. As
was discussed above, the total size (in vertices and edges) of nontrivial panesis O(m). The total size of trivial panes
isO(n2) (at mostn vertices in each ofO(n) phases). Thus if our algorithm outputs each pane in time proportionalto
its size, the overall time to generate the panes will beO(n2).

We create a collection of buckets corresponding to the phases in which something happens; into each bucket we
place copies of the edges that first become active in that phase. Next we start moving through the phases chronolog-
ically. We describe how to transform the graph from one phase to the next. First, we contract all the currently active
edges that finish in the phase; this takes time proportional to the number of active edges. The contraction creates new
metavertices; by traversing the current panes we can relabel every vertex withthe identity of its new metavertex in

19

O(n) time (a union-find data structure could be used instead, of course). Next, we add all the edges that become active
in the new phase. We compute the connected components induced by these and the other still-active edges to identify
the new panes; this takes time proportional to the size of the new panes.

It follows that the time to move from one phase to the next is proportional to the size of the two windows involved;
thus the total time spent is proportional to the totals size of windows, which we have seen isO(n2).
5.7.5 Merging the Extreme Sets

We have now shown how to build a set of windows which we have argued contains as extreme sets all the extreme sets
of G. Since these windows have total vertex countO(n), the time to find all extreme sets in them isO(n2). It remains
to merge the resulting extreme set familiesFi into the extreme set familyF for G. The problem is that although every
extreme set inG is extreme in someFi, the converse might not be true. We need to cull non-extreme sets as we merge.

We first resolve a minor technical problem. Our definitions of panes involved “cutting out” a pane from the
remainder of the graph and computing extreme sets in it. This cutting process, which removes some edges ofG,
changes the degrees of sets in the pane. We will find it more convenient to have these degrees unchanged. Thus,
before finding extreme sets in a paneP , we add a new metavertexs representing the (contraction of) the remainder of
the graphG � P . We compute the weights of edges incident ons from every metavertex inP . This is just the total
weight of pending edges incident on each metavertex inP . This quantity is easily maintained: initially all edges are
pending, and as they become active we can subtract their weights from the degrees of their endpoints. Representings
adds at mostn edges and 1 vertex to each pane, which does not affect our time bounds.

In P [fsg, the degree of any set is equal to the degree of the corresponding (uncontracted) set inG. While finding
the extreme set familiesFi, we already compute the degrees (inG) of all the sets inFi. So we continue to work with
these quantities.

First consider a window at weightWi and its resulting laminar familyFi. All we rely on in arguing that the
windows together contain all ofF is that theWi-window contains all extreme sets of degree betweenWi=n andWi.
So we can delete fromFi all extreme sets whose degree is not in this range. This ensures that if the windows we
considered wereW1 < W2 � � � < WO(n), then all sets inFi have degree less than all sets inFj for i < j.

To merge these windows, we rely on the following observation: any non-extreme (inG) set inFj contains some
extreme (inG) set of lower or equal degree, which must therefore appear in someFi with i < j. So we build our
family F according to the following algorithm. Start withF empty. Working in increasing order ofi, mergeFi intoF . For each set inFi (again considered in increasing order of degree), add it toF if it does not contain any set already
in F . By induction, when we addFi, setF will contain allG-extreme sets with degrees less than those inFi. By our
statement at the start of the paragraph, this means that only theG-extreme sets inFi will be added toF . So at the end,F will contain all extreme sets ofG.

To implement the containment check efficiently, maintainF as a laminar family. Given a setX 2 Fi, useO(n)
time to see whetherX contains any set in the laminar family (by working up from the leaves of the family). IfX does
not contain any such set, useO(n) time to add it to the laminar family.

Since the total metavertex count of the windows isO(n), the total number of sets in the laminar families on the
windows is alsoO(n). Since we useO(n) time to merge each set, the total time needed to carry out the mergers isO(n2).

This completes our discussion of the strongly polynomial algorithm. We have shown how to build windows
containing allG-extreme sets inO(n) time, and have shown how to merge the extreme set families of these windows
to generate the extreme set family forG in O(n2) time. It follows that the dominant factor in the time to find extreme
sets forG is the time spent finding extreme sets in the windows, which we havealready argued isO(n2 log5 n).
6 Conclusion

We have proposed randomized~O(n2)-time edge augmentation and extreme sets algorithms. Our edge augmentation
algorithm runs faster than the best known deterministic one [NI96] by a factor of~
(m=n). While the previous best
extreme sets algorithm [NGM90] (in the weighted graph case) finds extreme sets as certain sets naturally defined by

20

a Gomory–Hu tree [GH61], our results show that it is most likely easier to find extreme sets than a Gomory–Hu tree
(and seems even easier than finding a single max-flow). Our algorithm also solves the degree-constrained version of
the augmentation problem.

An obvious question is whether our extreme sets algorithm, which is the bottleneck both computationally and in
terms of descriptive complexity, can be simplified. Though the ideas ofthe algorithm are relatively simple, the imple-
mentation is quite baroque. While some logarithmic factors in the running time of our algorithm may be unnecessary,
it appears unlikely that major improvements are possible over the~O(n2) time bound for this algorithm. However, a
different approach might work. Karger [Kar96] describes an~O(m) time algorithm for finding a minimum cut, but
it is not even guaranteed that this single minimum cut is ac-extreme set. Perhaps the algorithm could be modified
for extreme sets. Another question is whether finding extreme sets can bedone quickly and deterministically. The
same holds for augmentation given the extreme sets: it seems odd that only the very last unit of augmentation requires
randomization. On the other hand, at present simply checking the connectivity of a graph ino(mn) time requires
randomization.

7 Acknowledgment

Thanks to the referees for their very careful reading and helpful comments.

References

[ACM94] ACM. Proceedings of the26th ACM Symposium on Theory of Computing. ACM Press, May 1994.

[ACM96] ACM. Proceedings of the28th ACM Symposium on Theory of Computing. ACM Press, May 1996.

[Ben94] András A. Benczúr. Augmenting undirected connectivity inRNC and in randomized~O(n3) time. In
Proceedings of the26th ACM Symposium on Theory of Computing[ACM94], pages 658–667. Journal
version in preparation.

[BK96] András A. Benczúr and David R. Karger. Approximates–t min-cuts in ~O(n2) time. InProceedings of the28th ACM Symposium on Theory of Computing[ACM96], pages 47–55.

[BV93] Omer Berkman and Uzi Vishkin. Recursive star-tree parallel data structure.SIAM Journal on Computing,
22(2):221–242, April 1993.

[CS89] G-P. Cai and Y-G. Sun. The minimum augmentation of any graph toak-edge-connected graph.Networks,
19:151–172, 1989.

[DRT92] Brandon Dixon, Monika Rauch, and Robert E. Tarjan. Verificationand sensitivity analysis of minimum
spanning trees in linear time.SIAM Journal on Computing, 21(6):1184–1192, 1992.

[Fra92] Andras Frank. Augmenting graphs to meet edge connectivity requirements.SIAM Journal on Discrete
Mathematics, 5(1):25–53, 1992. A preliminary version appeared in Proceedings of the31st Annual Sym-
posium on the Foundations of Computer Science.

[Fra93] Andras Frank. Applications of submodular functions. In K. Walker, editor,Surveys in Combinatorics,
number 187 in London Math. Society Lecture Notes, pages 85–36. Cambridge, 1993.

[Gab91a] Harold N. Gabow. Applications of a poset representation to edge connectivity and graph rigidity. In
Proceedings of the32nd Annual Symposium on the Foundations of Computer Science[IEE91], pages
812–821.

[Gab91b] Harold N. Gabow. Applications of a poset representation to edgeconnectivity and graph rigidity. Technical
Report CU–CS–545–91, University of Colorado Department of Computer Science, 1991.

21

[Gab94] Harold N. Gabow. Efficient splitting off algorithms for graphs. InProceedings of the26th ACM Sympo-
sium on Theory of Computing[ACM94], pages 696–705.

[GGP+94] Michel X. Goemans, Andrew Goldberg, Serge Plotkin, David Shmoys,Éva Tardos, and David Williamson.
Improved approximation algorithms for network design problems. InSleator [Sle94], pages 223–232.

[GH61] Ralph E. Gomory and Tien Chung Hu. Multi-terminal network flows. Journal of the Society of Industrial
and Applied Mathematics, 9(4):551–570, December 1961.

[GT85] Harold N. Gabow and Robert E. Tarjan. A linear time algorithm fora special case of disjoint set union.
Journal of Computer and System Sciences, 30:209–221, 1985.

[GW97] Michel X. Goemans and David P. Williamson. The primal-dual method for approximation algorithms and
its application to network design problems. In Dorit S. Hochbaum, editor, Approximation Algorithms for
NP-hard Problems. PWS Publishing Co., Boston, MA, 1997.

[IEE90] IEEE. Proceedings of the31st Annual Symposium on the Foundations of Computer Science. IEEE Com-
puter Society Press, October 1990.

[IEE91] IEEE. Proceedings of the32nd Annual Symposium on the Foundations of Computer Science. IEEE Com-
puter Society Press, October 1991.

[Kar96] David R. Karger. Minimum cuts in near-linear time. InProceedings of the28th ACM Symposium on
Theory of Computing[ACM96], pages 56–63.

[KS96] David R. Karger and Clifford Stein. A new approach to the minimum cut problem.Journal of the ACM,
43(4):601–640, July 1996. Preliminary portions appeared in SODA 1992 and STOC 1993.

[Lov93] Làszló Lovász.Combinatorial Problems and Exercises. North-Holland, Amsterdam, 2nd edition, 1993.

[Mad78] W. Mader. A reduction method for edge-connectivity in graphs.Annales Discr. Math., 3:145–164, 1978.

[NGM90] Dalit Naor, Dan Gusfield, and Charles Martel. A fast algorithm foroptimally increasing the edge connec-
tivity. In Proceedings of the31st Annual Symposium on the Foundations of Computer Science[IEE90],
pages 698–707.

[NI96] H. Nagamochi and T. Ibaraki. Deterministic~O(nm)-time edge splitting in undirected graphs. InProceed-
ings of the28th ACM Symposium on Theory of Computing[ACM96], pages 64–73.

[Sle94] Daniel D. Sleator, editor.Proceedings of the5th Annual ACM-SIAM Symposium on Discrete Algorithms.
ACM-SIAM, January 1994.

[SV88] Baruch Schieber and Uzi Vishkin. On finding lowest common ancestors: Simplification and paralleliza-
tion. SIAM Journal on Computing, 17:1253–1262, December 1988.

[Tar83] Robert E. Tarjan.Data Structures and Network Algorithms, volume 44 ofCBMS-NSF Regional Confer-
ence Series in Applied Mathematics. SIAM, 1983.

[WN87] T. Watanabe and A. Nakamura. Edge connectivity augmentation problems. Journal of Computer and
System Sciences, 53:96–144, 1987.

22

