Augmenting Undirected Edge ConnectivityG{n?) Time

Andras A. Bencz(ir David R. Karger
June 7, 2000
Abstract

We give improved randomized (Monte Carlo) algorithms fodivected edge splitting and edge connectivity
augmentation problems. Our algorithms run in tiMén?) on n-vertex graphs, making them &(m/n) factor
faster than the best known deterministic onesreredge graphs.

1 Introduction

Edge augmentation and edge splitting problems are special network gesigjems [GGP 94, GW97] in which a
graph must be modified achieve specified edge connectivity properties mimimizing the total weight of edges
used.

In theedge augmentation problemne wants to add an (integer weighted) edge set of minimum total weight s
that the input graph becomésedge-connected (by weight). The valués called thetarget connectivity

Edge splittings a tool widely used to solve connectivity-related problems. The gdal ¢ut a given vertex out
of the graph without decreasing the connectivity of the rest of the ghdjehdo so by repeated shortcuttirsglitting
pairs of edgesu, s) and(v, s) to a new edgéu, v). By arranging for the graph created by splitting-off to preserve the
connectivity properties of the original graph, we can use the congiruictiinductive proofs of various connectivity
theorems [Fra93]. These inductive proofs can be turned into efficientsieewalgorithms via splitting algorithms
based on flows [Gab94] or the Nagamochi—Ibaraki algorithm [N196].

Unlike generic network design problems which are NP-complete, edge atafioaris tractable because each
edge’s cost is equal to its weight. This was first shown by Watanabe and NekpMN87] for the unweighted case;
the first strongly polynomial algorithm was given by Frank [Fra®jige splitting can also be solved in polynomial
time. Progress has been made on improved time bounds for both proltenysior to this paper the best known
bounds [N196] were) (nm).*

1.1 Ourresults

In this paper, we present new, faster algorithms for the edge augmendatibsplitting off problems. We give ran-
domized algorithms that solve both of these problems (with highaiitity) in O(n?) time. With minor changes, our
algorithms also solve (or show unsolvable) tleggree constrainedugmentation problem, a common generalization
of both problems in which there is an upper bound on the total weightigés that may be added incident to each
vertex.

*Computer and Automation Institute, Hungarian Academy déismes. Also supported at the Department of OperationsaReseEdtvos
University, Budapest. Supported from grants OTKA T-3018& &29772, FKFP 0206/1997 and AKP 98-19.
email: benczur@ @cs.elte.hu

TMIT Laboratory for Computer Science, Cambridge, MA 0213@ported by NSF contract CCR-9624239 and an Alfred P. SlBanedation
Fellowship.
email: karger@@Ics.mit.edu.
URL: http://theory.lcs.mit.edu/ karger

1The notationO(f) denotesO(f polylog n).

Our algorithms are Monte Carlo: although the are guaranteed to runifagthave a small chance of giving the
wrong answer. However, they give the right answéh high probability—that is, with probabilityl — 1/n? for
some fixedd > 1 on problems of size. (In fact,d can be made arbitrarily large without affecting the asymptotic
running time by repeating the algorithm a fixed number of times anddakimbest answer.) At present, Monte Carlo
algorithms are the only way eventestwhether a graph i8-connected im(nm) time [KS96, Kar96].

Like many augmentation algorithms [WN87, NGM90, Gab91a, Ben94k manipulates thextreme setsf a
graph. A setX is extremeif its degree(outgoing edge weight)(X) < d(W) for all proper subsetsy C X. It
thus has the “dominant” demand for additional outgoing edges in the eigiion or splitting process. Our improved
running time arises from two contributions.

e We give a faster algorithm for finding extreme sets.
e We give a faster algorithm for using the extreme sets to perform edgaentation and splitting.

The extreme set algorithm is based on the Recursive Contraction thigpaf Karger and Stein [KS96] for finding
minimum cuts and some degree-testing algorithms used by Karger [Kai9f algorithm for augmentation and
splitting given the extreme sets is based on work of Benczur [Ben94];edledts the first time that extreme sets are
used directly for splitting.

Our algorithms run irQ (n? log® n) time, which reflects the time needed to find the extreme set system. Gisen thi
system our algorithm requires only &1{n?)-time deterministic computation and an(n?> log® n)-time randomized
minimum cut computation to perform the augmentation.

1.2 Related Work

Algorithms for solving the edge augmentation problem traditignt@ke two different approaches, one using edge
splitting [CS89, Fra92, Gab94, N196] and another increasing conntyaiivé unit at a time [WN87, NGM90, Gab91a].
The idea of applying edge splitting in connectivity augmentation wsisdiplored by Cai and Sun [CS89]. Frank [Fra92]
used this approach in the first strongly polynomial augmentationigigorwhich solves the weighted case(rin®)

time. Gabow [Gab94] improved Frank’s running time@¢n?m). In these algorithms, edge splitting was the com-
putational bottleneck. Faster edge splitting algorithms were later givenrunning in0(n?) time, followed by one
running inO(nm) time [N196]. ButO(mn) remained the best bound achieved for splitting-based edge augmentation.

Edge augmentation is slightly easier than splitting—augmentatioglasively easy given a splitting algorithm
but not vice versa. Several papers [WN87, NGM90, Gab91a] devise augiimerdalgorithms that do not use split-
ting. These algoritms are not strongly polynomial and are therefdicesit for small connectivity values and un-
weighted graphs only. The best known such algorithm, with runtinek?) for target connectivityk, is due to
Gabow [Gab91b]. Although it uses splitting, our edge augmentatgoritthm is based on ideas from another non-
splitting augmentation algorithm [Ben94]. That Monte Carlo aldwnif in contrast to earlier algorithms using the
same approach, has a strongly polynordi&h?) running time.

Algorithms for finding extreme sets have been less well studied, pettegause our augmentation algorithm is
the first where finding extreme sets is the computational bottleneclovG@kab91a] describes an efficient algorithm
for unweighted graphs. However the only previously known weigigtegbh algorithm, that of Naor et al. [NGM90],
builds a Gomory—Hu tree [GH61] and thus runglitn?m) time. Ours runs irD (n?) time.

2 Problems and Definitions

In this section, we formally define the problems that we will be s@j\and show how they are related to one another.
We also provide additional definitions we will need later. Given a ves#tk/, we say that edgecrossed’ if exactly
one endpoint ot is in U. For a vertex sel/, let thedegreed(U) be the weight of edges @F crossingU. More
generally, given any set of edgés letdy (U) be the weight of edges & crossingU.

2.1 The Basic Problems

Definition 2.1 (Edge augmentation).Let G = (V, E) be an undirected graph with connectivity Given atarget
connectivityk the edge augmentation problei® to find an edge set of minimum total weight whose additiofto
increases its connectivity ta

For reasons that will shortly become clear, we also refer to this problémesnal edge augmentation because all
edges are added inside the graph. Without loss of generality, we asser@gett > 1. Whenk = 1, we simply
want to add the minimum total edge weight necessary to connect the gragh,ighivial.

Definition 2.2 (Edge splitting). Let G be a weighted undirected graph with a distinguished verteiven a pair
of edges(u, s) and(v, s) incident ons, we say that wesplit edgequ, s) and (v, s) by weightw if we decrease the
weights of these edges layand increase that of edge, v) by w. We say that weplit s off if, by a sequence of splits,
we isolates from the graph.

In this paper we concentrate on the following theorem concerning eddginspli

Theorem 2.3 (Lovasz [Lov93, problem 6.53]).Let G be a weighted undirected graph with a distinguished vestex
Letk be the minimum value among the cut&obther than({s}, V' —s). Thenitis possible to splitoff, such that the
resulting graph has connectivity at ledst Furthermore if all edge weights are integeks> 2, and the total weight
of edges incident te is even, then it is possible to give a sequence of splits by integertaeigh

Edge splitting is possible under stronger requirements as well [Blaidwever that stronger edge splitting task
is algorithmically much harder [Gab94].

2.2 Degree-constrained augmentation: a common generalization

Although not explicit in the literature, it is known that the edgéitspg and edge augmentation problems share a
common generalization to @egree-constrainedugmentation problem defined next. In fact, the problem is a slight
generalization of the edge augmentation problem but is essentially equittatba edge splitting problem.

Definition 2.4. Given a non-negative integer weighg (v) on the vertex set” and atarget connectivity:, thedegree-
constrained edge augmentation problésrto find an edge sef’ of minimum total weight whose addition G
increases its connectivity toand satisfied g (v) < wg(v) forallv € V.

(Recall thatdg (U) is the weight of edges di’ with exactly one endpointiy.) Here and throughout the paper
we definew(U) =), ., w(v) for a weight functionuv on the vertex set” (note that this notation does not apply to
the degree functiod(U')). The above degree-constrained augmentation problem is solvablé @y H-w, (U) > k
forallU C V, so throughout the paper we assume this inequality holds.

The edge augmentation problem reduces to the degree constrained onenlgyusgit) = oo for all vertices.
The edge splitting problem can be reduced similarly by settin@) = d(s, v); after solving the degree-constrained
augmentation problem, any unused weight can be paired to edges arbitrablgio an edge splitting at

We will show below that our algorithms can be modified to solve (omshasolvable) the degree constrained
version of edge augmentation with the sate?) time bound.

2.3 External Augmentation: An intermediate step

Our algorithm (and others’ [Fra92]) for solving internal edge augt@nt divides naturally into two stages. In the
first, we aim to solve an easier “external” version of the edge augmentatbtem, in which all the new edges are
incident on a special new vertexIn the second stage, we splioff to transform this external solution into an internal
one.

Definition 2.5 (External edge augmentation).Let G = (V, E) be an undirected graph with connectivityGiven a
atarget connectivityy = c+ 7, theexternal edge augmentation problésrio add an edge set of minimum total weight
connecting vertices di to some new external vertexsuch that every cut iF other than({s}, V' — s) has value at
leastk.

In other words, we want the connectivity of the new grdply {s} to bek, with the possible exception of the
trivial cut arounds. There is an obvious degree-constrained variant of the problem.

We can also formulate the external augmentation problem as follows: gigesphG, give non-negative integer
weightsw to the vertices, minimizing the total weight(1"), such that the weight(U) of any set/ satisfiesi(U) +
w(U) > k. The weight of vertex represents the weight of edges betweemds.

The following well-known lemma shows the close connection betweelnteenal and external augmentation
problems.

Lemma 2.6 (cf. [Fra92]). Let w be the minimum weight of edges needed to solve the internal edge augiomenta
problem, and letv’ be the minimum weight of edges needed to solve the external edge auggmeartilem. Then
w = [w'/2]. The same holds for the degree-constrained problem variants.

Proof. We show that one can go back and forth between external and internal augmeswaitmons, doubling or
halving the total weight of edges used.

Suppose we have a set of edges that solves the internal augmentati@nprob solve the external augmentation
problem to a vertex, replace each added ed@e v) with two edgeqs, u) and(s, v). This doubles the weight used
but preserves the desired connectivity.

Suppose we have a set of edges that solves the external augmentatiempimh vertex. If the set is odd, add
one edge frons to an arbitrary vertex. According to Lemma 2.3 we can splitspfialving the weight of edges used
while preserving the desired connectivity.

For the degree constrained versions, simply note that our two-aagformation above does not change the degree
of any vertex other thas. O

Our algorithms will use this internal-external transformatiofvisg the external augmentation problem and then
splitting it off; the above lemma shows this solution is optimal

2.4 Extreme Sets

Both the external augmentation and splitting off stages of our algoniely on a concept axtreme setdeveloped by
Watanabe and Nakamura [WN87]. Suppose we wish to find a weight assigantieat solves the external augmen-
tation problem. Consider a sét with d(X) < k. ProvidedX has a subséf with d(X) > d(U), the augmentation
condition imposed oX is automatically satisfied if it is satisfied for. This motivates the following definition.

Definition 2.7. A setX is d-extremdf d(X) = d and no proper subsét C X hasd(U) < d. For convenience, we
also declare the vertex sgtto be extreme.

Extreme sets have a special structure that we will exploit frequerdlgescribe it, we need the following defini-
tions. We say that two setseetif their intersection is nonempty. Theestif one is contained in the other. Two sets
C andD are callecoverlappingf C N D, C — D andD — C are all nonempty—that is, they meet but do not nest. A
set system itaminar if it contains no overlapping pair—in other words, if any two sets thaétalso nest.

Lemma 2.8 (cf. [WN87]). No two extreme sets overlap, so the extreme sets form a laminar system.

Proof. The proof of the laminar property uses thigomodularityof the functiond over vertex subsets. We say that a
functiond on subsets of” (the vertex set) isubmodulaiif, for all pairs of setsX andY’,

d(X)+d(Y) > dXNY)+dXUY).

The cut value functiod is submodular. For undirected graphs, the cut value funetisralso symmetric, i.ed(X) =
d(V — X). Hence the submodular inequality also holds in a different form:

d(X) +d(Y) > d(X - Y) +dY - X).

In particular, it follows that eithei(X — V) < d(X) ord(Y — X) < d(Y).

Now suppose thak andY are extreme but overlapping. Then by submodularity, without Idspeaerality
d(X —Y) <d(X). If X andY overlap, thenX — Y is a nonempty proper subset &, sinced(X —Y) < d(X) it
must be thafX is not extreme. O

Sets of the laminar extreme set systénran be viewed as nodes of a tree where the childreyi ef F are
the maximal extreme subsets Bf—that is, X € F is a child ofY € Fif X C Y but there is naZ € F with
X C Z CY.We will refer to this tree as thextreme set treaVe call the sets in the treedesn order to distinguish
them from the vertices off. Note that children must have degree greater than their parents’ (ejsevdiéd make
the parent non-extreme). Since all individual vertices are vacuouskirmgirthe individual vertices form theleaves
of the extreme set tree. Since the children of a set partition the sett nbthe tree has less than 2 children. Thus the
tree hasD(n) nodes and gives a siZe{n) representation for the extreme sets, even though explicitly listieg can
take®(n?) space.

2.5 Overview of Solution

With these definitions completed, we can outline the course of ourilgofor edge augmentation. In a first step, we
find the extreme set tree for the input graph. This step is randomizetkesD (n? log® n) time. Using the extreme
set tree, we give a trivia)(n)-time greedy algorithm for the external augmentation problem. Oncestternal
augmentation problem is solved, we use a splitting off algorithrtuto the solution into an internal augmentation
solution. Splitting off again makes use of the extreme set tree, antvesanO(n?) time deterministic algorithm
plus a randomized minimum cut/cactus computation (which reqaites log® n) time). Finding the extreme sets is
the bottleneck in our solution, and along with minimum cut computatie the only part that uses randomization.

We use the same approach to solve the degree constrained version obldenp solving a degree constrained
external problem and then using splitting off (which preserves vedgrais) to transform the external into an internal
version.

We begin in Section 3 by presenting the simplest part of our approacrdledy external augmentation algorithm.
We then describe the splitting off algorithm in Section 4, and fin&léyéxtreme sets algorithm in Section 5.

3 An External Augmentation Algorithm

Naor, Gusfield and Martel [NGM90] use the extreme set tree to greedikg sbé external augmentation problem.
We outline their approach here. As above, we formulate the problem asiassigeightsw to vertices so that
w(U) +d(U) > k for all U. Define thek-demandof a setU to be denfU, k) = max{0,k — d(U)}; this is the
minimum weightw(U') needed for sel/ in order to satisfy the external augmentation objective ftkemand ofi”

is 0). We omitk when it is clear from context.

3.1 Focusing on Extreme Sets

The following two lemmas formalize the argument that extreme sets araentily important sets for the augmentation
problem.

Lemma 3.1. Any vertex sel/ contains an extreme sét C U with d(X) < d(U).
Proof. Since a sel is either extreme or has a subsétwith d(X) < d(U), there is no minimal counterexample to
the lemma. O

Lemma 3.2. Let a weight functionv on the vertex set be such thatX) > dem X) for everyX € F, whereF is
the system of extreme setgin Thenw satisfies the external augmentation problem.

Proof. For everyU C V' choose an extreme s&t € F such thatX C U andd(X) < d(U). Then
w(U) > w(X) > demX) > dem(U))

which proves the claim. O

Thus, to solve the external augmentation problem, we need only assighte/that satisfy the demands of the
extreme sets. Each extreme set therefore determines a lower bound daltheight of the optimal solution.

3.2 Recursive demands and a compact min-max formula

To solve the external augmentation problem it helps to work with sesdmat stronger lower bound.

Definition 3.3. In the laminar extreme set treg, let therecursive demanddem(X, k) be denfX, k) for all leaf
nodes{v} € F. Given rdenjX;, k) for all childrenX; € F of X, let

rdem(X, k) = max{dem(X, k), Y _ rdem(X;,k)} .

(3
Lemma 3.4. Any external augmentation to valkeuses weight at leastemV, k).

Proof. Letw(-) be a solution (assignment of weights) for the external augmentatidiigm. We prove by induction
on the laminar family that for every extreme Séfw(X) > rdem(X, k) for every extreme seX. The claim follows
by takingX = V. The leaf nodes of the tree (corresponding to verticeS)otlearly must havev(v) > dem(v) =
rdem(v). For any non-leaf nod& with childrenX;, we must havey(X) > dem(X'). We must also have

w(X) > Y w(X;)
>) rdemX;)
where the second step is by induction on e Thusw(X) > max(demX), Y rdem(X;)) = rdenm(X). O

3.3 The Algorithm

We now give an algorithm that solves the external augmentation prolsieigiotal weight rderfl/, k). By Lemma 3.4,
such an assignment is optimal.

Algorithm 3.5. Initially let w(v) = 0 for all verticesv € V. Process the laminar set tree in a postorder traversal, so
all children are processed before their parent. Consider allSetsF, from the minimal sets of up to the extreme

set tree rool/. If when X is considered we finay(X) < dem(X), then choose any vertex ili and increase its
weight untilw(X) = dem(X).

The above algorithm clearly assigns weights satisfying the demandsentti@@me sets; we need only bound the
total weight assigned.

Lemma 3.6. The total weight assigned by Algorithm 3.5demV, k).

Proof. We show by induction up the extreme set tfE¢hat the amount of weight assigned to extremeXetnd its
children is rdeniX, k). This is clear for the leaves Of (vertices ofz). For setX with childrenX;, when we process
X; we will (by induction) have assigned total weighrdem X;) to X. If rdem(X) = > rdem(X;) then we assign
no further weight taX and the inductive step is done. If rdéf) = demX'), then we will increase the total weight
assigned taoX, raising it to denX') = rdemX). O

It follows that Algorithm 3.5 yields an optimal solution. The atgbm can be implemented trivially i@ (r) time
by walking up the extreme set tree.

3.4 Degree Constraints

The above algorithm generalizes to the degree constrained external augoneprialblem. As we are adding weight
to sets to meet recursive demands, we only add to vertiegsose upper bounds,(v) have not yet been met. The
assumption thad(U) + wo(U) > k ensures that if we need to add weight to a set there will be a vertex in gevho
upper bound has not yet been met. Fad(f’) + w(U) < k (which is the only time we need to add weight) then
wo(U) —w(U) > 0, meaning some vertex iti has residual weight available.

4 A Splitting Off Algorithm

As was discussed in Lemma 2.6, the optimal external augmentation jusd fran be turned into an optimal internal
augmentation byplitting off. Recall that the weighi’(v) added in the external augmentation can be thought of as
the weight of edges connectingo s in a splitting off problem (ifd(s) is odd, we add one more edgestto make it
even). Previously, the best splitting off algorithm rarfitimn) time [NI96]. In this section, we show how the extreme
set system can be used to solve the splitting off problef(in?) time followed by anO(n? log® n)-time minimum

cut computation. We take

k= min (d(U) +w(l))
to be the goal-connectivity of the split-off graph (guaranteed to besaahle by Lemma 2.3). This goal connectivity
may be part of the problem instance (as in our problem) or can be foundrbgigmum cut computation. Note that
this turns splitting off into a kind of internal augmentation pesh, but with the added constraint that each vettex
have added degree exactlfv) at the end. Having these exact degree constraints makes the augmentatiempr
easier to solve. We continue to refer to the demand of &/seit is the difference between the goal connectivity
and the current degree 6f in G (not including edges tg). By the assumption of our splitting off problem we have
demU) +w(U) > k foreveryU C V. As before, for any edge sét, we definelg: (U) to be weight of edges df’
crossingU.

Our algorithm is incremental in nature. It runs in phases. In each phasegsieddés to reduce the demand of
certain extreme sets. The challenge is finding the right set of edges t€adelmust be taken because it is possible
to find edge sets that optimally reduce the demand part-way but cannotebeledtto optimal solutions to the entire
problem. In the following sections, we give &nn)-time deterministic algorithm to find a safe increment towards
the optimal solution. Our algorithm can be applied whenever the marinemaining demand exceeds 1. We show
thatO(n) applications of our algorithm, taking total tini&n?), suffice to reduce the maximum demand to 1. At this
point, we can use an algorithm of Naor, Gusfield and Martel [NGM90] thetnaly increases connectivity by one to
finish solving the problem. Their algorithm runs@hn) time given thecactus representatioof all minimum cuts of
a graph, which we can find with high probability @(n? log® n) time [KS96].

4.1 A partial split criterion

In the next lemma we give a sufficient condition for a “partial” spiijtoff to be continued to a valid solution.
Lemma 4.1. Let an edge sek’ satisfy that

1. dp (v) <w(v) forallv e V;

2. no edge oF’ has both endpoints in any one extreme set; and

3. any extreme set 6f + E' is extreme irG as well.

Then there exists an edge €t such thatt’ + E" is a legal splitting-off ofs. The setE” can be obtained by edge
splitting recursively, using the updated values

w'(v) =w() —dg (v) forveV.

Remark.Condition 1 is forced upon us by the problem input and Conditioa & hatural requirement that we not
“waste” an augmentation edge by putting it inside an extreme set. Camditis also natural; it says that no new
extreme set arises to derail our progress towards an optimal solutimlitidns 1 and 2 are necessary for an optimum
solution while 3 is merely useful.

Proof. Observe that’ denotes a set of edges that, by Condition 1, can legally be split frorextieenal vertexs.
Thus, we only need to show that after splittiBgthe criteria of the splitting lemma (2.3) remain true—that is, that fo

every sel/ C V, we havedgur (U) + w'(U) > k. As before, it suffices to prove this holds for evestremeset X
of G U E', since every set contains an extreme set of no greater degree (by defiaittbnd greater total’ (since
all w' are positive). By Condition 3, this extreme Séfis also an extreme set 6f.

So consider any extreme sgtof G. The differencev(X) —w'(X) is equal to the number of endpoints of edges of
E'in X. By Condition 2, no edge @&’ has both endpoints i . Thusw(X) —w'(X) is equal to the number of edges
of E' with an endpointinX. In other wordsw(X) = w'(X) + dg/ (X). By assumption we had(X) + dg (X) > k.

It follows that

w'(X) +dpuc(X) = w'(X)+dp(X)+da(X)

w(X) + da(X)
k

v

4.2 A particular good partial split

We now give a rule for selecting a particular set of edfésatisfying the criteria of Lemma 4.1. This rule applies
whenever some extreme set has demand at least 2. Select all inclusion-wiseah@xtieme sets of the current graph
with k-demand at least 2. Number these s€tdor ¢ < ¢ so thatX; and X, have the smallest (and we will soon see
equal) degrees: that is,

d(X¢) = d(X1) < d(X2),...,d(Xe1).

Connect eaclX; to X;,; by an edge fof < ¢. Doing so requires that we find one vertex in eaciXgfand.X, that we
can use as an endpoint, and 2 vertices in each dthelhese are guaranteed to exist singg{;) > dem(X;) > 2.
Note that we might use the same vertex (at most) twice to receive bodis @dgdent on som& ;. But nodg: (v) > 2,
so E' is a collection of vertex-disjoint paths.

To see why the choicé(X;) = d(X;) is possible, notice that the minimum dege#eX;) of an extreme set is
equal to the (current) connectivityof G. If we consider the two sides of a minimum cut, both sides must contain
c-extreme sets (which are clearly maximal extreme sets of minimum degre@eand we may choose these sets as
X1 andX,.

It is easy to see that this construction satisfies two of our requirements:

Lemma 4.2. The edge sef’ just described satisfies Conditions 1 and 2 of Lemma 4.1.

Proof. We have already argued that sing€X;) > dem(X;) > 2 by choice of theX;, we can choose the endpoints
of the setE’ to satisfy Criterion 1. Since each edge connects two distinct maximal extets, no edge has both of
its endpoints in the same extreme set, as required in Criterion 2. O

Proving that Condition 3 is satisfied is harder. We assume that theosris seU that violates it, being extreme
in G’ = G U E' but notinG, and derive a contradiction. We begin with some lemmas showing taagthof edges
E' essentially can be thought of as a path with respect to the hypotheti¢g] #etn we show such a path must cross
U several times, raising its degree and making it non-extreme.

Lemma 4.3. If U overlaps an extreme séf of G thendg (X) = dp (X NU,U — X) = 2.

Proof. By the definition of extreme setdg (X —U) > de(X)+1. Thisimplies by submodularity thdt; (U — X) <
dg(U)—1. Onthe other hand, sinééis extreme inG’, we havelg (U — X) > dg(U)+ 1. Combining the two latter
inequalities, we getthalg (U — X) > dg (U) +2. Since all edges not countedds. (U) but counted inlg: (U — X)
connect/ N X andU — X, there are at least two such edges; furthermalgré X') > 2. Sincedg (X) < 2 by the
construction of£’, equality must hold everywhere, proving the claims. O

Corollary 4.4. X; and X, do not overlapU.
Proof. dg/ (X;) = dg (X,) = 1, while any overlappingd(; must havelg: (X;) = 2 by the previous lemma. O

Lemma 4.5. U contains (both endpoints of) an edgefdt

Proof. SinceU is not extreme ir@, by definition there is some (extremeG) setX C U such thatlg(X) < dg(U).
However,U is extreme inG’, which means thak’ must increase the degree @fmore than that of/. This implies
that some edge of E’ crossesX but notU. Since one endpoint af is insideX C U, both endpoints must be in
U. O

Corollary 4.6. Write E' = {(a;,b;)} whereq; € X; andb; € X; ;. Thenb;_, € U ifand only ifa; € U.

Proof. By Lemma 4.5, seV contains an edge df’. This edge is not contained in ady; soU is not contained in
any X;. SoU contains, is disjoint from, or overlaps eveky. Botha; andb;_; are inX;. If X; is contained in or
disjoint fromU the claim is clear. 1fX; overlapsU then (by Lemma 4.3) both; andb; ; are contained iX; N U
and thus inU. O

The previous corollary says that if we move along the sequendg, a-, b2, . .., we will only cross into or out
of U by traversing one of the edges Bf. So we can think oE’ as a path with respect 6. We now show that this
path must cros& many times, raising its degree and making it nonextreme.

We argued above thaf; and X, do not overlap or contaify; thus each is entirely inside our outsideldf We
consider two cases:

At least one of X; or X, (sayX;)isinsideU. Note thatds (X;) = ¢ + 1, so the only wayU can be extreme is if
dg'(U) = dg(U) = ¢, meaning no edge af’ crossed/. If X; C U thena; € U. Since no edge of’
can crosd/, we must havé, € U. Applying Corollary 4.6, we find that, € U. Continuing inductively, we
deduce that alt; andb; are insidel/, meaning no endpoint df’ is in U.

But if dg(U) = ¢, thendg(U) = c as well, which mean&’ must contain or be a-extreme set, which is a
maximal extreme set (with demand at least 2). So some edfjelais an endpointify. This is a contradiction.

Both X; and X, are outsideU. We have already argued that some edg€'aé inU. Thusthe sequeneg, b1, as, ba, . ..
must start inX; (so outsidd/), then cross into and back out bfto reachX,. But Corollary 4.6 tells us that
each of these crossings must involve(an b;) pair in the sequence rather tha(ba a;+1) pair. In other words,
dp (U) > 2.

On the other hand; was originally not extreme, so it contained some extrémef no greater degree. Our
choice of E' ensures that no extreme set’s degree increases by more than &;(Sb) < dg(X) + 2 <
da(U) 4+ 2 < dg (U). SoU is not extreme irG'

We arrived at a contradiction in both cases[5o0annot be extreme.

4.2.1 Motivation

While our splitting rule may seem a bit strange it is actually quitersly motivated. A natural way to guarantee that
no end-vertices of some edgeBf belong to the same extreme set is to connect distinct maximal extrem&sats.
previous edge augmentation algorithms [NGM90, Ben94] are also bagb@mple idea. The following argument
leads to our path-like construction.

We consider all minimum cuts first. Since the maximal (by containmenitmre sets include all minimal (by
containment) min-cut sides, at least one edge will be added across each minimr@ltreide. As a result, some
non-minimal min-cut sides will become minimal and thus extreme, umlessiso add edges crossing these minimum
cuts. In other words, we must increase the connectivity bfy at least one to avoid creating new extreme sets.

The next natural idea is that a cycle connecting either all maximal extresersait minimal min-cut sides auto-
matically adddwo edges to each minimum cut. This is the main idea of Bencz(r's algorittemd#]. Unfortunately
the addition of cycles may create new extreme sets if, for example, thezgaotly thre€c + 1)-extreme subset¥,

X» and X3, each of which is the subset of the sarrextreme sefX. Then without loss of generality edgesif may
be added taY; and X, but not toX5. HenceXs becomes the only extreme set@fwith dg g (X3) = ¢ + 1. But
then the complement of; must contain another (newy + 1)-extreme set irG + E'.

The above example suggests the form of our algorithm: if we remogdg@éfrom the cycle as above that connects
two c-extreme sets, these sets becdme 1)-extreme inG + E'. They prevent the formation of nefi + 1)-extreme
sets.

4.3 An Algorithm

We now use our partial split rule repeatedly to get a splitting-ofbatm. Our algorithm actually settles for correctly
reducing the maximum extreme set demand to 1. At this point the graphs must be(k — 1)-connected, so the
remaining splitting off need only optimally increase the connectivity7o— s by one. This can be done using an
algorithm of Naor et al. [NGM90]. Their algorithm runsd(n) time given thecactus representatioof G, which can
be constructed i@ (n? log® n) time by a Monte Carlo algorithm [KS96].

While the graph has demands exceeding 1, we move incrementally towardptiimal solution. Since some
demands are at least 2, we can use an edgé’saftthe kind described in Section 4.2. Such an edge set is easy to find
using the extreme set tree. The children of the root form the maxintarae sets, so we can easily find all maximal
setsX; with demand at least 2 i@ (n) time. Within eachX;, any vertices with positive weight can serve as endpoints
for the edges o2’ (of course, if 2 edges o’ share a vertex, that vertex needs to have weight 2). Such vertices are
always guaranteed to exist since (as shown in the previous sectionjlitisernse perform preserve the solvability of
the problem (thatisy . x, w(v) > dem(X;)). They can also be found ifi(n) time.

Once we have’, we can split it off. But in order to make the algorithm efficient, wettnavoid computing a new
edge set by reusing the same one many times. The same edgecsetbe used again if after the split

e the updated weights’ satisfyw’(v) > dg/(v) forallv € V,
e all X; still have denX;) > 1, and
e all X; remain extreme.

(Note that the relatiod(X,) = d(X;) < d(X2),... ,d(X,—1) remains valid after the splitting &’ sinceX; and.X,
start with the smallest degrees and have them increased more slowly ¢hatféinX’;.) We compute the maximum
number of timeg that E’ can be reused without violating these constraints.

As a first step, we compute the quantitifs x) for every extreme sek. Since no edge has both endpoints in
any oneX, this is just the total weight of edges &f with endpoints in each extreme set. This can be computed for
all X in O(n) time by working up the extreme set tree.

Given the quantitiedg:, to meet the first constraint, we compute= min, |w(v)/dg (v)|, We can use; copies
of E' without dropping anyw(v) below 0. The same approach works for the second constraint.

For the third constraint, that all; remain extreme, we need to identify the smalidst which splittingt copies of
E' makes someX; non-extreme. This happens when the demantl ,ofirops to meet the demand of some (extreme)
setY contained inX;. Since no extreme sets are created as we add copiEs (@fy induction on the number of
copies),Y must be a descendant &f; in the starting extreme set tree. For each skicdescended fronk; the
number of copies at which dei) overtakes derfX;) is

{den{X,v) - derr(Y)J
dp/(X;) —dp(Y) |’

since for such & we know that aftet — 1 splits of £, the setY” still has demand less than that &f (note that if
the denominator is O then déin) will never overtake deiflX;) so we can ignore it). Since thg; are disjoint, we
compare eacli” against exactly ond&; for a total ofO(n) comparisons, so finding the limiting set tak@g») time.

Thus, inO(n) time, we can compute the maximum number of timéss safe to useZ’. Once we have done so,
we can split offt copies ofE’ in O(n) time by updating vertex weights and extreme set demands and removing all
sets that become non-extreme as a result.

Finally, we bound the number of times we need to find a newsett is the 3 constraints above that prevent us
from splitting another copy of’, so one of the constraints must be “tight” for theve used. If the first constraint is
tight, it is because some(v) < dgr(v) when we finish. Sincewax, dg/ (v) < 2, this means thab(v) has dropped to

10

1 orto 0. Similarly, the second constrain is tight only when the derméadmeX; drops to 1 or 0. The third constraint
is tight if one of our extreme sets is made non-extreme. Each of thesgseva weight drop, a demand drop, or the
disappearance of an extreme set—hapgefs times. Thus we need to compute a newB8éand corresponding
only O(n) times. Since identifyind?’ and updating the data after splitting it takeé&n) time, we have shown:

Theorem 4.7. Given the extreme set system €grin O(n?) time we can deterministically carry out edge splitting to
reduce the maximum set demandsito 1, at which point we can finish splitting (with high probétyi in O(n? log® n)
time using cactus-based algorithms [NGM90, KS96].

Oddly, only the last unit of splitting involves randomization.

5 Extreme set algorithms

The two previous sections assumed that we had the extreme set systéahlavain this section we give Monte
Carlo algorithms that find this system with high probability. Tegent our techniques one by one, we describe three
increasingly powerful extreme set algorithms. The first algorithec{i®n 5.4) is based solely on finding minimum
cuts and serves as an illustration of the main ideas in our extreme settalgadits running time is proportional to the
maximum vertex degree, which @(nW,,..) whereW,,. is the largest edge weight in the input graph. The second
algorithm (Sections 5.5 and 5.6) usesar-minimum cuts: extreme sets are repeatedly extracted from all cuts of value
betweens:—! - ¢ andd’ - ¢, fori = 1,2, etc. The running time of this algorithm is thus dependentogiWV,,,.x /c).

Our final algorithm (Section 5.7) achieves a strongly polynoiia?) running time by dividing the edges according
to their weight into windows within whichiV,.. /c becomes polynomial in. TheO(n?) runtime follows from the
fact that each edge occurs in only a constant number of windows. A similalowing scheme was used in other cut
algorithms [BK96].

5.1 The Recursive Contraction Algorithm

Our extreme set algorithms use tRecursive Contraction AlgorithfiRCA [KS96]. This is an algorithm for finding
all minimum cuts in a graph. Itis based on contraction of graph edgesrad@ting an edge causes its two endpoints to
be merged into a single “metavertex.” At any time, each existing metavapeesents a set of original graph vertices
that have been contracted into it. If metavertesepresents a set of original vertic8sthen the degree af in the
contracted graph is equal to the value of the(&tS) in the original graph.

We need two definitions. We say that a sutvives the contractioaf a set of graph edges if no edge connecting
the two cut sides gets contracted. Similarly we say that &'sstirvives the contractioif the same holds for the cut
(X, X). If this occurs, then there is a set of metavertitesontaining exactly the vertices of ; we say thatX is
contractedo Y.

In rough outlineRCAhas the following form:

Algorithm RCAG, n)

input: ann vertex graphG

if n < 7then
Use brute force enumeration to find all cuts
else repeat twice
Contract randomly chosen edgesofintil we getG’ with 1 + n/+/2 vertices

RCAG', 1+ n/V?2)

The contractions at a given stage can be implementédiid) time on am-vertex graph [KS96], sRCAsatisfies
the running time recurrence

T(n) 2T (1 + n/V2) + O(n?)

O(n?logn)

11

We can also prove th&®CA"“encounters” any minimum cut af (by contracting all vertices on one side of it into a
metavertex whose degree is the minimum cut) with probaHbility/ logn). More precisely, for any particular cut,
with probability2(1/log n) the cut survives the contractions to a 7-vertex graph along at least dhe ekecution
paths of the recursive algorithm, at which point it is found by thetdforce enumeration of the base case. Thus
O(log” n) iterations of the above algorithm suffice to encounter all minimum cittshigh probability. We will refer

to these iterations dRCAas AlgorithmiRCA. Since we can track the degrees of sets we encounter [KS96], we can
recognize a minimum cut when we encounter it. Thus the time to find alhmim cuts with high probability using
iRCA is O(n?log® n).

5.2 Finding Extreme Sets—Basic Approach

We will modify iRCA to identify extreme sets rather than minimum cuts. A key observatitimais like minimum
cuts, extreme sets are likely to survive contractionRiyAto single metavertices. Unfortunately, unlike minimum
cuts, we have no trivial method (e.g. degree tests) for deciding whatiigen metavertex represents an extreme set.
We therefore need to add a “verification” step that decides which of our candidetene set is truly extreme. We
use the following modificatio&S (Extreme Sets) oRCA

Algorithm ES(G,n)

input: ann vertex graphG
output: laminar familyF containing some extreme sets@f

if n < 8then
Use brute force enumeration to find and return all extreme sets
else
repeat twice(lettingi = 1, 2)
Contract random edges 6fto getG; with 2 + n/+/2 vertices
Fi +ES(G,2 +n/V?)
expand the extreme sets@f in F; to G
(by uncontracting the metavertices@f to vertex sets ofy)
F+— FLUF
add toF all vertices ofGG as singleton extreme sets
cull some non-extreme sets frafito makeZ laminar
Return the resulting set system

Since all singleton vertices are returned, and since culling only removesxtieme sets, any extreme sets “en-
countered” byES (that is, contracted to single metavertices at some point), will berretiibyES.

We will actually need to calES O(log® n) times, likeiRCA, to have a high probability of finding all extreme sets.
But we can cull theD(log® n) resulting set systems by repeatedly merging and culling pairs of them.iNéene up
with a laminar family that contains all extreme sets with high probigblie refer to this iteration dES as Algorithm
iES .

5.3 AnEasy Case

As a first demonstration of the above process, we find-akktreme sets-that is, extreme sets that are also minimum
cuts. We can use the fact thatifand.X are (sides of) two different minimum cuts that overlap, thea X andX —U
are minimum cuts (this follows from the submodularity of thedtion d(U)). Thus, neithel/ nor X is c-extreme
and both can be discarded. It follows that thextreme sets off are actually disjoint, forming aubpartitionof the
vertex set—that is, a collection of disjoint subset$/of

Our culling procedure for the subpartitiois and.F, returned by the recursive calls is therefore quite simple. We
represent a subpartitiopXy, ... , X,.} by a vector(zy, z», ...) wherez; = j if the i-th vertex ofG is contained in
X;. We use a special null symbol for a vertex not in any of the sets. Byriegeio the vector representirsg,, we can

12

decide inO(n) time whether a given sét € F; overlaps or contains some element/f. If it does, we can discard
C since it is not extreme. Sincg, hasO(n) sets, checking all’ € F; takesO(n?) time as desired. We then repeat
the procedure, exchanging the rolesfafandF, to cull non-extreme sets froth,.

Since culling take$)(n?) time, it is dominated by the other operationsiRCA at each recursion node; thus
iES has the same running time BCA. The O(log” n) culling calls needed to merge the families produced by the
O(log® n) iterations ofEStake an additionad(n? log® n) time, which is also dominated BRCA.

SinceiRCA (and thusES) contracts all minimum cuts (and thus alextreme sets) to metavertices with high
probability at some point in the recursion, all extreme sets wilhb®duced as singleton vertices at some point in the
recursion. Clearly they will never be culled. Thus the algorithm auitput all extreme sets.

In fact, this algorithm may also output certain non-extreme sets (sinoever checks their degrees), but it is
guaranteed that the output sets will be disjoint. Thus it takes@fily) time to compute the degrees of all output sets.
We can discard all that have degree exceeding

5.4 A First Algorithm

We now build upon the above idea to find all extreme sets. Supposeéhaave found altl’-extreme setg§ X;} for

d' < d, and wish to find all-extreme sets. Since extreme sets are laminat-extreme set can contain or overlap
any X;. So definel/; to be the set of vertices containedXh but not in any child of (i.ed’-extreme set contained in)
X;. Also let M, be the set of vertices not in any;. Then anyd-extreme set is contained in som&. Note also that
the M; form a partition of the vertex sétf. Thus, if for eachl/; we find alld-extreme sets strictly contained in it in
O(|M;|?) time then we will have found all-extreme sets IO (3" | M;[2) = O(n?) time (sinceY_ | M;| = n).

To process a single sét’; in O(|M;|?) time, we can contradt’ — M; to a single vertex. Any extreme set in
M; will still be extreme in the contracted graph. But all extreme setsmafj have been contracted. In particular,
no set insideM; is d’-extreme for anyl’ < d. We might therefore aim to apply our previous algorithm for finding
c-extreme sets td/; with ¢ = d. One small problem is that potentialif M/;) < d (this can happen i}/; is itself an
extreme set). This would make the ¢ut;, {¢}) into the unique minimum cut of the contracted graph. Fortunately,
the existence of one such unusually small cut does not affect anything:

Lemma 5.1. Suppose that a grap@ has a uniqgue minimum cut and lebe the next smallest cut value@ Then
with high probabilityiRCA encounters (contracts to a metavertex) all cuts of valieG, andiES encounters all
c-extreme sets .

Proof. The proof goes much as the proof that algoritR@Ais correct [KS96]. We lower bound the probability that
none of the edges crossing the extreme set get contracted. If this hathygeestreme set will eventually be noticed
when it gets contracted to a single vertex or the recursion bottoms out.

We begin by analyzing a sequence of random edge contractions:fidmwn to2 + n/+/2 vertices. Consider a
particularc-extreme set. Suppose we have performed contractiongihtlsr vertices remaining. There is only one
cut of value less than, so in particular every vertex but one has degree at teabhus there are at leagt — 1)c/2
edges in the graph, which means that the probability we pick an edge g tssiparticular-extreme set we want to
find is only2/(r — 1). It follows that as we contract fromto 2 + n/+/2 vertices, the probability we never pick a bad
edge is (c.f. [KS96]):

2 2 2
=2 =g) (U ey

It follows that the probability? (n) that algorithnmES finds a particulac-extreme set in the-vertex graph satisfies
the recurrence

(1-) >1/2.

n—1 n—2

Pn)=1—-(1- % P24 1n/v2))? = Q(1/ logn).

The recurrence arises from the fact that &8 to fail to find the set om vertices, it must fail on both of its two
independent subproblems (thus the squaring in the recurrence). Botéeds on a subproblem if the the particular

13

c-extreme set survives the contractions2te- n/+/2 vertices (probability 1/2) and then the recursive call finds it
(probability P(2 + n/+/2)). This recurrence is solved in the earlier paper [KS96] to yield the claireadd

Since a single iteration encounters any particular set with probagility log), we can rurO(log? n) iterations
of ES to reduce the probability of missing the particular setxfl/n?). Since there ar€(n) extreme sets, we
encounteall of them with probabilityl — O(1/n?) as claimed. O

The above lemma shows th&S will still encounter (contract to a metavertex) d@lextreme sets with high
probability; it remains to show how to cull them. We can use the sameitpghias in Section 5.3. Suppose two
second-minimum cut¥” andZ overlap. By submodularity(Y — Z) + d(Z - Y) < d(Y') + d(Z). SinceY andZ
are second minimum cuts, this inequality must in fact be an equality, ahd’bandZ non-extreme as a result, unless
one ofY — Z or Z — Y is the unique minimum cut. So we cull our family in two steps: firs)(n) time, we delete
all sets that contain the unique minimum dg. Then we use th€(n?) time algorithm of Section 5.3 to eliminate
any pairs of sets that overlap. We omit additional details since we vdiltlstgive a more powerful algorithm.

It follows that with high probability we will indeed encounter adl-extreme cuts in the contracted graphu {q}.
This gives a simple algorithm for finding extreme sets: startinty wi= ¢ and incrementing each time, find all
minimum-degree extreme sets in each set ofithepartitions defined above. The running time of this algorithm can
be bounded two ways. For augmentation to connectivity ¢ + 7, we need only find extreme sets of degree up to
¢ + ; thus we need only iterations for an overall running time 6f(n27 log® n). On the other hand, regardlessrof
there areD(n) extreme sets, and a new one is found in each iteration. So there v@l{#giterations for a running
time of O(n® log” n).

5.5 Geometric Growth

The scheme described above will, in the worst case laddo the degred of extreme sets detected in each iteration.
We now show how instead we can multiplyby some quantity exceeding 1 in each iteration. Thus will reduce the
number of iterations needed to reach connectivityom k& — ¢ to log(k/c).

Lemma 5.2 ([KS96]). If, instead of contracting ta /+/2 vertices, the recursion iRCAcontracts tan/2'/2* vertices,
theniRCA runs inO(n?® log® n) time and, with high probability, encounters all cuts of value léehitvc in a graph
with minimum cut.

The above lemma generalizes in a straightforward fashion to the case ware Woking for extreme sets using
ESand the graph has a unique minimum cut:

Corollary 5.3. If, instead of contracting te./+/2 vertices, the recursion i&S contracts ton/2'/2 vertices, then
(aside from culling)ES runs inO(n2* log® n) time and, with high probability, encounters all extreme sets ofateg
less thame in a graph with minimum cut. The result holds even if there is a unique cut of value lessdhan

Proof. Again, the proof matches that of the previous paper [KS96]. The ngrtitne obeys
T(n) = 2T (n/¥2) + O(n?) = O(n**logn).

Arguing as in Lemma 5.1, the probability that we never contract an edgsingpa particulatc-extreme set as we
reduce from to n/ {/2 vertices is at least

2a 2a 2a
1- 1-—) - (1————) >1/2.
e L R U e P R
We continue exactly as before to deducef¥/logn) probability of encountering a particular extreme set in one
iteration ofES, and a high probability of success ov@flog? n) iterations. O

°Note that regardless of the sizéof M;, we will iterateES O (log n log n') times, rather tha (log? »') times, in order to keep the probability
of failure below1/n2 instead ofl/n'?, but this is already accounted for in our time bounds.

14

Now suppose that we choose= 1+1/ logn. Then the runningtime dES (aside from culling) i€ (n2* log® n) =
O(n?log® n). Once we have found all extreme sets of degree lessdhawe can partition the vertices into setf
as we did in the previous section and recursively find all extreme sesgoéd exceedingc separately in each/;.
Since the second-minimum cut value increases by a factor of atleast/logn when we recurse, and since the
maximum extreme set degree is at moBt,,.x (the maximum vertex degree) for maximum edge weidht.., the
recursion will find all extreme sets aft@bg n) log(nWnyax/c) iterations.

Shortly we will develop a culling algorithm with running tint&(n?) that we can use in Algorithi&S. This time
is asymptotically dominated by the other tif8& spends at each recursion node and thus does not affect the overall
running time ofES.

Combining these arguments leads to the following:

Lemma 5.4. In a graph with minimum cut and maximum edge weight,,., all extreme sets can be found with high
probability in O(n? log* n log(nWiyayx/c)) time (aside from culling). In particular, WheW,,., = n°(¢, the time
needed i©)(n? log® n).

5.6 A general culling algorithm

It remains to describe a culling scheme that we can apply in our extreme sdthaty The most obvious approach

is to work as before: whenever two degresets overlap, we know that neither is extreme. But this idea only applies
when all candidate extreme sets being examined have the same degreegin #ppnoach, we might simultaneously
find sets with many different degrees. When two such sets ovemapf the overlapping sets might be extreme, and
we have no obvious way to tell which. So we take a more complicated apprd#chxploit the fact that our culling
input is the union of two laminar families of sets. We will give a mglalgorithm that runs i) (rn?) time on a pair

of laminar families over an vertex graph. Culling is therefore not the bottleneckE8 , so that algorithm’s running
time remains as claimed before.

Given that we use the extreme-set finding algorithm above, our cublisi is as follows. We are given two
laminar set systems and7 (the results from the two recursive callsk®). We wish to build a new, laminar system
that contains (at least) all extreme setsSini 7. We will do so by discarding certain non-extreme sets f®wr 7.
The challenge is deciding which sets are not extreme. Recall that a familpimonar if and only if two sets in it
overlap. So suppose two sefsandY” in the (merged) familys U7 do overlap. As was argued before in Lemma 2.8,
the submodularity of the degree function tells us that

d(X —Y)+dY — X) < d(X) +d(Y).

It follows that eitherd(X —Y) < d(X) ord(Y — X) < d(Y). So one ofX orY is not extreme and can be discarded
from the family.

The above discussion reveals our plan for culling the input set fafdlyevery overlapping pair of sefs andY
(where without loss of generalitf € S andY € T, sinceS andT are separately laminar) we compudieX — Y)
and compare it td(X) to see if we can discarfl. We then do the same symmetrically to identify discardable sets in
T.

As a first step, we show how to quickly compuleX) for everyX € S. We use a method similar to one used for
finding minimum cuts [Kar96]. Recall that the laminar set systgorresponds to a tree whose leaf nodes are the
vertices ofG and whose (leaf and internal) nodes each correspond to a Setkdr clarity we will always refer to
nodes of the tree (laminar family) versus vertices of the g@pt/e begin with some definitions.

Definition 5.5. X* is the set of nodes that are descendants of dodecluding X .

Definition 5.6. Given a functionf on the nodes of a tree, tiieefix sunof f, denotedf*, is the function

X)) =] F).

UeX+t

Lemma 5.7. Given the values of a functighat the tree nodes, all values ¢f can be computed i@ (n) time.

15

Proof. Perform a postorder traversal of the nodes. When we visit a dbdaee already will have computed (by
induction) the values at each of its children. Adding these values takegtopertional to the number of children of
X; adding inf (X) gives usf*+(X). Thus, the overall computation time is proportional to the totatber of children
in the tree, which is one less than the total number of node9(8¢. O

We can compute the degre€sY) via treefix sums. We define some functions on the nodes of the laminaeset
whose treefix sums we will use. First, [Ef{v}) be the (weighted) degree of vertefor each singleton set (leaf node)
{v} of the laminar family, and lef(X) = 0 for all other sets. Thed*(X) is the sum of degrees of vertices .
Next, letA(X') denote the set of edges whose endpoints’ least common anceSte . Let p(X') denote the total
weight of edges imd(X). Thenp*(X) is the total weight of edges with both endpointsin

Lemma 5.8. d(X) = §+(X) — 2p*(X).

Proof. The termé+(X) counts all the edges with endpointsin This correctly counts each edge crossing the cut
defined by.X, but also double-counts all edges with both endpoints inXid&ut an edge has both endpoints inside
X if and only if its least common ancestor isi. Thus the total weight of such edgesig X). We “uncount” both
endpoints of these edges. O

Since treefix sums tak@(n) time, it follows that the valueg(.XX') for all setsX € S can be computed i®(n)
time given the functions andp. But bothé andp can be computed i®(m) time. To computé, scan the edges once
and accumulate their weights into their endpoints. Computij), and from it the function, is equally easy if we
know the least common ancestor @) of each edge; these can be determine@{m) time [GT85, BV93, SV88].
We summarize our argument in the following lemma:

Lemma 5.9. Given a set of, vertices, a laminar familys of sets of these vertices, and a collectiommokdges on
these vertices, i®(m + n) time we can compute:

e The degree sum of vertices in each et S
e The set of edges with both endpointin each’6et S.
and from these two quantitieg(.X') for eachX € S using lemma 5.8.

We now extend this approach to calculate the quantiés — Y") for all X andY". For now we assume thatis
fixed and computéd(X — Y) (as a function ofX) for eachX € S. That is, we compute degrees for the sets in the
family

(X-Y|Xe8).

Noting that this is again a laminar family, we can apply the same procedbef@=. First, lety ({v}) equald(v) if

v ¢ Y, and O otherwise. The&t(X) is the sum of degrees of verticesih— Y. Next, letpy (X) be the weight of
edges inA(X) that have neither endpoint . It follows thatp%/(X) is the weight of edges with both endpoints in
X =Y. Therefored(X —Y) = 6§(X) - 2p§(X). So givendy (X) andpy (X) forall X € S, we can compute the
desired valued(X — Y) for all X in O(n) time.

It remains to show how to compute the functi@Rsandpy for each set” € 7. We assume that we have already
computedi(v) for eachv and A(X) andp(X) for eachX (this takesO(m) time by Lemma 5.9). Given the degrees
d(v) for each vertex (leaf node), we computely ({v}) for all v in O(n) time by checking ifv € Y and setting
dy ({v}) to be0 or d(v) accordingly. On non-leaf nodes, dy (X) is 0 as isd(X'). Thus for a given seY’, we can
compute the functioby in O(n) time.

Computingpy (X) is somewhat trickier. Recall that this is the weight of edge4 (X) that have neither endpoint
in Y. Since we previously computedX), it suffices to compute the complementary weight of edge$(i) that
have at least one endpointin But this is just the sum of degrees @#{X)) of vertices inY", minus the weight of
edges with both endpoints I (since these are double-counted in the degree sum). Now note thatvtloespgantities
are precisely the quantities listed in Lemma 5.9 if we consider the larfangly to be7 and the set of edges to be

16

A(X). Itfollows from Lemma 5.9 that we can compute the desired quantitieX o O(n+ || A(X)]|) time. Carrying
out this computation for every € 7' requires

YO+ A = O(n* +m) = O(n®)
X

time since)_ || A(X)|| = O(m).

ComputeA(X) for every nodeX € S in O(m) time using LCA computations.
Computep(X) andd(X) for eachX in O(m) time
Computed(X) using treefix computations on the above quantitie8(n) time

for eachnodeX € S
Select edge set(X) and laminar family7”
Use Lemma 5.9 to compute, simultaneously for evérg 7 in O(n + ||A(X)]]) time,
(i) the weight of edges afi(X) with both ends irnt” and
(ii) the sum of degrees of verticesin
From the above quantities, determjme(X) in constant time for each nodeé (total timeO(n)).
foreachY € T
compute treefix sums ové¥ € S of Jy (X) andpy (X) in O(n) time
use them to determin& X — Y') forall X € S in O(n) time.

Given allO(n?) valuesd(X —Y'), cull any setX for whichd(X — Y') < d(X) for anyY that meetsY

Figure 1: The culling algorithm

Now that we have worked backwards to a full solution, we can restateesiténution order in Figure 1. The sets
that survive this culling algorithm will form a laminar family—ivo overlap, then by submodularity one will fail the
degree test in our culling algorithm. This completes the culling élgorand shows:

Theorem 5.10. Given two laminar families, a subset of their union containing ladl extreme sets they contain can
be constructed deterministically (n?) time.

If we use this culling algorithm in our extreme set algorithm, wi atithe end output a laminar family containing
all extreme sets aff that we have encountered. Our implementatioie® makes it highly probable (Corollary 5.3
that this will be all extreme sets ¢f. We can quickly remove non-extreme sets from this laminar family since each
contains an extreme set—we compute the degrees of all sets in the fandlys@#ed in our culling algorithm) and
discard any set that contains a set of smaller degree. Since our cullinglaigtakesO (n?) time onn vertices, using
it does not affect th€(n? log® n) running time of the extreme set algorithES described in Corollary 5.3. This fills
in the final piece of Lemma 5.4.

5.7 The strongly polynomialO(n?)-time algorithm

In a final step, we eliminate thieg(k/c) factor from the running time of our extreme sets algorithm. We use a
windowing schemésimilar to one used previously [BK96]) that restricts the searclifextreme sets only to a small
“window” of relevant edge weights in the rand®/n3,d]. Once all edge weights are in this range, the range of
extreme set values that exist in the graph becomes polynomial, so we cacetep(k/c) by logn in the statement

of Lemma 5.4. The final running time of our algorithm thus becomes? log® n).

5.7.1 The Core Ildea

We define the following? -windowingprocedure. Lef be a maximum weight spanning tree@f Suppose that
we delete all edges of with weight less tha?’/n? and then contract all edges Bfwith weightW or more. This

17

partitions7 into subtrees, each containing some metaverticé€s. dthe metavertices in each tree of the forest define
a vertex-induced subgraph on the contractiotrahat we call gpane

Lemma 5.11. Let X be anyd-extreme set withV’/n < d < W. ThenW -windowing contracts{ to some sel” that
is an extreme set in one of the panes.

Proof. Every edge crossing has weight at mosi(X) < W, so no edge crossing is contracted. This proves
that X is contracted to some set of metavertidés We need only show that is entirely contained in one of the
panes—that is, that the partition defined by the subtregsddes not splitX .

Recall the following fact about maximum spanning trees [Tar83:isfan edge of weighi, then the path in the
maximum spanning tree connecting the endpointsisfmade up entirely of edges with weight at leastSuppose
X is split into multiple pieces in different components of the foreétXlis in at least two pieces, some piece, say
X, C X, must have edge-weight at me&tY) /2 crossing from it taX . At the same time, there is no edge of weight
at leastiw/n? connectingX; and X, = X — X, (if there were, thery” would have to contain a path of edges of
weight at leastV/n? connectingX; to X», so they would not be split). Thus, the total weight connecfingo X,
is at most(}) (W/n*) < W/2n. Thus,

d(Xy) = d(X1,X5) +d(X1,X) < d/2+W/2n < d,
contradicting the assumption th&tis d-extreme. O

We will use the above theorem in a strongly polynomial extreme seritign. For each integer value éf we
separately seek ad-extreme sets fori~! < d < n' by looking at the panes in the windowdt = nf. Each such
pane is spanned by a tree of MST edges of weight at Iégst® > d/n?, so the minimum cut of the pane is at least
this large. So the ratio of extreme set value to minimum cut is polyalbmn. Thus within the pane the weakly
polynomial algorithm given in Lemma 5.4 has a strongly polynomiahing time.

We will shortly argue that total siz®_ n; of panes in windows that we need to solvelign) metavertices; it
follows that we can find the extreme sets in all the windows with higibability in O (3" n¥) = O(n?) time.

At the conclusion of this windowing procedure, we will have a colletdf O(n) laminar families?, ... , F,,
one for each value diV we used. These families together contain all the extreme sétskmft may also contain some
other sets that are extreme in some pane but nGt illVe need to merge these families and remove the non-extreme
sets.

In the following subsections, we will fill in three details of thigatithmic outline:

¢ We need to show that the total number of metavertices in our windo@&is,
¢ We need to efficiently construct the various windows, and
e We need to efficiently merge the laminar families from the various windows

We will discuss arO (n?)-time implementation that meets these goals. While we are confident tixtaytime
algorithm is possible, thé&(n?) bound is already dominated by the time to find extreme sets. Settlirthdslower
bound lets us give simpler algorithms.

5.7.2 An Evolutionary Model

To analyze and implement our algorithm we imagine an evolutionary mddelirograph. Recall the parameter
W = n* from our windowing procedure, and consider what happeisstarts atoo and decreases through the
integers to—oco. Initially, all maximum spanning tree edges are too small to be in tinelov so the panes are just
the singleton vertices. Als decreases, certain MST edges “arrive” in the window. This causes certain panes¢o merg
Later, MST edges that entered the window get contracted, creating new metavertices

This arrival and contraction of MST edges affects the other edg@'s Bfiges move through 3 stages. Initially, an
edge connects two separate panes; we say this eggading.At some time, the endpoints of the edge are connected
into the same pane; we say the edgaasve. Finally, the endpoints of this edge are contracted into a single mé&tayer

18

turning the edge into an irrelevant loop; we say the edfjaished.Note that these definitions also apply consistently
to the MST edges themselves. Note also that an edge’s state is determingdtsaiin weight, but by the weight of
the MST edges connecting its endpoints.

5.7.3 Size Analysis

We use our evolutionary model to bound the total size (in numberetéwertices) of the panes we need to analyze.
We distinguish two kinds of pane:tevial pane is a single metavertex, whilenantrivial pane is made up of more
than one metavertex. An isolated metavertex is extreme by definibome sieed spend no time analyzing it. We only
need to bound the total size of the nontrivial panes. Each nontrivialipaneomponent spanned by some active MST
edges; the number of metavertices in the pane is at most twice the numid&Toédges in it. Thus, the total size
(in number of metavertices) of the panes for a given window véllués proportional to the number of active MST
edges—that is, the number of MST edges with weight betw&eandW/n3. An MST edge of weighty contributes

to this count only whefV’/n® < w < W, which happens for at most 4 valuesiof = n*. Thus, over all¥V/, the total
size (in metavertices) of problems solvedién).

We can similarly bound the total number of edges in all panes. The endpdiab edge end up in the same pane,
activating the edge, when all edges on the MST path connecting them have jatrée/éast such edge to arrive is the
lightest edge on the MST path. The endpoints of the edge are contrantshinfy the edge, when all edges on this
MST path are contracted; again the last edge to be contracted is the ligtgest tre MST path. There are only four
phases between the arrival and contraction of this lightest MST edge, so eadhk adiiee for only 4 phases. Thus,
over all phases, the total number of active edge&3(is.).

In summary, we have pangswith O(n;) metavertices an@(m;) edges, such thdt) n; = O(n) and)_ m; =
O(m). Some of the panes might have multiple edges with the same endpuaiiits could invalidate ou (n?) time
bound analysis for extreme sets; however, we can merge all parallel edgasegfip O(m;) time, taking a total of
O(>_mj) = O(m) time over all panes. It follows that the total time spent to find extreets inall panes using the
algorithm of the previous sectionds(y n? log” n) = O(n? log’ n) as claimed.

5.7.4 Building the Windows

Of course, we must actually generate the windows whose panes are passezktoamne set algorithm. We implement
the evolutionary model just introduced, in which MST edges arrive ahdantracted over time.

As was discussed above, the activation and finishing time of an edge are idetéby the lightest edge on the
MST path between its endpoints. Thus, to determine the evolutionesfy eedge we need merely find, for every
edge, the weight of the lightest edge on the MST path between its enslp®ims is the MST verification problem,
which can be solved i®(m) time [DRT92], or inO(m logn?/m) time by more practical algorithms [Tar83]. Note
that since the MST path between an edge’s endpoints, rather than the edg&®ight) determines its arrival time,
edges’ activation order may be quite different from their order by weight.

We would like to output the panes that arise as the graph evolves. @fe;dhe graph evolves through infinitely
many phases, but we only need to consider those phases in which some MSIE edgve, as these are the only
phases for which some nontrivial (with more than one metavertex) @éaes. There ar®(n) such relevant phases,
and we can determine them from the list of MST edge weights. If we serM8BT edges by weight, we can run
through the phases in temporal order.

We consider the graph at a certain phase of its evolution, and show hawigat the panes from that phase. As
was discussed above, the total size (in vertices and edges) of nontrivialipéhes). The total size of trivial panes
is O(n?) (at mostn vertices in each of(n) phases). Thus if our algorithm outputs each pane in time proportional
its size, the overall time to generate the panes willlje?).

We create a collection of buckets corresponding to the phases in which sogniesippens; into each bucket we
place copies of the edges that first become active in that phase. Next we startythoough the phases chronolog-
ically. We describe how to transform the graph from one phase to tkte lRiest, we contract all the currently active
edges that finish in the phase; this takes time proportional to the eunfilactive edges. The contraction creates new
metavertices; by traversing the current panes we can relabel every vertethavidentity of its new metavertex in

19

O(n) time (a union-find data structure could be used instead, of coursg), Weadd all the edges that become active
in the new phase. We compute the connected components induced by these athétistill-active edges to identify
the new panes; this takes time proportional to the size of the new.panes

It follows that the time to move from one phase to the next is pridpnal to the size of the two windows involved,;
thus the total time spent is proportional to the totals size of aive] which we have seen@(n?).

5.7.5 Merging the Extreme Sets

We have now shown how to build a set of windows which we have argusdios as extreme sets all the extreme sets
of G. Since these windows have total vertex coOiit), the time to find all extreme sets in theni$n?). It remains

to merge the resulting extreme set familiEsinto the extreme set famil§ for G. The problem is that although every
extreme set ii7 is extreme in somg&;, the converse might not be true. We need to cull non-extreme sets as ge. mer

We first resolve a minor technical problem. Our definitions of panesiiado‘cutting out” a pane from the
remainder of the graph and computing extreme sets in it. This cuttioceps, which removes some edges-of
changes the degrees of sets in the pane. We will find it more convenientedhese degrees unchanged. Thus,
before finding extreme sets in a paRewe add a new metavertexepresenting the (contraction of) the remainder of
the graphG — P. We compute the weights of edges incidentsdinom every metavertex itf. This is just the total
weight of pending edges incident on each metaverteR.ifThis quantity is easily maintained: initially all edges are
pending, and as they become active we can subtract their weights from fleeslefitheir endpoints. Representing
adds at most edges and 1 vertex to each pane, which does not affect our time bounds.

In PU{s}, the degree of any set is equal to the degree of the corresponding {tauted) set ir;. While finding
the extreme set familie®;, we already compute the degrees@hof all the sets inF;. So we continue to work with
these quantities.

First consider a window at weigh’; and its resulting laminar family7;. All we rely on in arguing that the
windows together contain all of is that thelV;-window contains all extreme sets of degree betwgfin andv;.

So we can delete fronf; all extreme sets whose degree is not in this range. This ensures thatifiidows we
considered werd/; < W --- < Wo(,), then all sets ir#; have degree less than all setsfipfor i < j.

To merge these windows, we rely on the following observation: amyexdreme (inG) set inF; contains some
extreme (inGG) set of lower or equal degree, which must therefore appear in sgméth ¢ < j. So we build our
family F according to the following algorithm. Start with empty. Working in increasing order of mergeZ; into
F. For each set itF; (again considered in increasing order of degree), addAtifdt does not contain any set already
in F. By induction, when we ad#;, set’F will contain all G-extreme sets with degrees less than thosg;irBy our
statement at the start of the paragraph, this means that orfy+&x¢reme sets itF; will be added taF. So at the end,

F will contain all extreme sets df.

To implement the containment check efficiently, maintaims a laminar family. Given a sé&f € F;, useO(n)
time to see whethek contains any set in the laminar family (by working up from the leaveh@family). If X does
not contain any such set, uékn) time to add it to the laminar family.

Since the total metavertex count of the window®)i3:), the total number of sets in the laminar families on the
windows is alsaD(n). Since we us&(n) time to merge each set, the total time needed to carry out the mergers is
O(n?).

This completes our discussion of the strongly polynomial algoritiVe have shown how to build windows
containing allG-extreme sets i@ (n) time, and have shown how to merge the extreme set families of thesewsnd
to generate the extreme set family f@rin O(n?) time. It follows that the dominant factor in the time to find extreme
sets forG is the time spent finding extreme sets in the windows, which we alaeady argued i®(n? log® n).

6 Conclusion
We have proposed randomiz€dn?)-time edge augmentation and extreme sets algorithms. Our edge augarentati

algorithm runs faster than the best known deterministic one [NI96] tactor offl(m/n). While the previous best
extreme sets algorithm [NGM90] (in the weighted graph case) finds egtsets as certain sets naturally defined by

20

a Gomory—Hu tree [GH61], our results show that it is most likely exatsi find extreme sets than a Gomory—Hu tree
(and seems even easier than finding a single max-flow). Our algorithmadlss she degree-constrained version of
the augmentation problem.

An obvious question is whether our extreme sets algorithm, whidieibottleneck both computationally and in
terms of descriptive complexity, can be simplified. Though the ide#seodlgorithm are relatively simple, the imple-
mentation is quite baroque. While some logarithmic factors in thaing time of our algorithm may be unnecessary,
it appears unlikely that major improvements are possible oveOié) time bound for this algorithm. However, a
different approach might work. Karger [Kar96] describes(im:) time algorithm for finding a minimum cut, but
it is not even guaranteed that this single minimum cut ésextreme set. Perhaps the algorithm could be modified
for extreme sets. Another question is whether finding extreme sets cdwnieequickly and deterministically. The
same holds for augmentation given the extreme sets: it seems odd thtt@néry last unit of augmentation requires
randomization. On the other hand, at present simply checking the contyeofid graph ino(mn) time requires
randomization.

7 Acknowledgment

Thanks to the referees for their very careful reading and helpful comments.

References

[ACM94] ACM. Proceedings of the6!* ACM Symposium on Theory of ComputiA¢M Press, May 1994.
[ACM96] ACM. Proceedings of theg!* ACM Symposium on Theory of ComputiAGM Press, May 1996.

[Ben94] Andras A. Bencz(r. Augmenting undirected connectivitRivC and in randomized (n?) time. In
Proceedings of th@6!” ACM Symposium on Theory of Comput[AG€M94], pages 658-667. Journal
version in preparation.

[BK96] Andras A. Benczir and David R. Karger. Approximate min-cuts inO(n?) time. InProceedings of the
28" ACM Symposium on Theory of ComputjA¢M96], pages 47-55.

[BV93] Omer Berkman and Uzi Vishkin. Recursive star-tree parallel datatstre. SIAM Journal on Computing
22(2):221-242, April 1993.

[CS89] G-P. Cai and Y-G. Sun. The minimum augmentation of any grapk-tdge-connected grapNetworks
19:151-172,1989.

[DRT92] Brandon Dixon, Monika Rauch, and Robert E. Tarjan. Verificatind sensitivity analysis of minimum
spanning trees in linear tim&IAM Journal on Computin@1(6):1184-1192,1992.

[Fra92] Andras Frank. Augmenting graphs to meet edge connectivity esgeirts. SIAM Journal on Discrete
Mathematics5(1):25-53, 1992. A preliminary version appeared in Proceedingeéfith Annual Sym-
posium on the Foundations of Computer Science.

[Fra93] Andras Frank. Applications of submodular functions. In Kalkir, editor,Surveys in Combinatori¢s
number 187 in London Math. Society Lecture Notes, pages 85—36. Caraptigig3.

[Gab9la] Harold N. Gabow. Applications of a poset representation to edgectivity and graph rigidity. In
Proceedings of thg2"¢ Annual Symposium on the Foundations of Computer ScifE&91], pages
812-821.

[Gab91b] Harold N. Gabow. Applications of a poset representation toaageectivity and graph rigidity. Technical
Report CU-CS-545-91, University of Colorado Department of Coerf&ttience, 1991.

21

[Gabo4]

[GGP94]

[GH61]

[GT85]

[GW97]

[IEE90]

[IEE91]

[Kar96]

[KS96]

[Lov93]
[Mad78]
[NGM90]
[N196]
[Sle94]
[SVv88]

[Tar83]

[WN87]

Harold N. Gabow. Efficient splitting off algorithms for ghap InProceedings of theé!” ACM Sympo-
sium on Theory of ComputifgCM94], pages 696—705.

Michel X. Goemans, Andrew Goldberg, Serge Plotkin, David Smrﬁ'wa Tardos, and David Williamson.
Improved approximation algorithms for network design problemsSléator [Sle94], pages 223-232.

Ralph E. Gomory and Tien Chung Hu. Multi-terminal networkv$o Journal of the Society of Industrial
and Applied Mathematic®(4):551-570, December 1961.

Harold N. Gabow and Robert E. Tarjan. A linear time algorithma@pecial case of disjoint set union.
Journal of Computer and System Scien88s209-221, 1985.

Michel X. Goemans and David P. Williamson. The primal-dual métfor approximation algorithms and
its application to network design problems. In Dorit S. Hochbaumogdipproximation Algorithms for
NP-hard ProblemsPWS Publishing Co., Boston, MA, 1997.

IEEE. Proceedings of th81%¢ Annual Symposium on the Foundations of Computer Sci¢BE€ Com-
puter Society Press, October 1990.

IEEE. Proceedings of th82"¢ Annual Symposium on the Foundations of Computer Sci¢BEE Com-
puter Society Press, October 1991.

David R. Karger. Minimum cuts in near-linear time. Mroceedings of th@st" ACM Symposium on
Theory of ComputinfACM96], pages 56—63.

David R. Karger and Clifford Stein. A new approach to the mimmcut problem.Journal of the ACM
43(4):601-640, July 1996. Preliminary portions appeared in SOZ9R hnd STOC 1993.

Laszl6 LovaszCombinatorial Problems and Exerciseédorth-Holland, Amsterdam, 2nd edition, 1993.
W. Mader. A reduction method for edge-connectivity in gragtrmales Discr. Math.3:145-164, 1978.

Dalit Naor, Dan Gusfield, and Charles Martel. A fast algorithmdptimally increasing the edge connec-
tivity. In Proceedings of th81°¢ Annual Symposium on the Foundations of Computer ScigB&S0],
pages 698-707.

H. Nagamochi and T. Ibaraki. Deterministit(nm)-time edge splitting in undirected graphs.Rroceed-
ings of the28!" ACM Symposium on Theory of ComputjA¢M96], pages 64—73.

Daniel D. Sleator, editoProceedings of tha!* Annual ACM-SIAM Symposium on Discrete Algorithms
ACM-SIAM, January 1994.

Baruch Schieber and Uzi Vishkin. On finding lowest common ancesSangplification and paralleliza-
tion. SIAM Journal on Computind 7:1253-1262, December 1988.

Robert E. TarjanData Structures and Network Algorithmslume 44 ofCBMS-NSF Regional Confer-
ence Series in Applied Mathemati&AM, 1983.

T. Watanabe and A. Nakamura. Edge connectivity augmentation prebléournal of Computer and
System Sciencgs3:96-144, 1987.

22

