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Abstract

Efficiently determining the node that stores a data item iistiduted network is an important and challenging problem
This paper describes the motivation and design ofCherd system, a decentralized lookup service that stores keygval
pairs for such networks. The Chord protocol takes as input-doit identifier (derived by hashing a higher-level applicat
specific key), and returns the node that stores the valuesmonding to the key. Each Chord node is identified byraloit
identifier and each node stores the key identifiers in theegystosest to the node’s identifier. Each node maintaing-an
entry routing table that allows it to look up keys efficienfResults from theoretical analysis, simulations, and expnts
show that Chord is incrementally scalable, with insertiod Bokup costs scaling logarithmically with the number db@l
nodes.

1 Introduction

A review of the features included in recent peer-to-peer applications yidtiggdist. These include redundant storage,
permanence, efficient data location, selection of nearby servers, anonymity, sedhemtication, and hierarchical nam-
ing. At their core, however, all these applications need an efficient methatkfermining the location of a data item.
The contribution of this paper is a protocol that solves the lookwblpm and a simple system that uses it for storing
information.

The Chord system is an efficient distributed lookup service based onhitie @rotocol. The Chord system supports
five operations: the addition and departure of Chord server nodes, sertl impdate, and lookup of unstructured key/value
pairs. All operations use the lookup primitive offered by the @hparotocol. We have used the Chord system to build a
peer-to-peer file sharing application [2].

The Chord protocol supports just one operation: given a keyllitieiermine the node responsible for storing the key’s
value. The Chord protocol uses a variant of consistent hashing [113igndeeys to Chord server nodes. Under consistent
hashing load tends to be balanced (all nodes receive at (hask) times the average number of key/value pairs). Also
when anN'*" node joins (or leaves) the network, on average onlp&h/N) fraction of the key/value pairs are moved to a
different location.

Previous work on consistent hashing assumed that nodes were awarstafther nodes in the network, making it
impractical to scale to large number of nodes. We show how each node can g#h Byowiing” information about a small
number of other nodes. Because the routing table is distributed,aareedlves the hash function by communicating with
a few other nodes. In the steady state, im&mode network, each node maintains information only aladiiog V') other
nodes, and resolves all lookups iHlog V) messages to other nodes. We also explain how the hash function and the
routing information are revised when a node joins or leaves the metWbese updates requié¥log” V) messages when
a node joins or leaves.

*Authors in reverse alpha-betical order.



The final contribution of this paper is an evaluation of the Chordqu@tand system. We present proofs that support
the theoretical claims. We also present simulation results with up @DQModes that confirm that the theoretical results
are obtainable in practice. Finally, we present measurements of an efficieememtiation of the Chord system. These
measurements confirm the simulation results.

The rest of this paper is structured as follows. Section 2 contrastgd@titr related work. Section 3 presents the
system model that motivates the Chord protocol. Section 4 presentagaeChord protocol. Section 5 presents extensions
to handle concurrent joins and failures. Section 6 outlines resultstirearetical analysis of the Chord protocol. Section 7
confirms the analysis through simulation. Section 8 presents thetngpitation of the Chord system. Finally, Section 9
summarizes our conclusions.

2 Related Work

Conceptually the Chord system functions analogously to the DN8my[di6]. Both systems map names to values. Chord’s
algorithms have no special servers, however, in contrast to DNS whiels m a set of special root servers. In addition,

Chord doesn't put restrictions on the format and meaning of namesg@haanes are just the keys of key/value pairs. Chord
doesn’t attempt to solve the administrative problems of DNS.

The Chord system may also be compared to to Freenet [5, 6]. Like Freenet Shiecentralized, symmetric, and
automatically adapts when hosts leave and join. Unlike Freenet, Chorggabtvays result in success or definitive failure.
Furthermore, Chord is scalable: the cost of inserting and retrievingsahs well as the cost of adding and removing hosts,
grows slowly with the total number of hosts and key/value pairsor@h gains come at the cost of anonymity, which is
implemented separately [2].

The Ohaha system [19] uses a consistent hashing-like algorithmdppimg documents to nodes, and a Freenet-style
method for routing queries for documents. As a result, it shares sbthe weaknesses of Freenet. Archival Intermemory
uses an off-line computed tree to map logical addresses to machines théhstdata [4].

The Globe system [3] has a wide-area location service to map object idexitifilexcations to support moving objects.
Globe arranges the Internet as a hierarchy of geographical, topologicameristlative domains, effectively constructing
a static world-wide search tree, much like DNS. Information about agctly stored in particular leaf domain and pointer
caches provide search short cuts [22]. As pointed out by the authorsedineh tree doesn’t scale, because higher-level
nodes in the tree serve large number of requests and also have higle steragnds.

The distributed data location protocol developed by Plaetos. [7], a variant of which is used in OceanStore [12], is
perhaps the closest algorithm to the Chord protocol. It providesgér guarantees than Chord: like Chord it guarantees
that queries make a logarithmic number hops and that keys are well balant#éd: Blaxton protocol also ensures, subject
to assumptions about network structures, that queries never tratredifim network distance than the node where the key
is stored. Chord instead has a heuristic to achieve network proxémétyts protocols are substantially less complicated.

Chord’s routing procedure may be thought of as a one-dimensionabareatd the Grid [14] location system. The Grid
relies on geographic-location information to route its queries, wbierd doesn’t require the availability of geographic-
location information.

Chord can be used as a lookup service to implement a variety of systemscasseid in Section 3. In particular, it can
help avoid single points of failure or control that systems like $lap[18] possess, and the lack of scalability that systems
like Gnutella [9] display because of their widespread use of broadcasts.



Function Description

i nsert(key, value) Inserts &key/ val ue binding atr distinct nodes.
Under stable conditions, exactiynodes contain the key/value binding.
| ookup(key) Returns the value associated with the key.

updat e( key, newal ) | Insertsth&ey/ newal binding atr nodes.
Under stable conditions, exactiynodes contain key/newval binding.

j oi n(n) Causes a node to add itself as a server to the Chord systenotdt is part of.
Returns success or failure.
| eave() Leave the Chord system.

No return value.

Table 1: API of the Chord system.

3 System model

The Chord protocol has essentially one operation: given a key, ite@irmine the node responsible for the key. One can
construct a wide range of systems using this primitive. To guidesttplanation of the protocol this section defines one
such a system, which we have labeled the Chord system.

The Chord system provides a distributed lookup service that allowtcafions to insert, lookup, and delete values
using a key as a handle. The Chord system treats the key simply as an falrgtgand uses it to derive a unique,
effectively randonm-bit key identifiey and does not associate any meaning to the key provided by the applidakiera
key, the value provides by the application is simply treated as an arraptexf.lDepending on the application, these values
could correspond to network locations where application data or serviceberayind (in which case the Chord system
helps in the “rendezvous” process), or to the actual data itself (e.g., flés)expect the predominant use of the Chord
system to be as a lookup service for rendezvous, rather than for trangféoé¢uments or large files.

The API provided by the Chord system consists of five main functishewn in Table 1. Whennsert (key,
val ue) is called, Chord inserts the key/value pair @@arefully chosen nodes. The quaniitis a Chord system parameter
that depends on the degree of redundancy desired. Wbekup( key) is called, Chord efficiently finds the key/value
binding from some node in the system, and returns the value to the. cBinally, Chord allows updates to a key/value
binding, but currently only by the originator of the key. Thistrigsion simplifies the mechanisms required to provide
correct update semantics when network partitions heal. The Chord sysésmakprovide an explicitel et e operation—
an application that requires this feature may implement it usipdat e( key, val ue) with a value corresponding to
the “delete-operation” that is interpreted by the application as such (thisecks arbitrary and independent of the chord
protocol). The final two API calls are functions for nodes to join angdesaChord system.

The Chord system is implemented as an application-layer overlay netwothoofiServer nodes. Each node maintains
a subset of the key/value pairs, as well as routing table entries thattpoa subset of carefully chosen Chord servers.
Chord clients may, but are not constrained to, run on the same hosteabgehver nodes. This distinction is not important
to the Chord protocol described in this paper.

The service model provided by the Chord system may be thought of as &effms persistence” model. As long
as at least one of thenodes in the Chord network storing a key is available, the key/Mailuding is persistent. If the
underlying network connecting Chord servers suffers a partitiorsegheers in each partition communicate with each other
to reorganize the overlay within the partition, assuring that thelldb@ieventuallyr distinct nodes storing each binding.
When partitions heal, stabilization protocobssures that there will be exactiglistributed locations for any binding in any



connected partition. The Chord system does not provide tight bamdsnsistency, preferring instead (in the “best-effort”
sense) to rely on eventual consistency of key/value bindings. loserdind updates are also not guaranteed to be atomic.

The Chord system’s simple APl and service model make it useful to aerahimternet applications, particularly be-
cause a wide variety of namespaces and values can be used by a Chord applicatexantue, to implement lookup
functionality for the Domain Name System (DNS), the values storedarChord system could correspond to the various
DNS records associated with the name. The Chord system can also be usedibgerd&zovery servers storing bindings
between networked services (names) and their locations (values) [1, 10].21, 23

Today, each application requiring the ability to store and retrievevialyg bindings has to re-implement this basic
functionality, often having to reconcile several conflicting goals. &ample, a key requirement for DNS is scalability,
for which it uses administrative hierarchies and aggressive caching;tumébely, its caching model, based on a time-to-
live field, conflicts with its ability to support rapid updates. Sonf¢oolay’s peer-to-peer file sharing systems show that
scalability is hard to achieve; Napster, for example, uses a centralized djréfavis a single point of failure; Gnutella
relies on broadcasts of increasing scope; and Freenet aggressively replicatesrdechuat cannot guarantee the retrieval
of a document within a bounded number of steps nor update documer<Chidrd system can serve as a useful lookup
service for these applications.

Based on the needs of applications like the ones mentioned above andarmnditithe Internet, we set the following
design goals for the Chord system:

1. Scalability. The system should scale well to potentially billions of keys, stanedhundreds or millions of nodes.
This implies that any operations that are substantially larger-tharitbgnic in the number of keys are likely to be
impractical. Furthermore, any operations that require contacting (ofyskapping track of) a large number of server
nodes are also impractical.

2. Availability. Ideally, the lookup service should be able to function despite n&tywartitions and node failures.
While guaranteeing correct service across all patterns of network parttimhsode failures is difficult, we provide
a “best-effort” availability guarantee based on access to at least oneathable replica nodes.

3. Load-balanced operation. If resource usage is evenly distributed among the machines in the systaacomes
easier to provision the service and avoid the problem of high peak loathging a subset of the servers. Chord
takes a step in this direction by distributing the keys and their vauesly among the machines in the system. More
refined load balancing, for example to deal with a single highly pop@gibly replicating it, can be layered atop the
basic system.

4. Dynamism. In a large distributed system, it is the common case that nodes joireamd,land the Chord system
needs to handle these situations without any “downtime” in its servicaassive reorganization of its key/value
bindings to other nodes.

5. Updatability. Key/value bindings in many applications are not static; it shoulddssiple for these to be updated by
the application.

6. Locating according to “proximity”. If the target of a query is near the originating node, then the origigatode
should not have to contact distant nodes to resolve the query. Wet goavide formal guarantees for this property,
but describe some heuristic modifications that should perform welidntice.

The Chord system could provide other properties as well and, in faaeftain peer-to-peer application it should. For
example, certain applications might require that the system provideyanignthat inserts be authenticated, that stronger
consistency be provided in the face of network partitions, or thasylseem protect against malicious servers (e.g., ones



that lie about their identity). We are optimistic that the protoeaspropose can be extended to provide support for these
features, but that is beyond the scope of this paper. Instead, this pepee$ on the Chord protocol, which solves the
problem of determining the node in a distributed system that stbeegalue for a given key. This problem is challenging,
independent of whether the system offers a simple or a more richer sero.

4 The base Chord protocol

Chord servers implement the Chord protocol, using it to returndbations of keys, to help new nodes bootstrap, and to
reorganize the overlay network of server nodes when nodes leave the syétamhascribe the base protocol in this section

for the sequential case, when no concurrent joins or leaves occur and no nadS8edtion 5 describes enhancements to

the base protocol to handle concurrent joins and leaves, and node failures

4.1 Overview

At its heart, chord provides fast distributed computation of a hasttifommapping keys to machines responsible for them.
We use a previously developednsistent hash functida 1, 13], which has several good properties. With high probability
the hash function balances load (all machines receive at fhaste) times the average number of keys). Also with high
probability, when anVt* machine joins (or leaves) the network, only @f1/N) fraction of the keys are moved to a
different location—this is clearly the minimum necessary to maintain a bathload.

The previous work on consistent hashing assumed that most machineawareeof most other machines in the net-
work. This assumption does not scale. We show how each machine can get ynlyith small amount of “routing”
information about other machines. Because the resolution informatidistributed, a machine resolves the hash function
by communicating with a few other machines. We describe the informtitadreach machine maintains in the steady state,
and the routing process used to resolve the hash function. More pyeaisah NV -machine network, each machine main-
tains information only abou®(log V) other machines, and resolves all lookups®idgog N) messages to other machines.

Finally, we also explain how the hash function and the routing médion are revised when a machine joins or leaves
the network. These updates requitdog® N') messages when a machine joins or leaves.

4.2 The Hash Function

The consistent hash function begins by assigning to each node andtkeysipstem am--bit identifier. The identifiers are
generated using a base hash function such as SHA-1. The node identifieh®sea by hashing the IP address (or some
other unique ID) of the node to the-bit identifier space. Similarly, the identifiers of the keys are prodigetiashing the
keys to then-bit space. (We will use the term “key” to refer to both the original key its image under the hash function,
as the meaning will be clear from context. Similarly, the term nodeneflér to both the node and its identifier under the
hash function.)

As with any hash function, there is a small chance of a collision wherentwi@s hash to the same identifier; we take
m large enough to make this probability negligible. Alternatively, e append a unique suffix (such as the node’s IP
address) to the identifier for each node to ensure unique node idenifiesrdras no significant impact on our claimed
performance). Colliding identifiers for keys are unimportant as thys keemselves, not just the identifiers, are used to
resolve lookups.

LHigh probability does not refer to any distribution assuiomg about the input (machines and keys). Rather, our #hgonises a small random seed
to define the hash function and routing scheme. With highaiiity in this choice of random segthe properties we claim will holcegardlessof the
configuration of machines and inputs.



successor(l) =1

successor(2) =3

successor(6) =0

Figure 1. A network consisting of three nodes 0, 1, and 3, which sthres keys 2, 4, and 6. The size of the key-space,
m, in this example is 3 bits. Each key (and its associated value) is storkd sititcessor node of the key. The successor
node for an identifierid, is the first node with an identifier that is equal to or folloisin the clockwise direction on the
identifier circle.

Given the identifiers, keys are assigned to nodes in a straightforverdamch keyk, is stored on the first node whose
identifier, id, is equal to or followsk in the identifier space. This node is called ghecessor nodef key k, and it is
denoted bysuccessdik). If node and key identifiers are represented on a circle marked with nuniber$ fo 2™, then
successor(k) is the first node that we encounter when moving in the clockwise direstarting fromk. We call this circle
theidentifier circle.

Figure 1 shows a simple example of a Chord network consistingreétnodes whose identifiers are 0, 1, and 3. The
set of keys (or more precisely, keys’ identifiers)is 2,6}, and these need to be stored at the three nodes. Because the
successor of key among the nodes in the network is nadekey 1 is stored at nodé. Similarly, the successor of key
is 3, the first node found moving clockwise frotnon the identifier circle. For keg, the successor (nodg is found by
wrapping around the circle, so kéyis stored at node.

Consistent hashing was designed to let nodes enter and leave the netétorkimimal disruption. To maintain the
consistent hashing mapping when a nedmpins the network, certain keys previously assigned 'sosuccessor become
assigned ta.. When noder leaves the network, all of its assigned keys are reassigned successor. No other changes
in assignment of keys to nodes need occur. In the example above, if a eoeéonoin with identifier 6, it would capture
the key with identifier 6 from the node with identifier 7.

The following results are proven in the paper that introduced consiséeshing [11]:

Theorem 1 For any set ofV nodes and keys, with high probability:
1. Each machine is responsible for at mst+ €) K /N keys

2. When an(N + 1)** machine joins or leaves the network(K /N) keys are moved (and only to or from the joining
or leaving machine).

The consistent hashing paper usedcauhiversal hash function” to map nodes and keys to identifiers. Thigtifum
is defined by a random seed, and the “high probability” statement in theetimeefers to the choice of random seed.
In practice, any good hash function (such as SHA-1) should be sufficiemhieve the claimed bounds. To achieve the
(1 + €)K/N bound on load with smal, each node actually needs to fiag NV “virtual nodes,” each with its own hashed
identifier [13]. For simplicity, in the remainder of this section weplinse with the assumption of “virtual nodes.” In this
case, the load on a machine may exceed the average by (at méXfogrV) factor with high probability.



Notation Definition

fingerk].start (n+21)ymod2™,1<k<m
fingerk].interval | [fingelfk].start, fingelk + 1].start), if 1 <k <m
[fingelk].start,n), if Kk =m

fingelk].node first node whose identifier is equal to or follows
n.fingefk].start
successor immediate successor of nodeon the identifier circle;

successokE finger[l].node

predecessor immediate predecessor of nod®n the identifier circle,

Table 2: Definition of variables for node wheren is represented using bits.

4.3 Scalable key location

Consistent hashing is straightforward to implement (with the samstant-time operations as standard hashing) in a cen-
tralized environment where all machines are known. However, such a systsmdbscale. In this section we show a
distributed implementation of the hash function. More precisely, iseuds what routing information each node needs to
maintain, and how a routing decision is made by a hode when it does awattkie successor of the requested key.

As before, letm be the number of bits in the binary representation of key/node fiknsti Each node;, maintains a
routing table withm entries, called théinger table Theit” entry in the table at node contains the identity of thérst
node,s, that succeeds by at leas‘~! on the identifier circle, i.es = successor(n + 2¢1), wherel < i < m (and all
arithmetic is modul@™). We call nodes thei*" fingerof noden, and denote it by..fingeri].node (see Table 2). Note that
the first finger ofn is its immediate successor on the circle.

In the example shown in Figure 2, the finger table of nede 1 stores the successors of identifigrs-2°) mod2?® = 2,
(1+2') mod2?® = 3, and(1 + 2%) mod2? = 5, respectively. The successor of identifids node3, as this is the first node
that follows2, the successor of identifigris (trivially) node3, and the successor &fis node).

Itis important to make two observations of this scheme. First, eachstodes information about only a small number
of other nodes, and the amount of information maintained about oth@srfatls off exponentially with the distance in
key-space between the two nodes. Second, the finger table of a node magtagt eaough information to determine the
successor of an arbitrary kéy For example, node 3 in Figure 2 does not know the successor ofls sisccessor (node
1) does not appear in nodé& finger table.

What happens when a nodedoes not know the successor of a k&/To resolve this, node asks another node in the
network to try and findk's successor. Node aims to find a node closer tothann, as that node will have more “local
information” about the nodes on the circle n&arTo accomplish this task, nodesearches its finger table for the closest
finger preceding:, and forwards the query to that node. As a result the query moves qtucitlg target identifier.

To make this search process more precise, we introduce some notatiosgleZehe such that € [(n +2¢71), (n +
24)]. We call this thei*” finger intervalof noden, and denote it by.. finger[i].interval (see Table 2). By definition, the
it" finger ofn is the first node im’s it" finger interval, if such a node exists. Otherwise, it is the first rfotlewing the
interval.

The pseudocode that implements the search process is shown in Fignr& pseudocode the notatiarioo is used
to introduce the function definition fdioo being executed on node To differentiate between remote and local node
operations, remote procedure calls and variable references are preceded by thanoatepwhile local variable references
and procedure calls omit the local node. Thu$podenotes a remote procedure call on nadevhile foo denotes a local



finger[3].interval = [finger[3].start, 1) finger table keys
start] int. [succ] E
1|12 1
2 [[24)] 3
4 |[40)] O
finger table keys
start] int. [succ]
2 [[23)] 3
finger[1].start = 2 3 |[35] 3
5 [[51)] 0
finger[1].interval =
[fipger[l] start, finger table keys
finger[2].start) start] int. |succ]
finger[3].start =5 . _ 4 [[45)]| 0
finger[2].start = 3 [4.5)
5 |[57)] 0
) ) - . 7 (73] 0
finger[2].interval = [finger[2].start, finger[3].start)

(a) (b)

Figure 2:(a) Intervals associated to node= 1, wherem = 1 (see Table 2). (a) The key and finger tables associated toneaehin a
network consisting of nodes 0, 1 and 3, respectively, whictes three keys 1, 2, and 6, respectively.

call.

As can been seen in the pseudocdithe, successois implemented by homing in on the immediate predecessor node of
the identifier. That node can report that its immediate successor node thalisnmediate successor node of the identifier.
We implemenfind_predecessoexplicitly, because it is used later to implement the join operation (setdd 4.4.1).

Thefind_predecessdiunction first tests for the case wheris the only node in the network, and therefore its predecessor
is the node itself. In this case we simply return nedén a network with two nodes each node is the predecessor of the
other node). The loop terminates whigtfalls between node’ and its successor, in which caskis returned as being the
id's predecessor. Otherwisg] follows the successor of , which means that there is at least one finget’'dhat precedes
id. As a resultclosestprecedingfingeris called to return the closest fingerdfthat precedesl. This value is closer tid
thann. Thus, the algorithm always makes progress toward termination at trectaealue.

We remark on the correctness of the code. Once we know the predeaésdatl, the successor afl is simply the
successor ofi’. This is because we are guaranteed that there is no other node betveeetid; otherwise, that node, and
notn', would be the predecessor il

A simple optimization fofind_successoallows it to return early. If we determine that nodés betweerfingeri].start
andfingetfi].node we can immediately deduce tHatgeri].nodeis the immediate successor fiakand return that value.

In Section 6, we analyze this algorithm and show the following:

Theorem 2 With high probability, the number of nodes that must be contacteglsblve a successor query in Airnode
network isO(log V).

The intuition behind this claim is that each recursive cafitd_successohalves the distance to the target identifier.

Consider again the example in Figure 2. Suppose Baglents to find the successor of identifierSincel belongs to
the circular interval7, 3), it belongs to3.finger2].interval; node3 therefore checks theecondentry in its finger table,
which is0. Because® preceded, node3 will ask node0 to find the successor af In turn, node) will infer from its finger
table thatl’s successor is the noddtself, and return node 1 to node 3.



Il ask noden to findid’s successor
n.find_successor(id)
n' = find_predecessor(id);

return n'.successor;

/I return closest finger preceding
n.closest_preceding_finger(id)
for ¢ = m downto 1
if (fingeré].node € (n,id))
return fingeri].node;
return n;

/I ask noden to findid's predecessor
n.find_predecessor(id)
if (n == successor)
return n; // nis the only node in network
n =mn;
while (id ¢ (n',n’.successor])
n' = n'.closest_preceding-finger(id);

return n’;

Figure 3: The pseudocode to find the successor node of an ideftifiRemote procedure calls are preceded by the remote

node.
fintgetr tgbtle keys finger table keys finger table keys finger table keys
start[ int. Jsucc] |6 | start[ int._succ] [ ] start[ int._Jsucc] [ 6| start[[int._Jsuce] [ |
g [(7),(2)) g 1 (12| 1 7 |170| 0 1 [[12)] 0
0 [2,6) ) 2 [24)] 3 0 [0,2)] O 2 [2,4)] 3
[2,6) 4 |[40)] 6 2 |[26)| 3 4 |[40)) 6
finger table keys
start] int. [succ]
2 |[23)] 3
3 |[35)] 3
5 |[51)| 6
finger table keys -
° finger table keys
St:lrt I[:t.s) SUGCC- start| int. |succ) 1
, 4 |[45)]| 6
5 |[57)| 6 5 %57? 6
7 |73 o 7 73] o

(@)

(b)

Figure 4: (a) The key and the finger tables associated to each nodenafier6 joins the network. (b) The key and the finger tables
associated to each node after node 3 leaves the network.hahges in the finger tables and of the keys stored by each saaleesult

of a node joining/leaving are shown in black; the unchangedes are shown in gray.



4.4 Node joins and departures

In a dynamic network, nodes can join and leave at any time. The main challémgg@lementing these operations is
preserving the ability to locate every key in the network. To achieigggibal, we need to preserve two invariants:

1. Each node’s finger table is correctly filled.
2. Each key is stored at nodeuccessor (k).

Itis easy to see that these two invariants will guaranteefthat_successor will be able to successfully locate any key—if

a node is not the immediate predecessor of the key, then its finger télileld a node closer to the key to which the query
will be forwarded, until the key’s successor node is reached. In the nel@aof this section, we assume that these two
invariants hold before a node joins or leave the network. We defatifoeission of multiple nodes leaving or/and joining
simultaneously to Section 5. Before explaining how joining and lepaire implemented, we summarize the performance
of the schemes we are about to define:

Theorem 3 With high probability, any node joining or leaving a-node Chord network will us@(log” N) messages to
re-establish the Chord routing invariants.

To simplify the join and leave mechanisms, each node in Chord maintaireslacessor pointe’A node’s predecessor
pointer points at the immediate predecessor of that node, and can be used woumtierclockwise through nodes on
the identifier circle. For clarity, we also introducesaccessor pointerThe successor pointer points to the same node as
finger[1].node (see Table 2).

The rest of this section describes how Chord handles nodes joining &mchimimal disruption. (We won’t present the
implementation of leave, because it is analogous to join.)

4.4.1 Join operation
To preserve the two invariants discussed above, when amngaies the network, we have to perform three operations:
1. Initialize the predecessor and fingers of nade

2. Update the fingers and predecessors of existing nodes to reflect the anémgaetwork topology caused by the
addition ofn.

3. Copy all keys for which node has became their successornto

We assume that the bootstrapping for a new node is handled offliregeeby someone configuring the newly joining
noden with the identifier of at least one other nodealready in the Chord network. Once this is done, nodesesn’ to
initialize its state. It performs the above three tasks as follows.

Initializing fingers and predecessor:A straightforward way to learn the predecessor and fingers of nagleo simply ask
noden’ for them. Figure 5 shows the pseudocode ofittiiefingertable function that initializes the finger table of node
using this idea. Initializing the predecessor is similar. As an optiigizahote that once we learn tli# finger, we check
whether this node is also ti{e¢+ 1)!" finger of noden. This happens whefingeti].interval does not contain any node,
and thudingefi].node > finger[i + 1].start.

As an example, consider the scenario in Figure 4(a), where node 6 jeimgtivork. Assume node 6 knows a node 1,
already in the network. Then, node 6 will ask node 1 for the successébstoR’) mod23 = 7, (6 + 2!) mod23 = 0, and
(6 + 22) mod2? = 2, respectively. In turn, node 1 will return node 0 as being the succesitemtifiers 7 and 0, and node
3 as being the successor of 3.
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/I noden joins the network;
/I n' is an arbitrary node in the network
n.join(n')
if (n')
init_finger.table(n');
notify();
s = successor; Il get successor
s.move_keys(n);
else// no other node in the network toitself
fori=1tom
fingeri].node = n;
predecessoE successor = n;

/l'initialize finger table of local node;
/I m' is an arbitrary node already in the network
n.init_finger_table(n’)
finger1].node = n'. find_successor(finger|[1].start);
successoE= finger|[l].node;
fori=1tom—1
if (fingeri + 1].start € [n, finger[i].node))
fingerfi + 1].node = fingerji].node;
else
fingerfi + 1].node =
n' find.successdfinger|i + 1].start);

/l update finger tables of all nodes for
/I which local noder., has became their finger
n.notify ()
fori=1tom
/1 find closest nodp whosei" finger can be n
p = find_predecessor(n —2°71);

p.update_finger_table(n,i);

Ilif s is 3*" finger ofn, updaten’s finger table withs
n.update_finger_table(s, 7)
if (s € [n, finger[i].node))
fingeri].node = s;
p = predecessor; Il get first node preceding
p.update_finger_table(s,1);

Il'if p is new successor of local stored
Il keyk, movek (and its value) tg
n.move_keys(p);
for each keyk stored locally
if (p € [d,n))

movek to p;

Figure 5: The pseudocode of the node joining operation.
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Update fingers and predecessors of existing nodesVhen a new node;, joins the networkn may become the finger
and/or successor of other nodes in the network. For example, in Fi(a)randde 6 becomes the third finger of nodes 0 and
1, and the first and the second finger of node 3. To account for this changegdé¢o update the fingers and successors of
the existing nodes, as well. For simplicity, we again limit our déston to the finger table only.

Figure 5 shows the pseudocode of thelate_finger_tables function that updates finger tables of the existing nodes.
Assume that aften joins the networkyn will become theit” finger of a nodep. This will happen if and only if (1)
precedes by at leasi~!, and (2) tha*" finger of nodey succeeds. The first nodep, that can meet these two conditions
is the immediate predecessorof- 2¢~1. Thus, for a givem, the algorithm starts with thé” finger of noden, and then
continues to walk in the counter-clock-wise direction on the identifieleiuntil it encounters a node who#s# finger
precedes.

Although it might appear that the number of nodes that have their finhtgs updated is quite large, this is fortunately
not the case. We show in Section 6 that the number of nodes that need todtedytien a node joins the network is only
O(log N) on the average, and with a very high probability is at m@@bg® N), whereN is the total number of nodes in
the network.

Transferring keys: The last operation that has to be performed when a nojdéns the network is to move all the keys

for which noden has become the successorntol he pseudocode for this operationovekeys is shown in Figure 5. The
algorithm is based on the observation that nadm®n become the successor only for keys stored by the node immediately
following n. For example, in Figure 4(a), node 6 needs to inspect only the kenedddby node 0. As a result, key 6 is
moved to node 6, as node 6 is now the new key’s successor.

5 Handling concurrent operations and failures

In practice the Chord system needs to deal with nodes joining the systeearcently and with nodes that fail or leave
voluntarily. This section describes modifications to the basic Chaydrig#thm described in Section 4 to support these
situations.

Motivating this section is the observation that a substantially weakeriant will guarantee theorrectnessof the
routing protocol, although time bounds may be sacrificed. As long eyewde knows its immediate predecessor and
successor, no lookup will stall anywhere except at the node respofwilaldey. Any other node will know of at least one
node (its successor) that is closer to the key than itself, and willgfahthe query to that closer node.

5.1 Concurrent joins

The join code in Figure 5 assumes the invariants mentioned in Seciofilde invariants may not be true if nodes join the
system concurrently. A slightly different version of the code, shawRigure 6, is required to support concurrent joins.
This code focuses on maintaining the correctness of immediate predecesbstgeessors, since in the worst case more
distant relationships can be resolved (though slowly) by nearestb@ityiaversals of the identifier circle.

When nodae: first starts, it callsi.join(n'), wheren' is any known Chord node. Thein function finds the immediate
predecessor and successornphotifies those two nodes that they have a new immediate neighbdhemdallsboot strap
to fill in n’s finger table and initializex’s predecessor.

If multiple nodes with similar identifiers join at the same time, thegy all try to notify the same existing predecessor
that they are its immediate successootify ensures that only the newcomer with the lowest identifier will succeed. The
others will gradually learn their true immediate neighbors by periodglis tostabilize stabilizeperiodically checks whether
new nodes have inserted themselves between a node and its immediate reeigtgdmilar periodic function (not shown in
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/I n joins the network
n.join(n')

s = n'. find_predecessor(n);

do

p=s

s = p.successor;
until n € (p, $]

successor = s,

predecessor = p;

p.notify(n); // tell p to update its state
s.notify(n); // tell s to update its state
boot_strap(s);

n.notify (n')
if (n' € (n, successor))
finger[1].node = successor = n';
boot _strap(n');
if (n' € (predecessor,n))
predecessor = n';

boot_strap(n');

Il let node n send queries to fill in its own tables
n.boot strap(n')
for i =1tom
p = n'.find_successor(fingerl[i].start);
do
s =p;
p = p.predecessor;
until (p < finger[i].start)

finger[i].start = s;

I verify n's immediate pred/succ
/I called periodically
n.stabilize()

x = predecessor;

r = T.successor,

if (x € (predecessor,n)

predecessos z;
T = successor,
xr = x.predecessor;

if (z € (n, successor))

finger[1l].node = successor = x;

Figure 6: Pseudocode for concurrent join. Predecessor functions tadeptreir successor equivalents are omitted.

Figure 6) updates the rest of each node’s finger table, so that all tables fyadnskrge on correct values after any joins.

Obtaining the successor by simply callifigd_successomay not work correctly during the time in which all nodes
tables are reacting to a new node. In particular, a node may thinlfthaer|[i].node is the first node in an interval, when
in fact a new node has joined earlier in that interval. For this reason, wibhagkitative successor node whether it does not
know a better successor, i.e., whether the predecessor of the putative sunoesssucceedgnger|[i].node. This process
is repeated until it reaches a successor whose immediate predecessor preceges the ke

Whenever a node notices that it has a new immediate predecessor, it movagxiappkey/value pairs to that prede-
cessor. There are cases in which multiple joins may cause keys to becomeasippraccessible until sufficient calls to
stabilize have been made. This can be solved by serializing the order in which a nodesasagpinmediate predecessors,
which itself is easily achieved by a simple locking protocol between a roele and its immediate successor.

As an optimization, a newly joined nodecan ask an immediate neighbor for a copy of its complete finger table and
its predecessor can use the contents of these tables as hints to help it find the correct \@liteofvn tables, since’s
tables will be similar to its neighbors’. Specifically's boot_strap routine can start the query for each table entry at the
node referred to by the corresponding entry in its neighbor’s table.

5.2 Failures and replication

When a noder fails, nodes whose tables includemust findn's successor (or predecessor), and thisrsuccessor must
ensure that it has a copy of the key/value pairs stored In addition, the failure ofi must not be allowed to disrupt queries
that are in progress as the system is re-stabilizing.

If a node fails, thestabilize procedures of its immediate neighbors will see that it is not respgndiine recovery
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procedure for a node that notices that its immediate successor has died is as follawsoks through its finger table
for the first live noden'. n then callsn.find_successor(n’,n) (i.e., sends a query te'), and uses the result as its new
immediate successor. A similar strategy works when other table entriésusigtto be unresponsive.

Fault-tolerant storage of key/value pairs requires replication. To &effeve this, each Chord node maintains a list
of its r» nearest successors with a simple extension to the code in Figurelis(icase, thesuccessoscalar variable is
replaced by a table). When a node receives an insert, it propagates a copy gftladulespair to those successors; it also
propagates when it notices that its immediate successor changes duririgegiabil After a node fails, queries for its keys
automatically end up at its successor, which will have copies of those keys

After a node failure, but before stabilization has completed, other nodgsttempt to send requests to the failed node
as part of afind_successor lookup. The problem can be detected by timing out the requests, butjitlealbokups would
be able to proceed immediately by another path despite the failure. In mesttbésis possible: any node with identifier
close to the failed node’s identifier will have similar routing tablé&ies, and can be used to route requests at a slight extra
cost in route length. All that is needed is a list of alternate nodes, dasihd in the finger table entries preceding that of
the failed node. If the failed node had a very low finger table index; theccessors mentioned above are also available as
alternates. Theorem 5 in Section 6 discusses this procedure in more“detail.

6 Theoretical analysis

As is discussed in the work on consistent hashing [11], with thpearchoice of hash function the identifiers for nodes and
keys are effectively random: all analyses can be carried out as if the nodes enale usndom points on the identifier
circle. The same holds true for our analyses, so we will make that assummnpt

Theorem 4 With high probability, the number of nodes that must be contacteglsblve a successor query in Airnode
network isO(log V).

Proof: Suppose that node wishes to resolve a query for the successadk.dfet p be the node that immediately precedes
the query identifiek. Recall that the query fdt eventually reaches, which returns its immediate successor as the answer
to the successor query. We analyze the number of query steps tgxeach

Recall that ifn # p, thenn forwards its query to the closest predecessdr iof its finger table. Suppose that nogés
in theit" finger interval of node:. Then since this interval is not empty, nodenill finger some nodef in this interval.
The distance (number of identifiers) betweeandf is at leasRi~!. But f andp are both inn’s it finger interval, which
means the distance between them is at rabst. This meansf is closer top than ton, or equivalently, that the distance
from f to p is at most half the distance fromto p.

If the distance between the node handling the query and the predegbsdags in each step, and is at mpStinitially,
we see that withingn steps the distance will be one, meaning we have arrived &t fact, the number of forwardings
necessary will b&(log N) with high probability. Afterlog N forwardings, the distance between the current query node
and the key will be reduced t@™ /N . The expected number of node identifiers landing in a range of thisssizeand it
is O(log V) with high probability. Thus, even if the remaining steps advance byare node at a time, they will cross the
entire remaining interval and reach keyvithin anotherO(log N) steps]

The following lemma is the basis of Theorem 3 in Section 4.4, which dalrat a node joining the network only needs
to sendO(log® N') messages to update other nodes’ tables.

Lemma 1 With high probability, every node is a finger (of a given orderigfog” N) nodes.

2The current implementation takes a slightly different aggh to handling failures.
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Proof: We begin with an easy expectation argument. Every nodeXihas; V) distinct fingers (the easy argumentis
fingers, but the(log N) bound follows as it did in the previous theorem). Thus the totahlper of node-successor pairs
in the network iSO(N log N). It follows that on average any given node is a finge©¢fog V) nodes.

For a high probability argument, we note that a nads a finger forn' if n' + 2¢ is in the range betweem and the
predecessay of n. This happens with probabilitys — p)/2™. It is straightforward that with high probability, — p) =
0O(2™(log N)/N). So for a particulas the probability that a node fingersis O((log N)/N), which implies that with high
probability O(log N) nodes fingetV at leveli. Since there aré(log N) levels, the total number of nodes fingerings
O(log® N) with high probability ]

We now discuss modifications of the Chord protocol to support faldrance. Our focus is not on the loss of data
(which can be dealt with by simple replication) but on the loss of ruitiformation. If some of a node’s fingers fail, what
alternative mechanism does it use to foward successor queries to the #&tprimmation? To deal with this problem, we
modify the Chord protocol to replicate certain routing informatidm.addition to maintaining itsn. finger entries, each
node also maintains pointers to the figsbf its immediate successors on the identifier circle. As will later become elear,
should be large enough th@t/2)? is very small. Maintaining this information requires only a small ¢ansfactor more
space on each node. It also involves straightforward modifications tadbecpls for joining, leaving, and stabilizing the
network which we do not discuss here. We do remark on the change to tirggrprotocol. If the node to which we want
to forward the query (say ouf” finger) is down, forward the query instead to the best earlier fingel{thd )*t, or if that
is down the(i — 2)"¢, and so on). This sequence should include:tiremediate successors.

This replication and routing modification suffices to route aroundfiedu We consider the following model: begin
with a network of N nodes with all routing information correct, and suppose that each nddenfiéfh probability 1/2.
Eventually the stabilization procedure described in Section 5 will cofneatduting information, but in the meantime many
of the remaining nodes’ tables will refer to failed nodes. The followémgma shows that correct routing still takes place.

Theorem 5 In a stable network, if every node fails with probability 1/2, thwith high probability any successor query
returns the closest living successor to the query key.

Proof: Before the failures, each node was aware of itmediate successors. The probability that all of these successors
fail is (1/2)%, so with high probability every node is aware of its immediatenlivsuccessor. As was argued in the previous
section, if the invariant holds that every node is aware of its immediatcessor, then all queries are routed properly, since
every node except the immediate predecessor of the query has at least onedoletterwhich it will forward the query.]

In fact, even the efficiency of our routing scheme is preserved in the faedwks.

Theorem 6 In a stable network, if every node fails with probability 1/2, thla expected time to resolve a query in the
failed network igD(log V)

Proof: We consider the expected time for a query to move from a node that h&eythie its it finger interval to a node
that has the key in it& — 1) finger interval. We show that this expectatiori§l). Summing these expectations over all
i, we find that the time to drop from the'” finger interval to thém — log V)" finger interval isO(log N). At this point,
as was argued before, on)(log N) nodes stand between the query node and the true succeséiftpgaV) additional
forwarding steps arrive at the successor node.

To see that the expectation¥log N) consider the current nodethat has the key in it§" finger interval. Ifn’s it
fingers is up, then in one forwarding step we accomplish our goal: the keytiseify — 1)*¢ finger interval of node. If
s is down then, as argued in the previous theoreiis, still able to forward (at least) teomenode. More precisely; was
aware ofz immediate successors; assumg 2log N. If we consider thelog N)"* through(2log NV)!h successors, the
probability that they all fail isl/N. So with high probability, node can forward the query past at le&sg NV successors.
As was implied by Lemma 1, itis unlikely that atlg N of these skipped nodes had the saffdinger. In other words, the
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node to whichn forwards the query has a differeitt finger thann did. Thus, independent of the fact thas it* finger
failed, there is a probablity/2 that the next node’#" finger is up.

Thus, the query passes through a series of nodes, where each node hasta'dtifinger (before the failures) each of
which is up independently with probability/2 after the failures. Thus, the expected number of times we need to forward
the query before finding aii® finger that is up is therefore 2. This proves the cldim.

In fact, our claims hold even if an adversary maliciously choosesrlaitrary set of NV/2 nodes to fail. So long as the
adversary is unaware of the specific hash function used to map nodesdertti&er circle, his choice results in the failure
of N/2 “random” points on the circle, which is precisely what we analyzed above.

7 Simulation Results

In this section, we evaluate the Chord protocol by simulation. We lmplemented a packet level simulator that fully
provides the functionality of the algorithm described in Sections 45and

7.1 Protocol implementation and simulator

The Chord protocol can be implemented iitexative or recursivestyle, like the DNS protocol. In the iterative style, a
node that is resolving a lookup, initiates all communication: it iteefyf queries intermediate nodes for information until it
reaches the destination node. In the recursive style, an intermediateanodsively calls the lookup procedure to resolve
the query.

The main advantage of the iterative style is two fold: it is simplertplement (the intermediate nodes just respond to
requests, but never initiate communication recursively) and it puisitiegor in control (e.g., it can monitor easily whether
a node is responding or not). However, as we discuss in Section 8,aleesome disadvantages to the iterative style. The
iterative scheme will send queries over long distances repeatedly under caxtaimstances. Recursive scheme does a
better job of taking short hops when possible. The simulator implésriba protocols in an iterative style.

Unless other specified, packet delays are exponentially distributed veitm#tan of 50 ms. Each node periodically
invokes thestabilizationprotocol at an average rate of 0.5 invocations per minute. The timeahtstween two consecutive
invocations by a node is uniformly distributed betw&hand1.5 of the mean value. As shown in [8] in the context of route
updates, this choice is likely to eliminate protocol self-synchroromaiie., all nodes invoking the stabilization protocol
at the same time. For key and node identifiers, we use a 24 bit represen@atir implementation assumes that we can
transfer any number of keys between two neighbor nodes with only oneageessiowever, we do not expect that this
assumption to impact the general behavior of the algorithm as illesttat the following experiments.

7.2 Load balancing

In this section, we consider the ability of Chord to achieve load balgnddeally, given a network wittv nodes, andy
keys, we would like each node to staWg K keys.

We consider a network consisting t6* nodes, and vary the total number of keys fra6? to 10¢ in increments of
10°. For each value, we repeat the experiment 20 times. Figure 7(a) plots thevateasthe 1st and the 99th percentile of
the number of keys per node. The number of keys per node exhibitsvargtions that increase linearly with the number
of keys. For example, in all cases there are nodes that do not store anyHeye better intuition, Figure 7(b) plots the
probability density function (PDF) of the number of keys per nodemvthere aré x 10° keys stored in the network.
The maximum number of nodes stored by any node in this case is 487,>othe mean value. For comparison, the 99th
percentile ist.6 x the mean value.
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Figure 7: (@) The mean value, the 1st and the 99th percentiles of the nafikegs stored by a node inl@* node network.
(b) The probability density function (PDF) of the number of kegs pode. The total number of keysiis< 10°.
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Figure 8: The 1st and the 99th percentiles of the number of keys perawd function of virtual nodes mapped to a real
node. The network ha)* real nodes and storag® keys.

One reason for these variations is that node identifiers do not covernmjfthe entire identifier space. If we divide the
identifier space inV equal-sized bins, wher® is the number of nodes, the probability that a particular bin does mb&ito
any node is significant. In particular, this probabilityis— 1/N)", which for large values o approaches™! = 0.368.

One possibility to address this problem is to allocate a set of vinodés and then map them to real nodes. Intuitively,
this will provide a more uniform coverage of the identifier space. kan®le, if we allocatéog N identifiers to each node,
with a high probability each of th& bins contain®)(log V) nodes [17].

To verify this hypothesis, we perform an experiment in which we alloc&igual nodes to each real node. In this case
keys are associated to virtual nodes instead of real nodes. We consider agaimekmith 10* real nodes and0® keys.
Figure 8(b) shows the 1st and 99th percentilessfet 1,2, 5,10, and 20, respectively. As expected, the 99th percentile
decreases, while the 1st percentile increases with the number of virtues,noth particular, the 99th percentile decreases
from 4.8 x to 1.6 x the mean value, while the 1st percentile increases fron0Gte the mean value. Thus, adding virtual
nodes as an indirection layer can significantly improve load balancing. @tedff is that the space usage will increase
as each actual node now needmes as much space to store the information for its virtual nodes.edMervwe believe
that this increase can be easily accommodated in practice. For example, assumiwgr& with N = 10° nodes, and
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Figure 9: (a) The path length as a function of network size. (b) The FDfeath length in the case o2& node network.

assuming = log N, each node has to maintain a table wiih> N ~ 400 entries.

7.3 Path length

One of the main performance parameters of any routing protocol is théhlehghe path (route) between two arbitrary
nodes in the network. Here, we define the path length as the number of tnadkased by a lookup operation. Recall
that the path length is: + 1 in the worst case, whene represents the number of bits in the binary representation of the
identifiers, andD(log V) in the average case, whekeis the number of nodes. For simplicity, here we assume that there
are no virtual nodes.

We consider a network with* nodes that storek)0 x 2* keys. Figure 9(a) plots the mean value, the 1st and the 99th
percentiles of the path length, as a function of the network size. As exp#utadean path length increases logarithmically
with the number of nodes. The same is also true for the 1st and theo@8tentiles. Figure 9(b) plots the PDF of the path
length for a network witl2'2 nodes. Remarkably, the maximum path length for this case has never exceeuwmtbe$an
our simulation. In all the other cases we have obtained similar re3iiese results suggest that Chord’s routing algorithm
is fully scalable, and it will achieve good results in practice.

7.4 Simultaneous node failures

In this experiment, we consider the ability of the overlay network tanted by Chord to survive in the case of simultaneous
node failures. This scenario can happen in practice when a LAN is temporapndescted from the Internet, or a major
network partition occurs. In particular, this experiment shows theabtterlay network remains connected even when a large
percentage of nodes fail simultaneously.

We consider again &0* node network that storek)® keys, and randomly select a percentage efodes that fail.
Since there is no correlation between the node identifiers and the netwpalogy, selecting a random number of nodes
is equivalent to selecting all nodes from the same location or networkipartiAfter the failures occurs, we wait for the
network to reach steady state, and then measure the miss rate, i.e., thelpydbaticcessfully retrieve a key.

Figure 10(a) plots the mean miss rate and the 95% confidence interval astiariiof the percentage of node failures,
p. The miss rate increases linearly withSince this is exactly the miss rate due to the lost keys caused byaibaes, we
conclude that there is no significant partition in the overlay netwartteéd, if it were a half-to-half partition for example,
we would expect thatalf of the requests to fail simply because in half of the cases the requestidnaind the queried key
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Figure 10: (a) The key miss rate as a function of the percentage of aihae§. (b) The key miss rate as a function of the
rate at which nodes fails. This miss rate reflaunty the query failures due to state inconsistency; it doasnclude query
failures due to lost keys.

will be in different partitions. The fact that our results do not reflaet behavior, suggests that our algorithm is robust in
the presence of simultaneous node failures.

7.5 Dynamic scenario

In a dynamic scenario, there are two reasons for which a query can fail. $his firecause the node which stores the key
has failed. The second is because nodes’ finger tables and predecessors stwistémtastate due to concurrent joins,
leaves and node failures. An interesting question is what is the imp#wt cbncurrent operations and node failures on the
miss rate. We try to answer this question with the next experiment.

To isolate between the two types of misses, when a node fails, we rsdweyi to its successor. In this way we factor out
the misses due to lost keys. Any query failure in such a system &ilhen the result of table inconsistencies; nodes learn
about the failed nodes only when they invoke the stabilization prot@dso note that the simulator does not implement
query retries. If a node forwards a query to a node and this node is,dbe/query simple fails. Thus, the results given in
this section can be viewed as the worst case scenario for the query failduesihby state inconsistency.

Because the primary source of inconsistencies is node joinning anddeavid because the main mechanism to resolve
these inconsistencies in the described implementation is to invokésathiézation protocol, Chord’s performances will be
sensitive to the frequency of node operations versus the frequeioyosfng the stabilization protocol.

To illustrate this interdependence, we consider an experiment in whiasroth and fail randomly. During this time
other nodes insert and search for random keys. Key insertions and bakeigenerated according to a Poisson process at
a rate ofl /5 insertions per second, and one lookup per second, respectively. Simjdartyand failures are modeled by a
Poisson process with the mean arrival raté&ofe start with a network of 500 nodes storing 100 keys.

Figure 10(b) plots the average miss rates and the confidence intervatstiah rate of node joining and leaving the
network,R, is0.01,0.02,0.05, and0.1, respectively. Note th&t01 corresponds to one node joining and leaving every 100
seconds on average, whilel corresponds to one node joining and leaving each second. For compaeisalhthat each
node invokes the stabilization protocol once every 30 sec on the avéaiagessults presented in Figure 10(b) are averaged
over approximately two hours of simulated time. The confidence intervalsaanputed over 10 independent runs. There
are two points worth noting. First, as expected, the miss rate dstat®inconsistency is much lower than the miss rate due
to node failures (compare Figures 10(a) and (b), and consider the facutivag dach simulation at least 14% of nodes fail

19



on average). Second, the miss rate due to state inconsistency increasgthfsture frequency. This fully justifies the
optimization described in Section 8 to reduce the time after which nodes tma#trthb node failures.

8 Chord system implementation

The Chord protocol simulated and analyzed in the previous sections hasgi@emented in an operational system.

8.1 Location table

Instead of limiting Chord’s routing to just the information imetfinger table, the Chord system also maintaitscation
table, which contains nodes that Chord has discovered recently while runréngydtiocol. The location table is a cache
that maps node identifiers to théacations(IP address and port). Node identifiers that are in the Chord finger aable
pinned in the location table. Other nodes are replaced based on their netaxirkipy. When replacing a node, the Chord
server replaces a node that is far away in the network over a node that ibglsthe network.

The location table is used to optimize lookup performance. Instead oipthe node from the finger table that is the
closest predecessor of the key (which might on the other side of therngfwhe Chord server chooses the node from the
location table that is a close predecessndthat is close in the network (as measured by the round-trip time). Becduse
the location table’s cache-replacement policy, which replaces far-away nodesaseebglinodes, a Chord server will learn
over time about more and more nodes that are close by in the network bodevihose nodes to resolve lookup queries.

When the Chord server learns about a new node, it inserts it in the Indatite. A Chord server learns about the
location of a nodes as part of running the Chord protocol. A nodeifd@nh a protocol message comes always along with
its location. In addition to the location, the server records the sdtwoewhich it learned about the new node. This server
alerts the source when the server discovers that the node has failed.

The Chord server also records for each node in the location table the meagerage round-trip time. Each time the
server performs an RPC to a node, it measures the response time of thendR@dates the average round-trip time to
that node. Since all Chord RPCs are simple operations with small arg@memesult types (e.g., they don't recursively
initiate new RPCs on the remote node), the round-trip time isidatad by network latency. (If the remote server happens
to be overloaded because one particular key is popular, then we want dbtheaiode anyway; either way the end-to-end
measurement is helpful.)

Because the currentimplementation uses an iterative lookup procedurkyp tegquest might still travel large distances
over the network. Consider a server in Australia resolving a queryghikgstined to a server in the USA. The query might
travel for a while close to Australia but once it makes the hop to tB& Ut might take multiple hops back and forth
between the Australia and the USA, because in our current implementatioode in Australia initiates all RPCs. We are
considering switching from an iterative lookup to a recursive loghiqeedure so that queries always travel in the direction
of the their final destination. In that case, the protocol would returthallnodes that were visited to resolve a query to
allow the initiator to build up a location table.

The location table is also used to recover quickly from failed nodes; asimoutagion results have shown, this is an
important optimization. When an RPC fails, the lookup procedure charsether node from the location table that is a
close predecessor and routes queries through that node. Since over tiserytas likely to learn about quite a number
of nodes, it is likely that it might be able to hop over failed nodes. WdreRPC fails because of a node failure, the Chord
server also deletes the node from its location table, and, if the nod@igats finger table, the server rebuilds the finger
table.

To allow other servers also to learn quickly about failed nodes, the serves tlemode from which it learned about
the failed node. A node that receives an alert RPC first checks whether it alseastbert the node is down. (There might
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Figure 11: Average number of RPCs for a lookup in network scaling ft0 to 250 nodes.

be a network a problem that makes it impossible for a node A to talk miBnode C might still be able to reach node B.)
If the receiver of the alert message cannot contact the failed node either, @xdietfailed node from its location table,
rebuilds its finger table (if necessary), and recursively alerts its sources.

8.2 Detalils

The Chord system consists of two programs: the client and and the.sEneeclient program is a library that provides two
key functions to the file sharing application: (1) it inserts valuedeura key and (2) it looks up values for a given key. It
essentially implements the interface described in Section 3. To impleneeimsrts and lookups, the client calls its local
Chord server.

The Chord server implements two interfaces: one to accept request from a lentibeld to communicate with other
servers. Both interfaces are implemented as remote procedure calls. The exsagjarfesmats are described in the XDR
protocol description language [20].

The file-sharing application uses the Chord system to store the nggdipam file names to IP addresses of servers that
store the file. The Chord system maps the file names into key identifigrs: cryptographic hash function (SHA-1). The
value is an array of bytes, containing a list of IP addresses.

The Chord server internally represents key identifiers as multiple-pyadigtegers to allow for keys that are larger
than 64 bits. We use the GNU Multiple Precision Arithmetic Librémycompute with large keys. Node identifiers are
also represented as multiple-precision integers. The table that stgrealke pairs is implemented as a simple hash table,
indexed by key.

The client and the server are user-level programs written in C++. Thegmsgcommunicate with Sun RPC over a
TCP connection. The Chord server sets up a TCP connection once with a&rseneér and sends many RPC over that
connection. To handle many connections and RPCs simultaneously, gramsuse SFS’s asynchronous RPC library [15].

8.3 Experiment results

This implementation provides Chord with high-performance forjisrations. For example, on a Plll 733, the Chord server
can process 10,300 lookup RPCs per second.

We haven't deployed our servers in enough locations across the Interriethestible to collect meaningful data from
a field experiment. Instead, we validate the simulation results with the operationatdCéervice. Figure 11 shows the

3By the final version of this paper we hope to have results framall-scale Internet deployment that confirms our proxiroiaims
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number of RPCs per lookup with varying number of Chord nodes. Azanaee the path lengths scale in the same manner
as in our simulation results.

9 Conclusion

Many distributed applications need to determine the node that stores iéestat The Chord protocol solves this challenging
problem in decentralized manner. It offers a powerful primitive: givenya itewill determine the node responsible for
storing the key’s value. The Chord protocol provides this pimiin an efficient way: in the steady state, in AR
node network, each node maintains routing information for only abifldg V) other nodes, and resolves all lookups
via O(log N) messages to other nodes. Updates to the routing information for nealdad and joining require only
O(log® N) messages.

We also present extensions to the Chord protocol that make it practieatual systems. These extensions include
support for concurrent joins, nodes leaving voluntarily and imtcily, a high degree of fault tolerance, and minimizing
the network distance that a query travels.

The Chord protocol and its extensions have been implemented in thd €ygiem. The Chord system uses the Chord
primitive to provide a peer-to-peer lookup service that allows appticato insert and update key/value pairs and lookup
values for a given key. The implementation is efficient (a single Chodkrtan process over 10,000 lookups per second)
and scales well with the number of nodes (a lookup in a network of 258swdvels on average 7 hops).

Based on our experience using the Chord system for a peer-to-peer fitggngplication and our results from theoret-
ical analysis, simulation studies with up to 10,000 nodes, and expetiywe believe that the Chord protocol and system
is a valuable component for many decentralized, large-scale distributedajmis.
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