
Haystack: Per-User Information EnvironmentsEytan AdarXerox Palo Alto Research CenterPalo Alto, CA 94304E-mail: adar@parc.xerox.com. David KargerMIT Laboratory for Computer ScienceCambridge, MA 02139E-mail: karger@lcs.mit.edu.Lynn Andrea SteinMIT Laboratory for Computer Science andArti�cial Intelligence LaboratoryCambridge, MA 02139E-mail: las@ai.mit.edu.AbstractTraditional Information Retrieval (IR) systems are de-signed to provide uniform access to centralized corporaby large numbers of people. The Haystack project em-phasizes the relationship between a particular individ-ual and his corpus. An individual's own haystack priv-iliges information with which that user interacts, gath-ers data about those interactions, and uses this meta-data to further personalize the retrieval process. Thispaper describes the prototype Haystack system.1 IntroductionCurrent large-scale IR systems are in many ways verysimilar to libraries: they manage massive corpora foranonymous individuals using a �xed organizational sch-ema. Taxonomies (like Yahoo) emulate the Dewey deci-mal system. Search engines (like Alta Vista) mimic thecard catalog. But in a library, a user cannot ask for\the fat book about computers I skimmed last month,"and current IR systems do not support queries for \theemail about reinforcement learning that I forwarded toTerry last week." A search for \apples" will yield thesame results to a computer shopper or a farmer. A userwho \throws out" certain search results will �nd themcoming back again the next time he performs the samesearch.Libraries are huge, �lled with masses of data irrele-vant to any query. They are impersonal, presenting ev-ery user with the same information regardless of theirbackground and interests. And a previous successfulsearch facilitates future searches only by training the

user; the library itself does not adapt to the needs ofindividual patrons. In a traditional library, these prob-lems are ameliorated by professional reference librari-ans. In automated IR systems, no such resource cur-rently exists.But even in the paper world, libraries are typicallythe last place we turn in seeking information. Whena person looks for information, he will often start withhis own bookshelf. This \personal repository" containsa collection of information, built up over time, that re-
ects the needs and knowledge of its owner. This makesit di�erent, in crucial ways, from the library. For ex-ample, all the content was actively placed there by theuser, who is familiar with it and believes it to be use-ful. In the user's area of expertise, it is often more up todate than the library: its owner, who is actively seekinginformation in his area of interest, often �nds new infor-mation before the library gets around to it. Overall, aperson's bookshelf contains the bulk of the informationthat he considers most valuable.An individual's bookshelf is also organized in anidiosyncratic fashion. While library materials are ar-ranged according to a standardized classi�cation sche-me, individuals have been known to arrange their booksby topic, chronology, usage pattern, or even size andcolor. Even users who make no active attempt to orga-nize their books �nd them structured in some kind ofmost-recently-used hierarchy. Individuals exploit theiridiosyncratic organization when searching for informa-tion: they may look for a blue book, or a book onthe bottom shelf, or a book next to another book. Ata library, users are limited to searching the standardclassi�cation.11Even libraries are not immune to this wish to personalize informa-tion outside the traditional schema. Recently, the New York PublicLibrary announced that it would be disposing of its card catalogue,as it had been superseded by more modern search tools. This wasreported in the New York Times and was newsworthy because manypeople objected to the elimination of this old-fashioned search tool.It turned out that over the years, a great deal of information hadbeen penciled on to the cards in the catalogue by its users, to the

1.1 A Digital BookshelfThe Haystack project aims to make a digital IR systemthat is less like a library and more like a personal book-shelf. Fundamentally, this means building a system thatadapts to its user, instead of forcing its user to adaptto the limitations of the system. A haystack providesautomated data gathering (through active observationof user activity), customized information collection, andadaptation to individual query needs.A critical step in our design is information maxi-mization: gathering, representing, exposing, and usingall the information about a corpus, its user, and theirrelationship that might help information seeking. Ourearly research on the Haystack project has focussed pri-marily on the gathering and representation of such in-formation, as this must precede any e�ect use of it.In Haystack, information maximization is achievedin three steps. First, all information|including meta-information|is stored using an extremely general datamodel. This means that any information users enco-unter, as well as any information the system observes,can be stored, indexed, and retrieved uniformly. Sec-ond, Haystack gathers as much information as possibleabout its user and corpus|by analyzing the corpus o�-line, by observing its use, and by encouraging directhuman input. Finally, Haystack modi�es its data andits retrieval process based on user interactions, adapt-ing to the behavior of the user and the properties of thecollected data.Haystack is currently implemented as a re�ned pro-totype in Java. This paper describes the general fea-tures of this prototype. The details of Haystack's imple-mentation are described in earlier publications [ADA98,ASD98]. Although it will not be discussed in this pa-per, an advanced graphical user interface has recentlybeen added to Haystack and is described in [LOW99].1.2 Haystack in ActionAs an example of some of the elements of the haystacksystem, consider a user who recalls at one time seeing adocument relevant to a latent semantic indexing prob-lem he is trying to solve. The user types in \LSI" asa query to his haystack.2 LSI does not actually appearin the document in question, but his haystack noticesthat a previous query he made about principal compo-nent analysis (and which the haystack dutifully storedaway) contains numerous documents about LSI. So thebene�t of subsequent users. The paper catalogue was a useful toolbut turned out to be missing valuable information. People modi�edit over time to make it even more useful.2The user might really have typed \latent semantic indexing",or the user might have typed (and intended) the acronym LSI. Athird possibility makes use of Haystack's query tracking feature: theuser might have typed LSI, then re�ned it to \latent semantic index-ing." In future queries, his haystack would short-cut this re�nement,searching for latent semantic indexing when the user asked for LSI.

haystack shows that query and its results to the user.The user, inspecting the result set for that query, dis-covers a postscript version of the paper he was lookingfor and asks his haystack to display that paper. In ad-dition, a link from that postscript paper shows that itarrived in an email message from a colleague; a furtherlink from that email message points to a followup mes-sage from a second colleague, critiquing some elementsof the paper. A separate link points to a copy of the pa-per's abstract located in a seminar announcement thatidenti�es a \host" who might have other useful informa-tion. The user can follow links to �nd out \what papershave been published by this host?" on the assumptionthat they may well be relevant to the topic in whichthey are interested.This example demonstrates several ways in whichHaystack exploits its single-user orientation. Haystackcan (though it need not) limit its search to material theuser has encountered before. A search which would beunreasonably broad on the web can still make sense onthis narrower corpus. Haystack also remembers pastqueries that the user has made; given a typical user'stendency to be interested more than once in the sameinformation, this provides a leaping o� point for futurequeries. Haystack scans its corpus to make connectionsbetween documents with similar content. In addition,by tracking the usage history of objects, Haystack isable to draw connections that might not be visible undera word-based matching rule. Finally, by creating andexploiting metadata links, the haystack data model letsusers follow associations to discover additional relatedmaterial.1.3 Paper RoadmapThe reminder of this paper begins with a discussion ofprevious work (Section 2). In answer to our need fora versatile data representation we introduce the graph-based Haystack data model (Section 3). This is followedby a high level disucussion of the Haystack prototype'sarchitecture (Section 4). To address the need for datagathering and maximization we introduce various ap-proaches in Section 5. We conclude with a brief discus-sion on evaluation (in Section 6, some observations andfuture work in Section 7.2 Prior WorkHaystack grows out of two long-established research ar-eas, information retrieval and information �ltering.IR focuses on the question of guiding users to infor-mation in a large, �xed corpus. Research is embodied insuch systems as SMART [SAB94] and large web searchengines (Alta Vista, Excite, Lycos). The typical as-sumption in these projects is that the corpus is large

and non-personalized. The general metric for quality inthese systems is the precision-recall curve which is basedon some testing data. Relevance is generally judged inthis testing approach by human \experts." Unfortu-nately, this causes most systems to be trained to theopinions of relevance based on experts. Individual userswith di�ereing opinions and interests may �nd their ex-perience of the system to be quite di�erent. These mea-sures also ignore the prior history of a user's interactionwith the corpus and its e�ect on retrieval.A number of commercial vendors have recently be-gun to create software packages for indexing of smalldesktop based collections. Largely, these systems in-clude a text indexing mechanism that occasionally in-cludes the ability to query on other document proper-ties (creation/modi�cation dates, �le owner, etc.). Twoparticularly robust examples of this type of system areCompaq's AltaVista Disovery tool [AV98] and Apple'sSherlock [AP98]. However, even these tools do not at-tempt to adapt to a user.Information �ltering attempts to deal with individ-ual users' needs by performing online decisions of rel-evance of a particular piece of information to a user.Users then \train" the system by pointing out severalinteresting or relevant documents; the system then at-tempts to decide, based on this information, whethera given new piece of information will be interesting.Balabanovic et al. [BSY97] constructed a system thatlearns user preferences regarding web pages. The modelis trained by presenting users with candidate web pagesand asking them which are interesting. CMU's Web-Watcher [JOA95] is another example of an agent thatlearns from user feedback. Similarily, Letizia [LIE95]provides sur�ng suggestions by pre-processing links fur-ther down the hypertext path and measuring them aga-inst user preferences.These tools share several features of collaborative �l-tering that we aim to avoid in Haystack. They all workwith a general model of \goodness" that is independentof any particular query|they try to get a broad ideaof the user's likes and dislikes, without tackling speci�cinformation needs. Also, these tools require the user toexplicitly rate candidate objects for quality to provideuseful input to the system.Haystack is an attempt to draw together some of thethreads that have been explored separately in informa-tion retrieval and learning based information �ltering.Integrating the information retrieval system into eachindividual's desktop instead of restricting it to large,communal corpora gives us the opportunity to person-alize the information retrieval process, adapting it toindividual attitudes about what is interesting and howit is described. But we focus on search, where the user'sspeci�c information need, and not just a general notionof goodness, drivies the search for results.

This blend of search and �ltering has also been ex-plored to some extent. Academic research on personalinformation tools stems from the early days of Hyper-text research including Bush's Memex [BU45] and En-gelbart's AUGMENT [ENG62]. The Lifestreams proj-ect from Yale [FRE95] is another example of personalinformation space management. Lifestreams, howeveris predominatly based on the storage of documents ina temporal context. Haystack allows for classi�cationand retrieval on other document features. The Remem-brance Agent [RHO96] indexes a user's e-mail and otherlocal �les. When the user works in the Emacs editor,the agent provides pure content based retrieval on re-lated material.3 A General Data ModelOur goals for haystack motivated the choice of a verygeneral data model that can represent arbitrary piecesof data and metadata and the links between them. Wechoose to record metadata because it can provide usefulinformation to a user, beyond the raw document object.This information, displayed to the user, may help themmake a better judgement about the relevance of objects.We also allow the user to extend this metadata as theywish, for example to let them manually annotate objectswith information they �nd useful. We cannot predictwhat information a given user may �nd useful, or inwhat ways a given user may choose to extend the model,so we want a model that can grow easily.

Figure 1: The Haystack Data Model

Besides being general enough to store any data typesor relationships between them, our data model creates anatural linkage of \related information"|for example,a document can be linked to its author, and through itsauthor to other documents written by the same person.These links provide support for \associative searching"by a user, which can home in on information from other,partially related information. They also provide indica-tions of similarity that can be used in our indexing toolsto modify retrieval performance.The Haystack data model is represented by a graphstructure exempli�ed by Figure 1. This graph is esen-tially a semantic network that lets us model associa-tions. Nodes within the graph, which we call straws,represent units of information. Haystack's data typesare further extended through an inheritance hierarchy.The base type is a straw, its subclasses are needles,bales and ties.For example, the document's type (4) occupies onestraw and the text of the document occupies another(3). These two particular pieces of information are ex-amples of the simplest kind of node { containing a singleprimitive piece of information { in our system.3 We callthese primitive pieces of information needles, since it ispresumed that they will be the most frequent desiredresults of searches. Speci�c needle types store integers,text, binary data, and other formats.Other nodes do not contain any data themselves butrather serve as placeholders to collect a group of relatedstraw objects. For example, a directory contains a num-ber of �les (or other directories). We call collection-typestraws bales. A Haystack document (1) is a particularlyimportant bale type representing a document archivedwithin the Haystack. To the Haystack document we at-tach various other needles (as direct attributes of thedocument) and bales (as other collections relevant tothe document in some way). Each bale has an associ-ated set of straw objects representing its content. Therelationships between a bale and its member straw areone particular type of the many edges in our data graph.We call the edges of the graph ties. Examples of tiesare nodes (5) and (6) in Figure 1. A tie allows us to rep-resent arbitrary relationships between two other strawobjects. This provides the basic facility for annotationand metadata. However, ties are themselves straws,which allows for recursive annotation of the metadata.It is therefore possible to represent more complex re-lationships. For example, the type tie (5) above wascreated by a speci�c client (7, a type guesser).We can also return to our observation that the Hayst-ack data model represents metadata about archived do-3Calling the document text "primitive" does not preclude analyz-ing it further. The document text is "primitive" only qua documenttext. As we describe below, a document text straw may also be re-lated to other straw objects denoting other aspects or representationsof the document.

cuments. To represent metadata, one usually requiresthe ability to express attribute/value pairs. Values areheld within the needles described above. The associatedattribute is represented by the label of the tie connectingthe needle to another document. For example, we knowthat a given text needle (4) contains the type of the doc-ument because the label of the tie connecting it to thedocument is \type" (5). Labels actually form a typesystem, and Haystack allows arbitrary straw subclass-ing. For example, the general \location" is subtyped inthe example document as \location.URL" (8).Haystack data model nodes can also be used to in-terface Haystack to external \services." An example isKramer's work in the MIT Intelligent Room [KR97]. Inthis context agents that controlled external devices (aVCR, for example) were \indexed" in Haystack.An important, if slightly mundane, feature of thedata model is the ability to dynamically load and unloadindividual nodes from memory. Straw types corresponddirectly to Java objects. While in memory connectionsbetween straws are standard direct memory pointers.However, because of the potential complexity and size ofHaystack data graphs it is not possible to hold a user'scomplete Haystack in memory. The implementation ofstraw allows for the connection between between nodesto be severed and rebuilt quickly by replacement of thememory pointers with unique straw identi�ers. Thisallows us to store and load subgraphs to and from disk.The data model elements are managed by the persistentobject service described previously.4 ArchitectureThe Haystack system consists of a three-tiered architec-ture. At base are the data storage systems { databasesand information retrieval engines { on whose behaviorHaystack relies. Above this is the core Haystack system,which includes both a data model implementation andother operating-system-like services. Finally, Haystackprovides a number of client level services that augmentand use the data stored in a haystack. The completeHaystack architecture is depicted in Figure 2.4.1 Database LayerHaystack is not a project about information retrievalper se. We remain largely agnostic regarding the par-ticular search tool(s) used. Instead, we are interested inaugmenting the power of these tools by providing per-sonalization of the information that they record and re-trieve. As a result, Haystack delegates the actual tasksof storage and search to o�-the-shelf information re-trieval and database tools.In order to integrate a particular information re-trieval engine or database into Haystack, we wrap it

Figure 2: The Haystack Architecturewith a relatively simple adapter. This includes routinesthat turn Haystack data objects into a form suitable forstorage in the o�-the-shelf component as well as meth-ods for retrieving objects so stored. We have success-fully integrated a number of di�erent traditional infor-mation retrieval systems into Haystack. In addition, wehave worked with a semi-structured database [MCH97]and a persistent object store [AP98].4.2 Haystack Root ServerThe core of the Haystack system is the root server. Thiscomponent provides a persistent, indexable, searchable,transaction-safe implementation of the uniform data mo-del described in the previous section. In addition, theHaystack root server provides a variety of other servicessuch as a name service, a thread pool, and event queue-ing. In essence, the Haystack root server is a small-scaleoperating system providing the necessary infrastructurefor the client services which run above it.The server layer contains Haystack components thatserve utility purposes, and also acts as the \environ-ment" within which the various data-driven clients op-erate. This tier consists of various services that all runwithin the context of one Haystack root server (basi-cally, a Java Virtual Machine). The root server in-cludes a name service by which other services bootstrapthemselves. A persistent storage services, built arounda DBM, allows for dynamic loading and unloading ofHaystack data model structures. Other services, allowfor system con�guration, transaction support, and in-terfaces to the indexing and query functionality of thevarious systems that reside in the database layer.

Implementation details of the various utility servicesresiding in the server layer as well as mechanisms bywhich external services communicate with the root ser-ver are elaborated on in [ADA98] and [ASD98].4.3 Client ServicesClient services augment and use the data stored in thehaystack. All client services rely on the uniform datamodel provided by the root server. In addition, clientservices make us of other aspects of the infrastructurelevel including resource management, interprocess com-munication, and networking.There are three major classes of client services. First,the user can interact with his haystack directly. Theseinteractions are supported by a simple command-lineinterface or by a more complex custom graphical userinterface. Haystack's direct user interfaces allow a hu-man user to add new information to his haystack, toannotate existing information, to issue queries, and tobrowse the results of these queries as well as other infor-mation contained within his haystack. The uniformityof the data model means that any information withinthe haystack can be the target of annotation, query, orbrowsing activity.The second class of Haystack clients is a set of proxyservices that Haystack provides for other desktop appli-cations. As before, the user also interacts with his elec-tronic environment, including the World Wide Web, e-mail systems, and other information sources. Haystackslips invisible observers (proxies) between the user andthese external information sources. Without disturb-ing the user, these proxy services allow his haystack to

record what the user does and sees, remembering bothrelevant information and the (metadata) context withinwhich it was encountered.Finally, the client level of Haystack includes a num-ber of automatic data-augmenting clients. These ser-vices act to modify the data within a haystack in a widevariety of ways. For example, a fetching client recov-ers the external document corresponding to a URL in ahaystack. A texti�er client produces a plain text versionof (e.g.) a postscript document it �nds in the haystack.A similar text �nder service compares documents withinthe haystack, adding a link between two documentswhen it �nds signi�cant overlap. Even queries are han-dled by such clients: a query client polls the underlyinginformation storage systems to address an informationrequest placed into the haystack.4.4 One Person, One MachineWe have chosen to implement haystack as a tool thatruns on an individual's own machine, rather than some-thing serving out of a centralized repository like the in-ternet search engines. Although such systems are sub-stantially more powerful than desktop computers, ourapproach lets each user have more cycles dedicated tothem than they could get from any centralized tool.We can therefore apply more sophisticated search tech-niques without worrying about resource limitations. Lo-cation on the user's machine maximizes the amount ofinformation that can be gathered from a user. It alsogives at least the psychological illusion of more privacy,so that a user will be willing to commit more personalpreference information to the system. Of course, thisapproach is only practical because an individual's cor-pus of interest is signi�cantly smaller than the entireweb.4.5 IndexingAlthough a full description of the indexing mechanismsfor Haystack are beyond the scope of this paper, weprovide a brief description. Text extracted from thedata model is deposited in an information retrieval sys-tem. Haystack attempts to be neutral in respect tothe type of information system in the bottom layer; wehave built interfaces to two text retrieval engines, MGand Isearch, and are working on others. This approachwill allow us to later integrate such nontraditional IRsystems as Scatter/Gather [CKPT92]. Additionally, aninitial attempt has been made to index the data modelin a database [ADA98].Indexing is done incrementally. The Haystack sys-tem monitors changes in the data model followed by a\calm," when no changes are made. When the data hasreached this stable state Haystack executes a breadth�rst search through the graph structure starting at the

\Document" anchor node. Each node generates tex-tual information (if possible) and the text is collectedand indexed as one unit in the information retrieval.This method allows us to associate pieces of informationthat may not have necessarily been obvious from justthe text of the document. For example, it may not beobvious from reading a paper that Bob wrote it. How-ever, because Bob was the creator of the �le on the harddrive, and because Haystack has extracted this informa-tion and connected it to the document, Bob's author-ship will be noted in the indexed text of the document.This approach is consistent with Spreading ActivationModels (SAM) which describe memory functions in as-sociative networks.4.6 SearchThe ultimate goal of Haystack is to provide high-qualityretrieval. User queries abstractly consist of some infor-mation need (which may be implicit or hidden) and anumber of hints that the user will leverage to cause thesystem to return something that truly satis�es that in-formation need. For example, a user may be lookingfor a book on probability and may remember that thebook was red. The fact that the book is red has noth-ing to do with the real information need, but if the userknows that this is a unique characteristic of the book(or can't remember other characteristics) this is how hewould phrase his query. Users, in dealing with informa-tion they have seen or have created, will have a largeand varied set of hints.As indicated previously, Haystack searching makesuse of various search engines. Although this is still workin progress, the Haystack data model is processed invarious ways and converted into the \native" formatof various search engines. A user is then able to usevarious modes of search including text, database, andhyperlinking.5 Harvesting Data for HaystackThere are three distinct sources of data for Haystack:Data driven clients that digest data already in Hay-stack to produce more data;Observers that watch what the user is doing and placethe resulting information in the Haystack;Active human annotation carried out by the user toimprove his data organization.In the following sections, we describe these threemechanisms in detail.

5.1 Data driven clientsOne primary source of new information in Haystack isthe digestion of information that already exists in therepository. This processing is carried out by indepen-dent but cooperating data driven clients. In design-ing Haystack we realized that it would be impossible toforsee (let alone implement) all the clients users couldever use. Haystack therefore allows for the dynamic in-sertion of new clients in a scheme inspired by CORBA.Clients are implemented in Java and conform to a cer-tain interface. Once loaded, clients register themselveswith the name service held within the root server.The data driven clients fall into several main cate-gories:� Fetch clients retrieve data from various other sou-rces (from a URL, from an RMAIL �le, etc.).� Type inference clients decide the type of a docu-ment once it is retrieved (a latex �le, a postscriptdocument, an HTML page, etc.).� Extractor clients attempt to extract textual infor-mation from the retrieved documents. For exam-ple, a postscript extractor knows how to convertpostscript �les into text.� Field �nder clients extract various pieces of meta-data. For example, the to, from, and subject linesin an email message.Haystack's data-driven clients are triggered by eventsoccurring in the user's Haystack data. In addition toregistering with the name service, clients register (witha special dispatcher service) interest in various changesto the data structure. These changes include the cre-ation, deletion, and modi�cation of straw objects. In-terest is currently expressed in terms of a templatewhich is submitted to a dispatcher service. The tem-plate corresponds to a one level tree representing essen-tially a regular expression.For example, a service can register interest in theaddition of an \author" node to a \document" nodewhich already has a \date" node attached to it. When-ever a new node appears in the Haystack data model,the dispatcher quickly determines the other nodes lo-cally e�ected by the change. The dispatcher then passesthe regular expression templates over the e�ected sub-graph. If there is a match for both event type andstructure, the interested client is noti�ed (and executesin its own thread). Because we limit template structure,and our dispatcher is tuned, it is possible for sub-graphmatching to scale. Additionally, we internally managea queue for events and a thread pool to prevent satura-tion of the system when a large number of new objectsare added to Haystack.

5.1.1 Data Driven Clients in ActionAn example of a number of data driven clients archivinga document in Haystack is illustrated in Figure 3. In (a)a user has added a new document to Haystack. This isdone by submitting the URL through one of Haystackinterfaces. The URL is anchored by some default be-havior to a document node. A fetch service which haspreviously expressed interest in such a formation is no-ti�ed and passed a reference to the e�ected subgraph.The service retrieves the bits for the document fromthe web, and in (b) adds a new node to the graph thatcontains these bits.

Figure 3: Data driven clients in actionSubsequently, a \type guesser" service is noti�edthat there is a document with some attached bits. Thetype guess service in Haystack has been implementedwith various heuristics and is able to recognize many�le types. In (c) the type guess service labels the docu-ment as being of type postscript. Finally, a text extrac-tor service (in this case one that knows how to convertpostscript to text) is noti�ed that a relevant structurehas become available. In (d) this service has created anew node containing the text of the document. Aftersome stable state has been reached (i.e. no more eventsare triggered) the text and graph structure are indexedfor queries by the user.5.2 ObserversAs discussed before, we would like to maximize theamount of information we gather about individual Hay-stack users. Although ideally we would like to see usersmanually building up annotations of the data structure,the reality is that most will not. Haystack was designed

with this reality in mind. By observing the user it ispossible for Haystack to make annotations automati-cally so that organization and retrieval can be optimizedover time.Proxy services act as transparent intermediaries be-tween the user and external information sources. As theuser acquires new pieces of information the proxies sub-mit the information and other observations about theuser's state to Haystack's server layer. WWW and e-mail proxies are currently included in Haystack. Hayst-ack also provides a crawler that traverses a user's �lespace at regular intervals looking for changes. To un-derstand the type of information gathered from obser-vation of the user we describe the web proxy in moredetail.A user con�gures his or her web browser to utilizethe Haystack web proxy. The proxy acts as an interme-diary between the browser and other servers. As a userbrowses the web, the documents he sees are pushed intoHaystack. Just as we would automatically make anno-tations to the document if it was added explicitly bythe user, we do the same in this observation mode. Ad-ditionally, we include information gathered from obser-vations of the interaction of the user with the externalweb servers. For example, as the user clicks from pageto page, Haystack draws edges from the archived repre-sentation of these pages. It is later possible, on retrieval,for the user to retrace his steps. Another example is ourability to annotate a document with a \visited" time.A user can then query for \all web pages that I lookedat between 1:00 PM and 1:30 PM today." Althoughit is impossible for us to predict whether a user willactually make a query on this particular feature, we re-call that certain users sort and search by color, size,and other metrics. By gathering as much informationas possible we insure that an individual user is able toutilize whatever features that he �nds useful for recalland retrieval.5.2.1 Query ObserversIR systems are designed to answer questions in a pre-dictable way. Generally, one IR system will interactwith many users. Both in the interest of fairness and tomake implementation easier, the system never adaptsto individual users. For example, a query for the word\jaguar" will always return the same set of documentswhether the user is a car bu�, a computer gamer, or azoologist. This is important for not confusing the manyusers of single search service nor biasing the system un-fairly. However, because we are dealing with only asingle user, in Haystack we have opted for a slightlydi�erent approach. As long as Haystack adapts in aconsistent fashion with a user's expectations, we be-lieve it is valuable to mold the data model to the userbased on query interactions.

Just as Haystack observes the user's interaction withthe \outside world," services within also observe theuser's interaction with Haystack itself. Speci�cally, weare interested in representing the queries and paths thata user may take in browsing his Haystack collection. Toachieve this we introduce the concept of query strawsand query paths.When queries are made into a Haystack interface twothings happen. The �rst is that the query is routed tothe appropriate information system and the results arepresented to the user. The second is that a new nodeappears in the Haystack data graph representing thatquery. We call this node a query straw. This strawis actually of the bale type described above. Haystackattaches the nodes corresponding to the matched doc-uments to the query straw. The query straw also con-tains the actual text of the issued query, the relativerank of the returned documents, and other possiblyuseful pieces of information about the query. Becausethe queries are part of the Haystack graph, users canalso annotate, add to, and disconnect (irrelevant) doc-uments from, the query straw. If a user does not getcompletely satisfactory answers from the informationsystem, he can make adjustments to the result set. Asthe result set is archived within the data graph, subse-quent queries of the same form will generate a pointerto the user-adjusted result set. By providing this facil-ity in Haystack, we allow users to modify the system'sidea of relevance to match their own. Haystack can alsoreinforce the weighting of documents frequently visitedin response to a query. This approach takes inspirationfrom IR relevance feedback techniques [FBY92, Chap-ter 11], but di�ers in purpose and execution.In a perfect world the user will get back data he isinterested in instantly. In reality, however, it takes auser numerous iterations with the system to get at thisinformation. Haystack observes this behavior and an-notates the data to re
ect the fact that various querystraws are chained together. These chains are calledquery paths. The Haystack query interface provides amethod to either start a new query or indicate that theuser is continuing along the same path. We decide thata user has found what he is looking for when he asksto see the contents of a document. This is not a per-fect solution, but it allows us to decide where a querypath ends. Query paths give us two important bene-�ts that help in subsequent retrievals. When searchingfor the same or similar documents, a user is presentedwith similar query objects. From the query objects auser can travel the same query paths he has in previ-ous iterations. This allows users to reduce the numberof steps necessary to �nd information they previouslyfound relevant by having access to the full query pathup-front.Additionally, documents within Haystack are index-

ed when the structure surrounding them changes. Whena document becomes the terminal point for a querypath, the entire text of the query path (as it is localto the document node in the graph) is indexed with thetext of the HaystackDocument cluster. The index of thedocument now contains added terms which change therelevance of the document with respect to those terms.For example, if a user makes a query for the word \cat"and receives no matches, he may change his query to\feline." If feline generates results, and those resultsare acceptable, Haystack notes this. In re-indexing therelevant documents the term \cat" is added to the doc-ument. Subsequent queries for \cat" will generate thematching documents on the �rst try. In this fashion,Haystack learns the vocabulary and weighting of termsfor an individual user.A detailed evaluation of the improvements to preci-sion and recall using this technique has yet to be under-taken, but in the limited use among project membersthis approach appears to provide some utility.5.3 Human AnnotationThe third and probably best source of information forHaystack is active annotation by the user. Unfortu-nately, active participation by users is also hard to ach-ieve. Carroll [CAR87] describes this di�culty as the\Production Paradox," where users ignore learning st-eps that require e�ort but which will produce betterend results.We have worked to make annotation as easy as pos-sible, so as to lower the e�ort required to annotate. Weare hopeful, as well, that users who are working withtheir own data will be more motivated to work on orga-nizing it than those whose annotations in past social �l-tering systems have mainly provided \bene�t" to otherusers of the system.To ease the user's work in annotation, we providemultiple interfaces so that the user can choose whicheveris most convenient at the time. Currently these inter-faces include a custom (personal) web server, a Javabased GUI, a command line tool, and an emacs inter-face. This variety of access mechanisms will perhapsencourage the integration of annotation into the user'swork
ow. However, signi�cant user studies will be re-quired to re�ne this approach.6 EvaluationHaystack is currently in a limited alpha release, but isapproaching a stage in which it can be released to apublic user-base. In anticipation of this we have builtinto Haystack an extensive logging facility that will al-low us to monitor how users interact with the system.Once the public release occurs, our hope is that we will

be able to construct a broader user-study to evaluatethe utility of Haystack based on these logs.Because of its personal nature, Haystack is hard toevaluate in large studies. The system requires seedingby a user and continued use for adaptation to occur.Additionally, relevance in the context of personal infor-mation is highly subjective. Standard methods for judg-ing IR systems require a standardized corpora whereexperts have judged relevance of documents to variousqueries. These evaluation methods, which are largelybased on precision/recall curves, are hard to apply tosystem such as Haystack.7 Conclusions and Future WorkHaystack's goal is to draw together some of the threadsthat have been explored separately in information re-trieval and information �ltering. Integrating the in-formation retrieval system into each individual's desk-top instead of restricting it to large, communal corporagives us the opportunity to personalize the informa-tion retrieval process, adapting it to individual atti-tudes about what is interesting and how it is described.Two di�erent Haystacks might give completely di�er-ent answers to two di�erent individuals' queries, andbe right because the two users mean di�erent things.The fact that the system is explicitly designed to dealwith queries creates an alternative to �ltering systems'model of a \noti�cation" service, instead allowing use-ful processing of a users speci�c information need at thetime it becomes apparent.The elements of the Haystack system described ab-ove have all been implemented, although the prototyperequires scaling issues to be resolved. The work to datehas focussed on the problems of data representation andgathering, but we can now turn towards many of themore interesting problems involved in exploiting thelarge amounts of data we have gathered. Among thetasks we hope to undertake:� After building up a database of user queries, re-�nements, and reactions to the results, use ma-chine learning tools to improve retrieval perfor-mance in future queries. Among the learning pos-sibilities are learning which documents are \highquality" and preferred by the user (independentof the query) and learning what additional termsa user tends to associate with a given query term(personalizing and automating query expantion, sothat the user needn't bother).� Provide a better interface to \hybrid search"meth-ods that allow users to mix full text, relational,and associative queries.� Discover users' \interests" (based on what theyown) and use the information to drive a recom-

mender system that looks for interesting materialon the web. Haystack gathers far more data abouta user than typical recommendation systems, andwe hope that this will let it make better recom-mendations.If a person's bookshelf fails him, he still has an al-ternative to the library. The natural next step is toask his colleagues in neighboring o�ces. Turning to acolleague o�ers several advantages over a trip to thelibrary. Colleagues have their own personalized collec-tions of information which they can search e�ectively.They share interests and vocabulary with the originalquestioner, and are thus likely to be able to understandthat person's information needs and e�ectively commu-nicate anything they might know that can help. A per-son can describe his problem in a language common tohim and his colleague, and his colleague can then useher own knowledge of her collection to �nd what theoriginal searcher wants. Finally, books in colleagues'personal collections are more \trustworthy" than ran-dom books selected from a library. Their presence in thecolleague's collection indicates that someone we trustconsiders them valuable.8 AcknowledgementsThe authors would like to thank Mark Asdoorian, AidanLow, and Ilya Lisansky for their work on Haystack. Wewould also like to thank Marti Hearst, Jan Pedersen,Lada Adamic, and Jeanette Figueroa for their valuablecomments.References[ADA98] Eytan Adar. Hybrid-Search and Storage ofSemi-structured Information. Master's Thesis,MIT, May 1998.[AV98] AltaVista Discovery homepagehttp://discovery.altavista.com.[AP98] Apple Computer's Sherlockhttp://www.apple.com/sherlock/.[ASD98] Mark Asoorian. Data Manipulation Servicesin the Haystack IR System. Master's Thesis,MIT, May 1998.[BSY97] Marko Balabanovic, Yoav Shoham, and Yeo-girl Yun. An adaptive agent for automatedweb browsing. Technical Report CS-TN-97-52,Stanford University, 1997.[BU45] Vannevar Bush. As We may Think. AtlanticMonthly, 176(1)641{649, January 1945.

[CAR87] John M. Carroll and Mary Beth Rosson.\Paradox of the Active User" in InterfacingThought: Cognitive Aspects of Human Com-puter Interaction, ed. John M. Carroll., MITPress, Cambridge MA, 1987, pp. 81{111.[CKPT92] Douglass Cutting, David R. Karger, JanPedersen, and JohnW. Tukey. \Scatter/gather:A cluster-based approach to browsing largedocument collections." In Proceedings of the15th Annual International ACM SIGIR Con-ference on Research and Development in Infor-mation Retrieval, pages 318{329, Copenhagen,Denmark, 1992.[ENG62] Douglas C. Engelbart Augmenting Human In-tellect: A Conceptual Framework. Stanford Re-search Institute Technical Report, Menlo Park,CA, October 1962.[FBY92] William B. Frakes and Ricardo Baeza-Yates,editors. Information Retrieval: Data Struc-tures and Algorithms. Prentice Hall, EnglewoodCli�s, New Jersey, 1992.[FRE95] Eric Freeman and Scott Fertig. \Lifestreams:Organizing your Electronic Life" AAAI FallSymposium: AI Applications in KnowledgeNavigation and Retrieval, November 1995,Cambridge, MA.[JOA95] Thorsten Joachmis, Tom Mitchell, Dayne Fre-itag, and Robert Armstrong. \WebWatcher:Machine Learning and Hypertext," Proceed-ings of 15th International Joint Conference onArti�cial Intelligence, 1997.[KR97] Joshua Kramer. Agent Based Personalized In-formation Retrieval. Sc.M. Thesis, MIT, June1997.[LIE95] Henry Lieberman. \Letizia: An Agent ThatAssists Web Browsing," Proceedings of the In-ternational Joint Conference on Arti�cial In-telligence, Montreal, August 1995.[LOW99] Aidan Low. A Folder-Based Graphical Inter-face for an Information Retrieval System. Mas-ter's Thesis, MIT, May 1999.[MCH97] Jason McHugh, Serge Abiteboul, Roy Gold-man, Dallan Quass, and Jennifer Widom.\Lore: A Database Management System forSemistructured Data." SIGMOD Record,26(3):54{66, September 1997.[RHO96] Bradley J. Rhodes and Thad Starner. \Rem-beerance Agent: A continuosly running auto-mated information retrieval system," The Pro-ceedings of the First International Conference

on The Practical Application of Intelligent Sys-tems and Multi Agent Technology, April 1996,London.[SAB94] Gerard Salton, James Allan, and Chris Buck-ley. Automatic Structuring and Retrieval ofLarge Text Files. Communications of the ACM,37(2):97{108, February 1994.[AP98] Sleepycat Softwarehttp://www.sleepycat.com/.

