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1 IntroductionA legal vertex coloring of a graph G(V;E) is an assignment of colors to its vertices such that notwo adjacent vertices receive the same color. Equivalently, a legal coloring of G by k colors is apartition of its vertices into k independent sets. The minimum number of colors needed for sucha coloring is called the chromatic number of G, and is usually denoted by �(G). Determining thechromatic number of a graph is known to be NP-hard (cf. [20]).Besides its theoretical signi�cance as a canonical NP-hard problem, graph coloring arises natu-rally in a variety of applications such as register allocation [11, 12, 13] and timetable/examinationscheduling [8, 43]. In many applications that can be formulated as graph coloring problems, it suf-�ces to �nd an approximately optimum graph coloring|a coloring of the graph with a small thoughnon-optimum number of colors. This along with the apparent impossibility of an exact solution hasled to some interest in the problem of approximate graph coloring. The analysis of approximationalgorithms for graph coloring started with the work of Johnson [27] who shows that a version ofthe greedy algorithm gives an O(n= log n)-approximation algorithm for k-coloring. Wigderson [42]improved this bound by giving an elegant algorithm that uses O(n1�1=(k�1)) colors to legally color ak-colorable graph. Subsequently, other polynomial time algorithms were provided by Blum [9] thatuse O(n3=8 log8=5 n) colors to legally color an n-vertex 3-colorable graph. This result generalizesto coloring a k-colorable graph with O(n1�1=(k�4=3) log8=5 n) colors. The best known performanceguarantee for general graphs is due to Halld�orsson [25] who provided a polynomial time algorithmusing a number of colors that is within a factor of O(n(log log n)2= log3 n) of the optimum.Recent results in the hardness of approximations indicate that it may be not possible to sub-stantially improve the results described above. Lund and Yannakakis [34] used the results of Arora,Lund, Motwani, Sudan, and Szegedy [6] and Feige, Goldwasser, Lov�asz, Safra, and Szegedy [17]to show that there exists a (small) constant � > 0 such that no polynomial time algorithm canapproximate the chromatic number of a graph to within a ratio of n� unless P = NP. The currenthardness result for the approximation of the chromatic number is due to Feige and Kilian [18] andH�astad [26], who show that approximating it to within n1��, for any � > 0, would imply NP=RP(RP is the class of probabilistic polynomial time algorithms making one-sided error). However,none of these hardness results apply to the special case of the problem where the input graph isguaranteed to be k-colorable for some small k. The best hardness result in this direction is due toKhanna, Linial, and Safra [28] who show that it is not possible to color a 3-colorable graph with 4colors in polynomial time unless P = NP.In this paper we present improvements on the result of Blum. In particular, we provide arandomized polynomial time algorithm that colors a 3-colorable graph of maximum degree �with minfO(�1=3 log1=2�logn); O(n1=4 log1=2 n)g colors; moreover, this can be generalized to k-colorable graphs to obtain a coloring using O(�1�2=k log1=2�log n) or O(n1�3=(k+1) log1=2 n) colors.Besides giving the best known approximations in terms of n, our results are the �rst non-trivialapproximations given in terms of �. Our results are based on the recent work of Goemans andWilliamson [21] who used an algorithm for semide�nite optimization problems (cf. [23, 2]) to obtainimproved approximations for the MAX CUT and MAX 2-SAT problems. We follow their basicparadigm of using algorithms for semide�nite programming to obtain an optimum solution to arelaxed version of the problem, and a randomized strategy for \rounding" this solution to a feasiblebut approximate solution to the original problem. Motwani and Naor [37] have shown that theapproximate graph coloring problem is closely related to the problem of �nding a CUT COVERof the edges of a graph. Our results can be viewed as generalizing the MAX CUT approximationalgorithm of Goemans and Williamson to the problem of �nding an approximate CUT COVER. In1



fact, our techniques also lead to improved approximations for the MAX k-CUT problem [19]. Wealso establish a duality relationship between the value of the optimum solution to our semide�niteprogram and the Lov�asz #-function [23, 24, 33]. We show lower bounds on the gap between theoptimum solution of our semide�nite program and the actual chromatic number; by duality thisalso demonstrates interesting new facts about the #-function.Alon and Kahale [4] use related techniques to devise a polynomial time algorithm for 3-coloringrandom graphs drawn from a \hard" distribution on the space of all 3-colorable graphs. Recently,Frieze and Jerrum [19] have used a semide�nite programming formulation and randomized roundingstrategy essentially the same as ours to obtain improved approximations for the MAX k-CUTproblem with large values of k. Their results required a more sophisticated version of our analysis,but for the coloring problem our results are tight up to poly-logarithmic factors and their analysisdoes not help to improve our bounds.Semide�nite programming relaxations are an extension of the linear programming relaxationapproach to approximately solving NP-complete problems. We thus present our work in the styleof the classical LP-relaxation approach. We begin in Section 2 by de�ning a relaxed version ofthe coloring problem. Since we use a more complex relaxation than standard linear programming,we must show that the relaxed problem can be solved; this is done in Section 3. We then showrelationships between the relaxation and the original problem. In Section 4, we show that (in asense to be de�ned later) the value of the relaxation bounds the value of the original problem.Then, in Sections 5, 6, and 7, we show how a solution to the relaxation can be \rounded" to makeit a solution to the original problem. Combining the last two arguments shows that we can �nda good approximation. Section 3, Section 4, and Sections 5{7 are in fact independent and can beread in any order after the de�nitions in Section 2. In Section 8, we investigate the relationshipbetween our fractional relaxations and the Lov�asz #-function, showing that they are in fact dual toone another. We investigate the approximation error inherent in our formulation of the chromaticnumber via semi-de�nite programming in Section 9.2 A Vector Relaxation of ColoringIn this section, we describe the relaxed coloring problem whose solution is in turn used to approx-imate the solution to the coloring problem. Instead of assigning colors to the vertices of a graph,we consider assigning (n-dimensional) unit vectors to the vertices. To capture the property of acoloring, we aim for the vectors of adjacent vertices to be \di�erent" in a natural way. The vectork-coloring that we de�ne plays the role that a hypothetical \fractional k-coloring" would play in aclassical linear-programming relaxation approach to the problem. Our relaxation is related to theconcept of an orthonormal representation of a graph [33, 23].De�nition 2.1 Given a graph G = (V;E) on n vertices, and a real number k � 1, a vector k-coloring of G is an assignment of unit vectors vi from the space <n to each vertex i 2 V , such thatfor any two adjacent vertices i and j the dot product of their vectors satis�es the inequalityhvi; vji � � 1k � 1 :The de�nition of an orthonormal representation [33, 23] requires that the given dot productsbe equal to zero, a weaker requirement than the one above.2



3 Solving the Vector Coloring ProblemIn this section we show how the vector coloring relaxation can be solved using semide�nite pro-gramming. The methods in this section closely mimic those of Goemans and Williamson [21].To solve the problem, we need the following auxiliary de�nition.De�nition 3.1 Given a graph G = (V;E) on n vertices, a matrix k-coloring of the graph is ann� n symmetric positive semide�nite matrix M , with mii = 1 and mij � �1=(k � 1) if fi; jg 2 E.We now observe that matrix and vector k-colorings are in fact equivalent (cf. [21]). Thus, tosolve the vector coloring relaxation it will su�ce to �nd a matrix k-coloring.Fact 3.1 A graph has a vector k-coloring if and only if it has matrix k-coloring. Moreover, a vector(k + �)-coloring can be constructed from a matrix k-coloring in time polynomial in n and log(1=�).Note that an exact solution cannot be found, as some of the values in it may be irrational.Proof: Given a vector k-coloring fvig, the matrix k-coloring is de�ned bymij = hvi; vji. For theother direction, it is well known that for every symmetric positive de�nite matrix M there exists asquare matrix U such that UUT =M (where UT is the transpose of U). The rows of U are vectorsfuigni=1 that form a vector k-coloring of G.An �-close approximation to the matrix U can be found in time polynomial in n and log(1=�)using the Incomplete Cholesky Decomposition [21, 22]. (Here by �-close we mean a matrix U 0 suchthat U 0U 0T �M has L1 norm less than �.) This in turn gives a vector (k+�)-coloring of the graph,provided � is chosen appropriately.Lemma 3.2 If a graph G has a vector k-coloring then a vector (k + �)-coloring of the graph canbe constructed in time polynomial in k, n, and log(1=�).Proof: Our proof is similar to those of Lov�asz [33] and Goemans-Williamson [21]. We constructa semide�nite optimization problem (SDP) whose optimum is �1=(k � 1) when k is the smallestreal number such that a matrix k-coloring of G exists. The optimum solution also provides a matrixk-coloring of G. minimize �where fmijg is positive semide�nitesubject to mij � � if (i; j) 2 Emij = mjimii = 1:Consider a graph which has a vector (and matrix) k-coloring. This means there is a solution to theabove semide�nite program with � = �1=(k�1). The ellipsoid method or other interior point basedmethods [23, 2] can be employed to �nd a feasible solution where the value of the objective is atmost �1=(k � 1)+� in time polynomial in n and log 1=�. This implies that for all fi; jg 2 E, mij isat most �� 1=(k � 1), which is at most �1=(k + �� 1) for � = 2�(k� 1)2, provided � � 1=2(k � 1).Thus a matrix (k + �)-coloring can be found in time polynomial in k, n and log(1=�). From thematrix coloring, the vector coloring can be found in polynomial time as was noted in the previouslemmaFor the remainder of the paper, we will ignore the � error term of Lemma 3.2 since it can bemade so small as to be irrelvant to our analysis. 3



4 Relating the Original and Relaxed SolutionsIn this section, we show that our vector coloring problem is a useful relaxation because the solutionto it is related to the solution of the original problem. In order to understand the quality of therelaxed solution, we need the following geometric lemma:Lemma 4.1 For all positive integers k and n such that k � n+1, there exist k unit vectors in <nsuch that the dot product of any distinct pair is �1=(k � 1).Proof: Clearly it su�ces to prove the lemma for n = k�1. (For other values of n, we make thecoordinates of the vectors 0 in all but the �rst k�1 coordinates.) We begin by proving the claim forn = k. We explicitly provide unit vectors v(k)1 ; : : : ; v(k)k 2 <k�1 such that hv(k)i ; v(k)j i � �1=(k � 1)for i 6= j. The vector v(k)i is �q 1k(k�1) in all coordinates except the ith coordinate. In the ithcoordinate v(k)i is qk�1k . It is easy to verify that the vectors are unit length and that their dotproducts are exactly �1k�1 .As given, the vectors are in a k-dimensional space. Note, however, that the dot product ofeach vector with the all-1's vector is 0. This shows that all k of the vectors are actually in a(k-1)-dimensional hyperplane of the k-dimensional space. This proves the lemma.Corollary 4.2 Every k-colorable graph G has a vector k-coloring.Proof: Bijectively map the k colors to the k vectors de�ned in the previous lemma.Note that a graph is vector 2-colorable if and only if it is 2-colorable. Lemma 4.1 is tight inthat it provides the best possible value for minimizing the maximum dot-product among k unitvectors. This can be seen from the following lemma.Lemma 4.3 Let G be vector k-colorable and let i be a vertex in G. The induced subgraph on theneighbors of i is vector (k � 1)-colorable.Proof: Let v1; : : : ; vn be a vector k-coloring of G and assume without loss of generality thatvi = (1; 0; 0; : : : ; 0). Associate with each neighbor j of i a vector v0j obtained by projecting vj ontocoordinates 2 through n and then scaling it up so that v0j has unit length. It su�ces to show thatfor any two adjacent vertices j and j0 in the neighborhood of i, hv0j ; v0j0i � �1=(k � 2).Observe �rst that the projection of vj onto the �rst coordinate is negative and has magnitudeat least 1=(k � 1). This implies that the scaling factor for v0j is at least k�1pk(k�2) . Thus,hv0j ; v0j0i � (k � 1)2k(k � 2)(hvj ; vj0i � 1(k � 1)2 ) � �1k � 2 :A simple induction using the above lemma shows that any graph containing a (k + 1)-clique isnot k-vector colorable. Thus the \vector chromatic number" lies between between the clique andchromatic number. This also shows that the analysis of Lemma 4.1 is tight in that �1=(k � 1) isthe minimum possible value of the maximum of the dot-products of k vectors.In the next few sections we prove the harder part, namely, if a graph has a vector k-coloringthen it has an ~O(�1�2=k) and an ~O(n1�3=(k+1))-coloring.4



5 SemicoloringsGiven the solution to the relaxed problem, our next step is to show how to \round" the solutionto the relaxed problem in order to get a solution to the original problem. Both of the roundingtechniques we present in the following sections produce the coloring by working through an almostlegal semicoloring of the graph, as de�ned below.De�nition 5.1 A k-semicoloring of a graph G is an assignment of k colors to at least half itsvertices such that no two adjacent vertices are assigned the same color.An algorithm for semicoloring leads naturally to a coloring algorithm as shown by the followinglemma. The algorithm uses up at most a logarithmic factor more colors than the semicoloringalgorithm. Furthermore, we do not even lose this logarithmic factor if the semicoloring algorithmuses a polynomial number of colors (which is what we will show we use).Lemma 5.1 If an algorithm A can ki-semicolor any i-vertex subgraph of graph G in randomizedpolynomial time, where ki increases with i, then A can be used to O(kn log n)-color G. Furthermore,if there exists � > 0 such that for all i, ki = 
(i�), then A can be used to color G with O(kn) colors.Proof: We show how to construct a coloring algorithm A0 to color any subgraph H of G. A0starts by using A to semicolor H. Let S be the subset of vertices that have not been assigneda color by A. Observe that jSj � jV (H)j=2. A0 �xes the colors of vertices not in S, and thenrecursively colors the induced subgraph on S using a new set of colors.Let ci be the maximum number of colors used by A0 to color any i-vertex subgraph. Then cisatis�es the recurrence ci � ci=2 + kiIt is easy to see that this any ci satisfying this recurrence, must satisfy ci � ki log i. In particularthis implies that cn � O(kn log n). Furthermore for the case where ki = 
(i�) the above recurrenceis satis�ed only when ci = �(ki).Using the above lemma, we devote the next two sections to algorithms for transforming vectorcolorings into semicolorings.6 Rounding via Hyperplane PartitionsWe now focus our attention on vector 3-colorable graphs, leaving the extension to general k for later.Let � be the maximum degree in a graph G. In this section, we outline a randomized roundingscheme for transforming a vector 3-coloring of G into an O(�log3 2)-semicoloring, and thus into anO(�log3 2 log n)-coloring of G. Combining this method with a technique of Wigderson [42] yieldsan O(n0:386)-coloring of G. The method is based on that of [21] and is weaker than the method wedescribe in the following section; however, it introduces several of the ideas we will use in the morepowerful algorithm.Assume we are given a vector 3-coloring fvigni=1. Recall that the unit vectors vi and vj associatedwith an adjacent pair of vertices i and j have a dot product of at most �1=2, implying that theangle between the two vectors is at least 2�=3 radians (120 degrees).De�nition 6.1 Consider a hyperplane H. We say that H separates two vectors if they do not lieon the same side of the hyperplane. For any edge fi; jg 2 E, we say that the hyperplane H cutsthe edge if it separates the vectors vi and vj. 5



In the sequel, we use the term random hyperplane to denote the unique hyperplane containingthe origin and having as its normal a random unit vector v uniformly distributed on the unit sphereSn. The following lemma is a restatement of Lemma 1.2 of Goemans-Williamson [21].Lemma 6.1 (Goemans-Williamson [21]) Given two vectors at an angle of �, the probabilitythat they are separated by a random hyperplane is exactly �=�.We conclude that given a vector 3-coloring, for any edge fi; jg 2 E, the probability that arandom hyperplane cuts the edge is exactly 2=3. It follows that the expected fraction of the edges inG that are cut by a random hyperplane is exactly 2=3. Suppose that we pick r random hyperplanesindependently. Then, the probability that an edge is not cut by one of these hyperplanes is (1=3)r ,and the expected fraction of the edges not cut is also (1=3)r .We claim that this gives us a good semicoloring algorithm for the graph G. Notice that rhyperplanes can partition <n into at most 2r distinct regions. (For r � n this is tight since rhyperplanes can create exactly 2r regions.) An edge is cut by one of these r hyperplanes if andonly if the vectors associated with its end-points lie in distinct regions. Thus, we can associate adistinct color with each of the 2r regions and give each vertex the color of the region containing itsvector. The expected number of edges whose end-points have the same color is (1=3)rm, where mis the number of edges in E.Theorem 6.2 If a graph has a vector 3-coloring, then it has an O(�log3 2)-semicoloring that canbe constructed from the vector 3-coloring in polynomial time with high probability.Proof: We use the random hyperplane method just described. Fix r = 2 + dlog3�e, and notethat (1=3)r � 1=9� and that 2r = O(�log3 2). As noted above, r hyperplanes chosen independentlyat random will cut an edge with probability 1 � 1=9�. Thus the expected number of edges thatare not cut is m=9� � n=18 < n=8, since the number of edges is at most n�=2. By Markov'sinequality (cf. [38], page 46), the probability that the number of uncut edges is more than twicethe expected value is at most 1=2. Thus, with probability at least 1/2 we get a coloring with atmost n=4 uncut edges. Delete one endpoint of each such edge leaves a set of 3n=4 colored verticeswith no uncut edges|ie, a semicoloring.Repeating the entire process t times means that we will �nd a O(�log3 2)-semicoloring withprobability at least 1� 1=2t.Noting that log3 2 < 0:631 and that � � n, this theorem and Lemma 5.1 implies a semicoloringusing O(n0:631) colors.By varying the number of hyperplanes, we can arrange for a tradeo� between the number ofcolors used and the number of edges that violate the resulting coloring. This may be useful in someapplications where a nearly legal coloring is good enough.6.1 Wigderson's AlgorithmOur coloring can be improved using the following idea due to Wigderson [42]. Fix a threshold value�. If there exists a vertex of degree greater than �, pick any one such vertex and 2-color its neighbors(its neighborhood is vector 2-colorable and hence 2-colorable). The colored vertices are removedand their colors are not used again. Repeating this as often as possible (or until half the verticesare colored) brings the maximum degree below � at the cost of using at most 2n=� colors. At thispoint, we can semilcolor the remainder with O(�0:631) colors. Thus, we can obtain a semicoloringusing O(n=�+�0:631) colors. The optimum choice of � is around n0:613, which implies a semicoloring6



using O(n0:387) colors. This semicoloring can be used to legally color G using O(n0:387) colors byapplying Lemma 5.1.Corollary 6.3 A 3-colorable graph with n vertices can be colored using O(n0:387) colors by a poly-nomial time randomized algorithm.The bound just described is (marginally) weaker than the guarantee of a O(n0:375) coloring dueto Blum [9]. We now improve this result by constructing a semicoloring with fewer colors.7 Rounding via Vector ProjectionsIn this section we start by proving the following more powerful version of Theorem 6.2. A simpleapplication of Wigderson's technique to this algorithm yields our �nal coloring algorithm.Theorem 7.1 For every integer function k = k(n), a vector k-colorable graph with maximumdegree � can be semi-colored with at most O(�1�2=kpln�) colors in probabilistic polynomial time.As in the previous section, this has immediate consequences for approximate coloring.To prove Theorem 7.1, given a vector k-coloring, we show that it is possible to extract anindependent set of size 
(n=(�1�2=kpln�)). If we assign one color to this set and recurse on therest of the vertices, we will end up using O(�1�2=kpln�) colors in all to assign colors to halfthe vertices and the result follows. To �nd such a large independent set, we give a randomizedprocedure for selecting an induced subgraph with n0 vertices and m0 edges such that E[n0 �m0] =
(n=(�1�2=kpln�)). It follows that with a polynomial number of repeated trials, we have a highprobability of choosing a subgraph with n0�m0 = 
(n=(�1�2=kpln�)). Given such a graph, we candelete one endpoint of each edge, leaving an independent set of size n0�m0 = 
(n=(�1�2=kpln�)),as desired.We now give the details of the construction. Suppose we have a vector k-coloring assigning unitvectors vi to the vertices. We �x a parameter c = ck;� to be speci�ed later. We choose a randomn-dimensional vector r according to a distribution to be speci�ed soon. The subgraph consists ofall vertices i with vi � r � c. Intuitively, since endpoints of an edge have vectors pointing away fromeach other, if the vector associated with a vertex has a large dot product with r, then the vectorcorresponding to an adjacent vertex will not have such a large dot product with r and hence willnot be selected. Thus, only a few edges are likely to be in the induced subgraph on the selected setof vertices.To complete the speci�cation of this algorithm and to analyze it, we need some basic facts aboutsome probability distributions in <n.7.1 Probability Distributions in <nRecall that the standard normal distribution has the density function �(x) = 1p2�e�x2=2 withdistribution function �(x), mean 0, and variance 1. A random vector r = (r1; : : : ; rn) is said tohave the n-dimensional standard normal distribution if the components ri are independent randomvariables, each component having the standard normal distribution. It is easy to verify that thisdistribution is spherically symmetric, in that the direction speci�ed by the vector r is uniformlydistributed. (Refer to Feller [14, v. II], Knuth [31, v. 2], and R�enyi [39] for further details aboutthe higher dimensional normal distribution.) 7



Subsequently, the phrase \random d-dimensional vector" will always denote a vector chosenfrom the d-dimensional standard normal distribution. A crucial property of the normal distributionwhich motivates its use in our algorithm is the following theorem paraphrased from R�enyi [39] (seealso Section III.4 of Feller [14, v. II]).Theorem 7.2 (Theorem IV.16.3 [39]) Let r = (r1; : : : ; rn) be a random n-dimensional vector.The projections of r onto two lines `1 and `2 are independent (and normally distributed) if andonly if `1 and `2 are orthogonal.Alternatively, we can say that under any rotation of the coordinate axes, the projections of ralong these axes are independent standard normal variables. In fact, it is known that the onlydistribution with this strong spherical symmetry property is the n-dimensional standard normaldistribution. The latter fact is precisely the reason behind this choice of distribution1 in ouralgorithm. In particular, we will make use of the following corollary to the preceding theorem.Corollary 7.3 Let u be any unit vector in <n. Let r = (r1; : : : ; rn) be a random vector (ofi.i.d. standard normal variables). The projection of r along u, given by dot product hu; ri, is dis-tributed according to the standard (1-dimensional) normal distribution.It turns out that even if r is a random n-dimensional unit vector, the above corollary still holdsin the limit: as n grows, the projections of r on orthogonal lines approach (scaled) independentnormal distributions. Thus using a random unit vectors for our projection turns out to be equivalentto using random normal vectors in the limit, but is messier to analyze.Let N(x) denote the tail of the standard normal distribution. I.e.,N(x) = Z 1x �(y) dy:We will need the following well-known bounds on the tail of the standard normal distribution. (See,for instance, Lemma VII.2 of Feller [14, v. I].)Lemma 7.4 For every x > 0, �(x)� 1x � 1x3� < N(x) < �(x) � 1xProof: The proof is immediate from inspection of the following equations relating the threequantities in the desired inequality to integrals involving �(x), and the fact �(x)=x is �nite forevery x > 0. �(x)� 1x � 1x3� = Z 1x �(y)�1� 3y4� dy;N(x) = Z 1x �(y) dy;�(x) � 1x = Z 1x �(y)�1 + 1y2� dy:1Readers familiar with physics will see the connection to Maxwell's law on the distribution of velocities of moleculesin <3. Maxwell started with the assumption that in every Cartesian coordinate system in <3, the three componentsof the velocity vector are mutually independent and had expectation zero. Applying this assumption to rotations ofthe axes, we conclude that the velocity components must be independent normal variables with identical variance.This immediately implies Maxwell's distribution on the velocities.8



7.2 The AnalysisWe are now ready to complete the speci�cation of the coloring algorithm. Recall that our goal is torepeatedly strip away large independent sets from the graph. We actually set an easier intermediategoal: �nd an induced subgraph with a large number n0 of vertices and a number m0 � n0 of edges.Given such a graph, we can delete one endpoint of each edge to leave an independent set on n0�m0vertices that can be colored and removed.As discussed above, to �nd this sparse graph, we choose a random vector r and take all verticeswhose dot product with r exceeds a certain value c. Let the induced subgraph on these verticeshave n0 vertices and m0 edges. We show that for su�ciently large c, n0 � m0 and we get anindependent set of size roughly n0. Intuitively, this is true for the following reason. Any particularvertex has some particular probability p = p(c) of being near r and thus being \captured" into ourset. However, if two vertices are adjacent, the probability that they both land near r is quite smallbecause the vector coloring has placed them far apart.For example, in the case of 3-coloring, when the probability that a vertex is captured is p, theprobability that both endpoints of an edge are captured is roughly p4 (this is counter the intuitionthat the probability should go as p2, and follows from the fact that we force adjacent vertices tobe far apart|see below). It follows that we end up capturing (in expectation) a set of pn verticesthat contains (in expectation) only p4m < p4�n edges in a degree-� graph. In such a set, at leastpn�p4�n of the vertices have no incident edges, and thus form an independent set. We would likethis independent set to be large. Clearly, we need to make p small enough to ensure p4�n � pn,meaning p � ��1=3. Taking p much smaller only decreases the size of the independent set, so itturns out that our best choice is to take p � ��1=3=2, yielding an indpendent set of size 
(n��1=3).Repeating this capture process many times therefore achieves an ~O(�1=3) coloring.We now formalize the intuitive argument. The vector r will be a random n-dimensional vector.We precisely compute the expectation of n0, the number of vertices captured, and the expectationof m0, the number of edges in the induced graph of the captured vertices. We �rst show that whenr is a random normal vector and our projection threshold is c, the expectation of n0 �m0 exceedsn(N(c) � �N(ac)) for a certain constant a depending on the vector chromatic number. We alsoshow that N(ac) grows roughly as N(c)a2 . (For the case of 3-coloring we have a = 2, and thus ifN(c) = p, then N(ac) � p4.) By picking a su�ciently large c, we can �nd an independent set of size
(N(c)). (In the following lemma, n0 and m0 are functions of c: we do not make this dependenceexplicit.)Lemma 7.5 Let a = q2(k�1)k�2 . Then for any c,E[n0 �m0] > n�N(c) � �N(ac)2 � :Proof: We �rst bound E [n0] from below. Consider a particular vertex i with assigned vectorvi. The probability that it is in the selected set is just P [vi � r � c]. By Corollary 7.3, vi � r isnormally distributed and thus this probability is N(c). By linearity of expectations, the expectednumber of selected vertices E [n0] = nN(c).Now we bound E [m0] from above. Consider an edge with endpoint vectors v1 and v2. Theprobability that this edge is in the induced subgraph is the probability that both endpoints areselected, which is P [v1 � r � c and v2 � r � c] � P [(v1 + v2) � r � 2c]9



= P � v1 + v2kv1 + v2k � r � 2ckv1 + v2k�= N � 2ckv1 + v2k� ;where the expression follows from Corollary 7.3 applied to the preceding probability expression.We now observe that kv1 + v2k = qv21 + v22 + 2v1 � v2� q2� 2=(k � 1)= q2(k � 2)=(k � 1)= 2=a:It follows that the probability that both endpoints of an edge are selected is at most N(ac). If thegraph has maximum degree �, then the total number of edges is at most n�=2. Thus the expectednumber of selected edges, E [m0], is at most n�N(ac)=2.Combining the previous arguments, we deduce thatE �n0 �m0� � nN(c)� n�N(ac)=2:We now determine a c such that �N(ac) < N(c). This will give us an expectation of at leastN(c)=2 in the above lemma. Using the bounds on N(x) in Lemma 7.4, we �nd thatN(c)N(ac) � (1c � 1c3 )e�c2=2e�a2c2=2=ac= a�1� 1c2� e(a2�1)c2=2� p2�1� 1c2� e(a2�1)c2=2The last equation holds since a = p2(k � 1)=(k � 2) > p2. Thus if we choose c so that 1� 1=c2 �1p2 and e(a2�1)c2=2 � �, then we get �N(ac) < N(c). Both conditions are satis�ed, for su�cientlylarge �, if we set c = s2(k � 2)k ln�:(For smaller values of � we can use the greedy � + 1-coloring algorithm to get a color the graphwith a bounded number of colors, where the bound is independent of n.)For this choice of c, we �nd that the independent set that is found has size at leastE �n0 �m0� � nN(c)=2� 
�ne�c2=2 �1c � 1c3��� 
 n�1� 2kpln�!as desired. This concludes the proof of Theorem 7.1.10



7.3 Adding Wigderson's TechniqueTo conclude, we now determine absolute approximation ratios independent of �. This involvesanother application of Wigderson's technique. If the graph has any vertex of large degree, thenwe use the fact that its neighborhood is large and is vector (k � 1)-chromatic, to �nd a largeindependent set in its neighborhood. If no such vertex exists, then the graph has small maximumdegree, so we can use Theorem 7.1 to �nd a large independent set in the graph. After extractingsuch an independent set, we recurse on the rest of the graph. The following lemma describes thedetails, and the correct choice of the threshold degree.Lemma 7.6 For every integer function k = k(n), any vector k-colorable graph on n vertices canbe semicolored with O(n1�3=(k+1) log1=2 n) colors by a probabilistic polynomial time algorithm.Proof: Given a vector k-colorable graph G, we show how to �nd an independent set of size
(n3=(k+1)= log1=2 n) in the graph. Assume, by induction on k, that there exists a constant c > 0s.t. we can �nd an independent set of size ci3=(k0+1)=(log1=2 i) in any k0-vector chromatic graph oni nodes, for k0 < k. We now prove the inductive assertion for k.Let �k = �k(n) = nk=(k+1). If G has a vertex of degree greater than �k(n), then we �nda large independent set in the neighborhood of G. By Lemma 4.3, the neighborhood is vector(k � 1)-colorable. Hence we can �nd in this neighborhood, an independent set of size at leastc(�k)3=k=(log1=2�k) � cn3=(k+1)=(log1=2 n). If G does not have a vertex of degree greater than�k(n), then by Theorem 7.1, we can �nd an independent set of size at least cn=(�k)1�2=k= log1=2�k �cn3=(k+1)= log1=2 n in G. This completes the induction.By now assigning a new color to each such independent set, we �nd that we can color at leastn=2 vertices, using up at most O(n1�3=(k+1) log1=2 n) colors.The semicolorings guaranteed by Theorem 7.1 and 7.6 can be converted into colorings usingLemma 5.1, yielding the following theorem.Theorem 7.7 Any vector k-colorable graph on n nodes with maximum degree � can be colored, inprobabilistic polynomial time, using minfO(�1�2=kpln� log n); O(n1�3=(k+1)plnn)g colors.8 Duality TheoryThe most intensively studied relaxation of a semide�nite programming formulation to date is theLov�asz #-function [23, 24, 33]. This relaxation of the clique number of a graph led to the �rstpolynomial-time algorithm for �nding the clique and chromatic numbers of perfect graphs. Wenow investigate a connection between # and a close variant of the vector chromatic number.Intuitively, the clique and coloring problems have a certain \duality" since large cliques preventa graph from being colored with few colors. Indeed, it is the equality of the clique and chromaticnumbers in perfect graphs that lets us compute both in polynomial time. We proceed to formalizethis intuition. The duality theory of linear programming has an extension to semide�nite pro-gramming. With the help of Eva Tardos and David Williamson, we have shown that in fact the#-function and a close variant of the vector chromatic number are semide�nite programming dualsto one another and are therefore equal.We �rst de�ne the variant.De�nition 8.1 Given a graph G = (V;E) on n vertices, a strict vector k-coloring of G is anassignment of unit vectors ui from the space <n to each vertex i 2 V , such that for any two11



adjacent vertices i and j the dot product of their vectors satis�es the equalityhui; uji = � 1k � 1 :As usual we say that a graph is strictly vector k-colorable if it has a strict vector k-coloring.The strict vector chromatic number of a graph is the smallest real number k for which it has astrict vector k-coloring. It follows from the de�nition that the strict vector chromatic number ofany graph is lower bounded by the vector chromatic number.Theorem 8.1 The strict vector chromatic number of G is equal to #(G).Proof: The dual of our strict vector coloring semide�nite program is as follows (cf. [2]):maximize �X piiwhere fpijg is positive semide�nitesubject to Xi 6=j pij � 1pij = pjipij = 0 for (i; j) =2 E and i 6= jBy duality, the value of this SDP is �1=(k� 1) where k is the strict vector chromatic number. Ourgoal is to prove k = #. As before, the fact that fpijg is positive semide�nite means we can �ndvectors vi such that pij = hvi; vji. The last constraint says that the vectors v form an orthogonallabeling [24], i.e. that hvi; vji = 0 for (i; j) =2 E. We now claim that the above optimization problemcan be reformulated as follows: maximize �Phvi; viiPi 6=jhvi; vjiover all orthogonal labelings fvig. To see this, consider an orthogonal labeling and de�ne � =Pi 6=jhvi; vji. Note this is the value of the �rst constraint in the �rst formulation of the dual (thatis, the constraint is � � 1) and of the denominator in the second formulation. Then in an optimumsolution to the �rst formulation, we must have � = 1, since otherwise we can divide each vi byp� and get a feasible solution with a larger objective value. Thus the optimum of the secondformulation is at least as large as that of the �rst. Similarly, given any optimum fvig for the secondformulation, vi=p� forms a feasible solution to the �rst formulation with the same value. Thus theoptima are equal. We now manipulate the second formulation.max �Phvi; viiPi 6=jhvi; vji = max �Phvi; viiPi;jhvi; vji �Phvi; vii=  minPi;jhvi; vji �Phvi; vii�Phvi; vii !�1=  min�Pi;jhvi; vjiPhvi; vii + 1!�1= � maxPi;jhvi; vjiPhvi; vii � 1!�1 :12



It follows from the last equation that the strict vector chromatic number ismaxPi;jhvi; vjiPhvi; vii :However, by the same argument as was used to reformulate the dual, this is equal to problem ofmaximizingPi;jhvi; vji over all orthogonal labelings such that Phvi; vii � 1. This is simply Lov�asz's#3 formulation of the #-function [24, page 287].9 The Gap between Vector Colorings and Chromatic NumbersThe performance of our randomized rounding approach seems far from optimum. In this sectionwe ask why, and show that the problem is not in the randomized rounding but in the gap betweenthe original problem and its relaxation. We investigate the following question: given a vector k-colorable graph G, how large can its chromatic number be in terms of k and n? We will show thata graph with chromatic number n
(1) can have bounded vector chromatic number. This impliesthat our technique is tight in that it is not possible to guarantee a coloring with no(1) colors on allvector 3-colorable graphs.De�nition 9.1 The Kneser graph K(m; r; t) is de�ned as follows: the vertices are all possible r-setsfrom a universe of size m; and, the vertices vi and vj are adjacent if and only if the correspondingr-sets satisfy jSi \ Sjj < t.We will need following theorem of Milner [36] regarding intersecting hypergraphs. Recall thata collection of sets is called an antichain if no set in the collection contains another.Theorem 9.1 (Milner) Let S1, : : :, S� be an antichain of sets from a universe of size m suchthat, for all i and j, jSi \ Sjj � t:Then, it must be the case that � �  mm+t+12 !:Notice that using all q-sets, for q = (m+ t+ 1)=2, gives a tight example for this theorem.The following theorem establishes that the Kneser graphs have a large gap between their vectorchromatic number and chromatic numbers.Theorem 9.2 Let n = �mr � denote the number of vertices of the graph K(m; r; t). For r = m=2and t = m=8, the graph K(m; r; t) is vector 3-colorable but has chromatic number at least n0:0113.Proof: We prove a lower bound on the Kneser graph's chromatic number � by establishing anupper bound on its independence number �. It is easy to verify that the � in Milner's theorem isexactly the independence number of the Kneser graph. To bound � observe that� � n�� �mr �� m(m+t)=2� 13



= � mm=2�� m9m=16�� 2m(1� o(1))2(1�o(1))m((9=16) lg(16=9)+(7=16) lg(16=7))� 2:0113m for large enough m.In the above sequence, the fourth line uses the approximation m�m! � 2m(�� lg ��(1��) lg(1��))=pc�m;for every � 2 (0; 1), where c� is a constant depending only on �. Using the inequalityn =  mr ! � 2m;we obtain m � lgn and thus� � (1:007864)lg n = nlg 1:007864 � n0:0113:Finally, it remains to show that the vector chromatic number of this graph is 3. This follows byassociating with each vertex vi an m-dimensional vector obtained from the characteristic vector ofthe set Si. In the characteristic vector, +1 represents an element present in Si and �1 representselements absent from Si. The vector associated with a vertex is the characteristic vector of Siscaled down by a factor of pm to obtain a unit vector. Given vectors corresponding to sets Si andSj, the dot product gets a contribution of �1=m for coordinates in Si�Sj and +1=m for the others.(Here A�B represents the symmetric di�erence of the two sets, i.e., the set of elements that occurin exactly one of A or B.) Thus the dot product of two adjacent vertices, or sets with intersectionat most t, is given by1� 2jSi�Sjjm = 1� 2(jSij+ jSj j � 2jSi \ Sjj)m � 1� 4r � 4tm = �1=2:This implies that the vector chromatic number is 3.More re�ned calculations can be used to improve this bound somewhat.Theorem 9.3 There exists a Kneser graph K(m; r; t) that is 3-vector colorable but has chromaticnumber exceeding n0:016101, where n = �mr � denotes the number of vertices in the graph. Further, forlarge k, there exists a Kneser graph K(m; r; t) that is k-vector colorable but has chromatic numberexceeding n0:0717845.Proof: The basic idea is to improve the bound on the vector chromatic number of the Knesergraph using an appropriately weighted version of the characteristic vectors. We use weights a and�1 to represent presence and absence, respectively, of an element in the set corresponding to avertex in the Kneser graph, with appropriate scaling to obtain a unit vector. The value of a thatminimizes the vector chromatic number can be found by di�erentiation and isA = �1 + mrr2 � rt � mtr2 � rt14



Setting a = A proves that the vector chromatic number is at mostm(r � t)r2 �mt :At the same time, using Milner's Theorem proves that the exponent of the chromatic number is atleast 1��(m� t) log 2mm�t + (m+ t) log 2mm+t2�(m� r) log mm�r + r log mr � :By plotting these functions, we have shown that there is a set of values with vector chromaticnumber 3 and chromatic number at least n0:016101. For large constant vector chromatic numbers,the limiting value of the exponent of the chromatic number is roughly 0:0717845.10 ConclusionsThe Lov�asz number of a graph has been a subject of active study due to the close connections be-tween this parameter and the clique and chromatic numbers. In particular, the following \sandwichtheorem" was proved by Lov�asz [33] (see Knuth [32] for a survey).!(G) � #(G) � �(G): (1)This led to the hope that the following question may have an a�rmative answer. Do there exist �,�0 > 0 such that, for any graph G on n vertices#(G)n1�� � !(G) � #(G) � �(G) � #(G)� n1��0? (2)Our work in this paper proves a weak but non-trivial upper bound on the the chromatic number ofG in terms of #(G). However, this is far from achieving the bound conjectured above and subsequentto our work, two results have ended up answering this question negatively. Feige [16] has shownthat for every � > 0, there exist families of graphs for which �(G) > #(G)n1��. Interestingly,the families of graphs exhibited in Feige's work use the construction of Section 9 as a startingpoint. Even more conclusively, the results of H�astad [26] and Feige and Kilian [18] have shown thatno polynomial time computable function approximates the clique number or chromatic number towithin factors of n1��, unless NP=RP. Thus no simple modi�cation of the # function is likely toprovide a much better approximation guarantee.In related results, Alon and Kahale [5] have also been able to use the semide�nite programmingtechnique in conjunction with our techniques to obtain algorithms for computing bounds on theclique number of a graph with linear-sized cliques, improving upon some results due to Boppana andHalldorsson [10]. Independent of our results, Szegedy [41] has also shown that a similar constructionyields graphs with vector chromatic number at most 3 that are not colorable using n0:05 colors.Notice that the exponent obtained from his result is better than the one in Section 9. Alon [3] hasobtained a slight improvement over Szegedy's bound by using an interesting variant of the Knesergraph construction. The main algorithm presented here has been derandomized in a recent workof Mahajan and Ramesh [35]. By combining our techniques with those of Blum [9], Blum andKarger [BK97] have given a 3-coloring algorithm with approximation ratio ~O(n3=14).15
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