
Fast Connected Components Algorithms for the EREW PRAMDavid R. Karger � Noam Nisan y Michal Parnas zJuly 1, 1997AbstractWe present fast and e�cient parallel algorithms for �nding the connected components of anundirected graph. These algorithms run on the exclusive-read, exclusive-write (EREW) PRAM.On a graph with n vertices and m edges, our randomized algorithm runs in O(log n) time using(m+n1+�)= logn EREW processors (for any �xed � > 0). A variant uses (m+n)= logn processorsand runs in O(log n log logn) time. A deterministic version of the algorithm runs in O(log1:5 n)time using m+ n EREW processors.1 IntroductionPerhaps the most basic algorithmic problem involving an undirected graph is to �nd its connectedcomponents. In this problem, the input to the algorithm is an undirected graph G = (V;E), withjV j = n vertices and jEj = m edges. The output is the connected components of the graph.There are various ways to represent the solution; the one we shall use is to label each vertexwith the largest numbered vertex to which it is connected. Connected components can be foundin linear sequential time by breadth-�rst search or depth-�rst search methods. However, thesemethods do not parallelize easily. Parallel algorithms for connected components have been knownfor quite some time ([HCS79], [CLC82], or see the survey in [KR90]). Until recently the bestknown algorithms required O(log n) time on CRCW PRAMs and O(log2 n) time on CREW PRAMs(recall that CR (CW) PRAM allow multiple processors to concurrently read (write) to the samememory location, while ER (EW) PRAMs allow only one processor to read (write) at a time). Thenumber of processors used by the best of those algorithms is nearly optimal in the deterministiccase [SV82, CV91, AS87] and completely optimal in the randomized case [Gaz91].In their survey, Karp and Ramachandran [KR90] raised the question of the existence of o(log2 n)-time algorithms for connected components on exclusive-write PRAMs. Recently, Johnson andMetaxas [JM91] developed a CREW algorithm that runs in O(log1:5 n) time and uses m+ n pro-cessors. An O(log1:5 n)-time algorithm for the EREW PRAM is described in [NSW92], but thisalgorithm uses a large polynomial number of processors.In this paper we present improved EREW algorithms for connected components. One contribu-tion is the �rst (randomized) algorithm that runs in O(log n) time. It is based on the parallelizationof random walk techniques studied in [AKL*79], where it is shown that a relatively short randomwalk will visit all the vertices in a graph.�Department of Computer Science, Stanford University. Supported by a National Science Foundation GraduateFellowship, by NSF Grant CCR-9010517, and grants from Mitsubishi and OTL.yInstitute of Computer Science, Hebrew University. Supported by the Wolfson Research Awards administered bythe Israel Academy of Sciences and Humanities and by U.S.A.-Israel BSF 89-00126.zInstitute of Computer Science, Hebrew University. 1

Theorem 1.1 The connected components of an undirected graph can be computed on a randomizedEREW PRAM in O(logn) time with high probability1 using (m + n1+�)= log n processors for any�xed � > 0.The running time of this algorithm is optimal, as the results of [CDR86] and [DKR94] imply alower bound of
(log n) time even on a randomized CREW PRAM. For graphs that are not toosparse, i.e. with
(n1+�) edges, the processor costs are optimal as well, as the total work remainslinear in the input size. For sparse graphs, using a linear number of processors slightly increasesthe running time:Theorem 1.2 The connected components of an undirected graph can be computed on a randomizedEREW PRAM in O(log n log log n) time with high probability with (m+ n)= log n processors.This is of course within an O(log log n) factor of being work-optimal. An important related openproblem is to design a deterministic O(logn) time algorithm. We have made some progress in thisdirection:Theorem 1.3 The connected components of an undirected graph can be computed on a determin-istic EREW PRAM in O(log1:5 n) time using m+ n processors.The running time of this deterministic algorithm matches those of [JM91] and [NSW92]. Itimproves upon [JM91] by working in the more restricted EREW model instead of in the CREWmodel. It improves upon [NSW92] by requiring only a linear number of processors instead of alarge polynomial number of processors. This last result was proved independently (using a di�erentmethod) by [JM92].After publication of the preliminary version of this paper [KNP92], several improvements weregiven. Chong and Lam [CL95] gave an O(log n log log n) deterministic algorithm that uses m + nprocessors. Halperin and Zwick improved our methods to yield �rst [HZ94] an optimal randomizedalgorithm for connected components that runs in O(log n) time with a linear number of processors,and subsequently [HZ6] an optimal randomized algorithm for �nding a spanning forest of the graph(note that our algorithm does not �nd spanning forests).In the following sections, we present the connectivity algorithm. To simplify the exposition, we�rst present a randomized algorithm that uses m+n rather than (m+n)= log n processors. We givea general overview of the algorithm and then �ll in the details and provide proofs of correctness. Wethen discuss the changes needed to make the algorithm deterministic. The modi�cations needed toreduce the processor cost by an additional factor of logn are somewhat complex and are left to alater section.2 Overview of The AlgorithmThe algorithm is based on a simple and well known idea: repeatedly �nd groups of connectedvertices in the graph and contract (i.e. merge) each group into a single vertex, �nishing wheneach connected component is contracted to a single vertex. The question lies in how to �nd theseconnected groups.Suppose we are fortunate, and the minimum degree of the graph is large. Let N(i) be the setof vertices adjacent to i (including i). The following procedure can be applied, using a processorfor each vertex and each edge:1By \high probability" we mean that the probability of the event not happening can be made at most n�� forany �xed � > 1 without a�ecting the orders of run times.2

1. Each vertex looks at all vertices within distance two of itself, i.e. N(N(i)). If it �nds a largernumbered vertex than itself, it makes this vertex its parent. Any vertex that fails to �nd aparent becomes a leader.2. The selection of parents has created a group of trees with leaders at the roots (note that thetree edges need not be graph edges). Each tree is now contracted to a single vertex.Assuming that the minimum degree is large, this process yields a much smaller graph, as thefollowing lemma shows:Lemma 2.1 (Neighborhoods) If all neighborhoods N(i) have size at least s, then at most n=sleaders can exist.Proof: The distance between two leaders must exceed 2. Thus the neighborhoods of two leadersare disjoint, and therefore at most n=s leaders remain. 2The contraction of the trees does not change the connected components, as can be seen from thefollowing lemma:Lemma 2.2 In the contracted graph, two leaders are connected i� they were connected in the oldgraph.Proof: Note that two leaders are adjacent i� each had a descendant such that the descendantswere adjacent. The lemma then follows from the fact that all vertices are necessarily connected totheir leaders. 2The running time of the algorithm will depend on the number of rounds needed to contractevery connected component into a single vertex. Since the reduction is based on neighborhoodsize, this number of rounds depends on the minimum degree s of the graph. The problem is thatthe minimum degree of the graph may be small, and therefore the procedure described abovemay fail to reduce the size of the graph signi�cantly. We will show how to solve this problem by\imagining" additional edges in the graph in order to make the neighborhoods large. As long as theimaginary edges connect vertices that are connected in the original graph, the two lemmas givenabove continue to hold. Similar ideas are explored in [BR91] and [NSW92]. The remainder of thispaper is dedicated primarily to the question of how to construct quickly and in parallel a largeneighborhood for each vertex in the graph.Our approach to this question began with the following observation. It is known that anEREW PRAM with a polynomial number of processors can simulate any logspace algorithm inO(log n) time (see [KR90]). This extends to the fact that a randomized EREW PRAM can sim-ulate randomized-logspace algorithms.2 Since a randomized-logspace algorithm for connectivity isknown [AKL*79], a randomized EREW algorithm follows.Unfortunately, the parallelization of the random walk algorithm of [AKL*79] requires
(mn2)processors. The reason so many processors are needed is that a random walk of length
(mn) mustbe taken, to be sure of covering the entire graph. Thus the approach of [AKL*79] does not directlysuggest an e�cient algorithm. However, an important idea can be extracted from this approach,namely that a random walk visits a large number of vertices relatively quickly. We thus explorethe use of short walks on the graph.2In fact, the results in [Nis93] imply that any randomized-logspace algorithm with bounded two-sided error can besimulated with zero-error by a randomized EREW PRAM in O(log n) time using a polynomial number of processors.3

Consider taking a walk of some length p from each vertex of the graph by traveling alongedges of the graph. Using the vertices encountered along each walk as the neighborhood of thewalk's starting vertex, we will apply the contraction procedure described above to reduce the sizeof the graph by a signi�cant factor. This procedure will be called a walk phase of length p. In therandomized algorithm, the walk is a random walk; in the deterministic algorithm, the walk is basedon a deterministic traversal sequence. A walk phase takes O(log n) time to simulate in parallel,but since the walk phases construct large neighborhoods, a very small number of them su�ce tocomplete the algorithm. In more detail, consider the following procedure:1. From each vertex 1 � i � n, take a walk of length p. Let W (i) be the itinerary of i, i.e. theset of vertices seen on the walk that starts at i.2. Consider the edges de�ned by the walks, so that there is an edge fi; jg if j 2W (i) or i 2W (j).These edges clearly connect vertices that are connected in G.3. Using these \walk edges" to de�ne the vertex neighborhoods, each vertex examines its neigh-borhoods, as was described at the start of this section, to �nd a parent or become a leader.4. To contract the resulting collection of trees, each vertex �nds the leader in its tree of parentsand transfers all its edges to the leader (i.e., replaces each edge fi; jg in G by an edge fromi's leader to j's leader).When a walk phase is �nished, we have a new graph G0 whose vertices are the leaders in the oldgraph. Lemmas 2.1 and 2.2 tell us that G0 is smaller than G and embodies the same connectivityinformation.The connectivity algorithm itself will repeat the walk phases until the resulting graph has noedges. Each remaining vertex then represents the connected component containing that vertex.Every other vertex will have dropped out after selecting some vertex as its leader and giving thatvertex its edges. The leader choices of the vertices form a forest|the root of each tree is oneof the connected component representatives, and the vertices in each tree are a single connectedcomponent of the graph. Tree contraction can now be used to let each vertex identify its connectedcomponent representative.To make the algorithm run quickly, we need to �nish in a small number of walk phases. Fromthis description, it can be seen that all we need in order to implement the algorithm is:� A walk that visits a large number of vertices, and� A way to simulate a walk phase quickly in parallel.We now show in detail how to achieve these two goals.3 Implementing a Walk PhaseIn the course of the following discussion of the implementation of the algorithm, assume that Gis totally connected. The results we wish to prove then follow by independently considering theaction of the algorithm on each connected component of the graph.The key question that must be solved is how to construct a walk that visits a large numberof vertices. Using randomization, the solution is straightforward. Knowing that a random walkexpects to cover all n vertices of a graph in time nO(1), we will deduce that a random walk of length4

p visits p
(1) vertices with high probability. This reduces the implementation of a walk phase tothe problem of simulating a random walk from each vertex in parallel.It is well known that CRCW can be simulated on an EREW machine with an O(log n) slowdownin running time and no increase in processor cost ([KR90], pp. 894-895). Since we wish the walkphase to have running time O(log n), we feel free to say that \processors concurrently read orwrite," so long as this occurs only a constant number of times.We now discuss the details of implementing a walk phase of length p using m+ pn processors.3.1 Data Structures and Processor AllocationEach vertex i has a list Li of edges leaving i. The edge between i and j appears as (i; j) in Li andas (j; i) in Lj . The edge lists are stored contiguously in one array L of length 2m, sorted by orderof lists L1; L2; :::; Ln:Each vertex i also has two variables, �rsti and lasti, which indicate the beginning and end ofthe list Li in L. It is easy to determine the number of neighbors of i by computing lasti��rsti+1.The algorithm uses an n � p array WALK to simulate random walks of length p. Two morearrays, MAX of dimensions n � p, and PARENT of length n, are used to �nd the leaders of thegraph.We use O(log n) time to redistribute the processors at the beginning of each walk phase:� There are p processors assigned to each vertex. Let Pi;1; Pi;2:::Pi;p be the processors assignedto vertex i, for i = 1; :::; n.� One processor is assigned to every edge. Denote these processors by P1; P2; :::; Pm. Theseprocessors will be called edge processors.Therefore the total number of processors is m+ pn. Notice that after each walk phase the numberof vertices of the graph reduces, and therefore in each walk phase we can allocate more processorsper vertex. This will allow us to increase the length p of a walk phase, and thus to contract theconnected components even faster.We now turn to the details involved in executing the four steps outlined in the overview of thealgorithm.3.2 Step 1: Simulating the Random WalkWe wish to simulate the process of taking a random walk of length p simultaneously from all verticesof G. For each vertex 1 � i � n, and each 1 � t � p, processor Pi;t chooses a neighbor of vertex iuniformly at random, and writes it into WALK [i; t]. Each processor does so using three concurrentreads of �rsti, lasti and L.Consider the random variables uit de�ned by:ui1 = iuit+1 = WALK [uit; t] for t = 1; :::; p:By the choice of the WALK [i; t] values, the random variable uit is a random walk starting at vertexi, for each 1 � i � n. The random walks with di�erent sources are not independent, but this willnot a�ect the analysis. As mentioned in the overview, let the itinerary W (i) be the set of verticesencountered on the random walk from i. Figure 1 shows a �lledWALK array in which, for example,W (8) = f7; 8; 9g (in the algorithm, each walk step moves from one vertex to a di�erent vertex, butin our picture, for the sake of clarity, we have drawn some horizontal edges that imply walk stepsthat stand still). We will show later that all the W (i) are large, i.e., of size exceeding p
(1).5

TIME

VERTEX
1

1

p

2

3
4

5
6

7
8

9
10

n=11

Figure 1: The WALK array.3.3 Step 2: Finding NeighborhoodsAs stated in Step 2 of the outline, consider the walk edges de�ned by including (i; j) if i 2 W (j)or j 2 W (i). In Step 3 each vertex looks for a parent among vertices up to two walk edges away.These edges are not actually constructed; instead, each vertex deduces the information it needsdirectly from the WALK array. Furthermore, the edges considered are actually a superset of thewalk edges, which will de�ne larger neighborhoods N(i) � W (i). But it will still be true that i isconnected to all vertices in N(i). Since larger neighborhoods cause a greater reduction in the sizeof the graph, this use of more edges can only help.The values placed in the walk array in Step 1 can be seen to de�ne a collection of trees (thevalues provide parent pointers). We let the neighborhood of a vertex be the vertices to whichit is connected by one of these trees. More formally, for each i = 1; :::; n, let Ti;t be the set ofarray entries [j; t0], which are in the tree containing the entry [i; t], and let Ti = St Ti;t. De�neN(i) = fj j (9t)[j; t] 2 Tig to be the neighborhood of vertex i. In other words, imagine an edgefrom i to j whenever i and j share a tree. Note that if the random walk from i encounters j then[j; t] 2 Ti for some t, so W (i) � N(i). Also, since each tree edge corresponds to a step in a randomwalk, and thus to an edge in G, all members of N(i) are necessarily connected to i.Let H denote the graph with vertex set V but with edges de�ned by the neighborhoods N(i).This is the graph that will be used to �nd connected sets of vertices to contract.3.4 Step 3: Choosing LeadersWe now implement the process of choosing a maximum parent of distance at most two in H, asdescribed in the overview of Section 2. This is achieved by calling twice the following procedureMax-Neighbor. The �rst call to this procedure chooses for each vertex i the maximum vertex inN(i) (which corresponds to �nding the maximum vertex of distance one from each vertex on thegraph H). The second call �nds the maximum vertex chosen by any vertex in N(i) (which corre-6

sponds to �nding the maximum vertex of distance two from each vertex on the graph H). Initializethe array PARENT to PARENT [i] = i, and then call the following procedure twice:Procedure Max-Neighbor:1. For each i = 1; :::; n and t = 1; :::; p, set MAX [i; t] = max[j;t0]2Ti;t PARENT [j].2. For each i = 1; :::; n set PARENT [i] = maxtMAX [i; t].The �rst step iteration of this process labels each vertex with its largest \neighbor," so the seconditeration labels vertices with their largest neighbor at distance two. In other words, at the end ofthis process PARENT [i] contains the parent of vertex i. Vertex i is a leader if PARENT [i] = i.Implementing Max-Neighbor is straightforward. Step 2 is trivial. Step 1, maximizing over atree, can be implemented, using Euler tour techniques on the array WALK , in time O(log n) usingnp processors (see [KR90], pp. 879-883). The only nonstandard detail is that our �lling up ofthe walk array has created trees with unidirectional edges, while the Euler tour method requiresbidirectional edges. To build these edges, proceed as follows. Copy the WALK array, and thensort the edges ([i; t]; [j; t+ 1]) in the WALK array according to their second endpoints. We can dothis in O(log np) time using np processors, either by applying Cole's sorting algorithm [Col88], orvia a simple bucket sort using (np)2 space. After the sort, all the edges that point to a particularposition in the WALK array are grouped together for application of the Euler tour technique.3.5 Step 4: Create the New Graph G'In this �nal step we must construct the new graph G0 whose vertices are the leaders in the graphG. The selection of parents in procedureMax-Neighbor created a group of trees (not to be confusedwith the trees in the WALK array) with leaders at the roots. Each vertex now �nds the leaderat the root of its tree by using Euler tours as before [KR90]. We can now create the new smallergraph G0 = (V 0; E0). The set of vertices V 0 is the set of leaders, i.e. V 0 = fleader (i) j i 2 V g. Theset of edges of G0 is obtained by transforming each edge (i; j) of E to an edge (leader (i); leader (j)),i.e. E0 = f(leader (i); leader (j)) j (i; j) 2 Eg.To construct the set E0, each edge processor Pk for k = 1; :::;m concurrently reads the leadersof each of its endpoints and renames its edge appropriately. If Pk is handling edge (i; j), then Pkchecks if leader (i) = leader (j). If so, this edge has been contracted and is now useless, so Pk writes0 at L[k]. If not, it writes the edge (leader (i); leader (j)) at L[k].Next sort L lexicographically by left and right endpoints in O(logn) time using Cole's sortingalgorithm [Col88] or a bucket sort. The renaming may yield multiple copies of some edges. Thesemust be removed because otherwise the random walk becomes \biased" towards visiting verticesthat are connected by many edges; our analysis requires that the random walk is not biased. Toremove these multiple edges, each edge processor Pk looks to its left at L. If L[k] = L[k � 1], thenPi writes a 0 at L[k]. Now compact the array L using standard parallel compaction ([KR90], pp.875-876).Next it is neccessary to update the �rsti and lasti variables. To do so, �rst set �rsti = �1(using the processors Pi;1). Then each edge processor Pk looks to its left (right) at L, and if it isat the beginning (end) of the edge list of some processor i, it updates �rsti (lasti). Afterwards, anyvertex that still has �rsti = �1 must have no incident edges. Such isolated vertices are marked asthe representatives of connected components and removed. It should be noted that the new graphG0 still has at most m edges.Clearly, all the operations described above can be done in O(log n) time. Thus, we have proved:7

Lemma 3.1 A walk phase of length p can be implemented in O(log n+ log p) time using m + pnEREW processors.4 Iterating the Walk PhaseNow that we have shown the required time and processor bounds, it remains to show that the newgraph G0 has signi�cantly fewer vertices, and that as a consequence the algorithm terminates in asmall number of walk phases. We require the following corollary to the known results regardingthe cover time of random walks on graphs. This lemma was �rst observed by Linial ([Lin]). Forcompleteness we sketch the proof.Lemma 4.1 Let G be an undirected graph. Let v be any vertex in G that is contained in a connectedcomponent of at least t vertices. Then the expected time needed for a random walk starting from vto see t vertices is O(t4).Proof: De�ne the random variable Xt to be the time it takes a random walk that starts at v tosee t vertices. Assume that by time Xt we saw the set of vertices Ct. Let w 62 Ct be a vertex thatis adjacent to some vertex in Ct. Then the expected time to cover the graph CtSw (and thus seea new vertex) is O(t3) if we don't leave CtSw. If we do leave it, then we shall see a new vertexeven sooner. Hence E(Xt+1) = E(Xt) +O(t3) = O(t4). 2Recently it was shown by Barnes and Feige ([BF93]) that O(t3) expected time is su�cient to see tvertices. We can now obtain:Lemma 4.2 After a walk phase of length p, for every vertex i = 1; :::; n, the itineraries satisfyjW (i)j =
((plog n)�) with high probability, where � = 1=4.Proof: Consider the walk to be a composition of
(log n) \subwalks" of equal length
(plog n).Call each subwalk good if it visits
((plog n)�) vertices. By the Markov inequality and Lemma 4.1,each subwalk has a constant probability of being good. This is true even if we condition on theoutcomes of previous subwalks. Thus all the subwalks fail to be good with polynomially smallprobability. 2The result of [BF93] allows us to take � = 1=3, thus improving the constant factors in the followinganalysis.Corollary 4.3 A walk phase of length p reduces the number of vertices in a graph by a factor of
((plog n)�) with high probability.Proof: Consider the above two lemmas, and the fact that W (i) � N(i). Now apply the Neigh-borhoods Lemma (2.1). 2We can now analyze the running time.Lemma 4.4 Using m + pn processors, with high probability we can fully identify the connectedcomponents of the graph with O(log(log n= log p)) walk phases.
8

Proof: Assume for now that p > log2 n. The hypothesis gives us at least p processors per vertex.Running a walk phase of length p yields a graph of O(n(log� np�)) vertices. On this graph redistributethe processors to get npn log� n=p� = p1+�log� n > p9=8processors per vertex. Thus the number of processors per vertex after t walk phases is describedwith high probability by the recurrence pt+1 > p9=8twith solution pt > p(9=8)t :Thus pt exceeds pn within O(log(log n= log p)) steps. Since this implies that all the processors areassigned to one vertex, the algorithm must be �nished at this point. Therefore this is the maximumexpected number of walk phases needed.There remains the detail of what to do if initially p < log2 n. To handle this case, note that evenif p = 1, so that the random walks are in fact just inspections of a single neighbor, the neighbor-hoods still have size two. Thus the size of the graph is still reduced by a factor of two in each walkphase. Therefore, O(log(log2 n=p)) = O(log(log n= log p)) walk phases su�ce to raise p to log2 nand thus reduce to the previous case. 2Since each walk phase is simulated in O(logn) time, the overall running time of the algorithmis O(log n log(log n= log p)). Theorems 1.1 and 1.2 follow immediately, up to a factor of log n in theprocessor count that is removed in Section 7.5 Using Fewer Random BitsRandomness is used in our algorithm only to construct random walks. We show how to restrictthis use of randomness to O(n�) bits, for any � > 0. Note �rst that once we have n� processorsper vertex, and can simulate random walks of length n�, there is no need to reassign processorsto vertices, since an additional O(1=�) walk phases of length n� will �nish the problem. Thereforeassume that random walks never exceed length n�. Now observe that a walk phase of length pneeds only p log n random bits. Two entries in the WALK array need be independent only if itpossible for a walk de�ned in the array to encounter both of them. Therefore entries WALK [i; t]and WALK [i0; t], i 6= i0, can use the same random seed in selecting edges, since a particular walkis only at one place at any particular time.Corollary 5.1 Connected components can be found in time O(log n log(log n= log p) + (log n)=�)using m+ pn processors and O(n�) random bits.6 The Deterministic VersionOur techniques can also be used to obtain a deterministic algorithm for the EREW PRAM thatruns in O(log1:5 n) time using m + n processors. This improves on the deterministic O(log1:5 n)time algorithm of [NSW92], and matches an independent result of [JM92]. As in [NSW92], we usea universal sequence instead of a random walk. It will be convenient to consider a generalizationof the universal sequences of [AKL*79] to allow walks on non-regular graphs.9

De�nition 6.1 A graph G with at most r vertices will be called r-labeled if the edges adjacent toeach vertex are labeled with unique numbers from f1; 2; :::; rg.De�nition 6.2 Given a string � 2 f1; 2; :::; rg� and an r-labeled graph G, a walk according to �starting from a given vertex will follow edge labeled i at step j if �j = i. If �j = i and none of theedges leaving the current vertex are labeled i, the walk will remain in that vertex.De�nition 6.3 A string � 2 f1; 2; :::; rg� is called an r-universal sequence if for every graph Gwith at most r vertices and any r-labeling of G, a walk according to � visits all the vertices of G,regardless of the starting vertex.By following the proofs of [AKL*79], [BNS92] and [Nis92], it is not di�cult to see that theconstruction of [Nis92] yields an r-universal sequence of length rO(log r) in our general sense. Weneed only the following two properties:Theorem 6.4 ([Nis92]) An r-universal sequence of length l = rO(log r) can be generated by anEREW PRAM in O(log l) time using O(l log l) processors.Lemma 6.5 For any undirected connected graph G with at least r vertices, and for any vertex vin G, a walk along an r-universal sequence �, starting from v visits at least r vertices of G.Proof: Label G so that each vertex of degree d is labeled with the numbers f1; 2; :::; dg. Assumethe claim is false and � visits less than r vertices.Let Cr be the graph induced by all the vertices � visits. Let w 62 Cr be a vertex adjacent tosome vertex v0 2 Cr, such that the edge (v0; w) is labeled with a number less than r (this is possiblesince v0 has at most r � 2 neighbors in Cr). Then the graph Cr [w is an r-labeled graph withat most r vertices, and thus a walk according to � should cover it and thus visit w; a contradiction. 2The deterministic algorithm proceeds as follows: instead of taking a random walk from eachvertex, generate an r-universal sequence and then walk along this sequence. The parameter l ischosen such that the length of the resulting universal sequence is p (where p is the number ofprocessors allotted to each vertex in the graph); thus r = 2O(plog p). We are thus assured by theNeighborhoods Lemma (2.1) that the number of vertices in the graph at the next round shrinks bya factor of at least r.Letting pi be the number of processors allotted to each vertex at iteration i, we argue as in therandom walk case. We have the following recursion:p1 = 2pi+1 = pi � 2plog pi :Lemma 6.6 Let p1=2 and pi+1 = pi � 2plog pi. Then pj = n for some j = O(plogn).
10

Proof: Let qi = log pi. Therefore, q1 = 1 and qi+1 = qi +pqi. Then for every i, q(i+pqi) � 2qi.Thus, the time to reach qj = logn is at most p1 +p2 +p4 +p8 + :::+plog n = O(plogn). 2As a result of this lemma, we can conclude that after O(plogn) walk phases the graph iscontracted to a single vertex.Theorem 1.3 follows immediately. Observe that starting with (polynomially many) more pro-cessors does not decrease the running time in this case.Corollary 6.7 If an n-universal sequence of polynomial length can be generated deterministicallyin O(log n) time, then connected components can be found in O(log n) time deterministically usingm+ n1+� processors for any �xed �.7 Approaching Optimal WorkThe algorithms described above performwork that exceeds the optimal by a factor ofO(log n log logp n).Here we reduce this factor to O(log logp n), and how in fact the O(log n log logp n) running time canbe achieved with (m + pn)= logn processors (this will be optimal for p = n�). We begin with theassumption that p > log2 n, and later show how this assumption can be removed. Assume withoutloss of generality that m � n=2, since an initial step of the algorithm can use n= log n processorsto remove any vertices with no edges.7.1 Assuming p > log2 nObserve �rst that the di�erence between using pn and pn= log n processors can be ignored, sincefor p > log2 n, log log nlog p = �(log log nlog(p= log n)). Thus the only need is to perform the m-processor stepswith m= log n processors.To do so, note that m processors are used for only one purpose: to update the edge list afterleaders have been identi�ed. There are three phases in this update process:1. Replace the edge (i; j) by the edge (leader (i); leader (j)).2. Detect and remove dead edges, namely those that now have the form (i; i) because bothendpoints chose the same leader.3. Sort the remaining edges to remove duplicates and create edge lists for the contracted graph.The real sticking point in this process is Step 3. Since potentially nearly m edges may remainin the contracted graph, and since sorting them requires
(m logm) work, it is unclear how Step 3can be performed.3 Getting around this problem is the main topic of this section.We begin by showing that Steps 1 and 2 are easy to perform with m= log n processors. Weallocate the processors according to the following scheme. Break the list of edges into sequentialblocks of size log n, and assign one processor to each block. Recall that the edge list is sorted bythe �rst vertex in each edge. Therefore, the ith block contains �rst some of the edges of some �rstvertex fi, then all the edges of some set of vertices Vi, and �nally some of the edges of a last vertexli. The advantage of this assignment is that it allows us to simulate, in O(log n) time, a singleconcurrent read by each edge (i; j) of some information from vertex i, and similarly, in O(log n)3Possibly some form of bucket sort could be used to circumvent the sorting lower bound.11

time, concurrent writes (with any con
ict resolution scheme desired) by each edge (i; j) to vertexi. To simulate the read, proceed as follows. First use the standard concurrent read simulationto let processor i read from fi and li into its local memory; these two reads take O(log n) time.Then each processor updates the log n edges it is responsible for|these updates now require onlyexclusive reads from its local copies of fi and li or from the global values in the vertices Vi. Theconcurrent write simulation is similar.Because of this simulation, we will freely use instructions of the form \each edge (i; j) readsfrom or writes to its vertex i," with the understanding that each such step actually takes O(log n)time.One other small change is that it is necessary for each edge (i; j) to have a pointer to its twinedge (j; i) that is maintained as edges are moved around.It is now easy to perform Step 1 in O(log n) time|each edge (i; j) concurrently reads leader (i),and replaces i by leader (i) in (i; j) and in its twin (j; i). Step 2 can be performed easily by m= log nprocessors in O(log n) time with a standard array compaction algorithm.It remains to deal with the di�culty of Step 3. The approach we take is to ensure that thenumber of edges remaining after Step 2 (counting duplications) is small, so that few processors areneeded to perform Step 3. We use the following lemma:Lemma 7.1 If each edge of a graph is selected independently with probability q, and connected com-ponents induced by the selected edges are contracted in the original graph, then with high probabilitythe number of edges of the contracted graph is O(n lnn=q).In [KKT95], the number of remaining edges is shown to be O(n=q) with high probability; this doesnot improve our application.Proof: The number of edges in the contracted graph is just the number of edges crossing be-tween the di�erent connected components induced by the selected edges. The number of di�erentarrangements of connected components is certainly no more than the number of ways to partitionthe set of n vertices into at most n groups, namely nn. For any given partition that cuts k edges,the probability that no crossing edge is chosen is (1� q)k � e�kq. The probability that k edges arecut in the partition resulting from the connected component construction is just the probabilitythat for some partition with at least k crossing edges, no one of these k edges is chosen. This is atmost nne�kq = en lnn�kq, which is negligible when kq =
(n lnn). 2We therefore use the following approach: given an m-edge graph, choose m= log n edges atrandom, and using (m+ pn)= log n processors and the basic algorithm, compute connected compo-nents in this sampled graph in O(logn log logp n) time. This labels all vertices in a given connectedcomponent of the sampled graph with a single vertex. If the label of a vertex is considered to beits choice of a leader, then we can contract the original graph as if a walk phase has been per-formed. We use m= log n processors to relabel the edges and remove dead edges as was describedat the beginning of this section. Lemma 7.1 shows that at this point O(n log2 n) edges remain, soO(n log2 n) processors su�ce to perform Step 3, sorting the edges and removing duplicates. Wecan �nish the calculation by �nding connected components in the resulting contracted graph; sincethe number of edges in the graph is O(n log2 n), and since by assumption the number of processorsis pn > n log2 n, this can be done in O(logn log logp n) time with the available processors.This shows that when p > log2 n connected components can be found in O(log n log logp n) timeusing O((m+ pn)= log n) processors. 12

7.2 Removing the AssumptionWe now handle the case p < log2 n. With such a value of p, the running time that we must achieveis O(log n log logn). Assume that in fact p = 1, since this merely restricts us further.It su�ces to �nd a procedure that, in O(log n) time and using (m+n)= log n processors, reducesthe number of vertices by a constant factor. After O(log logn) phases of this procedure, the graphwill have n0 = O(n= log3 n) vertices. The algorithm of the previous section can be applied to solvethis graph in O(log n log log n) time using O(m= log n+ n0 log2 n) = O((m+ n)= log n) processors.We use the same allocation of processors to blocks of log n edges that was used previously,allowing the same simulation of concurrent reads and writes. The following procedure reduces thenumber of vertices in the graph by at least half in O(log n) time using (m+ n)= log n processors:1. For each vertex, compute the identity of its largest and smallest neighbors. To �nd themaximum, each edge (i; j) concurrently writes j to vertex i, letting multiple writes yield themaximum value written. Then do the same for the minimum value.2. It is necessarily the case that either half the vertices have a larger neighbor or that half thevertices have a smaller neighbor. Which case we are in can be determined in O(log n) timeusing n= log n processors and the information from the previous step. Assume the �rst case;the other can be handled the same way.3. Vertices with no larger neighbors are leaders, as before. The largest vertex j that is a neighborof a non-leader vertex i becomes the parent of i as before. We mark the edge (i; j) in i's edgelist, as well as its twin edge (j; i) in j's edge list.4. Each vertex i can now identify its children: it examines its edges (i; j) and checks which oneswere marked in the previous step.5. Since each vertex can identify both parent and children, Euler tour techniques can be usedto transform each tree of parent pointers into a list of the vertices in the tree, and to let eachvertex identify its leader.6. Having identi�ed leaders, relabel the edge list precisely as was done in Section 7.17. Since there is a linked list of vertices for each leader, and since each vertex has a contiguouslist of its edges, we have an implicit linked list of all the edges that will be incident to a givenleader after the graph is contracted. This allows us to use optimal list ranking to count thenumber of edges belonging to each leader in O(logn) time with n= logn processors, and rankthem.8. Take a length n array, and write into the kth position the number of edges belonging to k if kis a leader, and 0 otherwise. Then, using array compaction, each leader can �nd the numberof edges belonging to the leaders that precede it in the contracted graph.9. The list ranking information just described su�ces to determine the position each edge shouldbe copied to in the edge array of the contracted graph, so the copying can be done in O(log n)time.Note that duplicate edges do not a�ect this procedure, so they can be ignored until we have reducedto the n-processor scenario. Lemma 7.1, used to reduce to m= log n processors, holds even whenduplicate edges exist. It will be necessary to remove duplicates from the set of m= log n edges thatwe sample for the �rst application of the random walk algorithm, but the m= log n processors thatwe have are su�cient to do this by sorting. 13

8 ConclusionSince the publication of the preliminary version of this paper [KNP92], Halperin and Zwick [HZ94]have used it to derive a work and processor optimal randomized EREW connected componentsalgorithm. The obvious remaining open problem is to �nd a deterministic O(log n) time EREWalgorithm for connected components. One way to work towards this goal is to improve on thebounded space universal traversal sequence construction which is used in our deterministic algo-rithm, since any improvement in the space needed immediately yields a faster algorithm. Therealso remains an intriguing gap in the CRCW model, where the best known algorithm has runningtime O(log n) but the best known lower bound is
(log n= log logn).9 AcknowledgmentsThanks to Daphne Koller, who made our collaboration possible. Thanks also to Rajeev Motwaniand Serge Plotkin for helpful discussions.References[AKL*79] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovasz, and C. Racko�. Random Walks,Universal Traversal Sequences and the Complexity of Maze Problems. In Proceedingsof the 20th Annual Symposium on the Foundations of Computer Science, pages 218-223.IEEE Computer Society Press, October 1979.[AS87] B. Awerbuch and Y. Shiloach. New Connectivity and MSF Algorithms for Shu�e-Exchange Network and PRAM. In IEEE Transactions on Computers, C-36(10),pages1258-1263, October 1987.[BF93] G. Barnes and U. Feige. Short Random Walks on Graphs. In Proceedings of the 25thACM Symposium on Theory of Computing, pages 728-737, ACM Press, May 1993[BNS92] L. Babai, N. Nisan and M. Szegedy. Multiparty Protocols, Pseudorandom Generatorsfor Logspace, and Time-Space Trade-o�s. In Journal of Computer and System Sciences,45(2), pages 204-232, 1992.[BR91] G. Barnes, and W. L. Ruzzo. Deterministic Algorithms for Undirected s�t Connectivityusing Polynomial Time and Sublinear Space. In Proceedings of the 23rd ACM Symposiumon Theory of Computing, pages 48-53, ACM Press, May 1991.[CDR86] S. Cook, C. Dwork and R. Reischuk. Upper and Lower Bounds for Parallel RandomAccess Machines without Simultaneous Writes. In SIAM Journal of Computing, 15(1),pages 87-97, February 1986.[CL95] K. Chong and T. Lam. Finding Connected Components in O(log n log log n) Time onthe EREW PRAM. In Journal of Algorithms, 18(3), pages 378-402, May 1995.[CLC82] F. Y. Chin, J. Lam and I. N. Chen. E�cient Parallel Algorithms for some GraphProblems In Communications of ACM, 25(9), pages 659-665, September 1982.[Col88] R. Cole. Parallel Merge-Sort. In SIAM Journal on Computing, 17(4), pages 770-785,August 1988. 14

[CV91] R. Cole and U. Vishkin. Approximate Parallel Scheduling. II. Applications toLogarithmic-Time Optimal Parallel Graph Algorithms. In Information and Compu-tation (formerly Information and Control), 92(1), pages 1-47, May 1991.[DKR94] M. Dietzfelbinger, M. Kutylowski, R. Reischuk. Exact Lower Time Bounds for Comput-ing Boolean Functions on CREW PRAMs. In Journal of Computer and System Sciences,48(2), pages 231-254, April 1994. A preliminary version appeared in SPAA 1992.[Gaz91] H. Gazit. An Optimal Randomized Parallel Algorithm for Finding the Connected Com-ponents of a Graph. In SIAM Journal on Computing, 20(6), pages 1046-1067, 1991. Apreliminary version appeared in FOCS 1986.[HCS79] D. S. Hirschberg, A. K. Chandra and D. V. Sarwate. Computing Connected Componentson Parallel Computers. In Communications of ACM, 22(8),pages 461-464, August 1979.[HZ94] S. Halperin and U. Zwick. An Optimal Randomized Logarithmic Time ConnectivityAlgorithm for the EREW PRAM. In Proceedings of the 6th Annual ACM-SIAM Sym-posium on Parallel Algorithms and Architectures, pages 1-10, ACM 1994.[HZ6] S. Halperin and U. Zwick. Optimal Randomized EREW PRAM Algorithms for FindingSpanning Forests and other Basic Graph Connectivity Problems. In Proceedings of the7th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 438-447, ACM-SIAM,January 1996.[JM91] D.B. Johnson and P. Metaxas. Connected Components in O(log3=2 jV j) Parallel Timefor the CREW PRAM. In Proceedings of the 32nd Annual Symposium on Foundationsof Computer Science,pages 688-697, IEEE Computer Society Press, October 1991.[JM92] D.B. Johnson and P. Metaxas. A Parallel Algorithm for Computing Minimum SpanningTrees. In Proceedings of the 4th Annual ACM Symposium on Parallel Algorithms andArchitectures, pages 363-372, 1992.[KKT95] D. R. Karger, P. N. Klein and R. E. Tarjan. A Randomized Linear-Time Algorithm toFind Minimum Spanning Trees. In Journal of the ACM, 42(2), pages 321-328, 1995.[KNP92] D. R. Karger, N. Nisan and M. Parnas. Fast Connected Components Algorithms for theEREW PRAM. In Proceedings of the 4th Annual ACM-SIAM Symposium on ParallelAlgorithms and Architectures, pages 562-572, 1992.[KR90] R. M. Karp and V. Ramachandran. Parallel Algorithms for Shared-Memory Machines.In Jan van Leeuwen, editor, Handbook of Theoretical Computer Science, volume A, pages869-932, MIT Press, Cambridge, MA, 1990.[Lin] N. Linial. Personal Communication.[Nis92] N. Nisan. Pseudorandom Generators for Space-Bounded Computation. In Combinator-ica, 12(4), pages 449-461, 1992. A preliminary version appeared in STOC 1990.[Nis93] N. Nisan. On Read-Once vs. Multiple Access to Randomness in Logspace. In Theo-retical Computer Science, 107, pages 135-144, 1993. A preliminary version appeared inProceedings of the 5th IEEE Structure in Complexity Theory Conference, 1990.15

[NSW92] N. Nisan, E. Szemeredi and A. Wigderson. Undirected Connectivity in O(log1:5 n) Space.In Proceedings of the 33rd Annual Symposium on Foundations of Computer Science,pages 24-29, IEEE Computer Society Press, October 1992.[SV82] Y. Shiloach and U. Vishkin. An O(log n) Parallel Connectivity Algorithm. In Journalof Algorithms, 3: pages 57-67, 1982.

16

