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of the solution returned by the algorithm to the valueof the optimum solution. (This de�nition is for min-imization problems; for maximization problems thede�nition is inverted so that the ratio is always atleast 1.)The approximation properties of di�erent prob-lems vary a great deal (see [Shm94] for a survey).We know that unless P = NP, problems such asclique [FGL+91, AS92, ALM+92] and chromatic num-ber [LY93] cannot be approximated even within a fac-tor of n� in polynomial time. Others problems, suchas those related to graph separators [LR88], have al-gorithms with approximation ratios close to O(logn)and no non-trivial lower bounds. Still others, suchas the maximum cut problem, can be approximatedto within some �xed constant factor [GW94]. Only afew problems, such as bin packing [KK82] and knap-sack problems [IK75], are known to have polynomialtime approximation schemes (PTASs).A PTAS gives, for any �xed � > 0, a polynomialtime algorithm with approximation ratio 1 + �. APTAS is a valuable approximation algorithm, since itallows us to trade o� the accuracy of the approxima-tion with the running time. (Note that the de�nitionof a PTAS allows the algorithm's running-time to de-pend arbitrarily on �.)However, recent results show that unless P = NP,PTASs do not exist for many NP-hard problems, in-cluding all MAX-SNP-hard problems such as vertexcover, maximum 3-satis�ability, maximum cut, met-ric TSP, and multiway cuts (see [ALM+92, PY91]).Note that the inapproximability results mentionedabove, like all NP-hardness results, rule out approx-imation only on worst case instances of the prob-lem. They do not rule out the existence of algorithms(heuristics) that do well on most instances.



1.1 Our ResultsThis paper gives PTASs for a large class of NP-hardproblems on dense instances. Density is a property ofthe problem instance; for example, dense graphs aregraphs with 
(n2) edges, while dense 3-SAT formulasare those with 
(n3) clauses. Note that almost allgraphs (in the probabilistic sense) are dense, as arealmost all 3-SAT instances.Our techniques apply, in a uniform way, to a broadspectrum of problems, which otherwise seem to havevarious degrees of hardness (at least on general|i.e.,non-dense|instances). Some, like maximum cut andmaximum k-satis�ability, are MAX-SNP-complete.Thus they do not have PTASs in general, but theycan all be approximated within some constant factorin polynomial time [PY91]. Others, like graph bisec-tion and separation, are not known to be approximablewithin a factor better than O(logn), but also are notknown to be hard to approximate. It is notable thatexisting weak-approximation algorithms do not evengive a bisection, but instead give a 1=3 : 2=3 cut ofthe graph that approximates the minimum bisectionin value. Our PTAS gives an exact bisection.Most of our PTASs are instances of a general ap-proximation algorithm for certain smooth integer pro-grams of low degree, which might �nd other applica-tions.Two ideas underlie our general approach. To un-derstand the �rst, consider the (undirected) maximumcut problem, in which the goal is to partition the ver-tices of a graph into two groups|called the left andright sides|so as to minimize the number of edgeswith an endpoint on each side. Notice that in the op-timium solution, every vertex has the majority of itsneighbors on the opposite side of the partition (else,it would improve the cut to move the vertex to theother side). Thus, if we knew where the neighborsof each vertex lay, we would know where to put eachvertex. This argument may seem circular, but thecircularity can be broken (in dense graphs) by thefollowing exhaustive sampling approach. Suppose wetake a sample of O(logn) vertices. By exhaustivelytrying all possible (i.e., 2O(logn)) placements of thevertices in the sample, we will eventually guess whereeach vertex of the sample belongs in the optimum cut.So assume we have partitioned the sampled verticescorrectly according to the optimal cut. Now considersome unsampled vertex. With high probability, someof its neighbors were sampled (high probability means

probability 1� n�
(1)). Furthermore, if a majority ofits neighbors belong on the right side of the optimumcut, then we expect that a majority of its sampledneighbors will be from the right side of the optimumcut. This suggests the following scheme: put each un-sampled vertex on the side opposite the majority ofits sampled neighbors.This scheme works well for vertices whose opposite-side neighbors signi�cantly outnumber their same-sideneighbors. More problematic are vertices for which theneighbors split evenly between the two sides; samplingwill not typically give us con�dence about the major-ity side. This brings us to the second major idea ofour paper: by examining the sampled neighbors of avertex, we can estimate what fraction of its neighborslie on each side of the optimum cut. The collection ofthese estimates|one per vertex|allows us to turn theclassical quadratic program for MAX-CUT into an in-teger linear program whose solution approximates thesolution to the quadratic program. This lets us �nd anapproximate solution using the randomized roundingtechniques of Raghavan and Thompson [RT87].Generalizations of these ideas work for dense in-stances of the following problems:MAX-CUT: Partition the vertices of an undirectedgraph into two groups so as to maximize the num-ber of edges with exactly one endpoint in eachgroup. A :878-approximation algorithm is givenin [GW94].MAX-DICUT: The directed version of the MAX-CUTproblem. A :859-approximation algorithm isgiven in [FG95] (improving [GW94]).MAX-HYPERCUT(d): A generalization of MAX-CUTto hypergraphs of dimension d; an edge is consid-ered cut if it has at least one endpoint on eachside.BISECTION: Partition the vertices of an undirectedgraph into two equal halves so as to mini-mize the number of edges with exactly one end-point in each half. No good approximationalgorithm exists that output the actual bisec-tion. But some algorithms, including those us-ing eigenvalues ([BH92]) or simulated annealing([JS93]) do well on certain random graphs (seealso [BCLS84]).SEPARATOR: Partition the vertices of a graph intotwo groups each with at least 1=3 of the verticesso as to minimize the number of crossing edges.An algorithm in [LR88] achieves approximation



ratio O(logn).MAX-k-SAT: Given a k-CNF formula, �nd a true-falseassignment to the variables making the maxi-mum possible number of clauses true. An algo-rithm in [Yan92] approximates it within a factor3=4. This has recently been improved to 0:758([GW94]).MIN-k-CUT: Given an n-vertex graph with k sourcevertices, partition the graph vertices into k groupssuch that (i) each group contains one sourceand (ii) the number of edges with endpointsin di�erent groups is minimized. A (2 � 1=k)-approximation is given in [DJP+92].DENSE-k-SUBGRAPH: Given a graph, �nd a sub-set of k vertices that induces a graph with themost possible edges. This problem was stud-ied in [KP93], where an approximation algorithmwith ratio n2=5 was presented.3-COLORING: Color the vertices of a graph with 3colors such that no two adjacent vertices have thesame color.Exact optimization is NP-hard for each of theseproblems, typically by a reduction from the non-denseto the dense case. We now de�ne a natural notion ofdense instance for each problem. Exact optimizationremains NP-hard on dense instances for all of themexcept MIN-k-CUT and 3-COLORING.De�nition 1.1 A graph is �-dense if it has �n2=2edges. It is everywhere-�-dense if the minimum de-gree is �n. We abbreviate 
(1)-dense as dense andeverywhere-
(1)-dense as everywhere-dense. Thuseverywhere-dense implies dense, but not vice versa.Similarly, a k-SAT formula is dense if it has 
(nk)clauses, and a dimension-d hypergraph if it has 
(nd)edges.Theorem 1.2 Everywhere-dense instances of all theproblems listed above have PTASs.Theorem 1.3 Dense(and thus everywhere-dense) instances of the followingproblems have PTASs: MAX-CUT, MAX-DICUT,MAX-k-SAT for any constant k, MAX-k-CUT fork = o(n) , DENSE-k-SUBGRAPH for k = 
(n), andMAX-HYPERCUT(d).Theorem 1.4 Exact algorithms exist on everywhere-dense graphs for MIN-k-CUT when k = o(n) and for3-COLORING.

Note: There are stronger forms of some of the aboveresults that we omit from this abstract. To give anexample, we can solve BISECTION and SEPARA-TOR on dense graphs exactly when the objective isO(n). We also note that the 3-COLORING result isnot new|see [Edw86].As mentioned earlier, the PTASs share common de-sign principles, and are quite similar to the MAX-CUT algorithm outlined above. A better unifyingframework turns out to be a general approximationalgorithm for low-degree integer programs with a cer-tain smoothness condition. Most of the above PTASsare subcases of this general algorithm, though BISEC-TION and MIN-k-CUT require additional ideas. Fur-ther, in Section 4.1, we will give a plausible de�ni-tion of denseness for the class MAX-SNP de�ned in[PY91]. Our algorithm for approximating low-degreeinteger programs gives a PTAS for all dense MAX-SNP problems.De�nition 1.5 A smooth degree-d integer programhas the formmaximize p(x1; : : : ; xn)subject to xi 2 f0; 1g 8i � n (1)where p(x1; : : : ; xn) is a degree-d polynomial in whichthe coe�cient of each degree-i monomial (term) isO(nd�i). The program could involve minimization in-stead of maximization.Smooth integer programs represent many combina-torial problems in a natural way.Example 1 A smooth degree-2 integer program hasthe formmaximize Paijxixj +P bixi + csubject to xi 2 f0; 1g 8i � nwhere each aij = O(1), bi = O(n), c = O(n2).We show how to represent MAX-CUT on the graphG = (V;E). De�ne a variable xi for each vertex vi.Then, assign 0; 1 values to the xi so as to maximize12 Xfi;jg2E(xi(1� xj) + xj(1� xi)):(Notice, an edge fi; jg contributes 1 to the sum whenxi 6= xj and 0 otherwise.) Expanding the sum showsthat the coe�cients of the quadratic terms are 0 and�1 while the coe�cients of the linear terms are O(n).



Theorem 1.6 Let OPT be the maximum value of theobjective function in the IP in Equation (1). For each�xed � > 0 there is a polynomial-time algorithm thatproduces a 0; 1 assignment for the xi satisfyingp(x1; : : : ; xn) � OPT� �nd:For minimization problems the solution satis�esp(x1; : : : ; xn) � OPT+ �nd:Related WorkThere are known examples of problems which areseemingly easier to approximate in dense graphs thanin general graphs. For instance, in graphs withdegree more than n=2, the following problems aresolved: �nding Hamiltonian cycles [Po76] and approx-imating the number of perfect matchings [JS89]. Ineverywhere-dense graphs it is easy to approximate thevalues of the Tutte polynomial and, as a special case,to estimate the reliability of a network [AFW94].Vega [dlV94] has independently developed a PTASfor everywhere-dense MAX-CUT using principles sim-ilar to ours; however, his algorithm does not appearto generalize to the other problems we have listed.Edwards [Edw86] shows how to 3-color a 3-colorableeverywhere-dense graph in polynomial time. Our sam-pling approach gives an alternative algorithm.The exhaustive sampling approach also appears, ina di�erent context, in [KPa92].2 Approximating Smooth IPsThis section describes the proof of Theorem 1.6.For simplicity, we describe the proof for the case ofquadratic programs, and then merely outline a prooffor the general case.The proof uses two lemmas. The �rst is a standardfact about estimating the sum of n numbers using ran-dom sampling.Lemma 2.1 (Sampling Lemma) Let p be the sumof n numbers a1; : : : ; an, each O(1). When we pick arandom subset of s = O(logn=�2) numbers and com-pute their sum q, with high probability qn=s lies in therange [p� �n; p+ �n].

In other words, we can sample to estimate the sum towithin an additive error of �n.The next lemma, due to Raghavan and Thomp-son [RT87] shows how to round approximate linear in-teger programs by solving the corresponding fractionalprogram and then rounding the fractional solutions tointegers.Lemma 2.2 (Randomized Rounding) Let x =(xi) be a vector of n variables, 0 � xi � 1, that sat-is�es certain linear constraints aix = bi, where eachai = O(1). Construct yi randomly by setting yi = 1with probability xi and 0 otherwise. Then with highprobability, aiy = bi + O(pn logn).Now we state and prove Theorem 1.6 for quadraticprograms. For simplicity we describe a randomizedalgorithm. Later we show how to derandomize it.Theorem 2.3 Suppose there is a 0; 1 solution to thequadratic integer programxAx+ bx � c; (2)where x is a vector of n variables, A is an n�n matrixwith entries O(1), b is a vector of length n, with entriesO(n), and c is a constant. Then for any �xed �, intime nO(1=�2) we can �nd an assignment of 0; 1 valuesto x such that xAx+ bx � c� �n2:Proof: The main idea is to reduce the instance ofquadratic programming to an instance of linear pro-gramming, and then use the Raghavan-Thompsontechnique to round the fractional solution to a 0; 1solution. The reduction runs in time nO(1=�2), and ismeaningful only when c > �n2, the nontrivial case ofthe theorem.Denote by x� some value for x that satis�es Equa-tion (2). Rewrite the formula xAx + bx as Pi rixi,where r(x) = xA+ b, so that ri =Pxjaji + bi. Sup-pose that we knew the value r� = x�A + b. Thenconsider the following set of linear equations:xA+ b = r�r�x � c ; 0 � x � 1Note that the above system has a feasible 0; 1 solu-tion, namely x�. In polynomial time we can solve thesystem by linear programming, obtaining a fractional



solution x. Randomized rounding of this solution(Lemma 2.2) gives, with high probability, a 0; 1 solu-tion y such that yai+ bi = r�i +O(pn logn). Further-more, since each r�i = O(n), we know that with highprobability we will have r�y � c�O(n) �O(pn logn):Then yAy + by = (yA + b)y= r�y � O(n3=2plogn)� c� O(n3=2plogn):Of course, this all depends on our assumption thatthe values r�i are available. We will shortly show thatin polynomial time, it is possible to estimate thesevalues, �nding ri such that jr�i � rij < �n. We showthat the above idea works even with such estimates.De�ne a slightly di�erent linear program:max rxxA+ b � r + �nxA+ b � r � �n0 � x � 1:(For a vector v and scalar s, the notation v+s denotesthe vector with ith component vi + s.)As before, x� demonstrates that there is a feasible0; 1 solution to this system for which the objectivefunction is rx� = r�x� � (r� � r)x� � c� �n2. Again,solve the system by linear programming, and let x bethe fractional solution thus obtained. Note rx � rx�.Let � = xA+ b � r, so that j�ij < �n and thus j�yj ��n2. If we now proceed according to the randomizedrounding scheme above, we will get yi such that ry �rx�O(n3=2plogn). Thus,yAy + by = (yA + b)y= (yA + b� (xA + b))y + �y + ry� O(n3=2plogn)� �n2+(c � �n2 �O(n3=2plogn))� c� (2�+ o(1))n2It remains to prove that we can estimate r� to withinthe desired accuracy. To do so we give a randomizedmethod to produce nO(1=�2) estimates for r�, one ofwhich is accurate. This is good enough, since we canrun the above algorithm for each estimate and choosethe answer that works best.

The estimation method is a generalization of thesampling approach for MAX-CUT outlined in Sec-tion 1.1. Choose a set S of k = O((logn)=�2) in-dices at random. Exhaustively go through each of the2k = nO(1=�2) ways of assigning values 0 or 1 to eachvariable whose index is in S. For each assignment,produce an estimate r of r� by settingri = bi + nkXj2S aijsjwhere sj is the value assigned to the jth variable. Notethat trying all possible assignments ensures that wetry the \correct" assignment, namely, one in whichsj = x�j for each j 2 S. Call the estimate correspond-ing to this assignment the special estimate.To �nish the proof, it su�ces to show that the spe-cial estimate approximates r� with additive error �n,as desired. To do so, use the Sampling Lemma (2.1).Consider one sum r�i = aix� + bi. Since bi is a con-stant, it su�ces to estimate Paijx�j . By samplingand guessing values for O(��2 logn) of the variablesx�j , we determine the values of the same number ofterms aijx�j in the the sum for r�i . Since each aijx�j isO(1), the Sampling Lemma tells us that this sampleof term values lets us estimate r�i to within �n withprobability 1�1=2n. We conclude that with probabil-ity at least 1� n=2n = 1=2, all n sums are estimatedcorrectly.The proof of Theorem 1.6 for integer programs of de-gree exceeding 2 goes via an induction on degree. Justas we randomly reduced (in an approximate sense) aquadratic program to a linear program, we can reducedegree-d programs to degree-(d � 1) programs.2.1 DerandomizationDerandomizing the algorithm in Theorem 2.3 involvesderandomizing its components: randomized round-ing and the Sampling Lemma. Raghavan [R88] de-randomized the former through the method of condi-tional probabilities. Derandomizations of the Sam-pling Lemma appear in [BR94] and [BGG93]. Forexample, instead of picking s = O(logn=�2) verticesindependently, it su�ces to pick the vertices encoun-tered on a random walk of length O(logn=�2) on aconstant degree expander [Gil93]. The number of suchwalks is nO(1=�2), so our algorithm can deterministi-cally go through all possible choices.



3 ApplicationsIn this section we use our theorem on approximat-ing constant-degree smooth integer programs to con-struct PTASs for (dense instances of) many problems.Most applications require approximating quadraticprograms. Approximating dense MAX-k-SAT re-quires approximating degree-k integer programs. Ob-taining PTASs for graph bisection and minimum k-way cut requires some additional ideas, speci�cally, adi�erent application of the Sampling Lemma.3.1 MAX-CUT, MAX-DICUT,MAX-HYPERCUTNote that a �-dense graph has at least �n2 edges. Thusthe capacity c of the maximum cut exceeds �n2=2,since this is the expected size of a cut obtained byrandomly assigning each vertex to one side of thegraph or the other with equal probability. We al-ready saw in Example 1 how to represent MAX-CUTusing smooth quadratic integer programs with coef-�cient bound O(1). Using the approximation schemefor quadratic programs in Theorem 2.3, we can in timenO(1=�2�2) �nd a cut of value at least c � ��n2=2 �(1� �)c, in other words a (1� �) approximation to themaximum cut.MAX-DICUT has a similar PTAS. Again, an ex-pected case argument shows that the maximum cutin a �-dense graph exceeds �n2=4. The representa-tion by a quadratic program is also similar; in thequadratic program for MAX-CUT in Example 1 justreplace (xi(1�xj)+xj(1�xi)) in the objective func-tion by (1� xi)xj .The PTAS for dense MAX-HYPERCUT(d) is simi-larly obtained by modelling the problems as a smoothdegree-d IP.3.2 MAX-k-SATWe show how to represent MAX-k-SAT as a degree-k smooth IP. Let y1; : : : ; yn be the variables and mbe the number of clauses. Introduce 0; 1 valued vari-ables x1; : : : ; xn. For each i, 1 � i � n, replace eachunnegated occurence of variable yi by 1 � xi, eachnegated occurence by xi, the logical _ by multipli-cation (over integers), and for each clause subtractthe resulting term from 1. Thus a clause changesinto a degree-k polynomial. To give an example,

the clause y1 _ :y2 _ y3 is replaced by the term1� (1� x1)x2(1� x3). Now associate, in the obviousway, 0; 1 assignments to the variables xi with truthassignments to the boolean variables yi. Clearly, anassignment of values to the xi makes the term 1 if thecorresponding assignment to the yi makes the clauseTRUE, and 0 otherwise.Let tj be the term obtained in this way from the jthclause. The following degree-k program represents theMAX-k-SAT instance, and is smooth.maximize Pj�m tj(x1; : : : ; xn)subject to xi 2 f0; 1g 8iNow suppose the number of clauses m is at least�nk. Let OPT be the maximum number that anyassignment can satisfy. Since the number of clausesof size k is m � O(nk�1), and a random assignmentsatis�es each of them with probability 1�2�k, we haveOPT � (1� 2�k)(m �O(nk�1)):Using our general theorem on approximatingdegree-k balanced programs with coe�cient boundO(1), we can in time O(n2k=�2) �nd an assignmentthat satis�es OPT � �2knk clauses, which is at least(1� �)OPT.3.3 BISECTION and SEPARATORIn this section we describe a PTAS for BISECTION;the PTAS for SEPARATOR is similar and is not de-scribed. Let the graph have minimum degree �n for� > 0 and let k denote the capacity of the minimumbisection. The PTAS consists of two di�erent algo-rithms, one of which is a PTAS when k � �n2, andthe other when k < �n2 (where � is a certain smallconstant).The algorithm for k � �n2 is essentially our al-gorithm for approximating smooth quadratic integerprograms. Note that we can formulate graph bisec-tion using the same quadratic program as for MAX-CUT (see Example 1), except we change \maximize"to \minimize," and add the constraint Pxi = n=2.Although smooth integer programs with added linearconstraints were not previously discussed, they canclearly be solved the same way as before (i.e., solvinglinear programs and then using randomized rounding).When the capacity of the minimum bisection, k, isat least �n2, our algorithm for approximating integer



programs gives us an assignment to the xi that makesthe objective function less than k+ �n2 � k(1 + �=�).There is a slight problem, though: this 0; 1 assign-ment might not induce a bisection, since it only ap-proximately satis�es the constraintPxi = n=2. How-ever, the error introduced by the randomized round-ing (Lemma 2.2) is small: on a linear system thatincludes the (fractional) constraint Pxi = n=2, the0=1 values obtained after rounding satisfy Pxi 2[n=2 � O(pn logn)]. Hence we need to move onlyO(pn logn) vertices from one side to another in orderto balance the cut. This a�ects the bisection value byat most O(n1:5 logn) = o(n2).The case k � �n2 is more di�cult. We need thefollowing lemma.Lemma 3.1 In a minimum bisection, there is oneside whose every vertex has at most half its neighborson the other side.Proof: If not, then we can reduce the cut value bypicking from each side a vertex that has more thanhalf its neighbors on the other side and switchingthem.Let Lopt and Ropt denote the sets of vertices on thetwo sides of a particular minimum bisection. Withoutloss of generality, we will assume that Lopt is the sidereferred to in Lemma 3.1.The algorithm is given in Figure 3.3. For simplicity,we describe it as a randomized algorithm, although wecan easily derandomize it using the techniques men-tioned earlier.Now we prove the correctness of the algorithm.Since it exhaustively tries all possible partitions of thevertices in the sample S, it also tries the \correct" par-tition, which labels each of the vertices of S accord-ing to a minimum bisection (Lopt; Ropt) of the entiregraph. From now on we call this partition (Sl ; Sr) ofS special. We will show that with high probability(over the choice of S) the special partition leads thealgorithm to a near-optimum graph bisection.Let T be the set constructed by the �rst step of thealgorithm using the special partition. The next lemmadescribes some useful properties of T .Lemma 3.2 With high probability (over the choice ofS), T is a subset of Ropt, and contains every vertexthat has more than 3=4 of its neighbors in T (note thatsuch a vertex must be in Ropt).

1. Pick a set S of O((logn)=�2) vertices at ran-dom.2. For each possible partition of S into two sets(Sl ; Sr), construct a partition (L;R) as follows.(a) Let T be the set of vertices that have morethan 5=8 of their neighbors in Sr .(b) Put T in R.(c) For each vertex v 62 T , de�ne bias(v) as#(neighbors of v not in T )� #(neighbors of v in T ):(d) Put the n=2�jT j vertices with the small-est bias into R.3. Of all bisections, output the one with thesmallest value.Figure 1: The Bisection AlgorithmProof: Let v be any vertex. Since its degree exceeds�n, the Sampling Lemma implies that with high prob-ability a random sample of size O((logn)=�2) contains�(logn) neighbors of v.Suppose v 2 Lopt, and so has fewer than 1=2 ofits neighbors in Ropt. Then an application of theSampling Lemma shows that in a random sample of�(logn) neighbors of v, the probability that more than5=8 of them are in Ropt is 1= poly(n). Hence the prob-ability that v 2 T is 1= poly(n).Now suppose v is has more than 3=4 of its neighborsin Ropt. An application of the Sampling Lemma showsthat in a random sample of O(logn) neighbors of v,the probability that more than 5=8 of them are in Roptis 1� 1= poly(n). Hence the probability that v 2 T is1� 1= poly(n).The next lemma says that with high probability, Thas size close to n=2.Lemma 3.3 If T satis�es the two conditions inLemma 3.2 then jT j � n2 (1� 8k�n2 ).Proof: Every vertex in Ropt� T must have 1=4 of itsneighbors in Lopt. Let s = jRopt � T j = n=2�jT j. Thevalue of the minimumbisection is at least s�n=4, whichby assumption is at most k. Hence s � 4k=(�n).The following lemma shows that with high proba-bility the algorithm produces a bisection close to op-



timum.Theorem 3.4 Assuming k < �n2, with high proba-bility (over the choice of S) the bisection produced bythe special partition has value at most k(1 + �), where� = 16�2=�2.Proof: With high probability, the set T produced inthe �rst phase satis�es the conditions in Lemma 3.2.Hence T � Ropt, and s = n=2� jT j � 4k=(�n).For any set U � T ; jU j = s, let din(U ) be twicethe number of edges with both endpoints in U , andlet dout(T ) be the number of edges with exactly oneendpoint in T . Further, let bias(U ) be the sum of thebiases of vertices in U . We claim that the capacity ofthe bisection whose one side is T [ U isdout(T ) + bias(U ) � din(U ): (3)To see this, note that the expression starts by countingall edges leaving T . The bias term then subtracts theedges crossing from U to T while adding the edgescrossing from U to the other side of the cut. Thebias term also incorrectly adds (twice, once for eachendpoint) the number of edges with both endpoints inU , which do not cross the cut; however, this quantity issubtracted by the din(U ) term, resulting in the correctquantity.Let U� = Ropt � T be the optimum way to extendT to Ropt and let Uactual be the set of s vertices thatthe algorithm picks to actually extend R.Since U� minimizes Equation (3), we know k =dout(T ) + bias(U�) � din(U�). On the other hand,Uactual (since it includes the s vertices with the small-est bias) minimizes bias(U ), and thus also the ex-pression dout(T ) + bias(U ). Thus the capacity of thebisection whose one side is T [ Uactual is at mostk + din(U�) � din(Uactual), which is at most k + s2 �k+(4k=(�n))2. Since k < �n2 the capacity is at mostk(1 + 16�2=�2).If the minimum degree is not constrained, butthe average degree is 
(n), our randomized round-ing scheme still works for large bisection values, butour other algorithm for small bisection values fails. Sothe question of a PTAS for bisection on dense graphsremains open.

4 MIN-k-CUTLet �n denote the minimum degree. Note that theoptimum cut has value at most kn, since that is thecapacity of a cut in which k�1 of the sources form sin-gleton groups, while all other vertices form the remain-ing group. It follows that O(k) vertices can have morethan 1=4 of their 
(n) neighbors in di�erent groupsfrom their own.First suppose k is constant. Then, by picking arandom sample of O(logn) vertices and doing an ex-haustive search on it (just as in the other algorithms),identify for each vertex the group which contains morethan 1=4 of its neighbors. The Sampling Lemma showsthat this fails to place or misplaces only those verticeswith more than 1=4 of their neighbors in a group otherthan their own, i.e. O(k) vertices. Now try all O(kk)possible assignments of these O(k) vertices to groups.One of them gives the optimum cut.When k is large (but still o(n)) this approach stillworks. We claim that the minimum k-source cut hasa special form: O(1) groups of size 
(n), and all othergroups of size 1 (containing only the sources). It fol-lows that exhaustive sampling as described above al-lows us to identify the non-singleton groups exactly.To see that the claim is true, assume the minimumk-way cut contains a group of more than 1 but lessthan �n=2 vertices. Then each vertex in this groupcan have at most �n=2 neighbors within the group andmust therefore have at least �n=2 neighbors outsidethe group. This implies that the value of this cut isat least (�n=2)2. If k = o(n), this contradicts the factthat the minimum cut is at most kn.A similar result holds for the problem withoutsources, where the goal is simply to �nd the best par-tition into k nonempty groups of vertices.4.1 Dense MAX-SNPAs pointed out in [PY91], problems such as MAX-CUT, MAX-k-SAT, MAX-HYPERCUT(d), etc. liein a class called MAX-SNP (also called MAX-SNP0in [Pap94]). Owing to the model-theoretic nature ofthe de�nition of MAX-SNP, it is unclear how to de�nedenseness for MAX-SNP problems. In fact, problemssuch as vertex cover are in MAX-SNP only if the de-gree of the graph is bounded. In this section we give aplausible de�nition of denseness and show that underthis de�nition, all dense MAX-SNP problems have a



PTAS.Let MAX-k-FUNCTION-SAT be the problem inwhich the input consists of m boolean functionsf1; f2; : : : in n variables, and each fi depends onlyupon k variables. The objective is to assign valuesto the variables so as to satisfy as many fi's as possi-ble. As is well-known (see [Pap94], Theorem 13.8),a MAX-SNP problem can be viewed as a MAX-k-FUNCTION-SAT problem for some �xed integer k.We call an instance of a MAX-SNP problem denseif the instance of MAX-k-FUNCTION-SAT producedusing it has 
(nk) functions. It is easily checked thatour earlier de�nitions of denseness were subcases ofthis de�nition. Also, not all MAX-SNP problems havea dense version under this de�nition; for example ver-tex cover is excluded.A slight modi�cation of the technique of Section 3.2shows that MAX-k-FUNCTION-SAT can be repre-sented by a smooth degree-k integer program, so itfollows that dense MAX-k-FUNCTION-SAT has aPTAS.5 ConclusionWe suspect that our technique of approximately re-ducing quadratic programs to linear programs mightbe useful in nondense instances of problems. Ofcourse, the exhaustive random sampling we use fails,but some other approximationmethod could plausiblyreplace it. If such an approximation method can befound, it would probably also improve performance ondense instances, by removing the error due to the sam-pling lemma. Note that the error introduced by theRaghavan-Thompson technique (an additive error ofO(n1:5 logn)) in our approximation algorithm is muchsmaller than that introduced by the sampling.Does a good approximation algorithm exist for gen-eral BISECTION? What about an inapproximabilityresult? Our results suggest how not to try to proveinapproximability results. Recall that the standardway to prove the NP-completeness of BISECTIONuses the fact that balanced MAX-CUT is just BI-SECTION on the complementary graph. BalancedMAX-CUT (like unrestricted MAX-CUT) is MAX-SNP hard, and therefore has no PTAS. However, theoperation of taking the complement of a sparse graphyields a dense graph, for which we have just givenapproximation algorithms for MAX-CUT. Hence theMAX-SNP-hardness proof does not extend to BISEC-
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