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1 IntroductionSome of the central open problems in the area of parallel algorithms are those of devising NCalgorithms for s-t minimum cuts and maximum 
ows, maximum matchings, and depth-�rst searchtrees. There are RNC algorithms for all of these problems [26, 31, 3]. The problem of �nding globalminimum cuts belongs to this category of unsolved derandomization problems, and is representativein that obtaining an NC algorithm for the case of directed graphs would resolve the other deran-domization questions [20]. We take a (possibly small) step towards resolving these open problemsby presenting the �rst NC algorithm for the min-cut problem in weighted undirected graphs. Ourresults extend to minimum multi-way cuts and to the problem of enumerating all approximatelyminimal cuts.The min-cut problem is de�ned as follows: given a multigraph with n vertices and m (possiblyweighted) edges, we wish to partition the vertices into two non-empty sets S and T so as to minimizethe number of edges crossing from S to T (if the graph is weighted, we wish to minimize the totalweight of crossing edges). We distinguish the minimum cut problem from the s-t minimum cutproblem, where we require that two speci�ed vertices s and t be on opposite sides of the cut; in theminimum cut problem there is no such restriction. Our work deals only with minimum cuts. Weassume that the graph is connected, since otherwise the problem is trivial. The value of a minimumcut in an unweighted graph is also called the graph's edge connectivity.The min-cut problem has numerous applications in many �elds. The problem of determiningthe connectivity of a network arises frequently in the study of network design and network relia-bility [11]. (Recently Karger [23] has shown that enumerating all nearly minimum cuts is the keyto a fully polynomial time approximation scheme for the all terminal network reliability problem.)Picard and Queyranne [34] survey many other applications of weighted minimum cuts. In informa-tion retrieval, minimum cuts have been used to identify clusters of topically related documents inhypertext systems [7]. Padberg and Rinaldi [33] discovered that the solution of minimum cut prob-lems was the computational bottleneck in cutting-plane based algorithms for the traveling salesmanproblem and many other combinatorial problems whose solutions induce connected graphs. Ap-plegate [5] also observed that a faster algorithm for �nding all minimum cuts might accelerate thesolution of traveling salesman problems.The approach we take is typical of derandomization techniques that treat random bits as aresource. We develop a randomized algorithm, and then show that it can be made to work usingfew random bits. If we can reduce the number of bits the algorithm needs to examine for a size-nproblem to O(logn) without a�ecting its probability of correctness, then we know that it runscorrectly on at least some of these small random inputs. Therefore, by trying all nO(1) possibleO(logn)-bit random inputs, we ensure that we will run correctly at least once and thus �nd thecorrect answer (this requires that we can check which of our many answers is correct, but here thatjust involves comparing the values of the cuts that are found).The NC algorithm we devise is clearly impractical; it serves to demonstrate the existence of adeterministic parallel algorithm rather than to indicate what the \right" such algorithm is.A preliminary version of this paper has appeared earlier as an extended abstract [24]. A moreextensive version of this article and its context can be found in the �rst author's dissertation [21].1.1 Previous WorkThe �rst minimum cut algorithms used the duality between s-t minimum cuts and maximum
ows [13, 14]. An s-t max-
ow algorithm can be used to �nd an s-t minimum cut, and by takingthe minimum over all �n2� possible choices of s and t, a minimum cut may be found. Until recently,2



the best sequential algorithms for �nding minimum cuts used this approach [17]. Parallel solutionsto the min-cut problem have also been studied. Goldschlager, Shaw and Staples [16] showed thatthe s-t min-cut problem on weighted directed graphs is P-complete. A simple reduction [20, 21]shows that the (unrestricted) min-cut problem is also P-complete in such graphs.For unweighted graphs, any RNC matching algorithm can be combined with a well-known re-duction of s-t maximum 
ows to matching [26] to yield RNC algorithms for s-t minimum cuts. Byperforming n of these computations in parallel, we can solve the min-cut problem in RNC. Foran input graph with n vertices and m edges, the RNC matching algorithm of Karp, Upfal andWigderson [26] runs in O(log3 n) time using O(n6:5) processors, while the one due to Mulmuley,Vazirani and Vazirani [31] runs in O(log2 n) time using O(n3:5m) processors. The processor boundsare quite large, and the technique does not extend to graphs with large edge weights. No deter-ministic parallel algorithm is known. Indeed, derandomizing max-
ow on unweighted, undirectedgraphs is equivalent to derandomizing maximum bipartite matching|a problem that has long beenopen. A reduction in [20, 21] shows that the global min-cut problem for directed graphs is alsoequivalent.1.2 Contraction-Based AlgorithmsRecently, a new paradigm has emerged for �nding minimum cuts in undirected graphs [32, 20, 25].This approach is based on contracting graph edges. Given a graph G and an edge (u; v), contracting(u; v) means replacing u and v with a new vertex w and transforming each edge (x; u) or (x; v) intoa new edge (x; w). Any (u; v) edge turns into a self loop on w and can be discarded.A key fact is that contracting edges cannot decrease the minimum cut. The reason is that anycut in the contracted graph corresponds to a cut of exactly the same value in the original graph|ifu and v were contracted to w, then a vertex partition (A;B) in the contracted graph with w 2 Acorresponds to a partition (A [ fu; vg � fwg; B) in the original graph that cuts the same edges.Let us �x a particular minimum cut, which from now on we will refer to as the minimum cut (theremay be as many as �n2� [12, 20]). The power of contractions comes from their interaction with cuts.If we contract an edge that is not in the minimum cut, then the minimum cut in the contractedgraph is equal to the minimum cut in the original graph.Several contraction-based minimum cut algorithms have recently been developed. They all workby contracting non-min-cut edges until the graph has been reduced to two vertices. These twovertices de�ne a cut in the original graph. If no min-cut edge is contracted, then the correspondingcut must be a minimum cut. The edges connecting the two vertices correspond to the cut edges.Nagamochi and Ibaraki [32] used graph contraction to develop an O(mn + n2 log2 n)-time al-gorithm for the min-cut problem. In O(m+n log n) time they �nd a sparse connectivity certi�cate(i.e., a subgraph that contains all the min-cut edges) that excludes some edge of the graph. Thisedge can be contracted without a�ecting the minimum cut. Constructing a sparse certi�cate toidentify an edge to contract requires O(m+ n logn) time and must be done n times; thus the run-ning time. Matula [29] used the Nagamochi-Ibaraki certi�cate algorithm in a linear time algorithmfor �nding a (2+ �)-approximation to the minimum cuts|the change is to use the sparse certi�cateto identify a large number of edges that can be contracted simultaneously.Karger [20] observed that a randomly selected graph edge is unlikely to be in the minimum cut;it followed that repeated random selection and contraction of graph edges could be used to �nd aminimum cut. This led to the Contraction Algorithm, the �rst RNC algorithm for the weightedmin-cut problem, which used mn2 processors. Karger and Stein [25] improved the processor costof the Contraction Algorithm, as well as its sequential running time, to ~O(n2); this is presently the3



most e�cient known min-cut algorithm for weighted graphs.1 A side e�ect of the analysis of [20]was a bound on the number of approximately minimal cuts in a graph; this plays an important rolein our analysis.Luby, Naor and Naor [28] observed that in the Contraction Algorithm it is not necessary tochoose edges randomly one at a time. Instead, given that the min-cut size is c, they randomly markeach edge with probability 1=c, and contract all the marked edges. With constant probability, nomin-cut edge is marked while the number of graph vertices is reduced by a constant factor. Thusafter O(logn) phases of contraction the graph is reduced to two vertices that de�ne a cut. Since thenumber of phases is O(logn) and there is a constant probability of missing the minimum cut in eachphase, there is an n�O(1) probability that no min-cut edge is ever contracted; if this happens thenthe cut determined at the end is the minimum cut. Observing that pairwise-independent markingof edges can be used to achieve the desired behavior, they show that O(logn) random bits su�ceto run a phase. Thus, O(log2 n) bits su�ce to run this modi�ed Contraction Algorithm throughits O(logn) phases.Unfortunately, this algorithm cannot be fully derandomized. It is indeed possible to try all(polynomially many) random seeds for a phase and be sure that one of the outcomes is good (i.e.,contracts non-min-cut edges incident on a constant fraction of the vertices); however, there is noway to determine which outcome is good. In the next phase it is thus necessary to try all possiblerandom seeds on each of the polynomially many outcomes of the �rst phase, squaring the numberof outcomes after two phases. In all, 
(nlogn) combinations of seeds must be tried to ensure thatwe �nd the desired sequence of good outcomes leading to a minimum cut.1.3 Overview of ResultsOur main result is an NC algorithm for the min-cut problem. Our algorithm is not a derandomiza-tion of the Contraction Algorithm but is instead a new contraction-based algorithm. Throughout,we take G to be a multigraph with n vertices, m edges and min-cut value c. Most of the paper dis-cusses unweighted graphs; in Section 6.4 we reduce the weighted graph problem to the unweightedgraph problem. Our algorithm extends to �nding minimum multiway cuts that partition the graphinto r � 2 disconnected pieces.Our algorithm depends upon three major building blocks. The �rst building block (Sections 2and 3) is anNC algorithm that usesm2=n processors to �nd a (2+�)-approximation to the minimumcut. Recall that Matula's sequential algorithm [29] was based on the sequential sparse certi�catealgorithm of Nagamochi and Ibaraki [32] (discussed in the previous section). It repeatedly �nds asparse certi�cate containing all min-cut edges and then contracts the edges not in the certi�cate,terminating after a small number of iterations. Our NC algorithm uses a new parallel sparsecerti�cate algorithm to parallelize Matula's algorithm. A parallel sparse k-connectivity certi�catealgorithm with running time ~O(k) was given by Cheriyan, Kao, and Thurimella [8]; we improvethis in a necessary way by presenting an algorithm that runs in O(logm) time using km processors,and is thus in NC for all k = nO(1).Our next building block (Section 4) uses a result obtained from the analysis of the ContractionAlgorithm. Karger [20] proved that there are only polynomially many cuts whose size is within aconstant factor of the minimum cut. If we �nd a collection of edges that contains one edge fromevery such cut except for the minimum cut, then contracting this set of edges yields a graph withno small cut except for the minimum cut. We can then apply the NC approximation algorithmmentioned in the previous paragraph. Since the minimum cut will be the unique contracted-graph1The notation ~O(f(n)) denotes O(f(n) polylog n). 4



cut within the approximation bounds, it will be found by the approximation algorithm. One canview this approach as a variant on the Isolating Lemma approach used to solve the perfect matchingproblem [31]. As was the case there, the problem is relatively easy to solve if the solution is unique,so the goal is to destroy all but one solution to the problem and then to easily �nd the uniquesolution.Randomization yields a simple solution to this problem: contract each edge independently withprobability �(logn=c). Because the number of small cuts is polynomially bounded, there is asu�cient (larger than one over a polynomial) probability that no edge from the minimum cut iscontracted but one edge from every other small cut is contracted. Of course, our goal is to do awaywith randomization.A step towards this approach is a modi�cation of the Luby, Naor and Naor technique. If wecontract each edge with probability �(1=c), then with constant probability we contract no min-cutedge while contracting edges in a constant fraction of the other small cuts. Pairwise independencein the contracting of edges is su�cient to make such an outcome likely. However, this approachseems to contain the same 
aw as before: 
(logn) phases of selection are needed to contract edgesin all the small cuts, and thus 
(log2 n) random bits are needed.We work around this problem with our third building block (Section 5). The problem of �ndinga good set of edges to contract can be formulated abstractly as the Set-Isolation Problem: givenan unknown collection of sets (the cuts) over a known universe, with one of the unknown setsdeclared \safe," �nd a collection of elements that intersects every set except for the safe one.After giving a simple randomized solution, we show that this problem can be solved in NC bycombining the techniques of pairwise independence [9, 27] with the technique of random walks onexpanders [4]. We feel that this combination should have further application in derandomizingalgorithms; similar ideas were used previously to save random bits, e.g., in the work of Bellare,Goldreich and Goldwasser [6].Finally, in Section 6 we apply the above results to �nding minimum cuts, minimum multi-waycuts, and weighted minimum cuts; and to enumerating approximately minimum cuts.2 An Approximation AlgorithmIn the next two sections, we describe an NC algorithm that, for any constant � > 0, �nds a cutwhose value is less than (2+ �) times that of the minimum cut. We use the fact that contracting anon-min-cut edge does not change the value of the minimum cut. We �rst formalize this notion ofcontraction. To contract an edge (v1; v2), we replace both endpoints by a vertex v and let the set ofedges incident on v be the union of the sets of edges incident on v1 and v2. We do not merge edgesfrom v1 and v2 that have the same other endpoint; instead, we create multiple instances of thoseedges. However, we remove self loops formed by edges originally connecting v1 to v2. Formally, wedelete all edges (v1; v2), and replace each edge (v1; w) or (v2; w) with an edge (v; w). The rest ofthe graph remains unchanged.Since contracting a non-min-cut edge does not a�ect the minimum cut, we can �nd the minimumcut by repeatedly �nding and contracting non-min-cut edges. Each time we do this, the number ofgraph vertices decreases by one; thus, after n � 2 iterations, we will have a two vertex graph withan obvious minimum cut. The need to �nd non-min-cut edges motivates the following de�nitionand lemma:De�nition 2.1 A k-jungle is a set of k disjoint forests in G. A maximal k-jungle is a k-junglesuch that no other edge in G can be added to any one of the jungle's forests without creating a cycle5



in that forest.Lemma 2.2 ([32]) A maximal k-jungle contains all the edges in any cut of k or fewer edges.Proof: Consider a maximal k-jungle J , and suppose it contains fewer than k edges of some cut C.Then some forest F in J must have no edge crossing C. Now suppose some edge e from C is notin the forest (if all cut-edges are in the forest, we are done). There is no path in F connecting theendpoints of e, since such a path would have to cross C. Thus e can be added to F , contradictingthe maximality of J . Thus, all edges in C must already be in J .Nagamochi and Ibaraki [32] gave an algorithm for constructing a k-jungle that excluded one non-min-cut edge which could then be contracted. This led to an algorithm with running time O(mn).Subsequently, Matula [29] observed that if we were willing to settle for a (2 + �) approximation tothe minimum cut, we could construct a k-jungle, k > c, that excluded many edges, all of whichcould then be contracted in one step. This allows much faster progress towards a two-vertex graph,leading to a linear-time min-cut algorithm. We show how this algorithm can be parallelized.The approximation algorithm is described in Figure 1. We give it as an algorithm to approximatethe cut value; it is easily modi�ed to �nd a cut with the returned value. The basic idea is toconsider the minimum graph degree � as an approximation to the minimum cut c. Clearly c < �.If (2+ �)c > �, then our approximation if good enough. Otherwise, we will see that a k-jungle thatexcludes many edges can be constructed with k > c.Procedure Approx-Min-Cut(multigraph G)1. Let � be the minimum degree of G.2. Let k = �=(2 + �).3. Find a maximal k-jungle.4. Construct G0 from G by contracting all non-jungle edges.5. Return min(�;Approx-Min-Cut(G0)).Figure 1: The Approximation AlgorithmLemma 2.3 Given a graph with minimum cut c, the approximation algorithm returns a valuebetween c and (2 + �)c.Proof: Clearly the value is at least c because it corresponds to some cut the algorithm encounters.That is, the minimum degree vertex in a contracted intermediate graph corresponds to a cut ofthe same value in the original graph. For the upper bound, we use induction on the size of G. Weconsider two cases. If � < (2 + �)c, then since we return a value of at most �, the algorithm iscorrect. On the other hand, if � � (2 + �)c, then k � c. It follows from Lemma 2.2 that the junglewe construct contains all the min-cut edges. Thus no edge in the minimum cut is contracted whileforming G0, so G0 has minimum cut c. By the inductive hypothesis, the recursive call returns avalue between c and (2 + �)c.Lemma 2.4 There are O(logm) levels of recursion in the approximation algorithm.6



Proof: If G has minimum degree �, then summing over vertices, G must have at least �n edge-endpoints, and thus at least �n=2 edges. On the other hand, the graph G0 that we constructcontains only jungle edges; since each forest of the jungle contains only n� 1 edges, G0 can have atmost k(n� 1) = �(n � 1)=(2 + �) edges. It follows that each recursive step reduces the number ofedges in the graph by a constant factor; thus at a recursion depth of O(logm) the problem can besolved trivially.Note that the extra � factor above 2 is needed to ensure a signi�cant reduction in the numberof edges at each stage and thus keep the recursion depth small. The depth of recursion is in fact�(��1 logm).Each step of this algorithm, except for Step 3, can be implemented in NC using m processors.Since the number of iterations is 0(logm), the running time of this algorithm isO(T (m;n) polylogm)where T (m;n) is the time needed to construct a maximal jungle. It only remains to show how toconstruct a maximal k-jungle in NC.3 Finding Maximal JunglesThe notation needed to describe this construction is somewhat complex, so �rst we give someintuition. To construct a maximal jungle, we begin with an empty jungle and repeatedly augmentit by adding additional edges from the graph until no further augmentation is possible. Considerone of the forests in the jungle. The non-jungle edges that may be added to that forest withoutcreating a cycle are just the edges that cross between two di�erent trees of that forest. We let eachtree claim some such edge incident upon it. Hopefully, each forest will claim and receive a largenumber of edges, thus signi�cantly increasing the number of edges in the jungle.Two problems arise. The �rst is that several trees may claim a particular edge. However, thearbitration of these claims can be transformed into a matching problem and solved in NC. Anotherproblem is that since each tree is claiming an edge, a cycle might be formed when the claimed edgesare added to the forest - for example, two trees may each claim an edge connecting those two trees.We will remedy this problem as well.3.1 AugmentationsDe�nition 3.1 An augmentation of a k-jungle J = fF1; : : : ; Fkg is a collection A = fE1; : : : ; Ekgof k disjoint sets of non-jungle edges from G. At least one of the sets Ei must be non-empty. Theedges of Ei are added to forest Fi.De�nition 3.2 A valid augmentation of J is one that does not create any cycles in any of theforests of J.Fact 3.3 A jungle is maximal if and only if it has no valid augmentation.Given a jungle, it is convenient to view it in the following fashion. We construct a reduced(multi)graph GF for each forest F . For each tree T in F , the reduced graph contains a reducedvertex vT . For each edge e in G that connects trees T and U , we add an edge eF connecting vT andvU . Thus, the reduced graph is what we get if we start with G and contract all the forest edges.Since many edges can connect two forests, the reduced graph may have parallel edges. An edge eof G may induce many di�erent edges, one in each forest's reduced graph.Given any augmentation, the edges added to forest F can be mapped to their correspondingedges in GF , inducing an augmentation subgraph of the reduced graph GF .7



Fact 3.4 An augmentation is valid if and only if the augmentation subgraph it induces in eachforest's reduced graph is a forest.Care should be taken not to confuse the forest F with the forest that is the augmentationsubgraph of GF .3.2 The Augmentation AlgorithmOur construction proceeds in a series of O(logm) phases in which we add edges to the jungle J .In each phase we �nd a valid augmentation of J whose size is a constant fraction of the largestpossible valid augmentation. Since we reduce the maximum possible number of edges that can beadded to J by a constant fraction each time, and since at the beginning the maximum number ofedges we can add is at most m, J will have to be maximal after O(logm) phases.To �nd a large valid augmentation, we solve a maximal matching problem on a bipartite graphH . Let one vertex set of H consist of the vertices vT in the various reduced multigraphs, i.e., thetrees in the jungle. Let the other vertex set consist of one vertex ve for each non-jungle-edge e inG. Connect each reduced vertex vT of GF to ve if eF is incident on vT in GF . Equivalently, we areconnecting each tree in the jungle to the edges incident upon it in G. Note this means each edge inGF is a valid augmenting edge for F . To bound the size of H , note that each vertex ve will have atmost 2k incident reduced-graph edges, because it will be incident on at most 2 trees of each forest.Thus the total number of edges in H is O(km).Lemma 3.5 A valid augmentation of J induces a matching in H of the same size.Proof: Consider a valid augmentation of the jungle. We set up a corresponding matching in Hbetween the edges of the augmentation and the reduced vertices as follows. For each forest F inJ , consider its reduced multigraph GF . Since the augmentation is valid, the augmenting edges inGF form a forest (Fact 3.4). Root each tree in this forest arbitrarily. Each non-root reduced vertexvT has a unique augmentation edge eF leading to its parent. Since edge e is added to F no otherforest F 0 will use edge eF 0 , so we can match vT to ve. It follows that every augmentation edge ismatched to a unique reduced vertex.Lemma 3.6 Given a matching in H, a valid augmentation of J of size at least half the size of thematching can be constructed in NC.Proof: If edge e 2 G is matched to reduced vertex vT 2 GF , tentatively assign e to forest F .Consider the set A of edges in GF that correspond to the G-edges assigned to F . The edges ofA may induce cycles in GF , which would mean (Fact 3.4) that A does not correspond to a validaugmentation of F . However, if we �nd an acyclic subset of A then the G-edges corresponding tothis subset will form a valid augmentation of F .To �nd this subset, arbitrarily number the vertices in the reduced graph GF . Direct each edgein A away from the reduced vertex to which it was matched (so each vertex has outdegree one), andsplit the edges into two groups: A0 � A are the edges directed from a smaller numbered to a largernumbered vertex, and A1 � A are the edges directed from a larger numbered to a smaller numberedvertex. One of these sets, say A0, contains at least half the edges of A. However, A0 creates nocycles in the reduced multigraph. Its (directed) edges can form no cycle obeying the edge directions,since such a cycle must contain an edge directed from a larger numbered to a smaller numberedvertex. On the other hand, any cycle disobeying the edge directions must contain a vertex with8



outdegree two, an impossibility. It follows that the edges of A0 form a valid augmentation of F ofat least half the size of the matching.If we apply this construction to each forest F in parallel, we get a valid augmentation of thejungle. Furthermore, each forest will gain at least half the edges assigned to it in the matching, sothe augmentation has the desired size.Theorem 3.7 Given G and k, a maximal k-jungle of G can be found in NC using O(km) proces-sors.Proof: We begin with an empty jungle and repeatedly augment it. Given the current jungle J ,construct the bipartite graph H as was previously described and use it to �nd an augmentation.Let a be the size of a maximum augmentation of J . Lemma 3.5 shows that H must have amatching of size a. It follows that any maximal matching in H must have size at least a=2, sinceat least one endpoint of each edge in any maximum matching must be matched in any maximalmatching. Several NC algorithms for maximal matching exist|for example, that of Israeli andShiloach [19]. Lemma 3.6 shows that after we �nd a maximal matching, we can (in NC) transformthis matching into an augmentation of size at least a=4. If we add these augmentation edges, theresulting graph has a maximum augmentation of at most 3a=4 (since it can be combined with theprevious size a=4 augmentation to get an augmentation of the starting graph). Since we reduce themaximum augmentation by 3=4 each time, and since the maximum jungle size is m, the numberof augmentations needed to make a J maximal is O(logm). Since each augmentation is found inNC, the maximal jungle can be found in NC.The processor cost of this algorithm is dominated by that of �nding the matching in the graphH . The algorithm of Israeli and Shiloach requires a linear number of processors, and is being runon a graph of size O(km).Corollary 3.8 A (2 + �)-approximate minimum cut can be found in NC using m2=n processors.Proof: A graph with m edges has a vertex with degree O(m=n); the minimum cut can there-fore be no larger. It follows that our approximation algorithm will construct k-jungles withk = O(m=n).4 Reducing to ApproximationIn this section, we show how the problem of �nding a minimum cut in a graph can be reduced tothat of �nding a 3-approximation.2 Our technique is to \kill" all cuts of size less than 3c otherthan the minimum cut itself. The minimum cut is then the only cut of size less than 3c, and thusmust be the output of the (2+ �)-approximation algorithm of Section 2 if we run it with � = 1. Toimplement this idea, we focus on a particular minimum cut that partitions the vertices of G intotwo sets A and B. Consider the graphs induced by A and B.Lemma 4.1 The minimum cuts in A and in B have value at least c=2.2We reduce to 3-approximation for simplicity. Should this approach ever become practical, it will most likely bemore e�cient to reduce to (2 + �)-approximation for some smaller �.9



Proof: Suppose A has a cut into X and Y of value less than c=2. Only c edges go from A = X [Yto B, so one of X or Y (say X) must have at most c=2 edges leading to B. Since X also has lessthan c=2 edges leading to Y , the cut (X;X) has value less than c, a contradiction.Theorem 4.2 ([20]) There are O(n2�) cuts of value at most � times the minimum.Combining Lemma 4.1 and Theorem 4.2, it follows that in each of A and B, every cut has valueat least c=2 and there are O(n6) cuts of value less than 3c. Note these are not the small cuts in G,but rather those in the graphs induced by A and B. Call these cuts the target cuts.Lemma 4.3 Let Y be a set containing edges from every target cut but not the minimum cut. Ifevery edge in Y is contracted, then the contracted graph has a unique cut of weight less than 3c|theone corresponding to the original minimum cut.Proof: Clearly contracting the edges of Y does not a�ect the minimum cut. Now suppose thiscontracted graph had some other cut C of value less than 3c. It corresponds to some cut of thesame value in the original graph. Since it is not the minimum cut, it must induce a cut in eitherA or B, and this induced cut must also have value less than 3c. This induced cut is then a targetcut, so one of its edges will have been contracted. But this prevents C from being a cut in thecontracted graph, a contradiction.It follows that after contracting Y , running the approximation algorithm of Section 2 on thecontracted graph will reveal the minimum cut, since the actual minimum cut is the only one that issmall enough to meet the approximation criterion. Our goal is thus to �nd a collection of edges thatintersects every target cut but not the minimum cut. This problem can be phrased more abstractlyas follows: Over some universe U , an adversary selects a polynomially sized collection of \target"sets of roughly equal size (the small cuts' edge sets), together with a disjoint \safe" set of aboutthe same size (the min-cut edges). We want to �nd a collection of elements that intersects everytarget set but not the safe set. Note that we do not know what the target or safe sets are, but wedo have an upper bound on the number of target sets. We proceed to formalize this problem asthe Set-Isolation Problem.5 The Set-Isolation ProblemWe describe a general form of the Set-Isolation Problem. Fix a universe U = f1; : : : ; ug of size u.De�nition 5.1 A (u; k; �) set-isolation instance consists of a safe set S � U and a collection of ktarget sets T1, : : :, Tk � U such that� � > 0 is a constant,� for 1 � i � k, jTij � �jSj, and� for 1 � i � k, Ti \ S = ;.We will use the notation that s = jSj, ti = jTij, and t = �s � ti. It is important to keep inmind that the value of s is not speci�ed in a set-isolation instance but, as will become clear shortly,it is reasonable to assume that it is known explicitly. Finally, while the safe set S is disjoint fromall the target sets, the target sets may intersect each other.10



De�nition 5.2 An isolator for a set-isolation instance is a set that intersects all the target setsbut not the safe set.An isolator is easy to compute (even in parallel) for any given set-isolation instance providedthe sets S, T1, : : :, Tk are explicitly speci�ed. However, our goal is to �nd an isolator in the settingwhere only u, k and � are known, but the actual sets S, T1, : : :, Tk are not speci�ed. We canformulate this as the problem of �nding a universal isolating family.De�nition 5.3 A (u; k; �)-universal isolating family is a collection of subsets of U that containsan isolator for any (u; k; �) set-isolation instance.To see that this general formulation captures our cut isolation problem, note that the minimumcut is the safe set in an (m; k; �) set-isolation instance. The universe is the set of edges, of size m;the target sets are the small cuts of the two sides of the minimum cut; k is the number of suchsmall cuts and (by Lemmas 4.1 and 4.2) can be bounded by polynomial in n < m; and � = 1=2since each target cut has size at least c=2 (by Lemma 4.1). The safe set size s is the min-cut size c.If we had an (m; k; �)-universal isolating family then one of the sets in it would be an isolatorfor the set-isolation instance corresponding to the minimum cut. By Lemma 4.3, contracting all theedges in this set would isolate the minimum cut as the only small cut. If the size of the universalfamily was polynomial in m and k, we could try each set in the universal family in parallel in NC,and be sure that one such set isolates the minimum cut so that the approximation algorithm can�nd it.In Section 7, we give an NC algorithm for constructing a polynomial-size (in u and k) (u; k; �)-universal isolating family. Before doing so, we give the details of how it can be used to solve theminimum cut problem in NC.6 Minimum-Cuts and ExtensionsWe start by solving the min-cut problem for unweighted graphs. To extend this result to weightedgraphs, we must �rst digress to �nding minimum multiway cuts (minimum sets of edges thatpartition the graph into more than two parts) and approximately minimum cuts (cuts with valuenearly equal to the minimum cut). The weighted minimum cut problem is then solved by reductionto these problems.6.1 Unweighted Minimum CutsWe �rst consider the unweighted min-cut problem. We have already shown (in Section 4) thatall we need to do is solve the Set-Isolation Problem for the nO(1) small cuts on both sides of theminimum cut. In our case, the universe size u is just the number of graph edges m, the safeset size is c = O(m=n) (which we can estimate to within a factor of 3 using the approximationalgorithm), and there are nO(1) target sets. Thus in NC we can generate and try all members of auniversal isolating family of mO(1) sets. One of the sets we try will be an isolator for our problem,intersecting all small cuts except for the minimum cut. When we contract the edges in this set,running the approximation algorithm on the contracted graph will �nd the minimum cut. Thenumber of processors used is mO(1), and the running time polylogarithmic in m. In other words,the minimum cut can be found in NC. 11



6.2 Extension to Multiway CutsThe r-way min-cut problem is to partition a graph's vertices into r nonempty groups so as tominimize the number of edges crossing between groups. An RNC algorithm for constant r appearsin [20], and a more e�cient one in [25]. For constant r, we can use the set-isolation technique tosolve the r-way cut problem in NC. The next lemma reduces to Lemma 4.3 when r = 2.Lemma 6.1 In an r-way min-cut (X1; : : : ; Xr) of value c, each Xi has minimum cut at least2c=(r� 1)(r+ 2).Proof: Assume that set X1 has a cut (A;B) of value w. We prove the lemma by lower-boundingw. Suppose that two sets Xi and Xj are connected by more than w edges (where 1 6= i 6= j 6= 1).Then merging Xi and Xj and splitting X1 into A and B would yield an r-way cut of smaller value,a contradiction. Summing over �r�12 � pairs Xi and Xj , it follows that the total number of cut edgesnot incident on X1 can be at most �r�12 �w.Now suppose that more than 2w edges connect X1 and some Xj for j 6= 1. Then more thanw edges lead from Xj to either A or B, say A. Thus splitting X1 into A and B and merging Awith Xj would produce a smaller r-way cut, a contradiction. It follows that the number of edgesincident on X1 can be at most 2(r� 1)w.Combining the previous two arguments, we see that the r-way cut value c must satisfyc �  r � 12 !w + 2w(r� 1);implying the desired result.Combining the two previous lemmas shows that there is a polynomial-sized set of target cutsthat we can eliminate with the set-isolation technique to isolate the minimum r-way cut.Theorem 6.2 On unweighted graphs, the r-way min-cut problem can be solved in NC for anyconstant r.Proof: We proceed exactly as in the two-way min-cut case. Consider the minimum r-way cut(X1; : : : ; Xr) of value c. By the previous lemma, the minimum cut in each component is at least2c=(r� 1)(r+ 2). Thus by Lemma 4.3 the number of cuts in each Xi whose size is less than 2c isO(n2(r�1)(r+2)), a polynomial for constant r. It follows that we can �nd a universal isolating familycontaining an isolator for the minimum r-way cut. Contracting the edges in this isolator yields agraph in which each component of the r-way minimum cut has no small cut. Then the (2-way)minimum cut in this contracted graph must be a \part of" the r-way minimum cut. More precisely,it cannot cut any one of the Xi, so each Xi is entirely on one or the other side of the cut. We cannow �nd minimum cuts in each of the sides of the minimum cut; again they must be part of ther-way minimum cut. If we repeat this process r times, we will �nd the r-way minimum cut.6.3 Extension to Approximate CutsWe can similarly extend our algorithm to enumerate all cuts with value within any constant factormultiple of the minimum cut. This plays an important role in our extension to weighted graphs.12



Lemma 6.3 ([20]) The number of r-way cuts with value within a multiplicative factor of � of ther-way min-cut is O(n2�(r�1)).Lemma 6.4 Let c be the min-cut value in a graph. If (A;B) is a cut with value �c, then theminimum r-way cut in A has value at least (r� �)c=2.Proof: Let fXigri=1 be the optimum r-way cut of A, with value �. Let us contract each Xi to asingle vertex (removing resulting self loops) and sum the degrees of these r vertices two di�erentways. There are � edges (the r-way cut edges) with one endpoint in each of two di�erent Xi. Thiscontributes 2� to the sum of contracted-vertex degrees. There are also �c edges with exactly oneendpoint in A (and thus in sum Xi), namely the edges crossing cut (A;B). These contribute anadditional �c to the sum of degrees. Thus the sum of the degrees of the Xi is 2� + �c. Countinga di�erent way, we know that each Xi has degree no less than the minimum cut, so the sum ofdegrees is at least rc. Thus 2� + �c � rc, and the result follows.Theorem 6.5 For any constant �, all cuts with value at most � times the minimum cut's can befound in NC.Proof: For simplicity, assume without loss of generality that � is an integer. Fix a particular cut(A;B) of value �c. Let r = � + 2. By Lemma 6.4, the minimum r-way cut in A (and in B) hasvalue at least c. Lemma 6.3 says that as a consequence there are nO(1) r-way cuts in A (or B) withvalue less than 3r�c. De�ne a set-isolation instance whose target sets are all such multiway cutsand whose safe set is the cut (A;B). By �nding an isolator for the instance and contracting theedges in it, we ensure that the minimum r-way cut in each of A and B exceeds 3r�c.Suppose that after isolating the cut we want, we run our parallelization of Matula's Algorithm,constructing k-jungles with k = �c. Since the r-way cut is at least 3r�c in each of A and B, atmost (r � 1) vertices in each set have degree less than 6�c. It follows that so long as the numberof vertices exceeds 4r, the number of edges will reduce by a constant factor in each iteration of thealgorithm. In other words, in O(logm) steps, the number of vertices will be reduced to 4r in sucha way that the cut of value �c is preserved. We can �nd it by examining all possible partitions ofthe 4r remaining vertices, since there are only a constant number.There is an obvious extension to approximate multiway cuts; however we omit the notationallycomplicated exposition.6.4 Extension to Weighted GraphsIf the weights in a graph are polynomially bounded integers, we can transform the graph into amultigraph with a polynomial number of edges by replacing an edge of weight w with w parallelunweighted edges. Then we can use the unweighted multigraph algorithm to �nd the minimumcut.If the edge weights are reals, we use the following reduction from [20, 21] to the case of integralpolynomial edge weights. We �rst estimate the minimum cut to within a multiplicative factor ofO(n2). To do so, we simply compute a maximum spanning tree of the weighted graph, and then letw be the weight of the minimum weight edge of this maximum spanning tree. Removing this edgepartitions the maximum spanning tree into two sets of vertices such that no edge of G connectingthem has weight greater than w (else it would be in the maximum spanning tree). Therefore, theminimum cut is at most n2w. On the other hand, the maximum spanning tree has only edges of13



weight at least w, so one such edge crosses every cut. Thus the minimum cut is at least w. Thisestimate can clearly be done in NC.Given this estimate, we can immediately contract all edges of weight exceeding n2w, since theycannot cross the min-cut. Afterwards, the total amount of weight remaining in the graph is atmost n4w. Now multiply each edge weight by n3=w, so that that the minimum cut is scaled to bebetween n3 and n5. If we now round each edge weight to the nearest integer, we will be changingthe value of each cut by at most n2 in absolute terms, implying a relative change by at most a(1+1=n) factor. Thus the cut of minimal weight in the original graph has weight within a (1+1=n)factor of the minimum cut in the new graph. By Theorem 6.5, all such nearly minimum cuts canbe found in NC with the previously described algorithms. All we need to do to �nd the actualminimum cut is inspect every one of the small cuts we �nd in the scaled graph and compute itsvalue according to the original edge weights.7 Solving the Set-Isolation ProblemIt remains to show how to construct a universal isolating family in NC. Our goal is: given U and k,generate a (u; k; �)-universal isolating family of size polynomial in u and k in NC. We �rst give anexistence proof for universal families of the desired size. The proof uses the probabilistic method;for this and other ideas in this section involving randomization, refer to the book by Motwani andRaghavan [30].Theorem 7.1 There exists a (u; k; �)-universal isolating family of size ukO(1) for any constant �.Proof: First assume that the safe set size s, is known explicitly. We use a standard probabilisticexistence argument. Fix attention on a particular set-isolation instance with safe set size s. Supposewe mark each element of the universe with probability (log 2k)=�s, and let the marked elementsform one member of the universal family. With probability k�O(1) the safe set is not marked but allthe target sets are. If so, then the marked elements form an isolator for the given instance. Thus ifwe perform kO(1) trials, we can reduce the probability of not producing an isolator for this instanceto 1=2. If we do this ukO(1) times, then the probability of failure on the instance is 2�ukO(1) . Ifwe now consider all 2ukO(1) set-isolation instances, the probability that we fail to to generate anisolator for all of them during all the trials is less than 1.Now consider the assumption that s is known. It can be removed by performing the aboverandomized marking trial for each value of s in the range 1; : : : ; u; their union would be a universalisolating family. This would increase the size of the family by a factor of u. More e�ciently, sincea constant factor estimate of s su�ces, we could apply the construction for s = 1; 2; 4; 8; : : : ; u andtake the union of the results. This would increase the number of sets in the universal isolatingfamily by a factor of log u but would increase the total size (in number of elements) of all sets inthe family by only a constant factor.It is not very hard to see that this existence proof can be converted into a randomized (RNC)construction of a polynomial size (u; k; �)-universal isolating family. In the application to theminimum cut problem, we only know of an upper bound on the value of k, but it is clear that thissu�ces for the existence proof and the randomized construction. Furthermore, since we can get aconstant factor approximation to the minimum cut, we do not in fact need to construct isolatorsfor all possible values of s, but only for the estimate.14



7.1 Deterministically Constructing Universal FamiliesWe proceed to derandomize the construction of a universal isolating family. As in the randomizedconstruction, we can assume that the safe set size s is known. While performing the derandom-ization, we �x our attention on a particular set-isolation instance, and show that our constructionwill contain an isolator for that instance. It will follow that our construction contains an isolatorfor every instance.Our derandomization happens in two steps. We �rst replace the randomized construction'sfully independent marking by pairwise independent marking, and show that despite this change wehave a good chance of marking any one target set while avoiding the safe set. We then use randomwalks on expanders to let us mark all the target sets simultaneously while avoiding the safe set.7.1.1 Pairwise IndependenceWe �rst show how pairwise independent marking isolates any one target set from the safe set. Theanalysis of the use of pairwise instead of complete independence is fairly standard [9, 27, 30], andthe particular proof given below is similar to that of Luby, Naor, and Naor [28].Choose p = 1=(2 + �)s. Suppose each element of U is marked with probability p pairwiseindependently to obtain a mark set M � U . For any element x 2 U , we de�ne the following twoevents under the pairwise independent marking:� Mx: the event that element x is marked,� Sx: the event that element x is marked but no element of the safe set S is marked.We have that Pr[Mx] = p and the events fMxg are pairwise independent. We say that a mark setis good for Ti if some element of Ti is marked but no element of S is marked, and in that case theset of marked elements M is called a good set for Ti. The mark set is an isolator if it is good forevery Ti.Observe that the mark set M is good for a target set Ti if and only if the event Sx occursfor some element x 2 Ti. The following lemmas help to establish a constant lower bound on theprobability that M is good for Ti.Lemma 7.2 For any element x 2 U n S,Pr[Sx] � p(1� sp):Proof: The probability that x is marked but no element of S is marked can we written as theproduct of the following two probabilities:� the probability that x is marked, and� the probability that no element of S is marked conditional upon x being marked.We obtain that Pr[Sx] = Pr[\j2SMj \Mx]= Pr[\j2SMj j Mx]� Pr[Mx]= (1� Pr[[j2SMj j Mx])� Pr[Mx]� 0@1�Xj2SPr[Mj j Mx]1A� Pr[Mx]:15



Since x 62 S, we have that j 6= x. The pairwise independence of the marking now implies thatPr[Mj j Mx] = Pr[Mj], and so we obtain thatPr[Sx] � 0@1�Xj2S Pr[Mj]1A� Pr[Mx]= (1� sp)p:Lemma 7.3 For any pair of elements x, y 2 U n S,Pr[Sx \ Sy ] � p2:Proof: Using conditional probabilities as in the proof of Lemma 7.2, we have thatPr[Sx \ Sy] = Pr[(Mx \My) \ (\j2SMj)]= Pr[\j2SMj j Mx \My]� Pr[Mx \My]� Pr[Mx \My]= p2;where the last step follows from the pairwise independence of the marking.Theorem 7.4 The probability that the pairwise independent marking is good for any speci�c targetset Ti is bounded from below by a positive constant.Proof: Recall that jTij � t = �s and arbitrarily choose a subset T � Ti such that jT j = t = �s,assuming without loss of generality that t is a positive integer. The probability the mark set M isgood for Ti is given by Pr[[x2TiSx]. We can lower bound this probability as followsPr[[x2TiSx] � Pr[[x2TSx]� Xx2T Pr[Sx]� Xx;y2T Pr[Sx \ Sy];using the principle of inclusion-exclusion. Invoking Lemmas 7.2 and 7.3, we obtain thatPr[[x2TiSx] � tp(1� sp)�  t2!p2� tp(1� sp)� t2p2= �sp(1� sp)� (�sp)2= �2(2 + �) ;where the last expression follows from our choice of sp = 1=(2 + �). Clearly, for any positiveconstant �, the last expression is a positive constant.A pairwise independent marking can be achieved using O(log u+log s) random bits as a seed togenerate pairwise-independent variables for the marking trial [9]. The O(log u) term comes from theneed to generate u random variables; the O(log s) term comes from the fact that the denominator16



in the marking probability is proportional to s. Since s � u, the number of random bits needed togenerate the pairwise independent marking is O(log u).We can boost the probability of success to any desired constant � by using O(1) independentiterations of the random marking process, each yielding a di�erent mark set. This increases the sizeof the seed needed by only a constant factor. We can think of this pairwise independent markingalgorithm as a function f that takes a truly random seed R of O(log u) bits and returns O(1)subsets of U . Randomizing over seeds R, the probability that f(R) contains at least one good setfor target Ti is at least �.7.1.2 Expander WalksThe above construction lets us isolate any one targest set from the safe set with reasonable probabil-ity. The next step is to isolate all target sets simultaneously. We do so by reducing the probabilityof failure from a constant 1 � � to k�O(1), making it unlikely that we fail to mark any one targetset. This relies on the behavior of random walks on expanders.We need an explicit construction of a family of bounded degree expanders, and a convenientconstruction is that of Gabber and Galil [15]. They show that for su�ciently large n, there existsa graph Gn on n vertices with the following properties: the graph is 7-regular; it has a constantexpansion factor; and, for some constant �, the second eigenvalue of the graph is at most 1� �. Thefollowing is a minor adaptation of a result due to Ajtai, Koml�os and Szemer�edi [4] which presentsa crucial property of random walks on the expander Gn. (Refer to Cohen and Wigderson [10], Im-pagliazzo and Zuckerman [18], and Motwani and Raghavan [30] for a formal de�nition of expandersand further details about random walks on expanders.)Theorem 7.5 ([4]) There exist constants �; 
 > 0 such that for any subset B � V (Gn) of sizeat most (1 � �)n and for a random walk of length 
 log k on Gn, the probability that the verticesvisited by the random walk are all from B is O(k�2).Notice that performing a random walk of length 
 log k on Gn requires O(logn+log k) randombits|choosing a random starting vertex requires logn random bits and, since the degree is constant,each step of the walk requires O(1) random bits. We use this random walk result as follows. Eachvertex of the expander corresponds to a seed for the mark set generator f described above; thus,logn = O(log u), implying that we need a total of O(log u + log k) random bits for the randomwalk. Choosing B to be the set of bad seeds for Ti, i.e. those that generate set families containingno good sets for Ti, and noting that by construction B has size (1 � �)n, allows us to prove thefollowing theorem.Theorem 7.6 A (u; k; �) universal family for U of size (uk)O(1) can be generated in NC for anyconstant �.Proof: Use �(log u+log k) random bits in the expander walk to generate �(log k) pseudo-randomseeds. Then use each seed as an input to the mark set generator f . Let H denote the �(log k)sets generated throughout these trials (we give �(log k) inputs to f , each of which generates O(1)sets). Since the probability that f generates a good-for-i set on a random input is �, we can chooseconstants and apply Theorem 7.5 to ensure that with probability 1 � 1=k2, one of our pseudo-random seeds is such that H contains a good set for Ti. It follows that with probability 1� 1=k,H contains good sets for every one of the Ti. Note that the good sets for di�erent targets mightbe di�erent. However, consider the collection C of all possible unions of sets in H . Since H has17



O(log k) sets, C has size 2jH j = kO(1). One set in C consists of the union of all the good-for-some-isets in H ; this set intersects every Ti but does not intersect the safe set, and is thus an isolator forour instance.We have shown that with O(log u+ log k) random bits, we generate a family of kO(1) sets suchthat there is a nonzero probability that one of the sets isolates the safe set. It follows that if we tryall possible O(log u+ log k) bit seeds, one of them must yield a collection that contains an isolator.All these seeds together will generate (uk)O(1) sets, one of which must be the desired one.For a given input seed, the pairwise independent generation of sets by f is easily parallelizable.Given a particular O(log u+log k) bit seed for the expander walk, Theorem 7.5 says that performingthe walk to generate the seeds for f takes O(log u+ log k) time. We can clearly do this in parallelfor all possible seeds. The various sets that are output as a result must contain a solution for anyparticular set-isolation instance; it follows that the output collection is a (u; k; c) universal isolatingfamily.It should be noted that by itself, this set-isolation construction is not su�cient for derandom-ization. Combined directly with the Luby, Naor, and Naor technique [28], it can �nd a set of edgesthat contains an edge incident on each vertex but not any of the minimum cut edges. Unfortu-nately, contracting such an edge set need only halve the number of vertices (e.g., if the edge set is aperfect matching), so 
(logn) phases would still be necessary. This approach would therefore use
(log2 n) random bits, just as [28] did. The power of the technique comes through its combinationwith the approximation algorithm, which allows us to solve the entire problem in a single phasewith O(logn) random bits. This, of course, lets us fully derandomize the algorithm.8 ConclusionWe have shown that, in principle, the minimum cut problem can be solved in NC. This shouldbe viewed as a primarily theoretical result, since the algorithm in its present form is extremelyimpractical. A natural open problem is to �nd an e�cient NC algorithm for minimum cuts. Aneasier goal might be to improve the e�ciency of the approximation algorithm. Our algorithm usesm2=n processors. Matula's sequential approximation algorithm uses only linear time, and the RNCmin-cut algorithm of [25] uses only n2 processors. Also, an RNC (2 + �) approximation algorithmusing only a linear number of processors is given in [22]. These facts suggest that a more e�cientNC algorithm might be possible.We also introduced a new combinatorial problem, the set-isolation problem. This problemseems very natural and it would be nice to �nd further applications for it. Other applications ofthe combination of pairwise independence and random walks would also be interesting.References[1] ACM. Proceedings of the 25th ACM Symposium on Theory of Computing. ACM Press, May1993.[2] ACM-SIAM. Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete Algorithms,Jan. 1993.[3] A. Aggarwal and R. J. Anderson. A random NC algorithm for depth �rst search. Combina-torica, 8:1{12, 1988. 18
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