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Abstract

We show that the minimum cut problem for weighted undirected graphs can be solved in N'C
using three separate and independently interesting results. The first is an (m?/n)-processor N'C
algorithm for finding a (2 + €)-approximation to the minimum cut. The second is a randomized
reduction from the minimum cut problem to the problem of obtaining a (2 4 ¢)-approximation
to the minimum cut. This reduction involves a natural combinatorial Set-Isolation Problem that
can be solved easily in RN C. The third result is a derandomization of this RAN'C solution that
requires a combination of two widely used tools: pairwise independence and random walks on
expanders. We believe that the set-isolation approach will prove useful in other derandomization
problems.

The techniques extend to two related problems: we describe A'C algorithms finding minimum
k-way cuts for any constant k and finding all cuts of value within any constant factor of the
minimum. Another application of these techniques yield an N'C algorithm for finding a sparse k-
connectivity certificate for all polynomially bounded values of k. Previously, an A'C construction
was only known for polylogarithmic values of k.
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1 Introduction

Some of the central open problems in the area of parallel algorithms are those of devising N'C
algorithms for s-t minimum cuts and maximum flows, maximum matchings, and depth-first search
trees. There are RNC algorithms for all of these problems [26, 31, 3]. The problem of finding global
minimum cuts belongs to this category of unsolved derandomization problems, and is representative
in that obtaining an AVC algorithm for the case of directed graphs would resolve the other deran-
domization questions [20]. We take a (possibly small) step towards resolving these open problems
by presenting the first A'C algorithm for the min-cut problem in weighted undirected graphs. Our
results extend to minimum multi-way cuts and to the problem of enumerating all approximately
minimal cuts.

The min-cut problem is defined as follows: given a multigraph with n vertices and m (possibly
weighted) edges, we wish to partition the vertices into two non-empty sets S and 7" so as to minimize
the number of edges crossing from S to 7' (if the graph is weighted, we wish to minimize the total
weight of crossing edges). We distinguish the minimum cut problem from the s-f minimum cut
problem, where we require that two specified vertices s and ¢ be on opposite sides of the cut; in the
minimum cut problem there is no such restriction. Our work deals only with minimum cuts. We
assume that the graph is connected, since otherwise the problem is trivial. The value of a minimum
cut in an unweighted graph is also called the graph’s edge connectivity.

The min-cut problem has numerous applications in many fields. The problem of determining
the connectivity of a network arises frequently in the study of network design and network relia-
bility [11]. (Recently Karger [23] has shown that enumerating all nearly minimum cuts is the key
to a fully polynomial time approximation scheme for the all terminal network reliability problem.)
Picard and Queyranne [34] survey many other applications of weighted minimum cuts. In informa-
tion retrieval, minimum cuts have been used to identify clusters of topically related documents in
hypertext systems [7]. Padberg and Rinaldi [33] discovered that the solution of minimum cut prob-
lems was the computational bottleneck in cutting-plane based algorithms for the traveling salesman
problem and many other combinatorial problems whose solutions induce connected graphs. Ap-
plegate [5] also observed that a faster algorithm for finding all minimum cuts might accelerate the
solution of traveling salesman problems.

The approach we take is typical of derandomization techniques that treat random bits as a
resource. We develop a randomized algorithm, and then show that it can be made to work using
few random bits. If we can reduce the number of bits the algorithm needs to examine for a size-n
problem to O(logn) without affecting its probability of correctness, then we know that it runs
correctly on at least some of these small random inputs. Therefore, by trying all nPM possible
O(log n)-bit random inputs, we ensure that we will run correctly at least once and thus find the
correct answer (this requires that we can check which of our many answers is correct, but here that
just involves comparing the values of the cuts that are found).

The NC algorithm we devise is clearly impractical; it serves to demonstrate the existence of a
deterministic parallel algorithm rather than to indicate what the “right” such algorithm is.

A preliminary version of this paper has appeared earlier as an extended abstract [24]. A more
extensive version of this article and its context can be found in the first author’s dissertation [21].

1.1 Previous Work

The first minimum cut algorithms used the duality between s-f minimum cuts and maximum
flows [13, 14]. An s-t max-flow algorithm can be used to find an s-¢# minimum cut, and by taking
the minimum over all (g) possible choices of s and ¢, a minimum cut may be found. Until recently,



the best sequential algorithms for finding minimum cuts used this approach [17]. Parallel solutions
to the min-cut problem have also been studied. Goldschlager, Shaw and Staples [16] showed that
the s-t min-cut problem on weighted directed graphs is P-complete. A simple reduction [20, 21]
shows that the (unrestricted) min-cut problem is also P-complete in such graphs.

For unweighted graphs, any RAC matching algorithm can be combined with a well-known re-
duction of s-t maximum flows to matching [26] to yield RAC algorithms for s-t minimum cuts. By
performing n of these computations in parallel, we can solve the min-cut problem in RANC. For
an input graph with n vertices and m edges, the RAC matching algorithm of Karp, Upfal and
Wigderson [26] runs in O(log®n) time using O(n%®) processors, while the one due to Mulmuley,
Vazirani and Vazirani [31] runs in O(log® n) time using O(n*°m) processors. The processor bounds
are quite large, and the technique does not extend to graphs with large edge weights. No deter-
ministic parallel algorithm is known. Indeed, derandomizing max-flow on unweighted, undirected
graphs is equivalent to derandomizing maximum bipartite matching—a problem that has long been
open. A reduction in [20, 21] shows that the global min-cut problem for directed graphs is also
equivalent.

1.2 Contraction-Based Algorithms

Recently, a new paradigm has emerged for finding minimum cuts in undirected graphs [32, 20, 25].
This approach is based on contracting graph edges. Given a graph G and an edge (u, v), contracting
(u,v) means replacing u and v with a new vertex w and transforming each edge (z,u) or (z,v) into
a new edge (z,w). Any (u,v) edge turns into a self loop on w and can be discarded.

A key fact is that contracting edges cannot decrease the minimum cut. The reason is that any
cut in the contracted graph corresponds to a cut of exactly the same value in the original graph—if
u and v were contracted to w, then a vertex partition (A, B) in the contracted graph with w € A
corresponds to a partition (AU {u,v} — {w}, B) in the original graph that cuts the same edges.
Let us fix a particular minimum cut, which from now on we will refer to as the minimum cut (there
may be as many as (g) [12, 20]). The power of contractions comes from their interaction with cuts.
If we contract an edge that is not in the minimum cut, then the minimum cut in the contracted
graph is equal to the minimum cut in the original graph.

Several contraction-based minimum cut algorithms have recently been developed. They all work
by contracting non-min-cut edges until the graph has been reduced to two vertices. These two
vertices define a cut in the original graph. If no min-cut edge is contracted, then the corresponding
cut must be a minimum cut. The edges connecting the two vertices correspond to the cut edges.

Nagamochi and Ibaraki [32] used graph contraction to develop an O(mn 4 n?log® n)-time al-
gorithm for the min-cut problem. In O(m 4 nlogn) time they find a sparse connectivity certificate
(i.e., a subgraph that contains all the min-cut edges) that excludes some edge of the graph. This
edge can be contracted without affecting the minimum cut. Constructing a sparse certificate to
identify an edge to contract requires O(m + nlogn) time and must be done n times; thus the run-
ning time. Matula [29] used the Nagamochi-Ibaraki certificate algorithm in a linear time algorithm
for finding a (2 + €)-approximation to the minimum cuts—the change is to use the sparse certificate
to identify a large number of edges that can be contracted simultaneously.

Karger [20] observed that a randomly selected graph edge is unlikely to be in the minimum cut;
it followed that repeated random selection and contraction of graph edges could be used to find a
minimum cut. This led to the Contraction Algorithm, the first RAC algorithm for the weighted
min-cut problem, which used mn? processors. Karger and Stein [25] improved the processor cost
of the Contraction Algorithm, as well as its sequential running time, to O~(n2); this is presently the



most efficient known min-cut algorithm for weighted graphs.! A side effect of the analysis of [20]
was a bound on the number of approzimately minimal cuts in a graph; this plays an important role
in our analysis.

Luby, Naor and Naor [28] observed that in the Contraction Algorithm it is not necessary to
choose edges randomly one at a time. Instead, given that the min-cut size is ¢, they randomly mark
each edge with probability 1/¢, and contract all the marked edges. With constant probability, no
min-cut edge is marked while the number of graph vertices is reduced by a constant factor. Thus
after O(logn) phases of contraction the graph is reduced to two vertices that define a cut. Since the
number of phases is O(log n) and there is a constant probability of missing the minimum cut in each
phase, there is an n~?() probability that no min-cut edge is ever contracted; if this happens then
the cut determined at the end is the minimum cut. Observing that pairwise-independent marking
of edges can be used to achieve the desired behavior, they show that O(logn) random bits suffice
to run a phase. Thus, O(log? n) bits suffice to run this modified Contraction Algorithm through
its O(logn) phases.

Unfortunately, this algorithm cannot be fully derandomized. It is indeed possible to try all
(polynomially many) random seeds for a phase and be sure that one of the outcomes is good (i.e.,
contracts non-min-cut edges incident on a constant fraction of the vertices); however, there is no
way to determine which outcome is good. In the next phase it is thus necessary to try all possible
random seeds on each of the polynomially many outcomes of the first phase, squaring the number
of outcomes after two phases. In all, Q(n!°8") combinations of seeds must be tried to ensure that
we find the desired sequence of good outcomes leading to a minimum cut.

1.3 Overview of Results

Our main result is an A'C algorithm for the min-cut problem. Our algorithm is not a derandomiza-
tion of the Contraction Algorithm but is instead a new contraction-based algorithm. Throughout,
we take G to be a multigraph with n vertices, m edges and min-cut value ¢. Most of the paper dis-
cusses unweighted graphs; in Section 6.4 we reduce the weighted graph problem to the unweighted
graph problem. Our algorithm extends to finding minimum multiway cuts that partition the graph
into r > 2 disconnected pieces.

Our algorithm depends upon three major building blocks. The first building block (Sections 2
and 3) is an N'C algorithm that uses m?/n processors to find a (24¢)-approximation to the minimum
cut. Recall that Matula’s sequential algorithm [29] was based on the sequential sparse certificate
algorithm of Nagamochi and Ibaraki [32] (discussed in the previous section). It repeatedly finds a
sparse certificate containing all min-cut edges and then contracts the edges not in the certificate,
terminating after a small number of iterations. Our ANC algorithm uses a new parallel sparse
certificate algorithm to parallelize Matula’s algorithm. A parallel sparse k-connectivity certificate
algorithm with running time O(k) was given by Cheriyan, Kao, and Thurimella [8]; we improve
this in a necessary way by presenting an algorithm that runs in O(log m) time using km processors,
and is thus in VC for all k = nC(),

Our next building block (Section 4) uses a result obtained from the analysis of the Contraction
Algorithm. Karger [20] proved that there are only polynomially many cuts whose size is within a
constant factor of the minimum cut. If we find a collection of edges that contains one edge from
every such cut except for the minimum cut, then contracting this set of edges yields a graph with
no small cut except for the minimum cut. We can then apply the A'C approximation algorithm
mentioned in the previous paragraph. Since the minimum cut will be the unique contracted-graph

!The notation O(f(n)) denotes O(f(n) polylog n).



cut within the approximation bounds, it will be found by the approximation algorithm. One can
view this approach as a variant on the Isolating Lemma approach used to solve the perfect matching
problem [31]. As was the case there, the problem is relatively easy to solve if the solution is unique,
so the goal is to destroy all but one solution to the problem and then to easily find the unique
solution.

Randomization yields a simple solution to this problem: contract each edge independently with
probability ©(logn/c). Because the number of small cuts is polynomially bounded, there is a
sufficient (larger than one over a polynomial) probability that no edge from the minimum cut is
contracted but one edge from every other small cut is contracted. Of course, our goal is to do away
with randomization.

A step towards this approach is a modification of the Luby, Naor and Naor technique. If we
contract each edge with probability ©(1/¢), then with constant probability we contract no min-cut
edge while contracting edges in a constant fraction of the other small cuts. Pairwise independence
in the contracting of edges is sufficient to make such an outcome likely. However, this approach
seems to contain the same flaw as before: Q(logn) phases of selection are needed to contract edges
in all the small cuts, and thus Q(log® n) random bits are needed.

We work around this problem with our third building block (Section 5). The problem of finding
a good set of edges to contract can be formulated abstractly as the Set-Isolation Problem: given
an unknown collection of sets (the cuts) over a known universe, with one of the unknown sets
declared “safe,” find a collection of elements that intersects every set except for the safe one.
After giving a simple randomized solution, we show that this problem can be solved in NC by
combining the techniques of pairwise independence [9, 27] with the technique of random walks on
expanders [4]. We feel that this combination should have further application in derandomizing
algorithms; similar ideas were used previously to save random bits, e.g., in the work of Bellare,
Goldreich and Goldwasser [6].

Finally, in Section 6 we apply the above results to finding minimum cuts, minimum multi-way
cuts, and weighted minimum cuts; and to enumerating approximately minimum cuts.

2 An Approximation Algorithm

In the next two sections, we describe an A'C algorithm that, for any constant ¢ > 0, finds a cut
whose value is less than (2 + ¢) times that of the minimum cut. We use the fact that contracting a
non-min-cut edge does not change the value of the minimum cut. We first formalize this notion of
contraction. To contract an edge (v1,v2), we replace both endpoints by a vertex v and let the set of
edges incident on v be the union of the sets of edges incident on v; and vy. We do not merge edges
from »1 and vy that have the same other endpoint; instead, we create multiple instances of those
edges. However, we remove self loops formed by edges originally connecting »; to vo. Formally, we
delete all edges (v1,vz2), and replace each edge (vy,w) or (ve,w) with an edge (v, w). The rest of
the graph remains unchanged.

Since contracting a non-min-cut edge does not affect the minimum cut, we can find the minimum
cut by repeatedly finding and contracting non-min-cut edges. Fach time we do this, the number of
graph vertices decreases by one; thus, after n — 2 iterations, we will have a two vertex graph with
an obvious minimum cut. The need to find non-min-cut edges motivates the following definition
and lemma:

Definition 2.1 A k-jungle is a set of k disjoint forests in G. A maximal k-jungle is a k-jungle
such that no other edge in G' can be added to any one of the jungle’s forests without creating a cycle



in that forest.
Lemma 2.2 ([32]) A mazimal k-jungle contains all the edges in any cut of k or fewer edges.

Proof: Consider a maximal k-jungle .J, and suppose it contains fewer than k edges of some cut C.
Then some forest F in J must have no edge crossing €. Now suppose some edge e from C is not
in the forest (if all cut-edges are in the forest, we are done). There is no path in F' connecting the
endpoints of e, since such a path would have to cross C'. Thus e can be added to F, contradicting
the maximality of J. Thus, all edges in C' must already be in J. ]

Nagamochi and Ibaraki [32] gave an algorithm for constructing a k-jungle that excluded one non-
min-cut edge which could then be contracted. This led to an algorithm with running time O(mn).
Subsequently, Matula [29] observed that if we were willing to settle for a (2 + ¢) approximation to
the minimum cut, we could construct a k-jungle, & > ¢, that excluded many edges, all of which
could then be contracted in one step. This allows much faster progress towards a two-vertex graph,
leading to a linear-time min-cut algorithm. We show how this algorithm can be parallelized.

The approximation algorithm is described in Figure 1. We give it as an algorithm to approximate
the cut value; it is easily modified to find a cut with the returned value. The basic idea is to
consider the minimum graph degree é as an approximation to the minimum cut ¢. Clearly ¢ < 6.
If (24 €)c > 4, then our approximation if good enough. Otherwise, we will see that a k-jungle that
excludes many edges can be constructed with & > ¢.

Procedure Approx-Min-Cut(multigraph )

Let ¢ be the minimum degree of G.

Let k =46/(2+ ¢).

Find a maximal k-jungle.

Construct G’ from G by contracting all non-jungle edges.

Return min(é, Approx-Min-Cut(G")).

Ot A~ W N =

Figure 1: The Approximation Algorithm

Lemma 2.3 Given a graph with minimum cut ¢, the approzimation algorithm returns a value
between ¢ and (2 + €)c.

Proof: Clearly the value is at least ¢ because it corresponds to some cut the algorithm encounters.
That is, the minimum degree vertex in a contracted intermediate graph corresponds to a cut of
the same value in the original graph. For the upper bound, we use induction on the size of G. We
consider two cases. If § < (2 4 €)¢, then since we return a value of at most 4, the algorithm is
correct. On the other hand, if 6 > (2 4+ €)c, then k > ¢. It follows from Lemma 2.2 that the jungle
we construct contains all the min-cut edges. Thus no edge in the minimum cut is contracted while
forming G’, so G’ has minimum cut c¢. By the inductive hypothesis, the recursive call returns a
value between ¢ and (2 + ¢)c. 0

Lemma 2.4 There are O(logm) levels of recursion in the approximation algorithm.



Proof: If ¢ has minimum degree 4, then summing over vertices, ¢ must have at least én edge-
endpoints, and thus at least én/2 edges. On the other hand, the graph G’ that we construct
contains only jungle edges; since each forest of the jungle contains only n — 1 edges, G’ can have at
most k(n — 1) = 6(n —1)/(2+ ¢€) edges. It follows that each recursive step reduces the number of
edges in the graph by a constant factor; thus at a recursion depth of O(logm) the problem can be
solved trivially. L]

Note that the extra ¢ factor above 2 is needed to ensure a significant reduction in the number
of edges at each stage and thus keep the recursion depth small. The depth of recursion is in fact
O(e tlogm).

Each step of this algorithm, except for Step 3, can be implemented in N'C using m processors.
Since the number of iterations is 0(log m ), the running time of this algorithm is O(7'(m, n) polylog m)
where T'(m, n) is the time needed to construct a maximal jungle. It only remains to show how to
construct a maximal k-jungle in NC.

3 Finding Maximal Jungles

The notation needed to describe this construction is somewhat complex, so first we give some
intuition. To construct a maximal jungle, we begin with an empty jungle and repeatedly augment
it by adding additional edges from the graph until no further augmentation is possible. Consider
one of the forests in the jungle. The non-jungle edges that may be added to that forest without
creating a cycle are just the edges that cross between two different trees of that forest. We let each
tree claim some such edge incident upon it. Hopefully, each forest will claim and receive a large
number of edges, thus significantly increasing the number of edges in the jungle.

Two problems arise. The first is that several trees may claim a particular edge. However, the
arbitration of these claims can be transformed into a matching problem and solved in A'C. Another
problem is that since each tree is claiming an edge, a cycle might be formed when the claimed edges
are added to the forest - for example, two trees may each claim an edge connecting those two trees.
We will remedy this problem as well.

3.1 Augmentations

Definition 3.1 An augmentation of a k-jungle J = {Fy, ..., Fi} is a collection A = {Fy, ..., Ey}
of k disjoint sets of non-jungle edges from G. At least one of the sets E; must be non-empty. The
edges of E; are added to forest F;.

Definition 3.2 A valid augmentation of J is one that does not create any cycles in any of the

forests of J.
Fact 3.3 A jungle is maximal if and only if it has no valid augmentation.

Given a jungle, it is convenient to view it in the following fashion. We construct a reduced
(multi)graph Gp for each forest F. For each tree T in F, the reduced graph contains a reduced
vertex vr. For each edge e in G that connects trees T and U, we add an edge er connecting vr and
vr. Thus, the reduced graph is what we get if we start with G' and contract all the forest edges.
Since many edges can connect two forests, the reduced graph may have parallel edges. An edge e
of G may induce many different edges, one in each forest’s reduced graph.

Given any augmentation, the edges added to forest F can be mapped to their corresponding
edges in G, inducing an augmentation subgraph of the reduced graph Gp.



Fact 3.4 An augmentation is valid if and only if the augmentation subgraph it induces in each
forest’s reduced graph is a forest.

Care should be taken not to confuse the forest F° with the forest that is the augmentation
subgraph of G'r.

3.2 The Augmentation Algorithm

Our construction proceeds in a series of O(logm) phases in which we add edges to the jungle .J.
In each phase we find a valid augmentation of J whose size is a constant fraction of the largest
possible valid augmentation. Since we reduce the maximum possible number of edges that can be
added to J by a constant fraction each time, and since at the beginning the maximum number of
edges we can add is at most m, J will have to be maximal after O(logm) phases.

To find a large valid augmentation, we solve a maximal matching problem on a bipartite graph
H. Let one vertex set of H consist of the vertices vy in the various reduced multigraphs, i.e., the
trees in the jungle. Let the other vertex set consist of one vertex v, for each non-jungle-edge e in
(. Connect each reduced vertex vy of Gg to v, if ep is incident on vr in G'g. Equivalently, we are
connecting each tree in the jungle to the edges incident upon it in . Note this means each edge in
G'r is a valid augmenting edge for F. To bound the size of I, note that each vertex v. will have at
most 2k incident reduced-graph edges, because it will be incident on at most 2 trees of each forest.
Thus the total number of edges in H is O(km).

Lemma 3.5 A valid augmentation of J induces a matching in H of the same size.

Proof: Consider a valid augmentation of the jungle. We set up a corresponding matching in I
between the edges of the augmentation and the reduced vertices as follows. For each forest F in
J, consider its reduced multigraph Gr. Since the augmentation is valid, the augmenting edges in
G form a forest (Fact 3.4). Root each tree in this forest arbitrarily. Each non-root reduced vertex
vt has a unique augmentation edge er leading to its parent. Since edge e is added to F’ no other
forest F’ will use edge epr, so we can match vy to v.. It follows that every augmentation edge is
matched to a unique reduced vertex. L]

Lemma 3.6 Given a matching in H, a valid augmentation of J of size at least half the size of the
matching can be constructed in NC.

Proof: If edge e € G is matched to reduced vertex vy € G, tentatively assign e to forest F.
Consider the set A of edges in Gy that correspond to the G-edges assigned to F. The edges of
A may induce cycles in G'p, which would mean (Fact 3.4) that A does not correspond to a valid
augmentation of F. However, if we find an acyclic subset of A then the G-edges corresponding to
this subset will form a valid augmentation of F.

To find this subset, arbitrarily number the vertices in the reduced graph G p. Direct each edge
in A away from the reduced vertex to which it was matched (so each vertex has outdegree one), and
split the edges into two groups: Ag C A are the edges directed from a smaller numbered to a larger
numbered vertex, and A; C A are the edges directed from a larger numbered to a smaller numbered
vertex. Omne of these sets, say Ap, contains at least half the edges of A. However, Ay creates no
cycles in the reduced multigraph. Its (directed) edges can form no cycle obeying the edge directions,
since such a cycle must contain an edge directed from a larger numbered to a smaller numbered
vertex. On the other hand, any cycle disobeying the edge directions must contain a vertex with



outdegree two, an impossibility. It follows that the edges of Ag form a valid augmentation of F of
at least half the size of the matching.

If we apply this construction to each forest F'in parallel, we get a valid augmentation of the
jungle. Furthermore, each forest will gain at least half the edges assigned to it in the matching, so
the augmentation has the desired size. ]

Theorem 3.7 Given G and k, a maximal k-jungle of G can be found in NC using O(km) proces-
sors.

Proof: We begin with an empty jungle and repeatedly augment it. Given the current jungle .J,
construct the bipartite graph H as was previously described and use it to find an augmentation.
Let a be the size of a maximum augmentation of J. Lemma 3.5 shows that H must have a
matching of size a. It follows that any maximal matching in H must have size at least a/2, since
at least one endpoint of each edge in any maximum matching must be matched in any maximal
matching. Several NV'C algorithms for maximal matching exist—for example, that of Israeli and
Shiloach [19]. Lemma 3.6 shows that after we find a maximal matching, we can (in NC) transform
this matching into an augmentation of size at least a/4. If we add these augmentation edges, the
resulting graph has a maximum augmentation of at most 3a/4 (since it can be combined with the
previous size a/4 augmentation to get an augmentation of the starting graph). Since we reduce the
maximum augmentation by 3/4 each time, and since the maximum jungle size is m, the number
of augmentations needed to make a J maximal is O(logm). Since each augmentation is found in
NC, the maximal jungle can be found in NC.

The processor cost of this algorithm is dominated by that of finding the matching in the graph
H. The algorithm of Israeli and Shiloach requires a linear number of processors, and is being run

on a graph of size O(km). 0

Corollary 3.8 A (2 + €)-approzimate minimum cut can be found in N'C using m?/n processors.

Proof: A graph with m edges has a vertex with degree O(m/n); the minimum cut can there-
fore be no larger. It follows that our approximation algorithm will construct k-jungles with

k=0(m/n). U

4 Reducing to Approximation

In this section, we show how the problem of finding a minimum cut in a graph can be reduced to
that of finding a 3-approximation.? Qur technique is to “kill” all cuts of size less than 3¢ other
than the minimum cut itself. The minimum cut is then the only cut of size less than 3¢, and thus
must be the output of the (2 + ¢)-approximation algorithm of Section 2 if we run it with e = 1. To
implement this idea, we focus on a particular minimum cut that partitions the vertices of G into
two sets A and B. Consider the graphs induced by A and B.

Lemma 4.1 The minimum cuts in A and in B have value at least ¢/2.

2We reduce to 3-approximation for simplicity. Should this approach ever become practical, it will most likely be
more efficient to reduce to (2 + €)-approximation for some smaller e.



Proof: Suppose A has a cut into X and Y of value less than ¢/2. Only ¢ edges go from A = X UY
to B, so one of X or Y (say X ) must have at most ¢/2 edges leading to B. Since X also has less
than ¢/2 edges leading to Y, the cut (X, X) has value less than ¢, a contradiction. L]

Theorem 4.2 ([20]) There are O(n*®) cuts of value at most o times the minimum.

Combining Lemma 4.1 and Theorem 4.2, it follows that in each of A and B, every cut has value
at least ¢/2 and there are O(n®) cuts of value less than 3c. Note these are not the small cuts in &,
but rather those in the graphs induced by A and B. Call these cuts the target cuts.

Lemma 4.3 Let Y be a set containing edges from every target cut but not the minimum cut. If
every edge in'Y is contracted, then the contracted graph has a unique cut of weight less than 3c—the
one corresponding to the original minimum cut.

Proof: Clearly contracting the edges of Y does not affect the minimum cut. Now suppose this
contracted graph had some other cut €' of value less than 3¢. It corresponds to some cut of the
same value in the original graph. Since it is not the minimum cut, it must induce a cut in either
A or B, and this induced cut must also have value less than 3¢. This induced cut is then a target
cut, so one of its edges will have been contracted. But this prevents ' from being a cut in the
contracted graph, a contradiction. L]

It follows that after contracting Y, running the approximation algorithm of Section 2 on the
contracted graph will reveal the minimum cut, since the actual minimum cut is the only one that is
small enough to meet the approximation criterion. Our goal is thus to find a collection of edges that
intersects every target cut but not the minimum cut. This problem can be phrased more abstractly
as follows: Over some universe U, an adversary selects a polynomially sized collection of “target”
sets of roughly equal size (the small cuts’ edge sets), together with a disjoint “safe” set of about
the same size (the min-cut edges). We want to find a collection of elements that intersects every
target set but not the safe set. Note that we do not know what the target or safe sets are, but we
do have an upper bound on the number of target sets. We proceed to formalize this problem as
the Set-Isolation Problem.

5 The Set-Isolation Problem

We describe a general form of the Set-Isolation Problem. Fix a universe U = {1,...,u} of size u.

Definition 5.1 A (u,k,a) set-isolation instance consists of a safe set S C U and a collection of k
target sets Ty, ..., Tp C U such that

e a >0 is a constant,
o for 1 <i<k, |T;| > alS]|, and

o for 1 <i<k, T,nS=40.

We will use the notation that s = |5, t; = |T}], and t = as < t;. It is important to keep in
mind that the value of s is not specified in a set-isolation instance but, as will become clear shortly,
it is reasonable to assume that it is known explicitly. Finally, while the safe set § is disjoint from
all the target sets, the target sets may intersect each other.
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Definition 5.2 An isolator for a set-isolation instance is a set that intersects all the target sets
but not the safe set.

An isolator is easy to compute (even in parallel) for any given set-isolation instance provided
the sets 5, Ty, ..., T are explicitly specified. However, our goal is to find an isolator in the setting
where only u, k and a are known, but the actual sets 5, Ty, ..., T are not specified. We can
formulate this as the problem of finding a universal isolating family.

Definition 5.3 A (u, k, a)-universal isolating family is a collection of subsets of U that contains
an isolator for any (u,k,a) set-isolation instance.

To see that this general formulation captures our cut isolation problem, note that the minimum
cut is the safe set in an (m, k, a) set-isolation instance. The universe is the set of edges, of size m;
the target sets are the small cuts of the two sides of the minimum cut; k£ is the number of such
small cuts and (by Lemmas 4.1 and 4.2) can be bounded by polynomial in n < m; and a = 1/2
since each target cut has size at least ¢/2 (by Lemma 4.1). The safe set size s is the min-cut size c.

If we had an (m, k, a)-universal isolating family then one of the sets in it would be an isolator
for the set-isolation instance corresponding to the minimum cut. By Lemma 4.3, contracting all the
edges in this set would isolate the minimum cut as the only small cut. If the size of the universal
family was polynomial in m and k, we could try each set in the universal family in parallel in N'C,
and be sure that one such set isolates the minimum cut so that the approximation algorithm can
find it.

In Section 7, we give an NC algorithm for constructing a polynomial-size (in u and k) (u, k, a)-
universal isolating family. Before doing so, we give the details of how it can be used to solve the
minimum cut problem in NC.

6 Minimum-Cuts and Extensions

We start by solving the min-cut problem for unweighted graphs. To extend this result to weighted
graphs, we must first digress to finding minimum multiway cuts (minimum sets of edges that
partition the graph into more than two parts) and approzimately minimum cuts (cuts with value
nearly equal to the minimum cut). The weighted minimum cut problem is then solved by reduction
to these problems.

6.1 Unweighted Minimum Cuts

We first consider the unweighted min-cut problem. We have already shown (in Section 4) that
all we need to do is solve the Set-Isolation Problem for the n°() small cuts on both sides of the
minimum cut. In our case, the universe size u is just the number of graph edges m, the safe
set size is ¢ = O(m/n) (which we can estimate to within a factor of 3 using the approximation
algorithm), and there are nPM target sets. Thus in A'C we can generate and try all members of a
universal isolating family of mP™) sets. One of the sets we try will be an isolator for our problem,
intersecting all small cuts except for the minimum cut. When we contract the edges in this set,
running the approximation algorithm on the contracted graph will find the minimum cut. The
number of processors used is m©(), and the running time polylogarithmic in m. In other words,
the minimum cut can be found in AVC.
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6.2 Extension to Multiway Cuts

The r-way min-cut problem is to partition a graph’s vertices into r nonempty groups so as to
minimize the number of edges crossing between groups. An RAC algorithm for constant r appears
in [20], and a more efficient one in [25]. For constant r, we can use the set-isolation technique to
solve the r-way cut problem in N'C. The next lemma reduces to Lemma 4.3 when r = 2.

Lemma 6.1 In an r-way min-cut (Xq1,...,X,) of value ¢, each X; has minimum cut at least

2¢/(r—1)(r+2).

Proof: Assume that set X; has a cut (A4, B) of value w. We prove the lemma by lower-bounding
w.

Suppose that two sets X; and X; are connected by more than w edges (where 1 #17 # j # 1).
Then merging X; and X; and splitting X into A and B would yield an 7-way cut of smaller value,
a contradiction. Summing over (Tgl) pairs X; and X, it follows that the total number of cut edges
not incident on X; can be at most (Tgl)w.

Now suppose that more than 2w edges connect X; and some X; for j # 1. Then more than
w edges lead from X; to either A or B, say A. Thus splitting X; into A and B and merging A
with X; would produce a smaller r-way cut, a contradiction. It follows that the number of edges
incident on X3 can be at most 2(r — 1)w.

Combining the previous two arguments, we see that the r-way cut value ¢ must satisfy

r—1
cg( 5 )w—l—Qw(r—l),

implying the desired result. L]

Combining the two previous lemmas shows that there is a polynomial-sized set of target cuts
that we can eliminate with the set-isolation technique to isolate the minimum r-way cut.

Theorem 6.2 On unweighted graphs, the r-way min-cut problem can be solved in NC for any
constant r.

Proof: We proceed exactly as in the two-way min-cut case. Consider the minimum r-way cut
(X1,...,X,) of value ¢. By the previous lemma, the minimum cut in each component is at least
2¢/(r — 1)(r 4+ 2). Thus by Lemma 4.3 the number of cuts in each X; whose size is less than 2¢ is
O(nQ(T_l)(T"'z)), a polynomial for constant r. It follows that we can find a universal isolating family
containing an isolator for the minimum r-way cut. Contracting the edges in this isolator yields a
graph in which each component of the r-way minimum cut has no small cut. Then the (2-way)
minimum cut in this contracted graph must be a “part of” the r-way minimum cut. More precisely,
it cannot cut any one of the X;, so each X is entirely on one or the other side of the cut. We can
now find minimum cuts in each of the sides of the minimum cut; again they must be part of the
r-way minimum cut. If we repeat this process r times, we will find the r-way minimum cut. L]

6.3 Extension to Approximate Cuts

We can similarly extend our algorithm to enumerate all cuts with value within any constant factor
multiple of the minimum cut. This plays an important role in our extension to weighted graphs.
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Lemma 6.3 ([20]) The number of r-way cuts with value within a multiplicative factor of a of the
r-way min-cut is O(n?*0=1),

Lemma 6.4 Let ¢ be the min-cut value in a graph. If (A, B) is a cut with value ac, then the
minimum r-way cut in A has value at least (r — a)c/2.

Proof: Let {X;}/_; be the optimum r-way cut of A, with value 5. Let us contract each X; to a
single vertex (removing resulting self loops) and sum the degrees of these r vertices two different
ways. There are § edges (the r-way cut edges) with one endpoint in each of two different X;. This
contributes 23 to the sum of contracted-vertex degrees. There are also ac edges with exactly one
endpoint in A (and thus in sum X;), namely the edges crossing cut (A, B). These contribute an
additional ac to the sum of degrees. Thus the sum of the degrees of the X; is 23 4+ ae. Counting
a different way, we know that each X; has degree no less than the minimum cut, so the sum of
degrees is at least rc. Thus 283 4+ ac > re¢, and the result follows. L]

Theorem 6.5 For any constant «, all cuts with value at most « times the minimum cut’s can be

found in NC.

Proof: For simplicity, assume without loss of generality that o is an integer. Fix a particular cut
(A, B) of value ae. Let r = a+ 2. By Lemma 6.4, the minimum r-way cut in A (and in B) has
value at least ¢. Lemma 6.3 says that as a consequence there are n®W) r-way cuts in A (or B) with
value less than 3rac. Define a set-isolation instance whose target sets are all such multiway cuts
and whose safe set is the cut (A, B). By finding an isolator for the instance and contracting the
edges in it, we ensure that the minimum r-way cut in each of A and B exceeds 3rac.

Suppose that after isolating the cut we want, we run our parallelization of Matula’s Algorithm,
constructing k-jungles with & = ac. Since the r-way cut is at least 3rac in each of A and B, at
most (r — 1) vertices in each set have degree less than 6ac. It follows that so long as the number
of vertices exceeds 4r, the number of edges will reduce by a constant factor in each iteration of the
algorithm. In other words, in O(logm) steps, the number of vertices will be reduced to 4r in such
a way that the cut of value ac is preserved. We can find it by examining all possible partitions of
the 4r remaining vertices, since there are only a constant number. L]

There is an obvious extension to approximate multiway cuts; however we omit the notationally
complicated exposition.

6.4 Extension to Weighted Graphs

If the weights in a graph are polynomially bounded integers, we can transform the graph into a
multigraph with a polynomial number of edges by replacing an edge of weight w with w parallel
unweighted edges. Then we can use the unweighted multigraph algorithm to find the minimum
cut.

If the edge weights are reals, we use the following reduction from [20, 21] to the case of integral
polynomial edge weights. We first estimate the minimum cut to within a multiplicative factor of
O(n?). To do so, we simply compute a maximum spanning tree of the weighted graph, and then let
w be the weight of the minimum weight edge of this maximum spanning tree. Removing this edge
partitions the maximum spanning tree into two sets of vertices such that no edge of G' connecting
them has weight greater than w (else it would be in the maximum spanning tree). Therefore, the
minimum cut is at most n?w. On the other hand, the maximum spanning tree has only edges of
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weight at least w, so one such edge crosses every cut. Thus the minimum cut is at least w. This
estimate can clearly be done in NC.

Given this estimate, we can immediately contract all edges of weight exceeding n?w, since they
cannot cross the min-cut. Afterwards, the total amount of weight remaining in the graph is at
most ntw. Now multiply each edge weight by n®/w, so that that the minimum cut is scaled to be
between n® and n°. If we now round each edge weight to the nearest integer, we will be changing
the value of each cut by at most n? in absolute terms, implying a relative change by at most a
(14 1/n) factor. Thus the cut of minimal weight in the original graph has weight within a (1+1/n)
factor of the minimum cut in the new graph. By Theorem 6.5, all such nearly minimum cuts can
be found in NC with the previously described algorithms. All we need to do to find the actual
minimum cut is inspect every one of the small cuts we find in the scaled graph and compute its
value according to the original edge weights.

7 Solving the Set-Isolation Problem

It remains to show how to construct a universal isolating family in A'C. Our goal is: given U and k,
generate a (u, k, «)-universal isolating family of size polynomial in « and &k in NC. We first give an
existence proof for universal families of the desired size. The proof uses the probabilistic method;
for this and other ideas in this section involving randomization, refer to the book by Motwani and

Raghavan [30].
Theorem 7.1 There exists a (u, k, a)-universal isolating family of size uk©®) for any constant o.

Proof: First assume that the safe set size s, is known explicitly. We use a standard probabilistic
existence argument. Fix attention on a particular set-isolation instance with safe set size s. Suppose
we mark each element of the universe with probability (log2k)/as, and let the marked elements
form one member of the universal family. With probability k=©(1) the safe set is not marked but all
the target sets are. If so, then the marked elements form an isolator for the given instance. Thus if
we perform k°() trials, we can reduce the probability of not producing an isolator for this instance
to 1/2. If we do this uk©®) times, then the probability of failure on the instance is 9-ukM ¢
we now consider all 2¢#°Y set-isolation instances, the probability that we fail to to generate an
isolator for all of them during all the trials is less than 1.

Now consider the assumption that s is known. It can be removed by performing the above
randomized marking trial for each value of s in the range 1, ..., u; their union would be a universal
isolating family. This would increase the size of the family by a factor of u. More efficiently, since
a constant factor estimate of s suffices, we could apply the construction for s = 1,2,4,8,..., v and
take the union of the results. This would increase the number of sets in the universal isolating
family by a factor of logu but would increase the total size (in number of elements) of all sets in
the family by only a constant factor. L]

It is not very hard to see that this existence proof can be converted into a randomized (RNC)
construction of a polynomial size (u,k,a)-universal isolating family. In the application to the
minimum cut problem, we only know of an upper bound on the value of k, but it is clear that this
suffices for the existence proof and the randomized construction. Furthermore, since we can get a
constant factor approximation to the minimum cut, we do not in fact need to construct isolators
for all possible values of s, but only for the estimate.
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7.1 Deterministically Constructing Universal Families

We proceed to derandomize the construction of a universal isolating family. As in the randomized
construction, we can assume that the safe set size s is known. While performing the derandom-
ization, we fix our attention on a particular set-isolation instance, and show that our construction
will contain an isolator for that instance. It will follow that our construction contains an isolator
for every instance.

Our derandomization happens in two steps. We first replace the randomized construction’s
fully independent marking by pairwise independent marking, and show that despite this change we
have a good chance of marking any one target set while avoiding the safe set. We then use random
walks on expanders to let us mark all the target sets simultaneously while avoiding the safe set.

7.1.1 Pairwise Independence

We first show how pairwise independent marking isolates any one target set from the safe set. The
analysis of the use of pairwise instead of complete independence is fairly standard [9, 27, 30], and
the particular proof given below is similar to that of Luby, Naor, and Naor [28].

Choose p = 1/(2 4 a)s. Suppose each element of U is marked with probability p pairwise
independently to obtain a mark set M C U. For any element « € U, we define the following two
events under the pairwise independent marking:

o M.,: the event that element z is marked,
e S,: the event that element x is marked but no element of the safe set 5 is marked.

We have that Pr[M,] = p and the events { M, } are pairwise independent. We say that a mark set
is good for T; if some element of T; is marked but no element of 5" is marked, and in that case the
set of marked elements M is called a good set for T;. The mark set is an isolator if it is good for
every T;.

Observe that the mark set M is good for a target set T; if and only if the event &, occurs
for some element & € T;. The following lemmas help to establish a constant lower bound on the
probability that M is good for 7.

Lemma 7.2 For any element x € U\ S,
Pr[sx] > p(l - Sp)‘

Proof: The probability that & is marked but no element of .5 is marked can we written as the
product of the following two probabilities:

e the probability that z is marked, and
e the probability that no element of 5 is marked conditional upon z being marked.
We obtain that
Pr[S:] = Pr[NjesM; N M,]
= Pr{nyesM, | M.] x PrlM,]
= (1= PrUjesM; | M.]) x PriM,]

(1 — Z Pr[M; | ./\/lx]) X PrlM,].

JjE€S

v
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Since & € 5, we have that j # 2. The pairwise independence of the marking now implies that

Pr[M; | M,] = Pr[M;], and so we obtain that

Pr[S,] > (1 -3 PI’[M]‘]) X Pr[M,]
jes
= (1—sp)p.
]
Lemma 7.3 For any pair of elements x, y € U \ 9,
Pr[S, NS, < p*.
Proof: Using conditional probabilities as in the proof of Lemma 7.2, we have that
Pr[S:NS,] = Pr[(M,nMy,)N(NjesM;)]
= Pr[ﬂjesmj‘ | M;N M, x PriM, N M,]
< PrM,n M,]
= 7
where the last step follows from the pairwise independence of the marking. L]

Theorem 7.4 The probability that the pairwise independent marking is good for any specific target
set T; is bounded from below by a positive constant.

Proof: Recall that |T;| > ¢ = as and arbitrarily choose a subset 7' C T; such that |T'| = ¢t = as,
assuming without loss of generality that ¢ is a positive integer. The probability the mark set M is
good for T is given by Pr[U,er.S;]. We can lower bound this probability as follows

PI’[UggeTin] > Pr{UserS:]
Z Z Pr[sx] - Z PI’[SZ, N Sl/]v
zeT zyeT

using the principle of inclusion-exclusion. Invoking Lemmas 7.2 and 7.3, we obtain that

t
PrlUser,Se] > tp(l—sp) — (2)p2

> ip(1—sp) — 1*p?

= asp(l - sp) — (asp)’

212+ a)’

where the last expression follows from our choice of sp = 1/(2 + a). Clearly, for any positive
constant «, the last expression is a positive constant. L]

A pairwise independent marking can be achieved using O(log u 4 log s) random bits as a seed to
generate pairwise-independent variables for the marking trial [9]. The O(logu) term comes from the
need to generate u random variables; the O(log s) term comes from the fact that the denominator
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in the marking probability is proportional to s. Since s < u, the number of random bits needed to
generate the pairwise independent marking is O(logu).

We can boost the probability of success to any desired constant 3 by using O(1) independent
iterations of the random marking process, each yielding a different mark set. This increases the size
of the seed needed by only a constant factor. We can think of this pairwise independent marking
algorithm as a function f that takes a truly random seed R of O(logu) bits and returns O(1)
subsets of U. Randomizing over seeds R, the probability that f(R) contains at least one good set
for target T; is at least f3.

7.1.2 Expander Walks

The above construction lets us isolate any one targest set from the safe set with reasonable probabil-
ity. The next step is to isolate all target sets simultaneously. We do so by reducing the probability
of failure from a constant 1 — § to k=°), making it unlikely that we fail to mark any one target
set. This relies on the behavior of random walks on expanders.

We need an explicit construction of a family of bounded degree expanders, and a convenient
construction is that of Gabber and Galil [15]. They show that for sufficiently large n, there exists
a graph G, on n vertices with the following properties: the graph is 7-regular; it has a constant
expansion factor; and, for some constant €, the second eigenvalue of the graph is at most 1 —e. The
following is a minor adaptation of a result due to Ajtai, Komlds and Szemerédi [4] which presents
a crucial property of random walks on the expander (,,. (Refer to Cohen and Wigderson [10], Im-
pagliazzo and Zuckerman [18], and Motwani and Raghavan [30] for a formal definition of expanders
and further details about random walks on expanders.)

Theorem 7.5 ([4]) There exist constants 3,7 > 0 such that for any subset B C V(G,,) of size
at most (1 — B)n and for a random walk of length vlogk on G, the probability that the vertices
visited by the random walk are all from B is O(k™?).

Notice that performing a random walk of length v log k on G, requires O(logn + log k) random
bits—choosing a random starting vertex requires log n random bits and, since the degree is constant,
each step of the walk requires O(1) random bits. We use this random walk result as follows. Each
vertex of the expander corresponds to a seed for the mark set generator f described above; thus,
logn = O(logu), implying that we need a total of O(logu + log k) random bits for the random
walk. Choosing B to be the set of bad seeds for T}, i.e. those that generate set families containing
no good sets for 73, and noting that by construction B has size (1 — )n, allows us to prove the
following theorem.

Theorem 7.6 A (u,k,a) universal family for U of size (uk)o(l) can be generated in NC for any
constant o.

Proof: Use O(log u+log k) random bits in the expander walk to generate O(log k) pseudo-random
seeds. Then use each seed as an input to the mark set generator f. Let H denote the O(logk)
sets generated throughout these trials (we give O(log k) inputs to f, each of which generates O(1)
sets). Since the probability that f generates a good-for-i set on a random input is 3, we can choose
constants and apply Theorem 7.5 to ensure that with probability 1 — 1/k?, one of our pseudo-
random seeds is such that H contains a good set for T;. It follows that with probability 1 — 1/k,
H contains good sets for every one of the T;. Note that the good sets for different targets might
be different. However, consider the collection C' of all possible unions of sets in H. Since H has
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O(log k) sets, C' has size 271 = k1), One set in C consists of the union of all the good-for-some-i
sets in H; this set intersects every T; but does not intersect the safe set, and is thus an isolator for
our instance.

We have shown that with O(logu + log k) random bits, we generate a family of kOW sets such
that there is a nonzero probability that one of the sets isolates the safe set. It follows that if we try
all possible O(log u + log k) bit seeds, one of them must yield a collection that contains an isolator.
All these seeds together will generate (uk)®(1) sets, one of which must be the desired one.

For a given input seed, the pairwise independent generation of sets by f is easily parallelizable.
Given a particular O(log u+log k) bit seed for the expander walk, Theorem 7.5 says that performing
the walk to generate the seeds for f takes O(logu + log k) time. We can clearly do this in parallel
for all possible seeds. The various sets that are output as a result must contain a solution for any
particular set-isolation instance; it follows that the output collection is a (u, k, ¢) universal isolating

family. L]

It should be noted that by itself, this set-isolation construction is not sufficient for derandom-
ization. Combined directly with the Luby, Naor, and Naor technique [28], it can find a set of edges
that contains an edge incident on each vertex but not any of the minimum cut edges. Unfortu-
nately, contracting such an edge set need only halve the number of vertices (e.g., if the edge set is a
perfect matching), so ©(logn) phases would still be necessary. This approach would therefore use
Q(log? n) random bits, just as [28] did. The power of the technique comes through its combination
with the approximation algorithm, which allows us to solve the entire problem in a single phase
with O(logn) random bits. This, of course, lets us fully derandomize the algorithm.

8 Conclusion

We have shown that, in principle, the minimum cut problem can be solved in A'C. This should
be viewed as a primarily theoretical result, since the algorithm in its present form is extremely
impractical. A natural open problem is to find an efficient N'C algorithm for minimum cuts. An
easier goal might be to improve the efficiency of the approximation algorithm. OQur algorithm uses
m? /n processors. Matula’s sequential approximation algorithm uses only linear time, and the RAC
min-cut algorithm of [25] uses only n? processors. Also, an RAC (2 + €) approximation algorithm
using only a linear number of processors is given in [22]. These facts suggest that a more efficient
NC algorithm might be possible.

We also introduced a new combinatorial problem, the set-isolation problem. This problem
seems very natural and it would be nice to find further applications for it. Other applications of
the combination of pairwise independence and random walks would also be interesting.
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