
1

A Fast and Simple Unbiased Estimator
for Network (Un)reliability

David R. Karger
MIT CSAIL

Cambridge, MA, USA
Email: karger@mit.edu

Abstract—The following procedure yields an unbiased estimator
for the disconnection probability of an n-vertex graph with min-
imum cut c if every edge fails independently with probability p:
(i) contract every edge independently with probability 1−n−2/c,
then (ii) recursively compute the disconnection probability of
the resulting tiny graph if each edge fails with probability
n2/cp. We give a short, simple, self-contained proof that this
estimator can be computed in linear time and has relative
variance O(n2). Combining these two facts with a standard
sparsification argument yields an O(n3 logn)-time algorithm for
estimating the (un)reliability of a network. We also show how the
technique can be used to create unbiased samples of disconnected
networks.

Keywords-Network reliability; minimum cut; random graph

I. INTRODUCTION

In the network reliability problem we are given a graph
G and a failure probability p and seek to compute the
probability uG(p) that G becomes disconnected when edges
fail independently with probability p.

This problem is]P-complete [16], [15]. Karger [5] gave
the first fully polynomial randomized approximation scheme
(FPRAS) for uG(p), with a running time of roughly Õ(n5).1

Harris and Srinivasan [3] improved the runtime to n3+o(1) at
the cost of a more complex algorithm and analysis.

In this paper, we give a short, simple, self contained unbi-
ased estimator for network reliability that can be computed in
linear time and has relative variance O(n2). It uses only one
nontrivial fact—that the cycle is the least reliable network with
a given minimum cut. Combined with some standard methods
of graph sparsification [2], this unbiased estimator yields an
FPRAS for network reliability running in O(n3 log n) time.

The estimator is based entirely on taking random samples
and testing whether the resulting graph is connected—and
therefore requires no complex data structures. As with pre-
vious algorithms, the challenge is dealing with too-reliable
graphs where direct random simulation of edge failures is
unlikely to generate any disconnected graphs that can be used
to estimate the disconnection probability. Our key trick is to
use a kind of importance sampling: we raise the edge failure

This work was supported by a grant from the National Science Foundation.
1Technically, we are estimating network unreliability. For exact algorithms

the two problems are identical, but an approximation to one does not translate
to the other. Estimating reliability—i.e. the likelihood of staying connected—
is most difficult on unreliable graphs which are unimportant in practice. There
is no known FPRAS for this problem. But for reliable graphs an FPRAS for
reliability is trivial while estimating unreliability is the harder problem.

rate so that the failures become common enough to measure in
the sampling process, then adjust for our tinkering to determine
the actual reliability.

As is already well known, reliability is tied to the minimum
cut c of the graph G. Recall that c can be found in Õ(m)
time with high probability [6] or in O(mn) time deterministi-
cally [13]; computing it is not a bottleneck in the algorithms
we develop here.

A. Background: Monte Carlo Estimation

Our approach is Monte Carlo estimation. We devise a ran-
dom variable X whose expectation is equal to the quantity we
wish to measure. We then average samples from X to estimate
this expectation. The number of samples needed is determined
by the relative variance r = σ2/µ2 where µ = E[X] and
σ = E[(X − µ)2]. Since E[(X − µ)2] = E[X2]− µ2 we can
also write r = E[X2]/µ− 1.

Lemma I.1. If X has relative variance ε2/4 then X is within
a relative factor ε of its expectation with probability 1/4.

Proof: By the Markov (or Chebyshev) bound,

Pr[|X − µ| > εµ] = Pr[(X − µ)2 > ε2µ2]

≤ E[(X − µ)2]/ε2µ2]

≤ 1/4

given the relative variance of X .

Lemma I.2. If X has relative variance r then the average of
t independent samples of X has relative variance r/t.

Proof: The sum of the samples has mean tµ and, since
they are independent, variance tσ2.

Setting t = 4rε−2 and combining these two lemmas yields
the general approach:

Corollary I.3. If X has relative variance r then the average
of 4rε−2 samples of X will yield a (1± ε)-approximation to
E[X] with probability 3/4.

Since Corollary I.3 yields a failure probability of 1/4,
repeating the entire experiment O(log 1/δ) times and taking
the median reduces the failure probability to δ. In other words,
the number of samples needed for an (ε, δ) approximation
(one that is accurate to within ε with probability 1/δ) is
O(rε−2 log 1/δ). As this ε−2 log 1/δ term attaches to any such
sampling scheme, we’ll ignore it in the rest of the paper.

2

A direct application of this idea to estimate uG(p) is to
delete edges of G with probability p and test whether the
result is disconnected. The indicator variable for this event has
expectation µ = uG(p) and variance σ2 = uG(p)(1−uG(p)).
Thus the relative variance is 1/uG(p) − 1 ≤ 1/uG(p) and
we get an (ε, δ) approximation using Õ(1/uG(p)) samples.
Each sample can be constructed in O(m) time for an overall
runtime of O(m/uG(p)).

If uG(p) ≥ (log2 n)/n2 this gives an O(mn2/ log2 n)
runtime. In particular, since the graph disconnects whenever a
specific cut fails, we know uG(p) ≥ pc, which means we can
use this estimator so long as pc ≥ (log2 n)/n2. But for smaller
p the runtime becomes prohibitively large. Previous work
switched to a technique based on enumeration of small cuts
with a running time of Õ(n5). We take a different approach.

II. A FAST ESTIMATOR

When pc ≤ (log2 n)/n2, the following procedure provides
an unbiased estimator for uG(p)—that is, a random variable
whose expectation is uG(p).

1) Set q ≥ p such that qc/2 = (log n)/n, and contract edges
of G with probability 1− q to yield a graph H

2) Return uH(p/q), which can be computed easily since
H will be tiny

To see that this is an unbiased estimator, note that in the
first phase each edge is not contracted with probability q. In
the second phase we then consider deleting these uncontracted
edges with probability p/q, and assess the probability that a
cut of H (which is also a cut of G) fails. Putting these two
phases together, we are assessing the probability that the set
of edges that go uncontracted in the first phase (probability q)
and then get deleted in the second phase (probability p/q, for
an overall probability of q · (p/q) = p) includes a cut of G.
In other words, EH [uH(p/q)] = uG(p).

We now show that this unbiased estimator is useful: that its
variance is small, and that it can be computed quickly, because
H is probably tiny.

A. Bounding the Variance

We begin by bounding the variance. Let G(p) denote the
(random) result of deleting edges from G with probability p.

Lemma II.1 (Cycle Lemma). If G has n vertices and min-cut
c then the probability that G(p) has more than k components
is at most

(
n
k

)
pkc/2 ≤ (pc/2en/k)k.

Corollary II.2. pc ≤ uG(p) ≤ n2pc.

Corollary II.3 (Shrinkage Corollary). If pc/2n ≥ log n then
G(p) has O(pc/2n) components with high probability.

Proof: Let C be an n-vertex cycle where each pair of
adjacent vertices is connected by a “bundle” of c/2 edges.
As shown by Benczur and Karger [2] (we give the proof in
an appendix for completeness), the number of components
produced by edge failures in G is stochastically dominated by
the number of components produced by edge failures in C. In
other words, if hG and hC are random variables respectively
denoting the number of components produced by the edge

failures in G and in C, then Pr[hG ≥ k] ≤ Pr[hC ≤ k]. In
C, the probability we get k or more components is just the
probability that at least k bundles fail. We can union bound
it by considering all

(
n
k

)
groups of k bundles and noting that

the probability that all them fail is (pc/2)k.
For the first corollary, note for the lower bound that uG(p)

must exceed the probability that a single min-cut fails. For the
upper bound, just set k = 2 in Cycle Lemma II.1.

For the second corollary, if pc/2n ≥ log n then we can
set k = b · 2epc/2n in Cycle Lemma II.1 and get a bound
of (1/2)Ω(b logn) = n−Ω(b) which can be made an arbitrarily
small polynomial by choice of constant b.

This result can be proven 2 other ways [10], [6].
We now bound the variance E[uH(p/q)2]. Let h be the

(random) number of vertices of H . Write uH = uH(p/q).
Cycle Lemma II.1 shows that the cycle is the most un-

reliable h-vertex graph, with unreliability uH ≤ h2(p/q)c.
Thus, E[u2

H] ≤ E[h2(p/q)cuH] = E[h2uH]. Shrinkage
Corollary II.3 shows that that there is a k = O(log n) such that
h ≤ k with high probability. Intuitively, this means that condi-
tioning on h ≤ k should not change outcomes. If so, E[u2

H] ≤
E[k2(p/q)cuH] = k2(p/q)cE[uH] = k2(p/q)cuG(p). This
would make the relative variance at most k2(p/q)c/uG(p).
Since uG(p) ≥ pc (Corollary II.2), the relative variance is at
most k2/qc = O((log2 n)/((log n)/n)2) = O(n2).

This argument is incomplete since it ignores the unlikely
but possible event of H being too large. To formalize it, we
introduce a lemma.

Lemma II.4. If X with mean µ has X ≤ rµ with probability
1 − ε2 at least and X ≤ µ/ε with probability 1, then X has
relative variance at most r.

Proof: Let I be the indicator that X ≤ rµ. Then

E[X2] ≤ E[(I + 1− I)X2]

= E[IX2] + E[(1− I)X2]

≤ E[(IX)X] + E[(1− I)(µ/ε)2] since X ≤ µ/ε
≤ E[rµX] + (µ/ε)2E[(1− I)] I = 0 if X > rµ

= rµ2 + (µ/ε)2 Pr[I]

= rµ2 + µ2 since Pr[I] ≤ ε2

Thus the relative variance is E[X2]/µ2 − 1 = r.
We use this lemma to formalize our argument. Take ε =

O(log2 n)/n4. We know that E[uH(p/q)] = uG(p) ≥ pc.
Furthermore, since any H we generate is a contraction of G
and thus no less reliable, we know that uH(p/q) ≤ uG(p/q) ≤
n2(p/q)c = O(n4pc/ log2 n) = pc/ε with certainty. At the
same time, we’ve argued that there is a k = O(log n) such
that the probability that H has fewer than k vertices, making
uH(p/q) ≤ k2(p/q)c, is 1 − 1/n8 ≥ 1 − ε2. Thus, by our
lemma, uH(p/q) has relative variance at most k2/qc = O(n2).

B. Small Graphs

Generating the sample H is straightforward in O(m) time.
But our algorithm also needs a base-case algorithm for com-
puting the reliability of these small sampled graphs. We could

3

use any existing polynomial time approximation algorithm—
since it runs on graphs of size O(log n), the exact runtime
is unimportant. But this is unsatisfactory. First, it requires
invoking a different, more complex algorithm. Second, since
these algorithms are approximation algorithms, they return an
inexact value, which means that our algorithm no longer offers
an unbiased estimator for the reliability.

An alternative is to use a brute-force exact algorithm. We
can enumerate over all possible edge configurations, summing
the probabilities of those that produce disconnected graphs.
But this takes exponential time which is too slow even on our
tiny sample.

Thus, given our sampled subgraph H of size O(log n) and
the target failure probability p′ = p/q we instead apply,
recursively, a variant of our main algorithm to H . We run
the main algorithm on H but with a different intermediate
sampling probability q′ such that (q′)c = n−1/2.

This means that if uH(p′) ≥ n−1/2 we use naive Monte
Carlo sampling. For smaller unreliabilities, we generate a
contracted graph H ′ = H(q′) and recursively compute its
reliability uH′(p/q′). According to Shrinkage Corollary II.3,
the probability that H ′ has size exceeding 16 vertices is at
most (

e log n

16
√
n

)16

= O(n−7).

Of course, we can exactly compute the reliability of a 16-
vertex graph in constant time.

Our analysis shows that the relative variance of this sub-
experiment as an estimator for uH(p/q) is O(

√
n) in either

case (naive Monte Carlo or the contracted graph estimator)
which is very large. However, we can reduce this variance by
repeating the experiment: Lemma I.2 shows that doing so

√
n

times and taking the average yields an (unbiased) estimator
for the reliability of H with relative variance O(1).

Since H has size O(log n), the time to run these experi-
ments is O(

√
n log2 n). Which is negligible compared to the

O(m) time it takes to generate H in the first place.
Since we do not compute the reliability of H exactly,

we need to track some additional error in estimating uG(p).
Previously, we bounded the relative variance of uH(p/q)
(computed exactly) as an estimator for uG(p), showing that
E[uH(p/q)2] = O(n2EH [uH(p/q)]2). Now instead of return-
ing uH(p/q) we are returning an estimator X for uH(p/q) that
has relative variance O(1). That is, EH′ [X2] = O(EH′ [X]2).
But EH′ [X] = uH(p/q), so EH′ [X2] = O(uH(p/q)2), which
in turn implies that EH [EH′ [X2]] = O(EH [uH(p/q)2]) =
O(n2uG(p)). In other words, X has relative variance O(n2)
as an unbiased estimator for uG(p).

The above algorithm is Monte Carlo—it runs in polynomial
time with high probability. In the rare event that a sample is
too large the brute-force base algorithm will be too slow. For a
Las Vegas algorithm—one with expected polynomial running
time—we need to work a little bit harder, ensuring that we
don’t waste too much time in the slow/failure case. To do
so we simply run our original unbiased estimator algorithm
recursively. We address this detail below.

In summary, using the sampling algorithm recursively yields
an unbiased estimator for uH(p) that can be computed in

O(m) time with high probability and has relative variance
O(n2). Combining with the naive Monte Carlo algorithm for
pc > n−2 and applying Corollary I.3 immediately yields an
O(m(n/ε)2 log 1/δ)-time approximation algorithm for uG(p).

C. A More Precise Statement

Our algorithm and analysis relies on two key observations.
First, we used the fact that G(q) has O(log n) vertices
with high probability. Second, we bounded the denominator
uG(p) ≥ pc. Thus, our analysis (and algorithm) provides the
stronger result that for any q such that G(q) has size O(log n)
with high probability, the relative variance is bounded by

O

(
pc log2 n

qcuG(p)

)
In our work, we used qc = (log2 n)/n2 and uG(p) ≥ pc to get
a bound of O(1/n2). But let’s consider some specific graphs.

First, consider a pair of cliques connected by c edges. In this
graph, uG(p) ≈ pc and we can only “discover” this in G(q) if
the unique min-cut survives the sample, which happens with
probability qc. It follows that 1/qc is a lower bound on the
relative variance as well as on the number of samples we must
take to estimate the reliability with our approach.

On the other hand, consider the n-vertex cycle. In this graph,
at sampling rate qc we expect nqc/2 “bundles” of c/2 edges to
fail constructing G, meaning H will have nqc/2 components.
Thus, we can’t make qc much bigger than n−2 if we want H
to be small—which we rely on both to prove a small relative
variance and to compute uH(p/q) quickly.

In a sense, these two graphs are the extremes: the pair of
cliques is the most reliable graph with min-cut c and the cycle
is the least reliable. Combining the observations about these
two graphs suggests that our algorithm is picking the best
possible q: one as large as possible so that we won’t miss the
min-cut between cliques, but not too large to make the cycle
tractable.

But there may be a way out, which is to choose q dependent
on G. In the n-vertex cycle, the denominator uG(p) =
Θ(n2pc) when pc ≤ n−2, which yields a relative variance
of O(1) when qc = n−2. On the other hand, for pair of
cliques the reliability is the worst case pc. However, we can
set qc = 1/2 and conclude that G(q) has 2 vertices with high
probability; thus with this q we will have relative variance
O(q−c) = O(1).

We conjecture that these two extremes also reflect the
middle: that any graph where the reliability uG(p) � n2pc

is also a graph where G(q) has few components even when
q � 1/n2. This would allow us to build our estimator using
a large value of q, which would improve the relative variance
which is proportional to 1/qc. If true, this conjecture would
yield a better runtime for approximating network reliability.

D. A Las Vegas Algorithm

The algorithm we described above is Monte Carlo; it runs
quickly with high probability but may be slow in the (unlikely)
event that our samples H have size exceeding O(log n). We
now address this imperfection in a natural way. Instead of

4

assuming that H has size O(log n) so that we can run
√
n

sub-experiments to estimate its variance, we simply apply our
original estimation algorithm, recursively, regardless of the
size of H . The resulting algorithm for an n-vertex graph G is

1) if n is less than a suitable constant compute uG(p) by
brute force;

2) otherwise if pc > n2 then average O(n2) trials of naive
Monte Carlo estimation;

3) otherwise generate O(n2) samples H ∼ G(q),
4) for each, recursively compute an estimator of constant

relative variance for uH(p/q),
5) and return the average of the results
We argue by induction that this algorithm produces an

estimator with relative variance less than some constant r. This
is immediate in the first two cases. If on the other hand we
recurse, then by induction our recursive call for each uH(p/q)
provides an estimate Xi of uH(p/q) with relative variance r.
But uH(p/q) is itself an estimator of relative variance O(n2)
for uG(p). Thus, as we argued before, each Xi has relative
variance O(rn2) as an estimator for uG(p). It follows from
Lemma I.2 that if we average O(rn2) = O(n2) of these
recursive estimates, we get an estimator for uG(p) with relative
variance r as required for the induction.

As for the runtime, we know that all the subproblems
have size O(log n) with high probability while in the worst
case (which happens with probability say O(1/n3)) all have
size n. It follows that we can write a probabilistic recur-
rence [11] for the runtime, that T (n) ≤ n2(m + T (H))
where T (H) denotes the (random) runtime on the largest sub-
problem. Taking expectations, we conclude that ET (n) ≤
n2(m + ET (log n) + n−1T (n)), which we can solve as
ET (n) ≤ (1 + 1/n)n2(m+ ET (log n)) = O(mn2).

This analysis highlights the convenience of working with
unbiased estimators instead of the more typical “probably
approximately correct” estimators. Since unbiased estimators
are characterized entirely by their relative variance, which is an
expectation, we don’t need to to keep track of or perform union
bounds over low probability events over the entire recursion—
we simply accumulate expectations.

E. Capacitated Graphs and Varying Failure Probabilities

So far we’ve worked with each edge separately and assumed
all have the same failure probability. More generally we might
want to consider capacitated graphs with (integer) capacities
representing the number of edges connecting a pair of vertices.
Our algorithms apply unchanged in this setting. They are
based only on the primitive operation of sampling each edge
with probability p (for naive Monte Carlo) or q and then
p/q (for small p). In either case, we can sample an entire
edge of capacity w in constant time by sampling a binomial
distribution with parameters w and p (or q).

We address varying failure probabilities using a thought
experiment. Given a graph with failure probability pe on edge
e, choose a large k and imagine replacing e with b−k ln pec
edges that all fail with probability 1 − 1/k. Their (common)
endpoints disconnect when all the parallel edges fail, which
happens with probability (1− 1/k)−bk ln pec → pe in the limit

of large k. This shows that we can simulate the varying edge
failures with the limit of a uniform 1− 1/k failure rate.

To implement our algorithm efficiently we don’t want to
actually generate these k-multiplicity edges, and we don’t
have to. We simply need to determine how many of these
edges survive in our sample G(p) or G(q), which involves
sampling from a binomial distribution with parameters q and k.
Taking the limit as k →∞ (and q shrinks to compensate) this
distribution converges to a Poisson distribution whose samples
can be generated easily.

III. SPARSE SAMPLING

Our estimator is simple but slowed by its dependence on m.
We now show how to reduce m to O(n log n) using some ideas
from graph sparsification [2]. This improves our estimation
algorithm’s overall runtime to O(n3 log n).

A. Inclusion Sampling

Our first insight is that since most edges won’t be sampled,
we shouldn’t bother looking at them to build the sample.
Suppose first that pc ≥ (log2 n)/n2 so that we use naive
Monte Carlo sampling. If we write the probability δ = 1− p
that a particular edge survives, then the relation (log2 n)/n2 <
pc = (1−δ)c < e−δc means that δ = O(log n)/c. (Intuitively,
if we want a probability exceeding 1/n2 to sample no edges
from a min-cut, then the expected number of edges we sample
from the min-cut must be O(log n).) It follows that the
expected number of edges we sample is O(m(log n)/c). And
since this a (large) set of independent edge samples, the bound
holds with high probability as well.

This gives us a fast alternative to testing disconnection by
deleting edges. To generate a sample, first use a binomial dis-
tribution B(m, δ) to choose the number of edges that survive.
Then, sample that many edges from the graph. If the edges
are stored in an array, then these edges can be sampled at a
cost of O(1) per sample. This gives us a set of O(m(log n)/c)
edges (with high probability); we can determine whether the
sample is connected in one O(m(log n)/c) time connected
components computation. We’ll refer to this technique as
inclusion sampling.

Using inclusion sampling, we can run our naive Monte
Carlo sampling algorithm in O(m(log n)/c) time per sample.
We use this algorithm when pc ≥ (log2 n)/n2, which means
that we need O(n2/ log2 n) samples for an overall running
time of O(mn2/c log n).

In a similar vein, the small-p version of our unbiased
estimator begins by sampling edges from G with probability
q where qc = O((log2 n)/n2). So just as already argued
above, inclusion sampling will sample only O(m(log n)/c)
edges from G in the same time bound.

B. Sparsification

We’ve reduced our sampling cost by a factor of c, but
still have an m factor in the runtime. We now invoke spar-
sification [2] to reduce m to nc, which reduces the overall
runtime to O((m/c)n2 log n) = O(n3 log n). We will argue

5

that almost all edges of G are contained in strong components
whose likelihood of disconnection is tiny.

Definition III.1. In any graph, we call an edge k-strong if it
is contained in some k-connected subgraph.

Lemma III.2 (Weak Edges). Fewer than kn edges of a graph
G are not k-strong.

Proof: If every connected component of G is k-connected
then every edge is k-strong. Conversely, if some edge is not
k-strong then it is in a component of connectivity less than k.
Find some cut in this component with less than k edges, and
remove them. Repeat this process until all remaining edges are
in k-connected components. Since each repetition increases
the number of components, it can happen at most n− 1 times
before we partition the graph into n components that must be
isolated vertices, which would mean there are no edges left to
remove. Since each iteration removes less than k edges, the
total number of edges removed is less than k(n− 1).

C. Application to Naive Monte Carlo

We can apply the strong components idea to speed up our
naive Monte Carlo estimator algorithm. First, if pc > 1/n,
then the relative variance of a naive Monte Carlo sample is
less than n, which means we only need O(n) samples to get
an unbiased estimator with constant relative variance. Thus,
even if each sample takes m time the total time for estimating
uG(p) is O(mn) = O(n3).

So now suppose that pc < 1/n. In this case, p5c < pc/n4.
So consider the 5c-strong components of G. According to
Cycle Lemma II.1, considering each strong component as
its own graph in isolation, the probability that one of them
becomes disconnected is at most n2p5c ≤ pc/n2. There are
most n of them, so the probability that any of them becomes
disconnected is at most pc/n. Thus, the disconnection events
on these strong components contribute a negligible amount to
uG(p) ≥ pc. It follows that conditioning on their not becoming
disconnected causes a negligible change in uG(p).

Conditioning on these components being connected means
that we can contract these strong components before we run
our estimator algorithm. Weak Edges Lemma III.2 above
says that after we contract these components only m′ ≤
5cn edges will remain. Thus we can apply the sampling
method of the previous section to construct each sample of
O(m′(log n)/c) = O(n log n) edges from this contracted
graph in O(n log n) time. This improves the time for our
O(n2) trials O(n3 log n).

There remains the detail of finding the 5c-strong compo-
nents. This can be done as is implied in the lemma, by
repeatedly finding and removing cuts of G so long as they are
less than 5c. We can use any min-cut algorithm for this, for
example the Õ(m) time minimum cut algorithm of Karger [6].
Each cut we remove increases the number of components by
1, so we’ll need at most Õ(mn) = Õ(n3) time to find the
strong components. Alternatively, we can use Matula’s simpler
deterministic linear-time approximation algorithm [12] that
finds a cut at most 3 times the minimum; if we delete any
cut it finds of value less than 15c then we can be assured that

once it terminates all components will be 5c-strong while only
15nc edges cross between components.

Benczur and Karger [2] give an even faster solution: an
Õ(m)-time deterministic algorithm that doesn’t find the 5c-
strong components exactly, but instead finds a refinement of
these components (into smaller pieces) such that at O(nc)
edges cross between components of the refinement. If we
contract the components of this refinement, we are only
contracting edges inside the 5c-strong components, so our
overall analysis applies unchanged. Unlike n minimum cut
algorithms, this fast sparsification algorithm is dominated by
the time it takes to run the estimator after; thus the overall
runtime for estimating uG(p) remains O(n3 log n).

D. Batch Sampling the Small Estimators

We’ve shown how to run naive Monte Carlo quickly; now
we consider our unbiased estimator for pc < n−2. The
first step of sampling H ∼ G(q) can proceed exactly as
with the naive Monte Carlo algorithm: after contracting the
strong components, we can sample the set of O(n log n) edges
in G(q) and construct their connected components. But our
estimator has a second step: computing uH(p/q). This requires
constructing the graph H , which naively would require looking
through all m edges of G to find which ones cross between
different components of H . This would increase our time per
sample to O(m) which is too large. In this section, we show
how to get around that problem by batching, over our many
samples, the work needed to find which edges cross between
components of H .

In particular, we’ll show that among the many samples
Hi, the same vertices of G are contracted together and
thus the same edges are eliminated by those contractions.
Therefore, we can construct a batch of the tiny graphs Hi

by first performing the contractions they share in common,
then building each Hi quickly by starting from the resulting
small “in common” graph.

So consider a set of k distinct samples Hi. We’ll shift
frequently between considering each Hi as a vertex partition
that defines a cut of the vertices of G, and considering it as
a contraction (of each component of its partition) that defines
a tiny graph. Considering the Hi as partitions, define their
coarsest common refinement (CCR) R to be the partition that
equates two vertices of G if and only if they are in the same
component of every Hi in the group. It follows that each Hi

partition can be created by merging some of the components
of R. Equivalently, taking the graph perspective, if we contract
each component of R, we get a contracted version of G from
which we can construct each Hi by performing additional
contractions.

The CCR can be constructed quickly. Start by making R
a partition with a single component of all the vertices of G.
Then, for each partition Hi, go through each component of R
and divide it into smaller components based on the partition
Hi. This takes O(n) time per partition. If two vertices are in
different components of any Hi, they will be separated into
distinct components of R when we process Hi; conversely,
vertices that are always in the same component will never be

6

separated. Once we have constructed the vertex partition, we
can go through the edges of G in O(m) time and convert them
to edges of R by looking up their endpoints’ components in
R. Thus, the overall time to construct R is O(m+kn). We can
also merge parallel edges, using the capacitated representation
discussed in Section II-E, to ensure that the number of edges
is at worst quadratic in R.

As a first step, we show that for each graph H we generate,
there are very few edges of G connecting the components.

Lemma III.3. Suppose H is generated as G(q) (we write
H ∼ G(q)). Then in expectation and with high probability
there are O(cqc/2n) edges of G connecting different compo-
nents of H .

Proof: Consider constructing G(q) in two steps just as we
did for G(p) in defining our unbiased estimator. First, contract
edges of G with probability 1−s where s = 21/cq, producing
a graph F . Then delete edges of F with probability 2−1/c. Just
as we argued for G(p) above, this procedure overall produces
a graph sampled from G(q).

Because sc = 2qc, according to Cycle Lemma II.1 the graph
F will have f = O(sc/2n) = O(qc/2n) components. We now
construct H by deleting edges of F with probability 2−1/c

and contracting what remains. Equivalently, we contract each
edge of F with probability 1− 2−1/c = Θ(1/c).

To analyze the number of edges this leaves crossing H ,
we apply an argument of Karger, Klein, and Tarjan [8]. Go
through the edges of F in arbitrary order to determine which
get contracted to form H . For each, if its endpoints have
not already been merged by previous contracts, flip the coin
with probability Θ(1/c) to see if it gets contracted. If it is
not, we assume that it is one of the edges crossing between
components of H . But now observe that each time we find
an edge that gets contracted, we decrease the number of
components of H . Since initially F has f components, this
can only happen f times before we discover that H is fully
connected and there are no more crossing edges to find.

It follows that the number of edges we discover that
cross between components of H is at most the number of
(1/c-biased) coin flips that we perform before performing
f contraction. This is a negative binomial distribution with
expectation (and high probability bound) O(cf) = O(cqc/2n).

Note that as an alternative to applying the argument of [8],
we can prove directly [9], [6] that no cut of value exceeding
O(c · qc/2n·) fails in G(q) with high probability. But given
that we’ve already bounded the vertex count using Cycle
Lemma II.1, this method is quicker.

Corollary III.4. If k graphs Hi are sampled from G(q),
then their coarsest common refinement has O(k · qc/2n)
components.

Proof: We’ve just proven that each Hi has O(cqc/2n)
edges crossing the CCR. Thus, the k graphs Hi together
have O(kcqc/2n) such edges. Now suppose the CCR has r
components. Then since the CCR is a partition of G, it has at
least c edges leaving each component, for a total of at least
rc/2 edges. It follows that rc/2 ≤ O(kcqc/2n). Now divide
by c.

Observe that we are leveraging a very special feature of
the underlying graphs Hi whose vertex partitions define our
common refinement. In general, one can define a set of just
log2 n 2-way vertex partitions whose common refinement has
all n vertices in distinct components—simply define the ith

partition based on the ith bit of each vertex number. But we
are fortunate to be working only with partitions that have few
crossing edges and correspondingly few components in their
coarsest common refinement.

E. A Recursive Batching Algorithm

We now apply our batching idea recursively. We’ve shown
that the CCR of k samples Hi has at most βk log n com-
ponents for some constant β. Suppose we are able to begin
with a set of k vertex partitions of graphs Hi on a set of at
most 2βk log n vertices and wish to construct the graphs Hi.
First, we compute the coarsest common refinement R of the
k partitions, merge vertices in each component, and combine
edges to give us a graph with at most βk log n vertices. We
then divide the Hi arbitrarily into two groups and recursively
solve the problem for each group starting with R. Note that
each recursion involves k/2 partitions and a graph R with
βk log n vertices, so it fits the assumption of our recursion. At
the base of the recursion, we construct the coarsest common
refinement of a single partition Hi, and the edges crossing that
coarsest common refinement, which is precisely the graph Hi.

We can write a simple recurrence for the runtime of our
algorithm in terms of k. As we argued above, constructing the
coarsest common refinement R on a graph with N vertices
and M edges takes time O(kN) to construct and contract
the coarsest common refinement’s edge partition followed by
O(M) time to merge parallel edges in R. In our recursion
N = O(k log n) while M = O(k2 log2 n); thus the second
step dominates for an overall runtime of O(k2 log2 n). We then
solve two subproblems on k/2 partitions recursively. Thus, our
recurrence is T (k) = O(k2 log2 n)+2T (k/2) = O(k2 log2 n).

We need to construct n2 graphs Hi. We could simply set
k = n in our recursive algorithm but this drastically over-
counts the cost. Instead, divide the n2 graphs into n log n
groups of k = n/ log n graphs Hi. Since we start with
graph G having n vertices, each group fulfills the precondition
on the recursive algorithm relating k to n. Thus, we can
construct the Hi in each group in O(k2 log2 n) = O(n2)
time. Since there are n log n groups we can construct all n2 of
the required Hi in O(n3 log n) time. Once we have done so,
we proceed to estimate and average in each uH(p/q) in o(n)
time as previously discussed. This produces our final unbiased
estimator in O(n3 log n) time overall.

F. Sparse and Unbiased

The above scheme works, but by contracting strong com-
ponents to reduce the effective m to nc it introduces a small
change in the reliability of the graph, which means we have
lost our unbiased estimator. We now show how to overcome
this problem.

Our contraction of the strong components was driven by the
observation that they will be connected with high probability

7

in any sample we take, so that contracting them doesn’t change
things very much. To produce an unbiased estimator, instead
of assuming that every strong component is connected in
each sample H , we check whether every strong component is
connected. If it isn’t, we use the basic O(m)-time algorithm to
construct that sample. Since this happens rarely, it won’t affect
the expected or high probability runtime of our estimator. All
we need to do is perform our check quickly enough that the
runtime is not affected.

So how can we quickly test whether the strong components
stay connected? These strong components may have any
number of edges, which means that our inclusion sampling
trick may fail to keep the sample size small.

To address this problem, we invoke the idea of sparse
certificates developed by Nagamochi and Ibaraki [14]. A
sparse t-certificate of a graph can be constructed by repeating
t times the process of finding and then deleting a spanning
forest of the graph. Because each spanning forest will include
an edge from every nonempty cut, the t-certificate will include
all or at least t edges of each cut of the graph, which means
it is t-connected if the original graph is. At the same time,
the certificate will contain at most tn edges by construction.
Nagamochi and Ibaraki give an MST-like algorithm that can
construct a t-certificate in O(m) time regardless of t.

We apply the sparse t-certificate idea to each of the 5c-
strong components of G, taking t = 5c. Consider some such
component S with s vertices, and suppose we construct a
sparse t-certificate T of the component. We have just asserted
that T is t-connected with t = 5c. Thus, our previous analysis
applies to T , showing that T will be connected with high
probability in the sample. This gives us a fast way to test
whether S is connected in our sample. First, use our inclusion-
sampling trick trick on T ; since it has ts = O(cs) edges the
sample will have O(s log n) edges as discussed previously.
But also as discussed this (small) sample will be connected
with high probability, in which case we can proceed without
bothering to look at the other edges of S. If the high-speed
sample does not connect T , which happens rarely, then we
sample all the other edges of S the slow way in order to
determine the sampling outcome for the component. This
provides an algorithm that samples a strong component in time
linear in its number of vertices with high probability and in
expectation.

We apply this idea to sample the graph as a whole. After
finding the k-strong components, we construct a graph K by
contracting those components; K has kn = O(cn) edges.
With high probability, our samples are “consistent” with K;
only cuts of K become disconnected by the sample. Thus,
to build a sample, first we consider each k-strong component
of G and use sampling from its sparse certificate to confirm
that it is connected; since a component with r vertices has
O(rc) certificate edges from which O(r log n) are sampled
with high probability, the total number of edges we sample in
this step is O(n log n). All these components are connected
with high probability. Assuming this happens, we sample from
K to determine the connected components of the sample. If
some component is not connected, then we sample from all
the non-certificate edges of the component to complete our

sample, but this happens too rarely to affect the expected or
high probability runtime.

In summary, we have given a procedure that (after some
preprocessing) constructs unbiased sampled graphs from G(q)
in amortized O(n log n) time per sample with high probability
and in expectation. Using this procedure as our starting point
provides to an unbiased estimator for uG(p) with runtime
O(n3 log n).

IV. GENERATING DISCONNECTED GRAPHS

Our approach to producing an unbiased estimator of the
disconnection probability can also be used to sample discon-
nected graphs—that is, to sample a G(p) conditioned on the
result being disconnected.

Since we have an unbiased estimator for the disconnec-
tion probability we could use the usual self-reducibility ap-
proach [4]. Essentially, we consider edges in sequence and
include or remove each edge with an appropriate probability
that can be determined using our estimator. However, this
standard approach introduces a small error in the probability
estimation: it is based on computing a ratio of two probabil-
ities, for each of which we have an unbiased estimator, but
where the ratio itself may not be unbiased. This means that
we only get a (arbitrarily) close approximation to sampling
from the disconnected distribution.

We use a different approach to sample exactly. We use a type
of rejection sampling. To sample from a (hard) distribution
h(x) we instead sample from some (easy) distribution e(x)
but then keep our sample with a probability chosen to adjust
for our starting from the wrong distribution. If we keep our
sample that is our output; if we choose not to keep it then we
repeat the algorithm until we do choose to keep something.

A. A Rejection-Sampling Algorithm

When uG(p) is large, we can sample a disconnected
graph using the straightforward rejection-sampling analogue
of Monte Carlo estimation. We simply generate graphs from
G(p) until we get one that is disconnected. Since each attempt
succeeds with probability uG(p), the number of attempts we
need to make is 1/uG(p) in expectation.

For smaller uG(p), as with our estimator, we consider the
problem of generating our graph from G(p) in two steps.
First, we generate a graph H from G(q) for a large q > p
(contracting the connected components of H to yield a smaller
graph). Then we generate a graph K from H(p/q). We’ve
already argued that this means K is sampled from G(p). We
now condition on the event U that K is disconnected; in other
words, we wish to generate K with probability Pr[K | U]. We
instead consider generating both H and K, with probability
Pr[H,K | U]. We can write Pr[H,K | U] = Pr[H |
U] ·Pr[K | H,U]. In other words, we first generate the graph
H from G(q) but conditioned on K being disconnected. Then
we generate K by sampling from H(p/q) conditioned on U .
The second problem is the same as our original one except
that, as we argued for our estimator, the graph H is tiny.

The challenging task, then, is to sample H conditioned
on U . For this, we adapt the rejection sampling idea we’ve

8

already used. First, we sample H from G(q). Then, we keep
H with probability M · Pr[U | H] for a constant M we’ll
choose later. Otherwise, we discard H and start over, repeating
until we choose to keep a sample. This is a generalization
of our previous rejection sampling approach; in particular if
H is connected then we keep it with probability 0 (reject it)
as before. But now even disconnected graphs are sometimes
rejected to normalize their probabilities.

Under this scheme, the probability that we output H on
the first try is Pr[H] · M · Pr[U | H]. Summing over H ,
the probability that we output some graph is then M · Pr[U].
Which means that conditioned on outputting something, the
probability that we output H is

M · Pr[U | H] Pr[H]

M · Pr[U]
= Pr[H | U]

(by Bayes’ Law) as desired. We may not output anything, but
the same argument applied inductively tells us that if we keep
trying, then whenever we do output a graph it will have the
desired distribution.

How long will this take? As argued above, the probability
that we output anything on one attempt is M · Pr[U], which
means that the expected number of attempts we will need
to make is 1/M Pr[U]. This suggests making M as large as
possible to minimize the time.

What limits us is the role of M in keeping samples. We do
so with probability M ·Pr[U | H], which must be a probability
(at most 1) for the analysis to be correct: there is no way
to keep a sample with probability 2. Thus, we are restricted
to choosing M such that M · Pr[U | H] ≤ 1. The graph
which most strongly bounds M is thus the graph maximizing
Pr[U | H]. Since every H is a contraction of G, it follows that
this least reliable contraction is G itself—in other words, we
can set M = 1/Pr[U | H = G] = 1/uG(p/q) (or anything
smaller). Since Pr[U] = uG(p), it follows that the number of
trials needed to generate our sample will be uG(p/q)/uG(p).

To bound this quantity, recall from Cycle Lemma II.1 that
uG(p/q) ≤ n2(p/q)c. We can therefore pessimistically set M
to one over this quantity. On the other hand uG(p) ≥ pc. It
follows that the expected number of samples is at most n2/qc.

There remains one detail: our algorithm is supposed to keep
H with probability M · Pr[U | H] = M · uH(p/q). How do
we compute this probability? By using our unbiased estimator
algorithm for uH(p/q). This estimator returns a random quan-
tity Z whose expectation is uH(p/q), but that is sufficient. Let
I be the indicator that we keep H; we keep H with probability
Pr[I] = E[I] = EZ [E[I | Z]] = EZ [Z] = uH(p/q) as
required. It is this step that demands a true unbiased estimator
for uH(p/q) instead of an approximation for it.

B. Runtime Analysis

In summary, we’ve given an algorithm that generates n2/qc

samples of H in expectation to find one from the desired
distribution. Each sample can be generated in O(m) time. If
we take qc = O((log2 n)/n) as before, then every H has
O(log n) vertices high probability. This means that the time
to compute the necessary unbiased estimator for uH(p/q),

to decide whether to keep H , is O(log3 n) which is negli-
gible. Thus, the total work to generate and test samples is
O(mn4/ log2 n).

Once we’ve found H , we still need to generate K. This
simply requires us to sample K from H(p/q) conditioned on
K being disconnected. This is equivalent to the problem we
started with, but on H instead of G. However, as was argued
in the estimator analysis, H will have O(log n) vertices with
high probability. Conditioning on U will of course bias the size
of H; however, our high probability bound asserts that all of
the graphs we generate while seeking H will have O(log n)
vertices. In the worst case, the graph H that we generate will
be G and will have n vertices.

If H has 2 vertices then we can immediately return K = H
as this is the only disconnected graph that H can produce. If
H is larger, we can run our generation procedure recursively,
sampling an H ′ from H(p/q′) conditioned on the final output
being disconnected, and so on. This gives us a probabilistic
recurrence relation:

T (n) = O(mn4/ log2 n) + T (H)

where H has size O(log n) with high probability and O(n) in
the worst case. Taking expectations, we conclude

E[T (n)] = O(mn4/ log2 n) + E[T (O(log n))] +
1

n
E[T (n)]

where the final term captures the unlikely possibility that we
may need to re-solve a large graph. This solves to E[T (n)] =
O(mn4/ log2 n).

Note that our analysis made the pessimistic and somewhat
contradictory assumptions that uG(p/q) ≈ n2(p/q)c while
uG(p) ≈ pc; in many cases one may be able to show better,
more consistent bounds. For example, as discussed earlier,
when G is a cycle both quantities have an n2 factor and when
G is two cliques with c crossing edges neither does, so in both
cases the number of samples needed is a factor of n2 better
than the pessimistic analysis.

C. A Faster Algorithm

Because all the intermediate graphs H are are small, com-
puting uH(p/q) for rejection sampling takes little time. The
bottleneck in our algorithm is generating the samples H . But
for this we can reuse the idea of batch sampling that sped
up our estimator. We expect to need to generate n4/ log2 n
sampled graphs Hi before rejection sampling decides to keep
one. So, generate that many in a single batch; our batch
sampling algorithm does this in amortized O(n log n) time
per sample instead of O(m). We expect to find and return a
result within one batch; if we don’t we simply generate and
test other batches until we succeed. The expected number of
batches we need is then constant so our expected runtime is the
same as the one just claimed for a single batch. This improves
our runtime to O(n5 log n).

We can do even better by recognizing that generating our
samples dominates the step of testing them for rejection. If
instead of setting qc = (log2 n)/n2 we set qc = n−4/3, then
Cycle Lemma II.1 tells us our sample will have size O(n1/3)
with high probability, which means that testing the sample for

9

rejection will take Õ(n) time using our (sparsified) unbiased
estimator. But the rejection ratio M now improves to n2/qc =
n10/3. Since generating and testing each sample takes Õ(n)
amortized time, our overall time bound improves to O(n13/3),
approaching Õ(n4).

V. TWO CONJECTURES AND TWO ALGORITHMS

The relative variance is a useful parameter for characterizing
estimation algorithms. We have given an estimator (which is
unbiased for any q > p) and shown that its relative variance
is O((log2 n)/n2) when we set qc = (log2 n)/n2. More
generally we’ve shown a bound of q−c when q ≤ (log2 n)/n2.
But we believe that a stronger claim holds:

Conjecture V.1. When H is sampled as G(q) the relative
variance of uH(p/q) is bounded by 1/qc.

This bound is tight for the two vertex graph that has only
a single cut of value c. Here we have shown this claim to be
true so long as qc ≤ (log2 n)/n2.

Assuming this conjecture, there is a quadratic-time estimator
with relative variance O(log n) which is strongly reminiscent
of the Recursive Contraction Algorithm [10]. As here our
goal is to generate many samples H ∼ G(q) and average
the resulting uH(p/q) to estimate G. But using an approach
almost identical to the Recursive Contraction Algorithm, we
can share a lot of the work involved in generating the samples,
reducing the overall runtime to Õ(n2).

An Õ(n2)-time algorithm is optimal for dense graphs, but
we’ve seen previously that we can sparsify graphs to nearly
O(n) edges for reliability estimation so there is still room
to improve. One option is to prove the following conjecture,
which would immediately yield a near-linear-time algorithm:

Conjecture V.2. For any graph G, there is a q such that
G(q) has O(log n) vertices with high probability and such that
taking H ∼ G(q) and returning uH(p/q) yields an estimator
whose relative variance is constant.

We have seen that this conjecture holds for both the cycle
(qc = 1/n2) and two cliques connected by a min-cut (qc =
1/2) which are the two extremes when it comes to reliability
and minimum cuts. The intuition behind our conjecture is
that since small cuts are not able to overlap too much, they
are “mostly” independent so that adding more of them only
reduces the relative variance. In other words, the two-cliques
graph should be the worst case one.

VI. CONCLUSION

We have given a particularly simple algorithm for estimating
the reliability of a network by constructing an unbiased
estimator with low variance. While all other algorithms for the
problem relied on extensive analysis and complex algorithms
and data structures, ours uses the most obvious possible ap-
proach of simply simulating edge failures and seeing how often
network failures happen. The key nontrivial insight is that in
order to measure the failure probability when it is extremely
small (and thus cannot be detected by direct Monte Carlo
simulation) we need to amplify the edge failure probability

to cause failures, then adjust for that amplification in order to
recover the network failure probability.

Our estimator approach quickly yields an algorithm with an
O(mn2) runtime and a one-page analysis. If we sacrifice some
simplicity and incorporate some standard ideas from graph
sparsification, this runtime can be improved to O(n3 log n),
the best currently known.

Unlike previous algorithms, ours does not detour through
any enumeration of minimum cuts. Instead it aims directly at
sampling the quantity of interest. However, if you look inside
the algorithm, it has a strong similarity to the Contraction
Algorithm [10] and our original reliability algorithm [7]. Our
estimator contracts edges at random to produce a graph of
O(log n) vertices; the Contraction Algorithm contracts random
edges to produce a graph of 2 vertices. Both are designed
to preserve any min-cut with probability Ω(1/n2), and both
therefore perform the same number O(n2) of trials to ensure
that every min-cut is found, which is in some sense critical for
estimating reliability since min-cuts play the key role there.

At this point, however, the two algorithms diverge. The orig-
inal reliability algorithm emphasized approximately minimum
cuts in reliability. It worked harder (and slower) to enumerate
all of them and determine their overall contribution. Our new
estimator is more careless; it is reasonably likely to find near-
minimum cuts but may miss some; since we only aim to be
accurate in expectation this doesn’t matter.

A good part of this paper was devoted to designing and
analyzing an unbiased estimator for unreliability. If we’d
only wanted a fully polynomial approximation scheme, we
could have taken some short cuts in sparsification. But the
unbiased estimator approach is appealing and elegant. In
particular, the ε−2 log 1/δ dependence on ε and δ for an (ε, δ)
approximation is clear and modular; there is no need to worry
about either parameter during the relative variance analysis.
Furthermore, the relative variance argument comes with no
“high probability” caveat typical of an FPRAS. In particular,
when we make use of such unbiased estimators, it is simple
to analyze even algorithms (such as ours) that may recursively
generate tiny subproblems for which “low probability” in the
problem is is no longer particularly unlikely.

While our bounds are already better than any previously
known, I believe they can be improved. In particular, that the
relative variance of our estimator is actually far smaller than
we showed here. For a particular n and c, the least reliable
network is the cycle while the most reliable network is two
cliques connected by a minimum cut. For both these networks,
our estimator’s relative variance can be improved to a con-
stant by choosing a more suitable q, yielding an Õ(m)-time
algorithm for estimating network unreliability. I’ve included 2
conjectures that point towards potential improvements.

APPENDIX

In this appendix, we restate the result [2] the the cycle is
the least reliable network of minimum cut c in a particularly
strong sense. The application bounding the probability of
disconnection into k components that we need in this work
can also be derived in two other ways [9], [6].

10

Lemma A.1. Let G be any graph with minimum cut c
and let Y by the cycle on n vertices where each pair of
adjacent vertices is connected by c/2 edges. If edges are
deleted independently with probability p, then the number
of components in C stochastically dominates the number of
components in G.

Proof: We use a coupling argument [1], [4] Coupling
is a powerful way to show that Pr[A ≥ k] ≥ Pr[B ≥ k]
for random variables A and B. We define a procedure for
generating a pair of samples a and b such that (i) a is
(marginally) distributed according to A, (ii) b is (marginally)
distributed according to B, and (iii) a ≥ b in every sample
pair. Criterion (iii) means that our variables a and b are very
much not independent, but this does not affect facts (i) and
(ii). It follows that A ≥ k whenever B is, which implies that
Pr[A ≥ k] ≥ Pr[B ≥ k].

Let Y be the cycle described in this lemma. Any n-vertex
graph G with min-cut c has minimum degree c. Thus its
edge count m ≥ nc/2 is no less than the cycle’s which is
exactly nc/2. Augment the cycle with m−nc/2 arbitrary self-
loop edges (which have no impact on the outcome number of
components) so that the two graphs have the same number of
edges. We compare RY , the number of components produced
by deletions from the cycle, to RG, the number produced by
deletions from the graph G.

We determine the number of components R by contracting
all edges that are not deleted—that is, we unify their endpoints
into a single vertex. Then R will be the number of vertices
in the contracted graph. One way to produce this contracted
graph is to generate a random variable representing the number
k of edges that get contracted, distributed as a binomial
distribution with parameters 1− p and m, and then to choose
k edges uniformly at random in sequence and contract each.
Contracting a self-loop leaves R unchanged, while contracting
any other edge decrements R.

We carry out this procedure on G and Y simultaneously in a
coupled fashion. Our coupling generates random contractions
of G and Y simultaneously, each with the correct distribution.
But it also ensures (inductively) that Y never has fewer
contracted vertices than G. It follows that under every possible
sampling outcome RY ≥ RG as claimed.

The coupling is done as follows. First, we select the same
number of edges k to contract in both graphs, according to
the binomial distribution B(m, 1− p). This is correct as both
graphs have m edges. Then, for each contraction step, we
create a particular bijective pairing of the not-yet-contracted
edges of G and Y . We choose a uniformly random edge of
G to contract, which fulfills the goal of contracting edges of
G in random order. At the same time, we contract its mate in
Y . Since the pairing of edges is bijective, it follows that the
edges of Y are also being contracted in uniform random order,
as required. The order of contraction of Y is not independent
of the order of contraction of G, but this does not affect the
analysis.

We define a new edge pairing at each step. We assume by
induction that RY ≥ RG. If RY > RG, the pairing can be
arbitrary—since one contraction decreases RY (and RG) by

at most one (or zero if the edge is a self-loop), we will still
have RY ≥ RG after the contraction, as required. Suppose,
on the other hand, that RY = RG. Since G’s min-cut is never
decreased by contractions, G has min-cut and thus min-degree
at least c. Thus, any contraction of G will have at least cRG/2
edges that have not yet been contracted to self-loops, while the
cycle Y (which remains a cycle throughout the contractions)
will have exactly cRY /2 such edges. Since RY = RG we can
pair every non-loop edge of Y with a non-loop edge of G,
and pair the remaining edges arbitrarily. It follows that if RY
decreases because a non-loop edge was contracted, then RG
decreases as well. Thus, RY cannot become less than RG, and
the invariant RY ≥ RG is preserved.

REFERENCES

[1] D Aldous. Random walks on finite groups and rapidly mixing markov
chains. In Siminaire de Probabilites XVII 1981/1982. Lecture Notes in
Mathematics, pages 243–297. Springer-Verlag, 1983.

[2] András A Benczúr and David R Karger. Randomized approximation
schemes for cuts and flows in capacitated graphs. SIAM Journal on
Computing, 44(2):290–319, 2015.

[3] David G. Harris and Arvind Srinivasan. Improved bounds and algorithms
for graph cuts and network reliability. In Proceedings of the 25th

Annual ACM-SIAM Symposium on Discrete Algorithms. ACM-SIAM,
ACM Press, January 2014.

[4] Mark R. Jerrum. A very simple algorithm for estimating the number of
k-colourings of a low-degree graph. Random Structures and Algorithms,
7:157–165, 1995.

[5] David R. Karger. A randomized fully polynomial approximation scheme
for the all terminal network reliability problem. SIAM Journal on
Computing, 29(2):492–514, 1999. A preliminary version appeared in
Proceedings of the 27th ACM Symposium on Theory of Computing. A
corrected version was published in SIAM Review 43(3).

[6] David R. Karger. Minimum cuts in near-linear time. Journal of the
ACM, 47(1):46–76, January 2000. A preliminary version appeared in
Proceedings of the 28th ACM Symposium on Theory of Computing.

[7] David R. Karger. A randomized fully polynomial approximation
scheme for the all terminal network reliability problem. SIAM Review,
43(3):499–522, 2001. A preliminary version appeared in Proceedings
of the 27th ACM Symposium on Theory of Computing. This corrects
a version published in SICOMP.

[8] David R. Karger, Philip N. Klein, and Robert E. Tarjan. A randomized
linear-time algorithm to find minimum spanning trees. Journal of the
ACM, 42(2):321–328, March 1995.

[9] David R. Karger and Clifford Stein. An Õ(n2) algorithm for minimum
cuts. In Alok Aggarwal, editor, Proceedings of the 25th ACM Sympo-
sium on Theory of Computing, pages 757–765. ACM, ACM Press, May
1993. Journal version appears in Journal of the ACM 43(4).

[10] David R. Karger and Clifford Stein. A new approach to the minimum cut
problem. Journal of the ACM, 43(4):601–640, July 1996. Preliminary
portions appeared in SODA 1992 and STOC 1993.

[11] Richard M. Karp. Probabilistic recurrence relations. In Proceedings of
the 23rd ACM Symposium on Theory of Computing, pages 190–197.
ACM, ACM Press, May 1991.

[12] D. W. Matula. A linear time 2 + ε approximation algorithm for edge
connectivity. In Proceedings of the 4th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 500–504. ACM-SIAM, January 1993.

[13] Hiroshi Nagamochi and Toshihide Ibaraki. Computing edge connectivity
in multigraphs and capacitated graphs. SIAM Journal on Discrete
Mathematics, 5(1):54–66, February 1992.

[14] Hiroshi Nagamochi and Toshihide Ibaraki. Linear time algorithms for
finding k-edge connected and k-node connected spanning subgraphs.
Algorithmica, 7:583–596, 1992.

[15] J. Scott Provan and Michael O. Ball. The complexity of counting cuts
and of computing the probability that a network remains connected.
SIAM Journal on Computing, 12(4):777–788, 1983.

[16] Leslie Valiant. The complexity of enumeration and reliability problems.
SIAM Journal on Computing, 8:410–421, 1979.

