Using Random Sampling to Find Maximum Flows
in Uncapacitated Undirected Graphs

David R. Karget

Abstract

We present new algorithms, based on random sampling, that

find maximum flows in undirected uncapacitated graphs. Our
algorithms dominate augmenting paths over all parameter va
ues (number of vertices and edges and flow value). They also
dominate blocking flows over a large range of parameter val-
ues. Furthermore, they achieve time bounds on graphs with
parallel (equivalently, capacitated) edges that preWosuld

only be achieved on graphs without them.

The key contribution of this paper is to demonstrate that
such an improvement is possible. This shows that augment-
ing paths and blocking flows are non-optimal, and reopens the
question of how fast we can find a maximum flow. We im-
prove known time bounds by only a small (but polynomial)
factor, and the complicated nature of our algorithms sugges
they will not be practical.

A new idea of our algorithm is to find flow bgiminishing
cutsinstead of augmenting paths. Rather than finding a way to
push flow from the source to the sink, we identify and delete
edges that are not needed in a maximum flow. When no more
edges can be deleted, we know that every remaining edge mus
be saturated to give a maximum flow.

1 Introduction

Random sampling has been a useful tool for solving cut prob-
lems in undirected graphs. In previous work [Kar94], this au
thor showed that randomly choosing edges from a graph yields
a sampled graph in which every cut is close to its expected
value with high probability. This led to algorithms for ap-
proximating [Kar94] and exactly finding [Kar96] global min-
cuts in near-linear time with high probability. Benczur and
Karger [BK96] extended these results, showing how to find
a (1 + €) times minimums-t cut in O((n/¢)?) time' on n-

*MIT Laboratory for Computer Science, Cambridge, MA 02138.
Supported by NSF contract CCR-9624239.
email: karger@Ics.mit.edu.
URL: http://theory.lcs.mit.edu/C karger

LO(f) denotesf log® M) n

vertex capacitated graphs. However, these schemes could no
find flows or exack-t min-cuts, even in uncapacitated graphs.

In this work, we show that sampling can speed up the
fastest known algorithms for finding¢ max-flows (and thus
exacts-t min-cuts) in uncapacitated undirected graphs. Until
now, the best algorithms have usatymenting pather block-
ing flows[Tar83, AMO93]. Augmenting paths can be used to
find a flow of valuev in O(mv) = O(n?) time on anm-
edge,n-vertex graph. Blocking flows can be used to find a
max-flow in O(m?®/?) time [Eve79]. Thus augmenting paths
dominate for small values af, while blocking flows dominate
whenv is large (greater thagy/m). If we restrict the graph to
have no parallel edges, blocking flows achieve a time bound of
O(n*3m) = O(n®/?) [EveT9]. Together, augmenting paths
and blocking flows achieve the best known time bounds for
max-flows in uncapacitated graphs.

Our algorithmic technique can be applied to both of these
classical methods. Modifying augmenting paths, we give an
algorithm that runs irO(m?/®n!/3v) time with high prob-
ability, improving the previously given running times by a

factor of roughly (m/n)*/3 while preserving the efficiency

of the algorithm for smalb. Modifying blocking flows, we
give an algorithm with a (high probability) running time of
O(m®/n'/3v*/), which improves on blocking flows when-
everv < m/y/n. Both of our algorithms apply to graphs
with or without parallel edges. Compared to blocking flows
on graphs without parallel edges, our bound is better when
v? < ny/m. Takingm = n® andv = n gives us a single-
parameter time bound (for both algorithms)afn®/?), previ-
ously achieved (but not bettered) only on graphs without par
allel edges.

A new idea of our algorithm is to find flow bgliminish-
ing cutsinstead of augmenting paths. Rather than identify-
ing empty source-sink paths and increasing flow on them, we
identify and delete edges that are not needed in a maximum
flow. When no more edges can be deleted, we know that every
remaining edge must be saturated to give a maximum flow.
Deciding whether an edge can be deleted requires determin-
ing whether it crosses a minimum cut. Thus, we can use cut
computations to search for the maximum flow.

Our sampling-based method is intuitively straightforward
but its implementation is quite complicated. Although dimi
ishing cuts is a simple idea, our implementation of it appeal
to a min-cost flow subroutine. Thus the algorithms presented
here are unlikely to be practical. Their main virtue is togamt
a new technique, and demonstrate that neither augmenting

paths nor blocking flows are optimal, thus reopening the-ques
tion of how fast we can find a maximum flow.

All algorithms discussed in this paper are randomized.
They are also all Las Vegas algorithms, meaning the alguarith
is guaranteed to be correct but the running time only holds
with high probability. Time in this abstract should always b
taken as a measure of the high probability running time grath
than a deterministic quantity.

1.1 Background

Our approach was motivated by the results of [BK96]. That
paper showed how sampling could be used to find approxi-
mates-t min-cuts much faster than we know how to fisd
max-flows. In this section, we discuss this approach, high-
lighting features we will need for our flow algorithm. A great
deal of our discussion relies on a grapbdsnectivity In this
paper, connectivity always refersédge connectiviythat is,

the value of a minimum edge cut in the graph.

In earlier work [Kar94], this author showed how to apply
random sampling to cut and flow problems. If we choose every
edge of a graplér independently with probability, then we
get a subgraplF(p) each of whose cuts has expected value ex-
actly p times the value of the corresponding cutinthecor-
responding cuis the one defined by the same vertex partition).
If this correspondence were exact, we could, for exampld, fin
min-cuts inG by finding them inG(p). Unfortunately, there
is some variance in the random samples. However, [Kar94]
proved that ifG has connectivity: andp > 8(Inn)/e%c, then
all cuts are within(1 + €) of their expected values. This led to
algorithms for approximating global min-cuts quickly. Isa
led to the following result which we will use later:

Theorem 1.1 In a graph with connectivity:, a max-flow of
valuewv can be found ir0(mw/+/c) time.

The requirement that the sampling probability exceed
O(1/c) for small error meant that this approach was

only useful for graphs with large min-cuts. Benczur and
Karger [BK96] dealt with this problem by showing that any

in [BK96] to describe the construction of item (2) in Theo-
rem 1.2; note, however, that the components of that construc
tion did not themselves need to beconnected. In this paper,
we use the ternk-strong partition only in its new sense. We
refer to the construction of [BK96] as/astrong refinement
Despite the distinction, Theorem 1.2 was sufficient to prove
the following:

Theorem 1.4 (Compression [BK96])For any n-vertex m-
edge graphG, and for anye,

e There exists a)(n/e?)-edgecompressed grapfi’ on
the same vertex set such that every cu&irhas value
in the range(1 +¢) times the value of the corresponding
cutinG.

e There is an algorithmCompress that will construct
graph G’ in O(m) time.

We refer to the construction in this theoremgaaph com-
pression It led to the following corollary:
Theorem 1.5 ([BK96]) Given a graph withs-t min-cutv we
can find a(1 + €) times minimum-t cut in O(nwv/€?) time.
Proof: If we compress our graph to yield’, any s-t min-
cutin G is a(l + ¢) times minimums-¢ cut in G. Such a
cut can be found quickly with an augmenting-path max-flow
algorithm since’ has few edges. [l

The construction used in the proof of Theorem 1.4 pre-
serves the values of flows but distorts their shapes, so that
only (approximate)s-t min-cuts, and not max-flows, can be
extracted by examining the compressed graph. Furthermore,
the algorithm is Monte Carlo, since the only way we know to
verify min-cuts is to find max-flows.

1.2 A New Approach

Given that we can find (approximate) min-cuts faster than
max-flows, an obvious thought is to use min-cut computations
in a max-flow algorithm. We now describe such an approach.

graph with many edges has well-connected regions inside of It is based on a divide-and conquer scheme. Suppose that we

which the sampling probability can be lowered safely. In-par
ticular:

Theorem 1.2 ([BK96]) For any n-vertexm-edge graphG,
and anyk,

1. There is a set of at mokt edges whose removal parti-
tions G into k-connected subgraphs.

2. InO(m) time, we can find a set @¥(kn) edges whose
removal partitions& into components, each of which is
contained in a&k-connected subgraph 6f.

The difference between items (1) and (2) above will cause
some trouble later. One of our contributions here is to blend
the two results, yielding the following theorem:

Theorem 1.3 For any n-vertexm-edge graphG and anyk,
in O(m) time, we can find a set @(knlog n) edges whose
removal partitionsG into components, each of which iska
connected subgraph @f.

That is, we give up a®(log n) factor in the edge count
compared to the previous construction, but in return we-guar
antee that each componentigonnected. We prove this the-
orem in Section 9 We refer to the partition constructed ia thi
new theorem as k-strong partition This term was also used

could quickly find ars-t min-cut inG. We know that all edges

of this s-t min-cut are saturated by any max-flow. This knowl-
edge allows use to solv@ by solving independent max-flow
problems onA and onB: the (A, B) min-cut edges define
the sinks for a max-flow from to the boundary ofd, and the
sources for a max-flow from the boundaryBfto ¢. This sets

up a natural divide and conquer algorithm for the max-flow,
where we solve the two problems separately and then “patch”
them through their interface at tliel, B) cut. We detail this
method in Section 2. If we could somehow guarantee that the
two subproblems werbalanced e.g. that each had at most
2n/3 vertices, then our divide and conquer algorithm would
yield a recurrence in which the time to fiset min-cuts was

the dominant factor.

Of course, at present the only known way to findsah
min-cut is to compute a max-flow. However, the graph com-
pression technique of Section 1.1 can be applied to find an
approximates-t min-cut quickly. We show in Section 3 that
dividing and conquering on such an approximstemin-cut
will yield an approximately maximums-¢ flow that can be
“cleaned up” via a small number of augmenting path compu-
tations.

The problem with all this is that a graph might have no bal-
anceds-t min-cuts. The leads us to our schemalihinishing
cutswhich we introduce in Section 4. We find any balanced

partition of G into two groups and consider the set of edges cut
by the partition. We delete edges from it until every edgé tha
remains is necessary for carrying flow. This means that every

Definition 2.2 We will refer to the process described in
Lemma 2.1 apatchingthe two flows.

The above argument suggests the divide and conquer al-

remaining edge crossing the balanced cut is also crossing angorithm of Figure 2 for computing ag¢ max-flow. All time

s-t min-cut. We show that this implies the existence of a bal-
anceds-t min-cut, which lets us apply the divide and conquer
scheme of the previous paragraph.

Deciding whether an edge can be deleted or not amounts
to deciding whether it crosses ai min-cut. As before, deter-
mining this fact exactly requires computing &t max-flow.
However, we show in Section 5 that compression can be used
to give us an “approximate” answer. Although we might delete
a few vital edges, our deletions do not dramatically redbee t
s-t min-cut/max-flow value. After we divide and conquer to
find a flow with this value, a small number augmenting paths
will increase it to a max-flow.

The time to solve the diminishing cut problem depends on
the number of edges in the cut we want to diminish (it will
amount to the time to find a max-flow in a graph with this
many edges). We therefore aim in Section 6 to find a starting
cut that is balanced but small. We use khstrong partition de-
fined in Theorem 1.3 as our starting point. If this partiti@sh
no large component, then we can divide its components into
two balanced groups to get a balanced 2-way partition with
only O(kn) crossing edges to which we can quickly apply the
diminishing cuts scheme. If there is one large componeenh th
as we discuss in Section 6 and Section 7, we can divide into
this component and its complement. The (small) complement
can be solved recursively, while the large component, being
connected, can be solved by the fast algorithm of Theorem 1.1

For simplicity, we phrase this presentation in terms of
an augmenting path algorithm; in Section 8 we discuss the
changes that occur when we use blocking flows instead. Fi-
nally, in Section 9, we give an algorithm that proves Theo-
rem1.3.

2 Using a Cut Oracle to Find Flows

It is a classic result [FF56, FF62] that the valuef an s-t
max-flow is equal to the value of thet min-cut. A corollary

is that a max-flow saturates every edge crossing-amin-
cut. This scheme is typically used to find cuts by computing
flows. Here we show how it can turned around, finding flows
by computing cuts.

Suppose that we are given a# min-cut (A, B) of value
vwith s € A andt € B. We will use this cut to subdivide our
original problem into two smaller max-flow problems. Con-
tract A to a single vertex:, yielding a graph denote@/A.
Find a max-flow with source, which we will call an(A, t)-
flow. Since the degree of is equal to the value of cytd, B),
namelyv, we see that this max-flow has value at mesOn
the other hand, if we start with ant flow of valuev, the con-
traction of A turns itinto anA-¢ flow of valuev. Thus, thed-¢
max-flow is exactlyv, and saturates all edges of dui, B).
Similarly, if we contractB to a vertex, yielding a grapf#/ B,
then thes-B max-flow inG/B is equal tov.

Lemma 2.1 (Patching) Let (A4, B) be ans-t min-cut. Given

an A-t max-flow and ars-B max-flow, we can construct an
s-t max-flow in linear time.

Proof: (Sketch.) The only sets of edges the two flows share
are those crossing c(t4, B). Both flows saturate all these

other than the cut computation is linear.

Algorithm Flow (G, s, t)

if G has two verticethen
saturate their connecting edges and return
(A, B) « ans-t min-cutinG
fa <Flow (G/A, A,t)
fB «Flow (G/B, s, B)
patchfs andfp in G to ans-t flow f (Lemma 2.1)

Figure 1: Divide and Conquer for Flows

3 Using Approximate Minimum Cuts

Of course, at present the only known algorithms for finding
s-t min-cuts are max-flow algorithms. However, Benczur and
Karger [BK96] have shown how to findpproximatelymin-
imum s-t cuts quickly. As discussed in Theorem 1.5, a cut
of value at mosf{(1 + ¢) times the min-cut can be found in
O(nw/€?) time. We can adapt our divide and conquer strat-
egy to make use of such approximate min-cuts. However, the
use of a sharedpproximatemin-cut gives the two subprob-
lems options about which of the shared edges they use; they
may make different choices, which makes patching the flows
somewhat harder. To do so, we use the following technical
lemma:

Lemma 3.1 (Flow Decomposition)There is anO(m)-time
algorithm that decomposes any integrat flow of valuev
into a set ofv edge-disjoints-¢ paths.

Proof: Add v copies of edgdt, s), each carrying a unit of
flow, and delete all edges not carrying flow. By flow conserva-
tion, we are left with an Eulerian graph. Find an Euleriarnrtou
through it. Deleting the copies of(¢, s) breaks this tour into

v disjoint paths as desired. ([l

Lemma 3.2 (Approximate Patching) Let (A, B) be any
(1 4+ e)-minimums-t cut in G. Given an integralA-¢t max-
flow in G/A and an integrals-B max-flow inG/B, an algo-
rithm PatchApprox can construct ars-t max-flow inG in
O(m + emv) time.

Proof: Let f4 andfp be integral max-flows i&f/A andG/B
respectively. Since contractions never reduce cut valfies,
and fg have value at least. Since the flows are integral, it
follows that at least of the (1 + €)v edges crossingA, B)
are saturated by flowf4, meaning at mostv cut edges are
not saturated by 4. Similarly, at mostev cut edges are not
saturated by flowfs.

Decompose flowg's and fp into paths using the algo-
rithm of Lemma 3.1. Consider thed, B) cut edges saturated
by flow f4. Of these (in fact, of al(A, B) cut edges) at most
ev are not saturated byz. Delete every flow path iff4 that
terminates at a cut edge not saturatedfBy This leaves us
with a flow £/, of at least(1 — €)v paths. Do the same with

edges, so they are consistent on them. So just give every edgefy;, deleting each of the (at mosi) flow paths that start at a

of G the flow value it had irG/A or in G/B.

cut edge not saturated bfn. This leaves us with two flows
fa and f5 of value (1 — ¢)v that saturate the sanfé — ¢)v

edges. It follows as in Lemma 2.1 that these two flows can be
patched to yield a flow i of value at leasfl — €)v.

Finally, perform an additionatv augmenting path compu-
tations to augment our flow to a max-flow. ([l

We can use this lemma to adapt our divide and conquer al-
gorithmFlow from Figure 2. We use the algorithm of [BK96]
(Theorem 1.5) to identify &1 + €)-minimum s-¢ cut (A, B)
in O(nv/€®) time. We recursively compute a#-t max-flow
and ans-B max-flow. Using AlgorithmPatchApprox of
Lemma 3.2, we patch and augment these flows to a max-flow
in O(m + emv) time. This yields a recurrence

T(m,n) T(mi,n1) +T(m+ OWw) —mi,n—mni)

+0(nv/€”) + O(m + emv).

(The O(v) term arises from the shared cut edges that appear
in both subproblems). Let us make the optimistic assumption
that the approximately minimumt cuts we find ardalanced

so that, sayn/4 < n; < 3n/4. Under this assumption, we
find that the recursive work is negligible and the runningetim

is simply O(nv/€e* + m + emw). Choosinge = (n/m)/3

to balance terms yields a running time @{m?*/®n'/3v) as
compared to th€(muw) running time of standard augmenting
paths.

4 Diminishing Cuts

Unfortunately, our optimism in the previous section is @aju
tified. There is no reason to suspect that we can always find
a balancedapproximately minimums-¢ cut. In an expander
graph, for example, all approximately minimum cuts are un-
balanced.

We therefore show in this section howd®atea balanced
s-t min-cut bydeletingedges from the graph until a balanced
min-cut exists. So long as we do not delete anrymin-cut
edge, our new graph will have the same max-flow value as the
original graph. Our deletions will create a new, balansed
min-cut on which we can divide and conquer as the previous
section assumes.

Define afB-balanced cuto be one with at leastn ver-
tices on each side. Suppose that we have a balanced but non
minimum cut(A, B) that we wish to refine to a balanceet
min-cut. We do so by identifying a minimum set of its edges
needed to carry agt max-flow, and deleting all of its other
edges. Our approach will initially seem harder than our-orig
inal problem. Suppose we assign cbgb the (A, B) edges,
cost0 to the other edges, and find@nimum cosmaximum
s-t flow. Such a flow will use a minimum set ¢, B) edges;
we show this lets us construct the balanced min-cut we want
and apply the previous section's divide and conquer scheme.
We begin with a lemma characterizing the¢ min-cuts in a
graph.

Definition 4.1 Let f be anys-t max-flow inG. Theresidual
graphof f is a directed graph that consists of all edges of
G that are not carrying flow together with an edge, u) for
every edgéu, v) carrying flow.

Definition 4.2 Let R be any directed graph. Aiealin R

is a set of vertices such that for any edge v), if u € S
thenv € S (in other words, an ideal is a set with no outgoing
edges).

Lemma 4.3 ([PR75]) Every ideal in the residual graph of an
s-t max-flow forms one side of ant min-cut.

Proof: From the fact thaff is a max-flow it follows that is
in every nonempty ideal, while the only ideal containiniy
the entire vertex set.

Consider any nontrivial ideal". Sinces € Y andt ¢ Y,
by conservation of flow, there must be a netainits of flow
leavingY. Now consider an edgér,y) of G withz € Y
andy ¢ Y. By the definition of an idealz, y) cannot be a
residual edge, meaning th@t,y) must carry a unit of flow.
Similarly, (y,z) cannot be carrying a unit of flow. In other
words, all edges cut by must carry a (net) unit of flow out
of Y. It follows that exactlyv edges are cut by". In other
words,Y is ans-t min-cut. O

We now how to diminish a given c(t4, B) to ans-t min-
imum cut. It may not actually be possible to delete all but
v edges from the cutA, B), since it may be necessary for
flow paths to travel back and forth frosh to B several times.
However, we can create art min-cut that is “consistent” with
(A, B) in a sense to be defined below.

Lemma 4.4 Suppose we have ant max-flowf that uses a
minimal set of edges from a c(t, B). Suppose we delete ev-
ery (A, B) edge not carrying flow. Then in the resulting graph,
every strongly connected component in the residual graph of
f will be contained inA or B.

Proof: Let C be a strongly connected component in the resid-
ual graph off after the edge deletions. Suppose thah A
andC N B are both nonempty. Sing is strongly connected,

it follows that there is a cycle in the residual graph coritajn

an edge crossing from to B. By pushing flow around this
residual cycle, we can remove flow from this B edge. (Re-
call that every remainingA, B) edge is carrying flow, so the
residual edge must point opposite the flow being carriedsThu
augmenting on the residual edge cancels the flow through the
edge.) This violates our hypothesis that our flow uses a mini-
mal set ofA- B edges, a contradiction. O

Lemma 4.5 Suppose we have asit max-flow that uses a
minimal set of edges from @-balanced cut(A4, B). If we
delete every A, B) edge not carrying flow, then the resulting
graph will have a3/2-balanceds-t min-cut that we can find
in linear time.

Remark: It should be noted that the original balanced cut need
hot separate and¢. If so, there might be no flow crossing
the 3-balanced cut, meaning that when we delete the (all un-
used) edges; andt end up in a small connected component.
This can only help us, since the large deleted componentis un
necessary for the flow and can be ignored by our algorithms.
Slightly abusing our definition, we will refer to thet min-cut
we find in the component containingandt as3/2-balanced.
This might violate our definition if, for example, the compo-
nent containing bot and¢ has few vertices; however, this
can only improve the performance of the algorithms that rely
on this lemma.
Proof: After the deletions, leR be the residual graph for the
flow. In order to prove our theorem, we need only prove fhat
contains an ideal with betweeg /2 and(1 — 3/2)n vertices,
and apply Lemma 4.3.

Topologically sort the strongly connected components of
R (that is, contract each strongly connected component and
topologically sort the resulting DAG). Since the component
containings clearly has no outgoing residual edges, we can
take this to be the first compone6t,. Similarly, since the
component containing has no incoming residual edges, we
can take this to be our last componetit. Call the result-
ing sequence of connected componéfits. . ., Cj,. Note that

k > 1 since our max-flow saturates some min-cut. Further-
more, every prefixCy, ..., C, of this sequence with < k is

an ideal ofR. It therefore suffices to prove that some prefix
contains betweefin/2 and(1 — 3/2)n vertices.

To do so, start with th€';, and add one component at a
time in order, keeping a running total of the number of vesic
added. The previous lemma proves that every strongly con-
nected component iR is contained in either or B. Thus,
eachC; has at size mogil — gn). It follows that as we add
components, our running total never increases by more than
(1 — B)n in one step. Thus at some point, we will have be-
tweengn/2 and(1—3/2)n vertices in the prefix, yielding our
balanced ideal. This construction can actually be carnigdéo
linear time, proving that we can identify the claimed cut[]

5 Fast Approximate Diminishing Cuts

Of course, finding ar-t max-flow is exactly what we wanted
to do in the first place, so it is unrealistic to assume thatave c

time, two graphs4’ and B', each withO(n/e?) edges, that
approximate all cuts aft andB respectively to withir(1 L ¢).
We replaced andB in G with A" and B’, yielding graphG’.
This does not touch the separator ed§ebut leaves us with a
graph containing)(r +n/¢*) edges. Furthermore, since each
cut of G involves a cut of4, a cut of B, and some separator
edges, it is easy to see th@t approximates all cuts af to
within (1 £ €). In particular, thes-t min-cut inG' is at least
(1 — €)v, and anys-t min-cut inG’ corresponds to an at most
(1 + €)*>-minimums-¢ cut inG.

We now apply our diminishing cut construction to graph
G'. Asin Lemma 4.5, we assign cdsto the separator edges,
compute a min-cost flow, and delete all the separator edges no
carrying flow. Let us call the resulting reduced grdiph with
remaining separator edgéé = S — D. Lemma 4.5 shows
that we can immediately identify @8/2-balanceds-t min-cut
in H'.

In this reduced grapll’, replaced’ by A and B’ by B.
Since the separator edges®@f (and H') are all edges of7,
this leaves us with a subgragh C G. Relying once again

use one to delete unnecessary edges. However, we will makeon the fact thatd and A" agree to withine on cut values, as

use of an approximate-t max-flow to achieve the same ob-
jective. Consider AlgorithrpproxDiminish in Figure 2.
This algorithm uses a call to a subroutiéCostFlow that
finds a minimum cost flow of maximum value in a graph.

Algorithm ApproxDiminish (G, A, B)

input: GraphG with min-cutv

(B-balanced cutA, B) with cut edgesS.

output: graphH C G with min-cut(1 — €)v
B/2-balanced1 + €)-minimum cut(X,Y")

A" + Compress(A) (Theorem 1.4)

B’ < Compress(B)

G+~ AUBUS

Assign costl to all edges of5, cost0 to others

f < MinCostFlow(G')

D « edges ofS without flow

find a balancead-¢ min-cut(X,Y)in G’ — D
(using Lemma 4.5)

returnG — D with cut (X,Y")

Figure 2: Constructing a balanced min-cut from a balancéd cu

Lemma 5.1 Given anr-edgeg-balanced cut of a graplé,
Algorithm ApproxDiminish runs inO(v(r + n/€?)) and
deletes edges from the balanced cut so that

e @ still has s-t minimum cut at leagfl — €)v, and
e G has ag/2-balanceds-t cut of value at mogl + €)v

Proof: The algorithm's basic approach is to compress both
sides of the cut, find a min-cost flow in the resulting grapld, an

delete balanced-cut edges that the flow does not use. As ar-

gued in Lemma 4.5, this leaves behind a minimum set of edges
in the compressed graph; we rely on the cut-approximating
properties of graph compression to prove that it leaves & nea
minimum set of edges behind in the original graph as well.
Consider the algorithm of Figure 2. Given our balanced
cut(A, B) (which we refer to as a separator), we compress the
induced subgraphd andB using the techniques of [BK96] as
discussed in Theorem 1.4. This construction yields) {m)

do B andB’, we deduce thall hass-t minimum cut at least
(1 — ¢)v and that the3/2-balanceds-¢ min-cut we found in
H' has value at mogil + €)v in H.

To prove the time bound, note that the only non-linear time
computation is of the min-cost flow. On an-edge uncapac-
itated graph, a min-cost augmenting path algorithm will find
such a flow inO(mv) time [Tar83, AMO93]. The graph we
work with hasO(n/€*) edges inA’ and B’ andr edges cross-
ing (A’, B'), so the claim follows. O

5.1 Graphs with a Separator Oracle

We can use the above algorithm directly to find flows in any
family of graphs with a small separator oracl&his is a fam-

ily, closed under taking minors (that is, deleting and cacttr

ing edges) such that every graph of sizeas a3-balanced cut

of valueS(n) (which we call call a separator) that can be iden-
tified in O(Ts(n)) time. Note that in contrast to our invalid
balanced min-cut assumption of the last section, theraligtu
are interesting graph families, such as planar graphshtivet
fast small separator oracles [GHT84, ASR90, KRP93, PRS94]
(though the ones listed here have so few edges as to make our
sampling scheme pointless).

Suppose we have a family of graphs with siZ@z) sep-
arators that can be found ®(7's(n)) time. Consider Algo-
rithm Flow of Figure 3. After finding a&3-balanced cut, the al-
gorithm uses Algorithm\pproxDiminish ~ of Lemma 5.1 to
create a balanced approximate min-cut, recursively findssflo
on the two sides of this min-cut, and then patches them as in
Lemma 3.2.

Algorithm Flow (G, s, t)

(A, B) « Separator(G)

(H,X,Y) < ApproxDiminish(G, A, B)
fx « Flow(H/X, X,t)

fy < Flow(H/Y,s,Y)
PatchApprox(fa, fs) (using Lemma 3.2)

Figure 3: A flow by separators

We now analyze the running time of this algorithm. We
find an S(n)-edge separator in tiné&s(n). Algorithm Ap-
proxDiminish runs inO(nv/e® + S(n)v) time. We thus
have a recurrence in which it is easy to prove that the reairsi
calls have negligible cost:

T(m,n)
< Ts(n) 4+ O(n/e® + S(n)v + emv)
+T'(m1,n1) +T(m+ S(n) —mi,n —n1)
((B/2)n <ni < (1= 5/2)n)
O(Ts(n) + nv/e® + S(n)v + emw)
O(Ts(n) + S(n)v + n*>m'/>v)

@)

if we balance fok.

6 Finding a Starting Cut

Our previous algorithm relied on the existence of small sep-
arators (and an oracle for finding them). In this section, we

method succeeds in our current graph, we can continue ex-
actly as we did in the previous section. However, since we
did not necessarily start with a balanced partition, we oann
assume that we succeed in getting a balanced prefix.

6.1 A Large Residual Component

Observe that the only wadpproxDiminish can fail to find
a balanced cut is if one of the residual strongly connected
components, sa¢’;, has size exceeding, sa&3n/4. Since
|So| > n/2, we must havel; C So.

We now proceed slightly differently depending on which
(if either) of s or ¢ is in C;. We first consider an easy case,
wheres € C; (soj = 1) while¢ ¢ C; (the general case
will be discussed in the next section). In this case, we@ise
and its complement as our divide and conquer partition (note
that C; = () is an ideal and thus defines a min-cut). We
aim to find flows inG/C; andG/C; and patch them using
Algorithm PatchApprox .

Since|C;| > n/2 by hypothesis, the first recursive sub-
problemG/C; has less tham/2 vertices, making a recur-

that, for any graph, finds either the separator we relied on or On the other handC’; may be so large that the subproblem

an equally useful alternative structure. We start by sgttin
k = 1/€? and constructing (i) (m) time) thek-strong par-
tition guaranteed by Theorem 1.3. This gives us a multiway
partition of G such thatO(kn log n) edges cross the partition.

If we are fortunate, the largest component of the partition
has less tham/2 vertices. If so, then it is easy to divide the

G/C; seems expensive to solve. However, we show that this
subproblem is essentially attacking a graph of connegtht
allowing us to solve it irO(mwv/Vk) = O(emv) time (The-
orem 1.1).

Suppose first that, intersectfj. Then sinceC; C So,
contractingC to a single vertex leaves us with a graph that is

components into two groups such that the number of vertices in fact a contracted version &f. Since contraction can only

in each group is at mos8tn /4. This gives us %-balanced cut
with O(knlogn) = O(n/€®) edges crossing it and allows us

to apply the divide and conquer scheme of the previous sec-

tion.

We now deal with the possibility that the largest compo-
nent has size greater thari2. One particularly easy case oc-
curs when there a single component of sizeln this case,
we know that our graph is in fadt-connected. As noted in

Theorem 1.1, an algorithm of [Kar94] uses random edge par-

ti}ioning to find a flow of valuev in any k-connected graph in
O(mv/Vk) = O(emv) time.

increase connectivity, it follows that/C is k-connected and
can be solved i) (mwv/Vk) = O(emw) time (Theorem 1.1).

So now suppose thay does not intersed®;. It follows
that in factC; = So and isk-connected. We also know that
G/C; hass-C; flow ©(v), which certainly implies thaC
has degre@®(v) in G/C;. In other words, our contracted
graph consists of &-connected graply’; to which we have
appended a vertex of degreeSuch a graph has connectivity
at leastmin(k, v).

We therefore consider two cases. ulf> k/logn, we
deduce that our graph s/ log n-connected. It follows that

A greater challenge arises when there is more than one {he aigorithm of Theorem 1.1 finds a max-flow in this graph

component but some component has size greatertjianin

this case we will proceed with our divide step as before, but
will then perform a recursive call only on the smaller sidee W
will handle the larger side using the algorithm feconnected
graphs just mentioned. (It is this step, which requires that
the large side bé-connected and not just a subset ok-a
connected graph, that forces us to develop a diffekesttong
partition algorithm than that of [BK96].) Since we do not re-
curse on the larger side, the divide and conquer recurreiice w
still have good time bounds.

Let us suppose that thé&-strong partition gave us
componentsSo, ..., S,, with |So| > n/2. Our ap-
proach begins as before. We try to use Algorithm
ApproxDiminish (G, So, Sy) to construct a balanced ap-
proximately minimum cut ofG. Recall that this algorithm

finds a flow and deletes edges such that the strongly connected

components{C;} of its residual graph are contained

or Sy. Recall how we used this graph to define a balanced
approximately minimuny-¢ cut: we topologically sorted the
strongly connected components into a sequefice .., Cy,

and chose a balanced prefix of the topological sort. If this

in O(mv/Vk) = O(emv) time. If v < k/logn, then our
graph isv-connected, so Theorem 1.1 shows that the flow
can be found irD(m./v) time. However, we can do better.
[Kar97] shows that if we randomly partition the edgestgf
into O(k/logn) sets, then each contains a spanning tree of
C; with high probability. Thus we can use one spanning tree
to route each of our desirad< k/ log n units of flow. So we
can solve this flow problem i®(m) time. In either case, we
are finding the flow irO(m + emv) time.

It follows that when the divide and conquer recurrence of
Equation 1 for the running tim& (m, n) does not apply be-
cause all thes-t min-cuts are unbalanced, then our running
time satisfies a different quanti® (m, n) given by
Ti(m,n) < T(m,n/2) + O(m + emv).)

We have therefore argued that any problem can be broken up
into subproblems such that either Equation 1 or Equation 2
holds. Since we are trying to upper bound the running time of
our algorithm, we assume that an adversary chooses the out-
come that gives us a larger bound. This gives us a running time

recurrence upper bounding our algorithm:

T (m,n)
<max T(m,n/2) +O(m + emv),
T(mi,n1) 4+ T(m+ O(n/e®) —mi,n —ni)
+0((n/e*)v + emv + m)
(B/2n <my < (1 —B/2)n)
The second term in the maximization is Equation 1, plugging

in for the separator oracle th@(m) time algorithm of The-

orem 1.3 that gives &-strong partition withO(n/e?) edges.
Solving this recurrence, it turns out that it never helpsatie

versary to choose the first (unbalanced) option, so we are ba-

sically left with the recurrence of Section 5 that assumes th
balanced case. We derive the same bound of

T(n) = O(n**m*3v).

7 A Three Way Divide and Conquer

a contracted version &f. Since contraction can only increase
connectivity, it follows tha{G/A)/B is k-connected and the
algorithm of Theorem 1.1 applies to solve it mwv/Vk)
time.

So now suppose th&ffy intersects neitherl nor B (the
case where it intersects exactly one is handled similaily).
follows that in factC; = So and isk-connected. We also
know that(G/A)/B hasA-B flow ©(v), which certainly im-
plies thatA and B have degre®(v) in (G/A)/B. In other
words, our contracted graph consists df-aonnected graph
to which we have appended two vertices of degre&uch a
graph has connectivity at leastin(k, v).

We now finish the argument as in Section 6.1.

8 Blocking Flows

Our discussion above only made use of augmenting paths.
Our approach can also be used to speed up a blocking-flow
based algorithm. Blocking flow algorithms compute a serfes o
blocking flows instead of a series of augmenting paths. A sin-
gle blocking flow can be found i(f)(m) time on capacitated

In Section 6.1, we assumed that the large component of the Of uncapacitated graphs [Tar83]. It can be shown [Eve79] tha

residual graph wa€’,, Here we consider a more complicated
case in which neithes nor ¢ is in the large component’;.
Without loss of generality, this is the only case we need to
consider. Forifs € C;, we can create a new sourgecon-
nected tos by a saturated capacityedge, which makegs'} a

in anm-edgeuncapacitatedyraph, or equivalently in a capac-
itated graph of total edge capacity, O(1/m) blocking flow
computations suffice to find a maximum flow.

It is implicit in the work of [GT89, GK94] that these al-
gorithms can be used to find min-cost flows in the same time

separate component of the residual graph. We can do the saméounds. We can use this modified min-cost flow algorithm

for ¢.

When neithes nort is in C;, our two recursive subprob-
lems are different. Letl = U;;C; and letB = U;>;C;. We
recursively find:

e An s-t max-flow inG/Cj;, and
e An A-B max-flowin(G/A)/B

The second of these requires some explanatiGijA)/B
is a graph in whichA has been contracted to a single vertex
and B has been contracted to a different single vertex.

This is a slight generalization of our previous two-way
divide and conquer scheme. Sindeand A U C; are both
ideals of the residual graph, we know that they both define
compressed-grapitt min-cuts, so that the compressed-graph
flow that we found all travels fror to C; to B (Ssome may go
directly from A to B). It follows that the two recursive flows
we find use all butv of the edges fromd to C; and fromC;;
to B. We can therefore patch the two sub-problems roughly
as before. When we decompose the flownGfiC; into flow
paths, we will find that some of the paths go throdgwhile
others do not. The paths that do not traverseare left alone.
The paths that do pass through “verte&X’ are split atC; into
a set ofs-C; paths and a set @;-¢t paths. We then take the
flow paths found inC; in (G/A)/B, and (as in Lemma 3.2)
patch thes-C; paths inA to the A-C; paths inC}, and patch
the C;-B paths inC; to theC};-t paths inB.

Since |C;| > n/2, the first recursive subproblem (on
A U B) has at most/2 vertices, permitting the divide and
conquer step. On the other har@; may be large, so that
the subproblem or{G/A)/B is expensive to solve. How-

to construct the compressed-graph flow that identifies an ap-
proximately minimum cut in AlgorithmApproxDiminish

in Lemma 4.5. Since the compressed graph that we work in
hasO(n/e?) edges, the running time of a blocking flow algo-
rithm step isO(n/€*). Since the compressed graph has total
edge capacityn [BK96], the number of blocking flow iter-
ations needed i®(y/m). Thus the total time to find a flow

in the compressed graph 3(n\/m/€*). This replaces the
O(nw/€?) term in the recurrence for our overall running time,
leading to a bound of

O(emv + O(ny/m/€%))
Balancing fore gives a running time of
0(m5/6n1/3v2/3).

Observe that so long as= O(n) andm = O(n?) (al-
ways the case in graphs without parallel edges), the abmee ti
bound is actuallyO(n*'#). While such a bound could previ-
ously be achieved by blocking flows on graphs with no parallel
edges, our algorithm applies to graphs with or without palral
edges.

9 Finding a k-Strong Partition

In this section, we describe the algorithm used in Theor@n 1.
The goal of this algorithm is to find a partition @ into
k-connected subgraphs with few edges cut by the partition.
The algorithm is guaranteed to return components thak-are

ever, as above, we show that this subproblem is essentially connected. The edge bound applies only with high probgjilit

attacking a graph of connectivity, allowing us to solve it in
O(mv/Vk) = O(emw) time (Theorem 1.1).

Suppose first tha®y intersectsd andB. Then contracting
A andB to single vertices leaves us with a graph that is in fact

but we can rerun the algorithm until it is met.

The basic idea of our algorithm is simple. We attempt
to find a cut of value less thak in our graph. If no such
cut exists, we know the graph ksconnected. Otherwise, we

delete all edges crossing this cut, leaving two graph compo-
nents. Clearly, each-strong component af is contained in
one of these two components. Thus, we recursively #eek
strong partitions in the two pieces 6f. It is easy to prove
that no edge in &-strong component will ever be deleted, but
that every edge connecting twkestrong components eventu-
ally will. Thus, the set of all edges deleted during the oréadi
and recursive calls forms the set of edges crossing betiveen
strong components of the final output. Furthermore, since we
delete at mosk edges each time we increase the number of

components by 1, the total number of edges cut by the result-

ing partition is at moskn.

The simplest way to implement this approach is to use a
minimum cut algorithm to find a cut of value less thaif one
exists. This gives an algorithm with running tini&mn) if
we use the min-cut algorithm of [Kar96].

To achieve a faster time bound, the algorithm of [BK96]
gave something up. Although the cuts that it finds are small
enough oraverageto ensure that the total number of edges
deleted (and thus the number of edges cut by the partition it
constructs) i€)(kn), the algorithm may occasionally delete a
large cut, possibly separatingtastrong component af into
two or more nonk-connected pieces. Thus, the algorithm does
not guarantee that the components it finds fa@nnected;
only that they are subsets 6f's k-strong components. One
might try to ensure the components aestrong by recur-
sively applying the algorithm to the components it picks the
first time; unfortunately, it is possible that each recuesip-
plication will succeed in separating only one vertex of a eom
ponent, implying a recursion depth@fn) and thus a running
time of © (mn).

Here we present a different approach that is more carefully
designed to allow for recursive calls to clean up the compo-
nents we find initially. It pays for this care by building a par
tion with a larger number (by a logarithmic factor) of cut edg
than that produced by the algorithm of [BK96]. Our algorithm
StrongPartition relies on a to-be-described subroutine
SmallOrStrong. Algorithm SmallOrStrong (G, k)
runs inO(m) time and produces a partition 6f with the fol-
lowing properties:

e O(knlogn) edges cross the partition

e any component of size exceeding?2 in the partition is
k-connected

UsingSmallOrStrong
StrongPartition

, itis trivial to implement Algorithm
as in figure 4.

Remark: A technique similar to one used in [BK96] reduces
the number of cross-partition edges(¢kn log n). (|
Proof: Consider the recursion tree of calls$trongPar-

tition . After the call toSmallOrStrong , every compo-
nent of size exceeding half the input is output immediately.
Thus each recursive call is on a problem of at most half the
size of the original. It follows that the depth of the recarsi
tree isO(log n).

Now note that the recursive calls partition the graphit
follows by induction that the total size of problems at a give
level of the recursion is at most + n. Since all the work
at a given level is done b$mallOrStrong , which runs in
O(m) time, the total work done at one level of the recursion
tree isO(m). Since there ar€(log n) recursion tree level,
the total work remainé) (m).

It remains to prove that the resulting partition has the de-
sired properties. It is trivial that every output componient
k-connected, We must also bound the number of edges cut by
the partition. By induction, these are just the edges cutén t
various calls tdSmallOrStrong . Once again, consider the
recursion tree. Since the total vertex-count of problenesah
levelisn, SmallOrStrong deletesD(kn log n) edges from
G at each level. Since the number of level€iflog n), the
total number of edges deleted@kn log” n). (|

We now turn to the implementation 8fmallOrStrong
This algorithm uses a parameter= O(k log n) that will be
specified later. It uses tHestrong refinementoutine [BK96]
described in Theorem 1.2. It also makes use of a to-be-
described subroutirgigStrong that runs inO(m) time and
finds ak-connected subgraph of size exceedin® in any
graph with an--connected component of size exceedin@.

Algorithm SmallOrStrong (G, k)

input: n vertex graphG, parametek

Find anr-strong refinemenk of G
(using the algorithm of Theorem 1.2)
if no component o has size greater thaty2 then
output R
else[G hasr-connected subgraph of sizen/2]
K + BigStrong(G, k)
while any vertexv ¢ K has> k neighbors ink’
addvto K

output a two-way partition: K, K)

Algorithm StrongPartition (G, k)

input: n vertex graphG, parametek

P + SmallOrStrong (G, k)

Output any component aoP of size exceeding/2

ForeachcomponentC' € P of size less tham /2
call StrongPartition (Ck)

Figure 4: AlgorithmStrongPartition

Lemma 9.1 Suppose thatSmallOrStrong performs as
claimed above. TheftrongPartition runs in O(m)
time and produces a partition @& such that every compo-
nent isk-connected whil& (kn log” n) edges are cut by the
partition.

Figure 5: AlgorithmSmallOrStrong

Lemma 9.2 Let us suppose for now th&igStrong per-
forms as claimed. Then Algorith@mallOrStrong runs

in O(m) time and outputs a partition af with O(kn log n)

cut edges such that any component of size exceedigs
k-connected.

Proof: The running time follows from the fact that
BigStrong and the algorithm of Theorem 1.2 run@(m)
time. We need only argue that the while loop can be efficiently
implemented. To do so, simply keep a queue of vertices not in
K with more thank neighbors inK. When we remove a ver-
texv from the queue and place it i, increment the number
of neighbors each neighbor efcounts inK, adding vertices

to the queue if their neighbor count riseskto This is easily
seen to také&(m + n) time.

To prove that the partition has the claimed properties, con-
sider two cases. If we return tliestrong refinementk then
the edge-bound follows from Theorem 1.2 and the claim on
large components is vacuously true. Otherwise, consider th
k-connected subgrapiK returned byBigStrong It is
straightforward that ifv is a vertex withk neighbors in &-
connected subgraph’, then K U {v} is alsok-connected.
This shows that the modified componekit we build is &-
connected. Since it is also the only component of size ex-
ceedingn/2 that we return, the claim on large components is
satisfied. Now consider the number of edges crossing from
(the final) K to its complement. There are at most2 ver-
tices not inK, and each has less thameighbors inK. Thus
the number of edges crossing frafhto its complement is at
mostkn, better than claimed.

9.1 Finding a Large k-Strong Component

It remains to show how to implemeBigStrong . Recall
thatBigStrong is called only ifG has an--connected com-
ponentR of size exceeding:/2. Out algorithm works by
deleting vertices fronG until a largek-connected grapli
remains. In particular, we find A-connected subgraph that
containsR. This subgraph clearly has size exceedif@, as
required. Our plan for stripping away vertices is to repaigte
identify a cut of value less thak and delete the smaller side
of such a cut. Sincd(is always on the large side, we will
never delete vertices frortk. When we can no longer find
a cut of value less thah, we know the remaining graph is
k-connected.

Our implementation of this idea is somewhat more com-
plicated. We begin by partitioning the graph edges randomly
into k groups, defining edge-subgrapfis,...,G of G. It
follows that for any cutC' of value less that;, some one of
our subgraphs contains no edge€’tdnd is thus disconnected
at vertexC's vertex partition, in a sense revealing thahas
value less thak. We will delete the all vertices on the smaller
side ofC from G and all theG;. This may create some new
cuts of value less thakin what remains ofy. However, such
a new cut will also have no edges in soifi¢ and will thus
be revealed for deletion. We will repeat this process uGtil
is empty or eveny; is a connected graph. At this point each
G, contains a spanning tree, so it follows tha®; contains
k edge-disjoint spanning trees and is therefoke@nnected
graph K. We proceed to show thd O R. This means that
K has size exceeding/2 and can therefore be returned by
BigStrong .

We prove thatKX' O R by proving that no vertex oR is
ever deleted. Conceivably, an empty cutdp corresponds to
a cut of value greater thanin G, and could in fact separate
two vertices ofR. We now argue that this is not the case. We
use the following lemma from [Kar94].

Lemma 9.3 ([Kar94]) Let G be an n-vertex graph from
which every edge is selected independently with probwgbilit
1/k. Thereis an- = O(klog n) such that ifG is r-connected,
the selected edges contain a spanning tre@ wfith high prob-
ability.

We take r as in this lemma to define: in Smal-
IOrStrong andBigStrong . This lets us prove the fol-
lowing.

Lemma 9.4 No vertex of R is ever deleted by algorithm
BigStrong . Thus, the algorithm returns a{connected)
subgraph of size exceeding2.

Proof: Taker as in the previous lemma. Consider the large
strong componenk. In BigStrong its edges are randomly
distributed into the: graphsG,. The set of edges in eadh;
has the distribution we get by choosing edges independently
with probability 1/k. Therefore, by the above lemma, this
edge set contains a spanning tregdith high probability.
Applying this argument to alt graphsG; lets us deduce that
with high probability, everyG; contains a spanning tree &f.

In other words, every vertex @t is in a connected component
of size exceeding/2 in everyG;. It follows that no vertex in
R will ever be selected for deletion BigStrong . This in
turn implies that the spanning trees®in the G; will always
survive, yielding a proof by induction that no vertex Bfis
ever deleted. ([l

9.2 Efficient Data Structures

We have shown thaBigStrong finds a subgraph with the
desired properties. We now show how it can be implemented
efficiently. We must implement an algorithm for identifying
and deleting small connected components from@he We

use the dynamic connectivity data structure of Henzingdr an
King [HK95]. This data structure maintains a query struetur
for a graph under insertion and deletion of edges such that
inserting edges, deleting them, and answering queriestabou
whether two vertices are connected tak#dog n) time per
operation. We actually use only deletions and queries, and
can therefore also use Thorup's adaptation [Tho95] of the
Henzinger-King algorithm to this case.

After partitioning our edges into the grapts, we build
the connectivity data structure for each. We also identify i
eachG; the vertices not in the largest component and put them
into a queue of to-be-deleted vertices. We now go through the
queue, deleting vertices and possibly enqueuing new esrtic
for deletion, until the queue is empty. At this point, the un-
deleted vertices (if any exist) form the largeconnected com-
ponentx..

As we delete vertices, we maintain the following invariant:
every small connected component of e&¢h(that is, every
component of7; with fewer thann /2 vertices) contains a ver-
tex that has been queued for deletion. It follows that when th
gueue is empty, every; is connected. This invariantis clearly
true when we initialize; we show how to maintain it. Suppose
for the moment that we can answer queries about whether a
vertex is in the large component 6% in O(1) time. To main-
tain the invariant when we delete a vertexve consider each
G, inturn. First, we delete all edges incident®im G;. Then,
for eachu that was a neighbor af before the edge deletions,
we test whethet is in the large component @f;. If it is not,
we mark it for deletion. Itis easy to see that this maintalies t
invariant, since any small component formed by the deletion
of v must contain some (ex-)neighbor@af

Finally, it remains to show that we can answer queries
about whether is in the large component. To achieve this, be-
fore starting our algorithm, choose a verteat random. With
probability at leastl/2 we chooset € R. Assume this is
the case. Then at all timeds in the large component of all
Gi. So we can test for membership in the large component by
testing for connectivity ta. If we repeat the whole algorithm
O(logn) times, then with high probability at least once we

will get at € R; in this iteration our large component test will
work correctly.

To measure the running time of this algorithm, note that
we delete each vertex at most once and perform one vertex
query and one edge deletion operation for every neighbor of

[GK94]

each vertex we delete; thus, over the entire executionpthé t [GT89]
number of queries and deletionsG¥m). Since each opera-
tion takesO(1) time, the total work i€)(m) per iteration, and
thus O(m) over theO(log n) iterations we need to succeed [HKO5]
with high probability.
10 Conclusion

[Kar94]

The major contribution of this paper has been to show that
neither augmenting paths nor blocking flows are optimal al-
gorithms for finding flows in undirected uncapacitated gsaph
We have given algorithms that do better than both by applying
random sampling. The algorithms are too complicated to be [Kar96]
practical but will hopefully stimulate research into simpél-
gorithms. Intuition also suggests that one can find algarith
asymptotically better than those above, as the time boueds w

i) v ! [Kar97]
derive are certainly not natural stopping points.
There are two obvious ways to simplify the above algo-
rithms. The first would be to give a better subroutine to iden-
tify a large, well connected component of a graph, elimmati
the complicated reliance on dynamic connectivity algonish [KRP93]

The other would be to somehow replace the min-cost flow cal-
culations with appropriate max-flow calculations. This htig
allow the algorithm to be applied (edge)-recursively, lagd

to better bounds af (v/mmn).

Perhaps the most exciting extension would be to apply this [PR75]
scheme to devise algorithms with running time not dependent
onwv, breaking the Iongstandir@(mn) bound for maximum
flow.

[PRS94]

References

[ACM96] ACM. Proceedings of thes!* ACM Symposium [Tar83]
on Theory of ComputinctACM Press, May 1996.

[AMO93] Ravindra K. Ahuja, Thomas L. Magnanti, and
James B. Orlin. Network Flows: Theory, Algo-
rithms, and ApplicationsPrentice Hall, 1993. [Tho93]

[ASR90] Noga Alon, Paul Seymour, and Thomas R. A sep-
arator theorem for graphs with an excluded minor
and its applications. liProceedings of th@2™?
ACM Symposium on Theory of Computipages
293-299. ACM, ACM Press, May 1990.

Andras A. Benczdr and David R. Karger. Approx-
imates—t min-cuts inO(n?) time. InProceedings

of the 28'* ACM Symposium on Theory of Com-
puting[ACM96], pages 47-55.

Shimon EvenGraph Algorithms Computer Sci-
ence Press, Potomac, MD, 1979.

Lester R. Ford, Jr. and D. R. Fulkerson. Maxi-
mal flow through a networkCanadian Journal of
Mathematics8:399-404, 1956.

Lester R. Ford, Jr. and D. R. Fulkersdrlows in
Networks Princeton University Press, Princeton,
New Jersey, 1962.

John R. Gilbert, Joan P. Hutchinson, and Robert E.
Tarjan. A separator theorem for graphs of bounded
genus.Journal of Algorithms5:375-390, 1984.

[BK96]

[EveT79]

[FF56]

[FF62]

[GHT84]

A. V. Goldberg and R. Kennedy. Global Price Up-
dates Help. Technical Report STAN-CS-94-1509,
Department of Computer Science, Stanford Uni-
versity, 1994. To appear in SIAM J. on Discrete
Math.

Harold N. Gabow and Robert E. Tarjan. Faster
scaling algorithms for network problemsSIAM
Journal on Computing18(5):1013-1036, 1989.
Monika Rauch Henzinger and Valerie King. Ran-
domized dynamic graph algorithms with polyloga-
rithmic time per operation. IProceedings of the
27th ACM Symposium on Theory of Computing
pages 519-527. ACM, ACM Press, May 1995.
David R. Karger. Random sampling in cut, flow,
and network design problems. Rroceedings of
the 26t* ACM Symposium on Theory of Comput-
ing, pages 648-657. ACM, ACM Press, May 1994.
Submitted for publication..

David R. Karger. Minimum cuts in near-linear
time. InProceedings of theg® ACM Symposium
on Theory of ComputinfACM96], pages 56—63.
David R. Karger. A randomized fully polynomial
approximation scheme for the all terminal network
reliability problem. SIAM Journal on Computing
1997. To appear. A preliminary version appeared
in STOC 1995.

Phil Klein, Satish Rao, and Serge Plotkin. Ex-
cluded minors, network decomposition, and multi-
commodity flow. InProceedings of the5t* ACM
Symposium on Theory of Computinzages 682—
690. ACM, ACM Press, May 1993.

J.C. Picard and H.D. Ratliff. Minimum cuts and
related problemsNetworks 5:357-370, 1975.
Serge Plotkin, Satish Rao, and W. Smith. Shallow
excluded minors and improved decompositions. In
Proceedings of thé* Annual ACM-SIAM Sym-
posium on Discrete Algorithmgages 462-470.
ACM-SIAM, January 1994.

Robert E. TarjanData Structures and Network Al-
gorithms volume 44 ofCBMS-NSF Regional Con-
ference Series in Applied MathematicsSIAM,
1983.

Mikkel Thorup. Dynamic decremental connectiv-
ity. In Proceedings of thé'* Annual ACM-SIAM
Symposium on Discrete Algorithmpages 305—
313. ACM-SIAM, January 1995.

