
Using Random Sampling to Find Maximum Flows
in Uncapacitated Undirected Graphs

David R. Karger�
Abstract
We present new algorithms, based on random sampling, that
find maximum flows in undirected uncapacitated graphs. Our
algorithms dominate augmenting paths over all parameter val-
ues (number of vertices and edges and flow value). They also
dominate blocking flows over a large range of parameter val-
ues. Furthermore, they achieve time bounds on graphs with
parallel (equivalently, capacitated) edges that previously could
only be achieved on graphs without them.

The key contribution of this paper is to demonstrate that
such an improvement is possible. This shows that augment-
ing paths and blocking flows are non-optimal, and reopens the
question of how fast we can find a maximum flow. We im-
prove known time bounds by only a small (but polynomial)
factor, and the complicated nature of our algorithms suggests
they will not be practical.

A new idea of our algorithm is to find flow bydiminishing
cutsinstead of augmenting paths. Rather than finding a way to
push flow from the source to the sink, we identify and delete
edges that are not needed in a maximum flow. When no more
edges can be deleted, we know that every remaining edge must
be saturated to give a maximum flow.1 Introduction
Random sampling has been a useful tool for solving cut prob-
lems in undirected graphs. In previous work [Kar94], this au-
thor showed that randomly choosing edges from a graph yields
a sampled graph in which every cut is close to its expected
value with high probability. This led to algorithms for ap-
proximating [Kar94] and exactly finding [Kar96] global min-
cuts in near-linear time with high probability. Benczur and
Karger [BK96] extended these results, showing how to find
a (1 + �) times minimums-t cut in ~O((n=�)2) time1 on n-�MIT Laboratory for Computer Science, Cambridge, MA 02138.
Supported by NSF contract CCR-9624239.
email: karger@lcs.mit.edu.
URL: http://theory.lcs.mit.edu/� karger1 ~O(f) denotesf logO(1) n

vertex capacitated graphs. However, these schemes could not
find flows or exacts-t min-cuts, even in uncapacitated graphs.

In this work, we show that sampling can speed up the
fastest known algorithms for findings-t max-flows (and thus
exacts-t min-cuts) in uncapacitated undirected graphs. Until
now, the best algorithms have usedaugmenting pathsor block-
ing flows[Tar83, AMO93]. Augmenting paths can be used to
find a flow of valuev in O(mv) = O(n3) time on anm-
edge,n-vertex graph. Blocking flows can be used to find a
max-flow inO(m3=2) time [Eve79]. Thus augmenting paths
dominate for small values ofv, while blocking flows dominate
whenv is large (greater than

pm). If we restrict the graph to
have no parallel edges, blocking flows achieve a time bound of~O(n2=3m) = ~O(n8=3) [Eve79]. Together, augmenting paths
and blocking flows achieve the best known time bounds for
max-flows in uncapacitated graphs.

Our algorithmic technique can be applied to both of these
classical methods. Modifying augmenting paths, we give an
algorithm that runs in~O(m2=3n1=3v) time with high prob-
ability, improving the previously given running times by a
factor of roughly(m=n)1=3 while preserving the efficiency
of the algorithm for smallv. Modifying blocking flows, we
give an algorithm with a (high probability) running time of~O(m5=6n1=3v2=3), which improves on blocking flows when-
ever v � m=pn. Both of our algorithms apply to graphs
with or without parallel edges. Compared to blocking flows
on graphs without parallel edges, our bound is better whenv2 � npm. Takingm = n2 andv = n gives us a single-
parameter time bound (for both algorithms) of~O(n8=3), previ-
ously achieved (but not bettered) only on graphs without par-
allel edges.

A new idea of our algorithm is to find flow bydiminish-
ing cuts instead of augmenting paths. Rather than identify-
ing empty source-sink paths and increasing flow on them, we
identify and delete edges that are not needed in a maximum
flow. When no more edges can be deleted, we know that every
remaining edge must be saturated to give a maximum flow.
Deciding whether an edge can be deleted requires determin-
ing whether it crosses a minimum cut. Thus, we can use cut
computations to search for the maximum flow.

Our sampling-based method is intuitively straightforward,
but its implementation is quite complicated. Although dimin-
ishing cuts is a simple idea, our implementation of it appeals
to a min-cost flow subroutine. Thus the algorithms presented
here are unlikely to be practical. Their main virtue is to present
a new technique, and demonstrate that neither augmenting

paths nor blocking flows are optimal, thus reopening the ques-
tion of how fast we can find a maximum flow.

All algorithms discussed in this paper are randomized.
They are also all Las Vegas algorithms, meaning the algorithm
is guaranteed to be correct but the running time only holds
with high probability. Time in this abstract should always be
taken as a measure of the high probability running time, rather
than a deterministic quantity.1.1 Background
Our approach was motivated by the results of [BK96]. That
paper showed how sampling could be used to find approxi-
mates-t min-cuts much faster than we know how to finds-t
max-flows. In this section, we discuss this approach, high-
lighting features we will need for our flow algorithm. A great
deal of our discussion relies on a graph'sconnectivity. In this
paper, connectivity always refers toedge connectivity, that is,
the value of a minimum edge cut in the graph.

In earlier work [Kar94], this author showed how to apply
random sampling to cut and flow problems. If we choose every
edge of a graphG independently with probabilityp, then we
get a subgraphG(p) each of whose cuts has expected value ex-
actlyp times the value of the corresponding cut inG (thecor-
responding cutis the one defined by the same vertex partition).
If this correspondence were exact, we could, for example, find
min-cuts inG by finding them inG(p). Unfortunately, there
is some variance in the random samples. However, [Kar94]
proved that ifG has connectivityc andp > 8(lnn)=�2c, then
all cuts are within(1� �) of their expected values. This led to
algorithms for approximating global min-cuts quickly. It also
led to the following result which we will use later:
Theorem 1.1 In a graph with connectivityc, a max-flow of
valuev can be found in~O(mv=pc) time.

The requirement that the sampling probability exceed~O(1=c) for small error meant that this approach was
only useful for graphs with large min-cuts. Benczur and
Karger [BK96] dealt with this problem by showing that any
graph with many edges has well-connected regions inside of
which the sampling probability can be lowered safely. In par-
ticular:
Theorem 1.2 ([BK96]) For any n-vertexm-edge graphG,
and anyk,

1. There is a set of at mostkn edges whose removal parti-
tionsG into k-connected subgraphs.

2. In ~O(m) time, we can find a set ofO(kn) edges whose
removal partitionsG into components, each of which is
contained in ak-connected subgraph ofG.

The difference between items (1) and (2) above will cause
some trouble later. One of our contributions here is to blend
the two results, yielding the following theorem:
Theorem 1.3 For anyn-vertexm-edge graphG and anyk,
in ~O(m) time, we can find a set ofO(kn log n) edges whose
removal partitionsG into components, each of which is ak-
connected subgraph ofG.

That is, we give up anO(log n) factor in the edge count
compared to the previous construction, but in return we guar-
antee that each component isk-connected. We prove this the-
orem in Section 9 We refer to the partition constructed in this
new theorem as ak-strong partition. This term was also used

in [BK96] to describe the construction of item (2) in Theo-
rem 1.2; note, however, that the components of that construc-
tion did not themselves need to bek-connected. In this paper,
we use the termk-strong partition only in its new sense. We
refer to the construction of [BK96] as ak-strong refinement.
Despite the distinction, Theorem 1.2 was sufficient to prove
the following:
Theorem 1.4 (Compression [BK96])For any n-vertex m-
edge graphG, and for any�,� There exists an~O(n=�2)-edgecompressed graphG0 on

the same vertex set such that every cut inG0 has value
in the range(1��) times the value of the corresponding
cut inG.� There is an algorithmCompress that will construct
graphG0 in ~O(m) time.

We refer to the construction in this theorem asgraph com-
pression. It led to the following corollary:
Theorem 1.5 ([BK96]) Given a graph withs-t min-cutv we
can find a(1 + �) times minimums-t cut in ~O(nv=�2) time.
Proof: If we compress our graph to yieldG0, any s-t min-
cut in G0 is a (1 + �) times minimums-t cut inG. Such a
cut can be found quickly with an augmenting-path max-flow
algorithm sinceG0 has few edges.

The construction used in the proof of Theorem 1.4 pre-
serves the values of flows but distorts their shapes, so that
only (approximate)s-t min-cuts, and not max-flows, can be
extracted by examining the compressed graph. Furthermore,
the algorithm is Monte Carlo, since the only way we know to
verify min-cuts is to find max-flows.1.2 A New Approach
Given that we can find (approximate) min-cuts faster than
max-flows, an obvious thought is to use min-cut computations
in a max-flow algorithm. We now describe such an approach.
It is based on a divide-and conquer scheme. Suppose that we
could quickly find ans-tmin-cut inG. We know that all edges
of thiss-tmin-cut are saturated by any max-flow. This knowl-
edge allows use to solveG by solving independent max-flow
problems onA and onB: the (A;B) min-cut edges define
the sinks for a max-flow froms to the boundary ofA, and the
sources for a max-flow from the boundary ofB to t. This sets
up a natural divide and conquer algorithm for the max-flow,
where we solve the two problems separately and then “patch”
them through their interface at the(A;B) cut. We detail this
method in Section 2. If we could somehow guarantee that the
two subproblems werebalanced, e.g. that each had at most2n=3 vertices, then our divide and conquer algorithm would
yield a recurrence in which the time to finds-t min-cuts was
the dominant factor.

Of course, at present the only known way to find ans-t
min-cut is to compute a max-flow. However, the graph com-
pression technique of Section 1.1 can be applied to find an
approximates-t min-cut quickly. We show in Section 3 that
dividing and conquering on such an approximates-t min-cut
will yield an approximately maximums-t flow that can be
“cleaned up” via a small number of augmenting path compu-
tations.

The problem with all this is that a graph might have no bal-
anceds-tmin-cuts. The leads us to our scheme ofdiminishing
cutswhich we introduce in Section 4. We find any balanced

partition ofG into two groups and consider the set of edges cut
by the partition. We delete edges from it until every edge that
remains is necessary for carrying flow. This means that every
remaining edge crossing the balanced cut is also crossing ans-t min-cut. We show that this implies the existence of a bal-
anceds-t min-cut, which lets us apply the divide and conquer
scheme of the previous paragraph.

Deciding whether an edge can be deleted or not amounts
to deciding whether it crosses ans-tmin-cut. As before, deter-
mining this fact exactly requires computing ans-t max-flow.
However, we show in Section 5 that compression can be used
to give us an “approximate” answer. Although we might delete
a few vital edges, our deletions do not dramatically reduce thes-t min-cut/max-flow value. After we divide and conquer to
find a flow with this value, a small number augmenting paths
will increase it to a max-flow.

The time to solve the diminishing cut problem depends on
the number of edges in the cut we want to diminish (it will
amount to the time to find a max-flow in a graph with this
many edges). We therefore aim in Section 6 to find a starting
cut that is balanced but small. We use thek-strong partition de-
fined in Theorem 1.3 as our starting point. If this partition has
no large component, then we can divide its components into
two balanced groups to get a balanced 2-way partition with
only ~O(kn) crossing edges to which we can quickly apply the
diminishing cuts scheme. If there is one large component, then
as we discuss in Section 6 and Section 7, we can divide into
this component and its complement. The (small) complement
can be solved recursively, while the large component, beingk-
connected, can be solved by the fast algorithm of Theorem 1.1.

For simplicity, we phrase this presentation in terms of
an augmenting path algorithm; in Section 8 we discuss the
changes that occur when we use blocking flows instead. Fi-
nally, in Section 9, we give an algorithm that proves Theo-
rem 1.3.2 Using a Cut Oracle to Find Flows
It is a classic result [FF56, FF62] that the valuev of an s-t
max-flow is equal to the value of thes-t min-cut. A corollary
is that a max-flow saturates every edge crossing ans-t min-
cut. This scheme is typically used to find cuts by computing
flows. Here we show how it can turned around, finding flows
by computing cuts.

Suppose that we are given ans-t min-cut(A;B) of valuev with s 2 A andt 2 B. We will use this cut to subdivide our
original problem into two smaller max-flow problems. Con-
tractA to a single vertexa, yielding a graph denotedG=A.
Find a max-flow with sourcea, which we will call an(A; t)-
flow. Since the degree ofA is equal to the value of cut(A;B),
namelyv, we see that this max-flow has value at mostv. On
the other hand, if we start with ans-t flow of valuev, the con-
traction ofA turns it into anA-t flow of valuev. Thus, theA-t
max-flow is exactlyv, and saturates all edges of cut(A;B).
Similarly, if we contractB to a vertex, yielding a graphG=B,
then thes-B max-flow inG=B is equal tov.
Lemma 2.1 (Patching) Let (A;B) be ans-t min-cut. Given
an A-t max-flow and ans-B max-flow, we can construct ans-t max-flow in linear time.
Proof: (Sketch.) The only sets of edges the two flows share
are those crossing cut(A;B). Both flows saturate all these
edges, so they are consistent on them. So just give every edge
of G the flow value it had inG=A or inG=B.

Definition 2.2 We will refer to the process described in
Lemma 2.1 aspatchingthe two flows.

The above argument suggests the divide and conquer al-
gorithm of Figure 2 for computing ans-t max-flow. All time
other than the cut computation is linear.

Algorithm Flow (G; s; t)
if G has two verticesthen

saturate their connecting edges and return(A;B) ans-t min-cut inGfA Flow (G=A;A; t)fB Flow (G=B; s;B)
patchfA andfB in G to ans-t flow f (Lemma 2.1)

Figure 1: Divide and Conquer for Flows3 Using Approximate Minimum Cuts
Of course, at present the only known algorithms for findings-t min-cuts are max-flow algorithms. However, Benczur and
Karger [BK96] have shown how to findapproximatelymin-
imum s-t cuts quickly. As discussed in Theorem 1.5, a cut
of value at most(1 + �) times the min-cut can be found in~O(nv=�2) time. We can adapt our divide and conquer strat-
egy to make use of such approximate min-cuts. However, the
use of a sharedapproximatemin-cut gives the two subprob-
lems options about which of the shared edges they use; they
may make different choices, which makes patching the flows
somewhat harder. To do so, we use the following technical
lemma:
Lemma 3.1 (Flow Decomposition)There is anO(m)-time
algorithm that decomposes any integrals-t flow of valuev
into a set ofv edge-disjoints-t paths.
Proof: Add v copies of edge(t; s), each carrying a unit of
flow, and delete all edges not carrying flow. By flow conserva-
tion, we are left with an Eulerian graph. Find an Eulerian tour
through it. Deleting thev copies of(t; s) breaks this tour intov disjoint paths as desired.

Lemma 3.2 (Approximate Patching) Let (A;B) be any(1 + �)-minimums-t cut in G. Given an integralA-t max-
flow inG=A and an integrals-B max-flow inG=B, an algo-
rithm PatchApprox can construct ans-t max-flow inG inO(m+ �mv) time.
Proof: LetfA andfB be integral max-flows inG=A andG=B
respectively. Since contractions never reduce cut values,fA
andfB have value at leastv. Since the flows are integral, it
follows that at leastv of the (1 + �)v edges crossing(A;B)
are saturated by flowfA, meaning at most�v cut edges are
not saturated byfA. Similarly, at most�v cut edges are not
saturated by flowfB .

Decompose flowsfA and fB into paths using the algo-
rithm of Lemma 3.1. Consider the(A;B) cut edges saturated
by flow fA. Of these (in fact, of all(A;B) cut edges) at most�v are not saturated byfB . Delete every flow path infA that
terminates at a cut edge not saturated byfB . This leaves us
with a flow f 0A of at least(1 � �)v paths. Do the same withfB , deleting each of the (at most�v) flow paths that start at a
cut edge not saturated byfA. This leaves us with two flowsf 0A andf 0B of value(1 � �)v that saturate the same(1 � �)v

edges. It follows as in Lemma 2.1 that these two flows can be
patched to yield a flow inG of value at least(1� �)v.

Finally, perform an additional�v augmenting path compu-
tations to augment our flow to a max-flow.

We can use this lemma to adapt our divide and conquer al-
gorithmFlow from Figure 2. We use the algorithm of [BK96]
(Theorem 1.5) to identify a(1 + �)-minimums-t cut (A;B)
in ~O(nv=�2) time. We recursively compute anA-t max-flow
and ans-B max-flow. Using AlgorithmPatchApprox of
Lemma 3.2, we patch and augment these flows to a max-flow
in O(m+ �mv) time. This yields a recurrenceT (m;n) = T (m1; n1) + T (m+O(v) �m1; n� n1)+ ~O(nv=�2) +O(m+ �mv):
(TheO(v) term arises from the shared cut edges that appear
in both subproblems). Let us make the optimistic assumption
that the approximately minimums-t cuts we find arebalanced
so that, say,n=4 � n1 � 3n=4. Under this assumption, we
find that the recursive work is negligible and the running time
is simply ~O(nv=�2 +m + �mv). Choosing� = (n=m)1=3
to balance terms yields a running time of~O(m2=3n1=3v) as
compared to theO(mv) running time of standard augmenting
paths.4 Diminishing Cuts
Unfortunately, our optimism in the previous section is unjus-
tified. There is no reason to suspect that we can always find
a balancedapproximately minimums-t cut. In an expander
graph, for example, all approximately minimum cuts are un-
balanced.

We therefore show in this section how tocreatea balanceds-t min-cut bydeletingedges from the graph until a balanced
min-cut exists. So long as we do not delete anys-t min-cut
edge, our new graph will have the same max-flow value as the
original graph. Our deletions will create a new, balanceds-t
min-cut on which we can divide and conquer as the previous
section assumes.

Define a�-balanced cutto be one with at least�n ver-
tices on each side. Suppose that we have a balanced but non-
minimum cut(A;B) that we wish to refine to a balanceds-t
min-cut. We do so by identifying a minimum set of its edges
needed to carry ans-t max-flow, and deleting all of its other
edges. Our approach will initially seem harder than our orig-
inal problem. Suppose we assign cost1 to the(A;B) edges,
cost0 to the other edges, and find aminimum costmaximums-t flow. Such a flow will use a minimum set of(A;B) edges;
we show this lets us construct the balanced min-cut we want
and apply the previous section's divide and conquer scheme.
We begin with a lemma characterizing thes-t min-cuts in a
graph.
Definition 4.1 Let f be anys-t max-flow inG. Theresidual
graphof f is a directed graph that consists of all edges ofG that are not carrying flow together with an edge(v; u) for
every edge(u; v) carrying flow.
Definition 4.2 Let R be any directed graph. Anideal in R
is a set of vertices such that for any edge(u; v), if u 2 S
thenv 2 S (in other words, an ideal is a set with no outgoing
edges).
Lemma 4.3 ([PR75]) Every ideal in the residual graph of ans-t max-flow forms one side of ans-t min-cut.

Proof: From the fact thatf is a max-flow it follows thats is
in every nonempty ideal, while the only ideal containingt is
the entire vertex set.

Consider any nontrivial idealY . Sinces 2 Y andt =2 Y ,
by conservation of flow, there must be a net ofv units of flow
leavingY . Now consider an edge(x; y) of G with x 2 Y
andy =2 Y . By the definition of an ideal(x; y) cannot be a
residual edge, meaning that(x; y) must carry a unit of flow.
Similarly, (y; x) cannot be carrying a unit of flow. In other
words, all edges cut byY must carry a (net) unit of flow out
of Y . It follows that exactlyv edges are cut byY . In other
words,Y is ans-t min-cut.

We now how to diminish a given cut(A;B) to ans-t min-
imum cut. It may not actually be possible to delete all butv edges from the cut(A;B), since it may be necessary for
flow paths to travel back and forth fromA toB several times.
However, we can create ans-tmin-cut that is “consistent” with(A;B) in a sense to be defined below.
Lemma 4.4 Suppose we have ans-t max-flowf that uses a
minimal set of edges from a cut(A;B). Suppose we delete ev-
ery(A;B) edge not carrying flow. Then in the resulting graph,
every strongly connected component in the residual graph off will be contained inA or B.
Proof: LetC be a strongly connected component in the resid-
ual graph off after the edge deletions. Suppose thatC \ A
andC \B are both nonempty. SinceC is strongly connected,
it follows that there is a cycle in the residual graph containing
an edge crossing fromA to B. By pushing flow around this
residual cycle, we can remove flow from thisA-B edge. (Re-
call that every remaining(A;B) edge is carrying flow, so the
residual edge must point opposite the flow being carried. Thus
augmenting on the residual edge cancels the flow through the
edge.) This violates our hypothesis that our flow uses a mini-
mal set ofA-B edges, a contradiction.

Lemma 4.5 Suppose we have ans-t max-flow that uses a
minimal set of edges from a�-balanced cut(A;B). If we
delete every(A;B) edge not carrying flow, then the resulting
graph will have a�=2-balanceds-t min-cut that we can find
in linear time.
Remark: It should be noted that the original balanced cut need
not separates and t. If so, there might be no flow crossing
the�-balanced cut, meaning that when we delete the (all un-
used) edges,s andt end up in a small connected component.
This can only help us, since the large deleted component is un-
necessary for the flow and can be ignored by our algorithms.
Slightly abusing our definition, we will refer to thes-tmin-cut
we find in the component containings andt as�=2-balanced.
This might violate our definition if, for example, the compo-
nent containing boths and t has few vertices; however, this
can only improve the performance of the algorithms that rely
on this lemma.
Proof: After the deletions, letR be the residual graph for the
flow. In order to prove our theorem, we need only prove thatR
contains an ideal with between�n=2 and(1��=2)n vertices,
and apply Lemma 4.3.

Topologically sort the strongly connected components ofR (that is, contract each strongly connected component and
topologically sort the resulting DAG). Since the component
containings clearly has no outgoing residual edges, we can
take this to be the first componentC1. Similarly, since the
component containingt has no incoming residual edges, we
can take this to be our last componentCk. Call the result-
ing sequence of connected componentsC1; : : : ; Ck. Note that

k > 1 since our max-flow saturates some min-cut. Further-
more, every prefixC1; : : : ; Cr of this sequence withr � k is
an ideal ofR. It therefore suffices to prove that some prefix
contains between�n=2 and(1� �=2)n vertices.

To do so, start with theCk and add one component at a
time in order, keeping a running total of the number of vertices
added. The previous lemma proves that every strongly con-
nected component inR is contained in eitherA or B. Thus,
eachCi has at size most(1 � �n). It follows that as we add
components, our running total never increases by more than(1 � �)n in one step. Thus at some point, we will have be-
tween�n=2 and(1��=2)n vertices in the prefix, yielding our
balanced ideal. This construction can actually be carried out in
linear time, proving that we can identify the claimed cut.5 Fast Approximate Diminishing Cuts
Of course, finding ans-t max-flow is exactly what we wanted
to do in the first place, so it is unrealistic to assume that we can
use one to delete unnecessary edges. However, we will make
use of an approximates-t max-flow to achieve the same ob-
jective. Consider AlgorithmApproxDiminish in Figure 2.
This algorithm uses a call to a subroutineMinCostFlow that
finds a minimum cost flow of maximum value in a graph.

Algorithm ApproxDiminish (G;A;B)
input: GraphG with min-cutv�-balanced cut(A;B) with cut edgesS.
output: graphH � G with min-cut(1� �)v�=2-balanced(1 + �)-minimum cut(X;Y)A0 Compress(A) (Theorem 1.4)B0 Compress(B)G0 A0 [B0 [S

Assign cost1 to all edges ofS, cost0 to othersf MinCostFlow(G0)D edges ofS without flow
find a balanceds-t min-cut(X;Y) in G0 �D

(using Lemma 4.5)
returnG�D with cut (X;Y)

Figure 2: Constructing a balanced min-cut from a balanced cut

Lemma 5.1 Given anr-edge�-balanced cut of a graphG,
AlgorithmApproxDiminish runs in ~O(v(r + n=�2)) and
deletes edges from the balanced cut so that� G still hass-t minimum cut at least(1� �)v, and� G has a�=2-balanceds-t cut of value at most(1 + �)v
Proof: The algorithm's basic approach is to compress both
sides of the cut, find a min-cost flow in the resulting graph, and
delete balanced-cut edges that the flow does not use. As ar-
gued in Lemma 4.5, this leaves behind a minimum set of edges
in the compressed graph; we rely on the cut-approximating
properties of graph compression to prove that it leaves a near-
minimum set of edges behind in the original graph as well.

Consider the algorithm of Figure 2. Given our balanced
cut(A;B) (which we refer to as a separator), we compress the
induced subgraphsA andB using the techniques of [BK96] as
discussed in Theorem 1.4. This construction yields, in~O(m)

time, two graphsA0 andB0, each with ~O(n=�2) edges, that
approximate all cuts ofA andB respectively to within(1��).
We replaceA andB in G with A0 andB0, yielding graphG0.
This does not touch the separator edgesS, but leaves us with a
graph containing~O(r+n=�2) edges. Furthermore, since each
cut ofG involves a cut ofA, a cut ofB, and some separator
edges, it is easy to see thatG0 approximates all cuts ofG to
within (1 � �). In particular, thes-t min-cut inG0 is at least(1� �)v, and anys-t min-cut inG0 corresponds to an at most(1 + �)2-minimums-t cut inG.

We now apply our diminishing cut construction to graphG0. As in Lemma 4.5, we assign cost1 to the separator edges,
compute a min-cost flow, and delete all the separator edges not
carrying flow. Let us call the resulting reduced graphH 0, with
remaining separator edgesS0 = S � D. Lemma 4.5 shows
that we can immediately identify a�=2-balanceds-t min-cut
in H 0.

In this reduced graphH 0, replaceA0 by A andB0 by B.
Since the separator edges ofG0 (andH 0) are all edges ofG,
this leaves us with a subgraphH � G. Relying once again
on the fact thatA andA0 agree to within� on cut values, as
doB andB0, we deduce thatH hass-t minimum cut at least(1 � �)v and that the�=2-balanceds-t min-cut we found inH 0 has value at most(1 + �)v in H.

To prove the time bound, note that the only non-linear time
computation is of the min-cost flow. On anm-edge uncapac-
itated graph, a min-cost augmenting path algorithm will find
such a flow inO(mv) time [Tar83, AMO93]. The graph we
work with has~O(n=�2) edges inA0 andB0 andr edges cross-
ing (A0; B0), so the claim follows.5.1 Graphs with a Separator Oracle
We can use the above algorithm directly to find flows in any
family of graphs with a small separator oracle. This is a fam-
ily, closed under taking minors (that is, deleting and contract-
ing edges) such that every graph of sizen has a�-balanced cut
of valueS(n) (which we call call a separator) that can be iden-
tified in O(TS(n)) time. Note that in contrast to our invalid
balanced min-cut assumption of the last section, there actually
are interesting graph families, such as planar graphs, thathave
fast small separator oracles [GHT84, ASR90, KRP93, PRS94]
(though the ones listed here have so few edges as to make our
sampling scheme pointless).

Suppose we have a family of graphs with size-S(n) sep-
arators that can be found inO(TS(n)) time. Consider Algo-
rithm Flow of Figure 3. After finding a�-balanced cut, the al-
gorithm uses AlgorithmApproxDiminish of Lemma 5.1 to
create a balanced approximate min-cut, recursively finds flows
on the two sides of this min-cut, and then patches them as in
Lemma 3.2.

Algorithm Flow (G; s; t)(A;B) Separator(G)(H;X; Y) ApproxDiminish(G;A;B)fX Flow(H=X;X; t)fY Flow(H=Y; s; Y)PatchApprox(fA; fB) (using Lemma 3.2)

Figure 3: A flow by separators

We now analyze the running time of this algorithm. We
find anS(n)-edge separator in timeTS(n). Algorithm Ap-
proxDiminish runs in ~O(nv=�2 + S(n)v) time. We thus
have a recurrence in which it is easy to prove that the recursive
calls have negligible cost:T (m;n)� TS(n) + ~O(n=�2 + S(n)v + �mv)+T (m1; n1) + T (m+ S(n)�m1; n � n1)((�=2)n � n1 � (1� �=2)n) (1)= ~O(TS(n) + nv=�2 + S(n)v + �mv)= ~O(TS(n) + S(n)v + n2=3m1=3v)
if we balance for�.6 Finding a Starting Cut
Our previous algorithm relied on the existence of small sep-
arators (and an oracle for finding them). In this section, we
show that assumption was unnecessary. We give an algorithm
that, for any graph, finds either the separator we relied on or
an equally useful alternative structure. We start by settingk = 1=�2 and constructing (in~O(m) time) thek-strong par-
tition guaranteed by Theorem 1.3. This gives us a multiway
partition ofG such thatO(kn log n) edges cross the partition.

If we are fortunate, the largest component of the partition
has less thann=2 vertices. If so, then it is easy to divide the
components into two groups such that the number of vertices
in each group is at most3n=4. This gives us a14 -balanced cut
with O(kn log n) = ~O(n=�2) edges crossing it and allows us
to apply the divide and conquer scheme of the previous sec-
tion.

We now deal with the possibility that the largest compo-
nent has size greater thann=2. One particularly easy case oc-
curs when there a single component of sizen. In this case,
we know that our graph is in factk-connected. As noted in
Theorem 1.1, an algorithm of [Kar94] uses random edge par-
titioning to find a flow of valuev in anyk-connected graph in~O(mv=pk) = ~O(�mv) time.

A greater challenge arises when there is more than one
component but some component has size greater thann=2. In
this case we will proceed with our divide step as before, but
will then perform a recursive call only on the smaller side. We
will handle the larger side using the algorithm fork-connected
graphs just mentioned. (It is this step, which requires that
the large side bek-connected and not just a subset of ak-
connected graph, that forces us to develop a differentk-strong
partition algorithm than that of [BK96].) Since we do not re-
curse on the larger side, the divide and conquer recurrence will
still have good time bounds.

Let us suppose that thek-strong partition gave us
componentsS0; : : : ; Sr, with jS0j � n=2. Our ap-
proach begins as before. We try to use Algorithm
ApproxDiminish (G;S0; S0) to construct a balanced ap-
proximately minimum cut ofG. Recall that this algorithm
finds a flow and deletes edges such that the strongly connected
componentsfCig of its residual graph are contained inS0
or S0. Recall how we used this graph to define a balanced
approximately minimums-t cut: we topologically sorted the
strongly connected components into a sequenceC1; : : : ; Ck
and chose a balanced prefix of the topological sort. If this

method succeeds in our current graph, we can continue ex-
actly as we did in the previous section. However, since we
did not necessarily start with a balanced partition, we cannot
assume that we succeed in getting a balanced prefix.6.1 A Large Residual Component
Observe that the only wayApproxDiminish can fail to find
a balanced cut is if one of the residual strongly connected
components, sayCj , has size exceeding, say,3n=4. SincejS0j > n=2, we must haveCj � S0.

We now proceed slightly differently depending on which
(if either) of s or t is in Cj . We first consider an easy case,
wheres 2 Cj (so j = 1) while t =2 Cj (the general case
will be discussed in the next section). In this case, we useCj
and its complement as our divide and conquer partition (note
thatCj = C1 is an ideal and thus defines a min-cut). We
aim to find flows inG=Cj andG=Cj and patch them using
Algorithm PatchApprox .

SincejCj j > n=2 by hypothesis, the first recursive sub-
problemG=Cj has less thann=2 vertices, making a recur-
sive solution by our current divide and conquer method cheap.
On the other hand,Cj may be so large that the subproblemG=Cj seems expensive to solve. However, we show that this
subproblem is essentially attacking a graph of connectivity k,
allowing us to solve it in~O(mv=pk) = ~O(�mv) time (The-
orem 1.1).

Suppose first thatS0 intersectsCj . Then sinceCj � S0,
contractingCj to a single vertex leaves us with a graph that is
in fact a contracted version ofS0. Since contraction can only
increase connectivity, it follows thatG=Cj isk-connected and
can be solved in~O(mv=pk) = ~O(�mv) time (Theorem 1.1).

So now suppose thatS0 does not intersectCj . It follows
that in factCj = S0 and isk-connected. We also know thatG=Cj hass-Cj flow �(v), which certainly implies thatCj
has degree�(v) in G=Cj . In other words, our contracted
graph consists of ak-connected graphCj to which we have
appended a vertex of degreev. Such a graph has connectivity
at leastmin(k; v).

We therefore consider two cases. Ifv � k= log n, we
deduce that our graph isk= log n-connected. It follows that
the algorithm of Theorem 1.1 finds a max-flow in this graph
in ~O(mv=pk) = ~O(�mv) time. If v � k= log n, then our
graph isv-connected, so Theorem 1.1 shows that the flow
can be found in~O(mpv) time. However, we can do better.
[Kar97] shows that if we randomly partition the edges ofCj
into O(k= log n) sets, then each contains a spanning tree ofCj with high probability. Thus we can use one spanning tree
to route each of our desiredv � k= log n units of flow. So we
can solve this flow problem in~O(m) time. In either case, we
are finding the flow in~O(m+ �mv) time.

It follows that when the divide and conquer recurrence of
Equation 1 for the running timeT (m;n) does not apply be-
cause all thes-t min-cuts are unbalanced, then our running
time satisfies a different quantityT1(m;n) given byT1(m;n) � T (m;n=2) + ~O(m+ �mv): (2)

We have therefore argued that any problem can be broken up
into subproblems such that either Equation 1 or Equation 2
holds. Since we are trying to upper bound the running time of
our algorithm, we assume that an adversary chooses the out-
come that gives us a larger bound. This gives us a running time

recurrence upper bounding our algorithm:T (m;n)� max T (m;n=2) + ~O(m+ �mv);T (m1; n1) + T (m+ ~O(n=�2)�m1; n � n1)+ ~O((n=�2)v + �mv +m)(�=2n � n1 � (1� �=2)n)
The second term in the maximization is Equation 1, plugging
in for the separator oracle the~O(m) time algorithm of The-
orem 1.3 that gives ak-strong partition with~O(n=�2) edges.
Solving this recurrence, it turns out that it never helps thead-
versary to choose the first (unbalanced) option, so we are ba-
sically left with the recurrence of Section 5 that assumes the
balanced case. We derive the same bound ofT (n) = ~O(n2=3m1=3v):7 A Three Way Divide and Conquer
In Section 6.1, we assumed that the large component of the
residual graph wasC1, Here we consider a more complicated
case in which neithers nor t is in the large componentCj .
Without loss of generality, this is the only case we need to
consider. For ifs 2 Cj , we can create a new sources0 con-
nected tos by a saturated capacityv edge, which makesfs0g a
separate component of the residual graph. We can do the same
for t.

When neithers nor t is inCj , our two recursive subprob-
lems are different. LetA = [i<jCi and letB = [i>jCi. We
recursively find:� An s-t max-flow inG=Cj , and� An A-B max-flow in(G=A)=B

The second of these requires some explanation.(G=A)=B
is a graph in whichA has been contracted to a single vertex
andB has been contracted to a different single vertex.

This is a slight generalization of our previous two-way
divide and conquer scheme. SinceA andA [Cj are both
ideals of the residual graph, we know that they both define
compressed-graphs-t min-cuts, so that the compressed-graph
flow that we found all travels fromA toCj toB (some may go
directly fromA toB). It follows that the two recursive flows
we find use all but�v of the edges fromA toCj and fromCj
to B. We can therefore patch the two sub-problems roughly
as before. When we decompose the flow inG=Cj into flow
paths, we will find that some of the paths go throughCj while
others do not. The paths that do not traverseCj are left alone.
The paths that do pass through “vertex”Cj are split atCj into
a set ofs-Cj paths and a set ofCj-t paths. We then take the
flow paths found inCj in (G=A)=B, and (as in Lemma 3.2)
patch thes-Cj paths inA to theA-Cj paths inCj , and patch
theCj-B paths inCj to theCj-t paths inB.

Since jCj j > n=2, the first recursive subproblem (onA [B) has at mostn=2 vertices, permitting the divide and
conquer step. On the other hand,Cj may be large, so that
the subproblem on(G=A)=B is expensive to solve. How-
ever, as above, we show that this subproblem is essentially
attacking a graph of connectivityk, allowing us to solve it in~O(mv=pk) = ~O(�mv) time (Theorem 1.1).

Suppose first thatS0 intersectsA andB. Then contractingA andB to single vertices leaves us with a graph that is in fact

a contracted version ofS0. Since contraction can only increase
connectivity, it follows that(G=A)=B is k-connected and the
algorithm of Theorem 1.1 applies to solve it in~O(mv=pk)
time.

So now suppose thatS0 intersects neitherA nor B (the
case where it intersects exactly one is handled similarly).It
follows that in factCj = S0 and isk-connected. We also
know that(G=A)=B hasA-B flow �(v), which certainly im-
plies thatA andB have degree�(v) in (G=A)=B. In other
words, our contracted graph consists of ak-connected graph
to which we have appended two vertices of degreev. Such a
graph has connectivity at leastmin(k; v).

We now finish the argument as in Section 6.1.8 Blocking Flows
Our discussion above only made use of augmenting paths.
Our approach can also be used to speed up a blocking-flow
based algorithm. Blocking flow algorithms compute a series of
blocking flows instead of a series of augmenting paths. A sin-
gle blocking flow can be found in~O(m) time on capacitated
or uncapacitated graphs [Tar83]. It can be shown [Eve79] that
in anm-edgeuncapacitatedgraph, or equivalently in a capac-
itated graph of total edge capacitym, O(pm) blocking flow
computations suffice to find a maximum flow.

It is implicit in the work of [GT89, GK94] that these al-
gorithms can be used to find min-cost flows in the same time
bounds. We can use this modified min-cost flow algorithm
to construct the compressed-graph flow that identifies an ap-
proximately minimum cut in AlgorithmApproxDiminish
in Lemma 4.5. Since the compressed graph that we work in
has ~O(n=�2) edges, the running time of a blocking flow algo-
rithm step is~O(n=�2). Since the compressed graph has total
edge capacitym [BK96], the number of blocking flow iter-
ations needed isO(pm). Thus the total time to find a flow
in the compressed graph is~O(npm=�2). This replaces the~O(nv=�2) term in the recurrence for our overall running time,
leading to a bound of~O(�mv + ~O(npm=�2))
Balancing for� gives a running time of~O(m5=6n1=3v2=3):

Observe that so long asv = O(n) andm = O(n2) (al-
ways the case in graphs without parallel edges), the above time
bound is actually~O(n8=3). While such a bound could previ-
ously be achieved by blocking flows on graphs with no parallel
edges, our algorithm applies to graphs with or without parallel
edges.9 Finding a k-Strong Partition
In this section, we describe the algorithm used in Theorem 1.3.
The goal of this algorithm is to find a partition ofG intok-connected subgraphs with few edges cut by the partition.
The algorithm is guaranteed to return components that arek-
connected. The edge bound applies only with high probability,
but we can rerun the algorithm until it is met.

The basic idea of our algorithm is simple. We attempt
to find a cut of value less thank in our graph. If no such
cut exists, we know the graph isk-connected. Otherwise, we

delete all edges crossing this cut, leaving two graph compo-
nents. Clearly, eachk-strong component ofG is contained in
one of these two components. Thus, we recursively seekk-
strong partitions in the two pieces ofG. It is easy to prove
that no edge in ak-strong component will ever be deleted, but
that every edge connecting twok-strong components eventu-
ally will. Thus, the set of all edges deleted during the original
and recursive calls forms the set of edges crossing betweenk-
strong components of the final output. Furthermore, since we
delete at mostk edges each time we increase the number of
components by 1, the total number of edges cut by the result-
ing partition is at mostkn.

The simplest way to implement this approach is to use a
minimum cut algorithm to find a cut of value less thank if one
exists. This gives an algorithm with running time~O(mn) if
we use the min-cut algorithm of [Kar96].

To achieve a faster time bound, the algorithm of [BK96]
gave something up. Although the cuts that it finds are small
enough onaverageto ensure that the total number of edges
deleted (and thus the number of edges cut by the partition it
constructs) isO(kn), the algorithm may occasionally delete a
large cut, possibly separating ak-strong component ofG into
two or more non-k-connected pieces. Thus, the algorithm does
not guarantee that the components it finds arek-connected;
only that they are subsets ofG's k-strong components. One
might try to ensure the components arek-strong by recur-
sively applying the algorithm to the components it picks the
first time; unfortunately, it is possible that each recursive ap-
plication will succeed in separating only one vertex of a com-
ponent, implying a recursion depth of
(n) and thus a running
time of�(mn).

Here we present a different approach that is more carefully
designed to allow for recursive calls to clean up the compo-
nents we find initially. It pays for this care by building a parti-
tion with a larger number (by a logarithmic factor) of cut edges
than that produced by the algorithm of [BK96]. Our algorithm
StrongPartition relies on a to-be-described subroutine
SmallOrStrong. Algorithm SmallOrStrong (G;k)
runs in ~O(m) time and produces a partition ofG with the fol-
lowing properties:� O(kn log n) edges cross the partition� any component of size exceedingn=2 in the partition isk-connected

UsingSmallOrStrong , it is trivial to implement Algorithm
StrongPartition as in figure 4.

Algorithm StrongPartition (G; k)
input: n vertex graphG, parameterkP SmallOrStrong (G;k)
Output any component ofP of size exceedingn=2
ForeachcomponentC 2 P of size less thann=2

call StrongPartition (C;k)
Figure 4: AlgorithmStrongPartition

Lemma 9.1 Suppose thatSmallOrStrong performs as
claimed above. ThenStrongPartition runs in ~O(m)
time and produces a partition ofG such that every compo-
nent isk-connected whileO(kn log2 n) edges are cut by the
partition.

Remark: A technique similar to one used in [BK96] reduces
the number of cross-partition edges toO(kn log n).
Proof: Consider the recursion tree of calls toStrongPar-
tition . After the call toSmallOrStrong , every compo-
nent of size exceeding half the input is output immediately.
Thus each recursive call is on a problem of at most half the
size of the original. It follows that the depth of the recursion
tree isO(log n).

Now note that the recursive calls partition the graphG. It
follows by induction that the total size of problems at a given
level of the recursion is at mostm + n. Since all the work
at a given level is done bySmallOrStrong , which runs in~O(m) time, the total work done at one level of the recursion
tree is ~O(m). Since there areO(log n) recursion tree level,
the total work remains~O(m).

It remains to prove that the resulting partition has the de-
sired properties. It is trivial that every output componentisk-connected, We must also bound the number of edges cut by
the partition. By induction, these are just the edges cut in the
various calls toSmallOrStrong . Once again, consider the
recursion tree. Since the total vertex-count of problems ateach
level isn, SmallOrStrong deletesO(kn log n) edges fromG at each level. Since the number of levels isO(log n), the
total number of edges deleted isO(kn log2 n).

We now turn to the implementation ofSmallOrStrong .
This algorithm uses a parameterr = O(k log n) that will be
specified later. It uses thek-strong refinementroutine [BK96]
described in Theorem 1.2. It also makes use of a to-be-
described subroutineBigStrong that runs in~O(m) time and
finds ak-connected subgraph of size exceedingn=2 in any
graph with anr-connected component of size exceedingn=2.

Algorithm SmallOrStrong (G; k)
input: n vertex graphG, parameterk
Find anr-strong refinementR of G

(using the algorithm of Theorem 1.2)
if no component ofR has size greater thann=2 then

output R
else[G hasr-connected subgraph of size> n=2]K BigStrong(G; k)

while any vertexv =2 K has� k neighbors inK
addv toK

output a two-way partition:(K;K)
Figure 5: AlgorithmSmallOrStrong

Lemma 9.2 Let us suppose for now thatBigStrong per-
forms as claimed. Then AlgorithmSmallOrStrong runs
in ~O(m) time and outputs a partition ofG withO(kn log n)
cut edges such that any component of size exceedingn=2 isk-connected.
Proof: The running time follows from the fact that
BigStrong and the algorithm of Theorem 1.2 run in~O(m)
time. We need only argue that the while loop can be efficiently
implemented. To do so, simply keep a queue of vertices not inK with more thank neighbors inK. When we remove a ver-
texv from the queue and place it inK, increment the number
of neighbors each neighbor ofv counts inK, adding vertices

to the queue if their neighbor count rises tok. This is easily
seen to takeO(m+ n) time.

To prove that the partition has the claimed properties, con-
sider two cases. If we return thek-strong refinementR then
the edge-bound follows from Theorem 1.2 and the claim on
large components is vacuously true. Otherwise, consider thek-connected subgraphK returned byBigStrong . It is
straightforward that ifv is a vertex withk neighbors in ak-
connected subgraphK, thenK [fvg is alsok-connected.
This shows that the modified componentK we build is k-
connected. Since it is also the only component of size ex-
ceedingn=2 that we return, the claim on large components is
satisfied. Now consider the number of edges crossing from
(the final)K to its complement. There are at mostn=2 ver-
tices not inK, and each has less thank neighbors inK. Thus
the number of edges crossing fromK to its complement is at
mostkn, better than claimed.9.1 Finding a Large k-Strong Component
It remains to show how to implementBigStrong . Recall
thatBigStrong is called only ifG has anr-connected com-
ponentR of size exceedingn=2. Out algorithm works by
deleting vertices fromG until a largek-connected graphK
remains. In particular, we find ak-connected subgraph that
containsR. This subgraph clearly has size exceedingn=2, as
required. Our plan for stripping away vertices is to repeatedly
identify a cut of value less thank and delete the smaller side
of such a cut. SinceK is always on the large side, we will
never delete vertices fromK. When we can no longer find
a cut of value less thank, we know the remaining graph isk-connected.

Our implementation of this idea is somewhat more com-
plicated. We begin by partitioning the graph edges randomly
into k groups, defining edge-subgraphsG1; : : : ; Gk of G. It
follows that for any cutC of value less thank, some one of
our subgraphs contains no edges ofC and is thus disconnected
at vertexC 's vertex partition, in a sense revealing thatC has
value less thank. We will delete the all vertices on the smaller
side ofC from G and all theGi. This may create some new
cuts of value less thank in what remains ofG. However, such
a new cut will also have no edges in someGi and will thus
be revealed for deletion. We will repeat this process untilG
is empty or everyGi is a connected graph. At this point eachGi contains a spanning tree, so it follows that[Gi containsk edge-disjoint spanning trees and is therefore ak-connected
graphK. We proceed to show thatK � R. This means thatK has size exceedingn=2 and can therefore be returned by
BigStrong .

We prove thatK � R by proving that no vertex ofR is
ever deleted. Conceivably, an empty cut inGi corresponds to
a cut of value greater thank in G, and could in fact separate
two vertices ofR. We now argue that this is not the case. We
use the following lemma from [Kar94].
Lemma 9.3 ([Kar94]) Let G be an n-vertex graph from
which every edge is selected independently with probability1=k. There is anr = O(k log n) such that ifG is r-connected,
the selected edges contain a spanning tree ofGwith high prob-
ability.

We take r as in this lemma to definer in Smal-
lOrStrong and BigStrong . This lets us prove the fol-
lowing.

Lemma 9.4 No vertex ofR is ever deleted by algorithm
BigStrong . Thus, the algorithm returns a (k-connected)
subgraph of size exceedingn=2.
Proof: Taker as in the previous lemma. Consider the larger-
strong componentR. In BigStrong its edges are randomly
distributed into thek graphsGi. The set of edges in eachGi
has the distribution we get by choosing edges independently
with probability 1=k. Therefore, by the above lemma, this
edge set contains a spanning tree ofR with high probability.
Applying this argument to allk graphsGi lets us deduce that
with high probability, everyGi contains a spanning tree ofR.
In other words, every vertex ofR is in a connected component
of size exceedingn=2 in everyGi. It follows that no vertex inR will ever be selected for deletion byBigStrong . This in
turn implies that the spanning trees ofR in theGi will always
survive, yielding a proof by induction that no vertex ofR is
ever deleted.9.2 E�cient Data Structures
We have shown thatBigStrong finds a subgraph with the
desired properties. We now show how it can be implemented
efficiently. We must implement an algorithm for identifying
and deleting small connected components from theGi. We
use the dynamic connectivity data structure of Henzinger and
King [HK95]. This data structure maintains a query structure
for a graph under insertion and deletion of edges such that
inserting edges, deleting them, and answering queries about
whether two vertices are connected takesO(log n) time per
operation. We actually use only deletions and queries, and
can therefore also use Thorup's adaptation [Tho95] of the
Henzinger-King algorithm to this case.

After partitioning our edges into the graphsGi, we build
the connectivity data structure for each. We also identify in
eachGi the vertices not in the largest component and put them
into a queue of to-be-deleted vertices. We now go through the
queue, deleting vertices and possibly enqueuing new vertices
for deletion, until the queue is empty. At this point, the un-
deleted vertices (if any exist) form the largek-connected com-
ponentK.

As we delete vertices, we maintain the following invariant:
every small connected component of eachGi (that is, every
component ofGi with fewer thann=2 vertices) contains a ver-
tex that has been queued for deletion. It follows that when the
queue is empty, everyGi is connected. This invariant is clearly
true when we initialize; we show how to maintain it. Suppose
for the moment that we can answer queries about whether a
vertex is in the large component ofGi in ~O(1) time. To main-
tain the invariant when we delete a vertexv, we consider eachGi in turn. First, we delete all edges incident onv inGi. Then,
for eachu that was a neighbor ofv before the edge deletions,
we test whetheru is in the large component ofGi. If it is not,
we mark it for deletion. It is easy to see that this maintains the
invariant, since any small component formed by the deletion
of v must contain some (ex-)neighbor ofv.

Finally, it remains to show that we can answer queries
about whetheru is in the large component. To achieve this, be-
fore starting our algorithm, choose a vertext at random. With
probability at least1=2 we chooset 2 R. Assume this is
the case. Then at all timest is in the large component of allGi. So we can test for membership in the large component by
testing for connectivity tot. If we repeat the whole algorithmO(log n) times, then with high probability at least once we

will get at 2 R; in this iteration our large component test will
work correctly.

To measure the running time of this algorithm, note that
we delete each vertex at most once and perform one vertex
query and one edge deletion operation for every neighbor of
each vertex we delete; thus, over the entire execution, the total
number of queries and deletions isO(m). Since each opera-
tion takes~O(1) time, the total work is~O(m) per iteration, and
thus ~O(m) over theO(log n) iterations we need to succeed
with high probability.10 Conclusion
The major contribution of this paper has been to show that
neither augmenting paths nor blocking flows are optimal al-
gorithms for finding flows in undirected uncapacitated graphs.
We have given algorithms that do better than both by applying
random sampling. The algorithms are too complicated to be
practical but will hopefully stimulate research into simpler al-
gorithms. Intuition also suggests that one can find algorithms
asymptotically better than those above, as the time bounds we
derive are certainly not natural stopping points.

There are two obvious ways to simplify the above algo-
rithms. The first would be to give a better subroutine to iden-
tify a large, well connected component of a graph, eliminating
the complicated reliance on dynamic connectivity algorithms.
The other would be to somehow replace the min-cost flow cal-
culations with appropriate max-flow calculations. This might
allow the algorithm to be applied (edge)-recursively, leading
to better bounds of~O(vpmn).

Perhaps the most exciting extension would be to apply this
scheme to devise algorithms with running time not dependent
on v, breaking the longstanding~O(mn) bound for maximum
flow.References
[ACM96] ACM. Proceedings of the28th ACM Symposium

on Theory of Computing. ACM Press, May 1996.
[AMO93] Ravindra K. Ahuja, Thomas L. Magnanti, and

James B. Orlin. Network Flows: Theory, Algo-
rithms, and Applications. Prentice Hall, 1993.

[ASR90] Noga Alon, Paul Seymour, and Thomas R. A sep-
arator theorem for graphs with an excluded minor
and its applications. InProceedings of the22nd
ACM Symposium on Theory of Computing, pages
293–299. ACM, ACM Press, May 1990.

[BK96] András A. Benczúr and David R. Karger. Approx-
imates–t min-cuts in ~O(n2) time. InProceedings
of the28th ACM Symposium on Theory of Com-
puting [ACM96], pages 47–55.

[Eve79] Shimon Even.Graph Algorithms. Computer Sci-
ence Press, Potomac, MD, 1979.

[FF56] Lester R. Ford, Jr. and D. R. Fulkerson. Maxi-
mal flow through a network.Canadian Journal of
Mathematics, 8:399–404, 1956.

[FF62] Lester R. Ford, Jr. and D. R. Fulkerson.Flows in
Networks. Princeton University Press, Princeton,
New Jersey, 1962.

[GHT84] John R. Gilbert, Joan P. Hutchinson, and Robert E.
Tarjan. A separator theorem for graphs of bounded
genus.Journal of Algorithms, 5:375–390, 1984.

[GK94] A. V. Goldberg and R. Kennedy. Global Price Up-
dates Help. Technical Report STAN-CS-94-1509,
Department of Computer Science, Stanford Uni-
versity, 1994. To appear in SIAM J. on Discrete
Math.

[GT89] Harold N. Gabow and Robert E. Tarjan. Faster
scaling algorithms for network problems.SIAM
Journal on Computing, 18(5):1013–1036, 1989.

[HK95] Monika Rauch Henzinger and Valerie King. Ran-
domized dynamic graph algorithms with polyloga-
rithmic time per operation. InProceedings of the27th ACM Symposium on Theory of Computing,
pages 519–527. ACM, ACM Press, May 1995.

[Kar94] David R. Karger. Random sampling in cut, flow,
and network design problems. InProceedings of
the 26th ACM Symposium on Theory of Comput-
ing, pages 648–657. ACM, ACM Press, May 1994.
Submitted for publication..

[Kar96] David R. Karger. Minimum cuts in near-linear
time. InProceedings of the28th ACM Symposium
on Theory of Computing[ACM96], pages 56–63.

[Kar97] David R. Karger. A randomized fully polynomial
approximation scheme for the all terminal network
reliability problem. SIAM Journal on Computing,
1997. To appear. A preliminary version appeared
in STOC 1995.

[KRP93] Phil Klein, Satish Rao, and Serge Plotkin. Ex-
cluded minors, network decomposition, and multi-
commodity flow. InProceedings of the25th ACM
Symposium on Theory of Computing, pages 682–
690. ACM, ACM Press, May 1993.

[PR75] J.C. Picard and H.D. Ratliff. Minimum cuts and
related problems.Networks, 5:357–370, 1975.

[PRS94] Serge Plotkin, Satish Rao, and W. Smith. Shallow
excluded minors and improved decompositions. In
Proceedings of the5th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 462–470.
ACM-SIAM, January 1994.

[Tar83] Robert E. Tarjan.Data Structures and Network Al-
gorithms, volume 44 ofCBMS-NSF Regional Con-
ference Series in Applied Mathematics. SIAM,
1983.

[Tho95] Mikkel Thorup. Dynamic decremental connectiv-
ity. In Proceedings of the6th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 305–
313. ACM-SIAM, January 1995.

