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1. Introdu
tionThe area of approximation algorithms forNP-hard optimization problems has re
eived a lotof attention over the past two de
ades [16, 22℄. Although some notable positive results havebeen obtained, su
h as the fully polynomial approximation s
heme for bin pa
king [14, 19℄,it has now be
ome apparent that even the approximate solution of a large 
lass of NP-hardoptimization problems remains outside the bounds of feasibility. For example, a sequen
eof results [13, 8, 2, 1℄ established the intra
tability of approximating the largest 
lique ina graph, 
ulminating in the result of Arora, Lund, Motwani, Sudan and Szegedy [1℄ thatfor some 
onstant Æ > 0, there does not exist any polynomial-time algorithm that willapproximate the maximum 
lique within a ratio of nÆ unless P = NP. Arora et al. [1℄ alsoestablished that unlessP = NP, there do not exist polynomial-time approximation s
hemes(PTAS) for optimization problems that are MAX SNP-hard. The 
lass SNP is a stri
tversion of NP and was de�ned by Papadimitriou and Yannakakis [23℄ based on a synta
ti

hara
terization of NP due to Fagin [12℄. They also provided a notion of approximation-preserving redu
tions for problems in this 
lass and, under this redu
tion, identi�ed a largenumber of approximation problems that are MAX SNP-hard, and are therefore unlikelyto have any PTAS. These problems in
lude su
h widely studied problems as MAX 3SAT,vertex 
over, metri
 TSP and Steiner trees. Re
ently, Lund and Yannakakis [20℄ settledanother important open problem by showing that the 
hromati
 number of a graph is ashard to approximate as the 
lique number.In this 
ontext, a major outstanding open problem is that of determining the approxima-bility of the longest path in an unweighted undire
ted graph. The optimization versionof this problem is NP-hard sin
e it in
ludes the Hamiltonian path problem as a spe
ial
ase. Therefore, it is natural to look for polynomial-time algorithms with a small perfor-man
e ratio, where the performan
e ratio is de�ned as the ratio of the longest path in theinput graph to the length of the path produ
ed by the algorithm. Our results attempt topin down the best possible performan
e ratio a
hievable by polynomial-time approximationalgorithms for longest paths. We provide some approximation algorithms for this problem,but unfortunately the performan
e ratio of these algorithms is as weak as in the 
ase ofthe best-known approximation algorithms for 
lique [7℄ and 
hromati
 number [4, 18℄. Weexplain the diÆ
ulty of obtaining better performan
e guarantees for longest path approxi-mations by providing hardness results. These results 
ome fairly 
lose to establishing our
onje
ture that the situation for longest paths is essentially as bad as for the above twoproblems, i.e. if there exists an approximation algorithm that has a performan
e ratio ofnÆ, for some 
onstant Æ > 0, then P = NP.In Se
tion 2, we present several polynomial-time approximation algorithms for longest paths.A simple greedy algorithm is presented and it is shown that it �nds long paths in densegraphs. At this point, this is the best algorithm known for arbitrary dense graphs. Inthe 
ase of 
liques and 
hromati
 number, the extreme hardness of the problem led to thestudy of spe
ial inputs where the optimum was guaranteed to take on an extreme value;for example, the approximate 
oloring of 3-
olorable graphs was studied by Blum [4℄ andKarger, Motwani and Sudan [18℄, and the approximation of 
liques in graphs 
ontaining alinear-sized 
lique is studied by Boppana and Halldorsson [7℄. We therefore formulate the1



problem of �nding long paths in Hamiltonian graphs. For the purposes of this paper, thereis no essential di�eren
e between the 
ases where the input graph has Hamiltonian pathsor Hamiltonian 
y
les, and we 
on
entrate on the latter 
ase. Our se
ond algorithm �ndspaths of a logarithmi
 length in Hamiltonian graphs. In fa
t, we show that this algorithmwill �nd su
h paths in a mu
h larger 
lass of graphs, viz. weakly Hamiltonian graphs, oreven 1-tough graphs. Some variants of this algorithm are also analyzed. This result is thebest possible in the sense that we 
an demonstrate the existen
e of su
h graphs where thelongest path is of logarithmi
 length.The hard 
ase appears to be that of �nding better approximations for sparse Hamiltoniangraphs. In Se
tion 3, we 
onsider sparse random Hamiltonian graphs and show that it ispossible to �nd paths of length 
(pn= log n). Surprisingly, this algorithm works in anygraph obtained by adding any number of random edges to a Hamiltonian 
y
le. Thisresult partially answers an open question posed by Broder, Frieze and Shamir [6℄. Theyhad 
onsidered the problem of �nding Hamiltonian 
y
les in graphs obtained by adding arelatively large number of random edges to a Hamiltonian 
y
le.In Se
tion 4, we provide hardness results for the problem of approximating the longest path.We �rst 
onsider the problem of �nding long paths in Hamiltonian graphs and show that forany � < 1, it is impossible to �nd paths of length n� n� in an n-vertex Hamiltonian graphunless P = NP. The problem of �nding long paths is easier for Hamiltonian graphs than forarbitrary inputs. Therefore, it is not surprising that we 
an prove mu
h stronger negativeresults in general input graphs. We �rst prove a self-improvability result for the longestpath problem. Combining this with the re
ent results on the intra
tability of approximationproblems that are MAX SNP-hard, we obtain that no polynomial-time algorithm 
an�nd a 
onstant fa
tor approximation for the longest path problem unless P = NP. We
onje
ture that the result 
an be strengthened to say that for some 
onstant Æ > 0, �ndingan approximation of ratio nÆ is also NP-hard. As eviden
e towards this 
onje
ture, weshow that if any polynomial-time algorithm 
an approximate the longest path to a ratio of2O(log1��n), for any � > 0, then NP has a quasi-polynomial deterministi
 time simulation.The hardness results apply even to the spe
ial 
ase where the input 
onsists of boundeddegree graphs.These hardness results have found appli
ation to the Moderate-Mean Cy
le problem. Sub-ramanian [25℄ established that the Moderate-Mean Cy
le problem is NP-
omplete by re-du
ing the Hamiltonian 
y
le problem to it. The redu
tion also establishes that �nding anapproximate solution to Moderate-Mean Cy
le is at least as hard as �nding good approxi-mations to Hamiltonian paths, and so our hardness results 
arry over to the new problemtoo.Before des
ribing our results in greater detail we review some related work. Monien [21℄presented an O(k!nm) time algorithm that �nds paths of length k in a Hamiltonian graphwith n verti
es and m edges. Our results are an improvement on this sin
e in polynomial-time Monien's algorithm 
an only �nd paths of length O(log n= log logn). Furer andRaghava
hari [15℄ present approximation algorithms for the minimum-degree spanning treeproblem that delivered absolute performan
e guarantees (within an additive fa
tor of 1).From this we 
an derive a polynomial-time algorithm for �nding logarithmi
 length paths
2



in Hamiltonian graphs, mat
hing our result for that 
ase. However, note that our resulteven in that 
ase is more general in that it applies to a wider 
lass of graphs, viz. the weaklyHamiltonian graphs. No hardness results for longest paths were known earlier, although aseemingly related problem has been studied by Berman and S
hnitger [8℄. They show thatthe hardness 
onje
ture we stated is true for the problem of approximating the longest in-du
ed path in an undire
ted graph. Note that the indu
ed path problem is stri
tly harderand their hardness result does not 
arry over to the problem under 
onsideration here.Bellare [3℄ 
onsiders a generalization of the longest paths problem 
alled the longest 
olor-respe
ting path problem. This involves graphs with 2-
olored edges and labeled verti
es,and a feasible path must have the property that at ea
h vertex its label spe
i�es whetherthe in
ident edges of the path are of the same 
olor or not. He obtains essentially the samehardness results through di�erent te
hniques. Our results are stri
tly stronger sin
e thereare no 
olor 
onstraints on the paths.1.1. Weak Hamiltoni
ityChvatal [9, 10, 11℄ 
onsidered several ne
essary 
onditions for Hamiltoni
ity obtained viaan integer linear programming formulation of the problem. The graphs satisfying these
onditions are known as weakly Hamiltonian graphs. We omit the formal de�nition andinstead provide three properties of weakly Hamiltonian graphs { these are referred to asthe \1-2-3" properties. Given a graph G(V;E), and a set U � V , we will denote the vertexindu
ed subgraph of G by G[U ℄.De�nition 1: [1-Toughness℄ A graph G = (V;E) is said to be 1-tough if for any setU � V , the indu
ed subgraph G[V � U ℄ has at most jU j 
onne
ted 
omponents.In other words, by removing any k verti
es from the graph, the graph 
annot be de
omposedinto more than k 
onne
ted 
omponents.De�nition 2: [2-Fa
tors℄ A graph G = (V;E) is said to have a 2-fa
tor if there existsE0 � E su
h that in the graph G0 = (V;E0), ea
h vertex v 2 V has degree 2.That is, a 2-fa
tor is a subgraph of G made up of 
y
les that 
over all the verti
es.De�nition 3: [3-Cy
lability℄ A graph G = (V;E) is said to be 3-
y
lable if for everythree verti
es u; v; w 2 V , there exists a 
y
le in the graph G 
ontaining u, v and w.Theorem 1: [Chvatal℄ Any weakly Hamiltonian graph G = (V;E) is 1-tough, has a 2-fa
tor and is 3-
y
lableIt is not very hard to see that every Hamiltonian graph G satis�es these three properties.Removing any k verti
es from a 
y
le de
omposes it into a 
olle
tion of k paths; hen
e,a Hamiltonian graph 
an be de
omposed into at most k 
onne
ted 
omponents upon theremoval of k verti
es, implying 1-toughness. A Hamiltonian 
y
le is a 2-fa
tor of the graphG. Finally, 3-
y
lability follows from the fa
t that every set of three verti
es lies on theHamiltonian 
y
le.Theorem 2: Every Hamiltonian graph is weakly Hamiltonian.
3



2. Algorithms for Finding Long PathsWe now give algorithms for �nding long paths in 1-tough graphs. Unless otherwise spe
i�ed,for any graph G(V;E) we will assume that jV j = n and jEj = m. We will measure thelength of a path in terms of the number of verti
es in it. All logarithms are to base 2. Firstwe des
ribe a simple algorithm that �nds long paths in dense graphs. Then, we show howto �nd a path of length �(log n) in any one tough graph.Theorem 3: Any graph with m edges and n verti
es 
ontains a path of length d = m=n.Proof: Consider �rst a graph with minimum degree d. Clearly, any maximal path in thisgraph has length at least d. Thus, a greedy 
onstru
tion will �nd a path of this length.Now, 
onsider a graph with n verti
es and m edges, and let d = m=n. Repeatedly 
hoosea vertex of degree smaller than d, and remove this vertex and all in
ident edges from thegraph. This pro
ess terminates when the residual graph has minimum degree at least d.Clearly, the residual graph 
annot be empty sin
e at most (d � 1)n < m edges 
an beremoved from the graph in the pro
ess of deleting small degree verti
es. But this graph hasminimum degree d, so a greedy 
onstru
tion works.2Theorem 4: Let G be a 1-tough graph with n verti
es. Then the depth-�rst sear
h tree ofG has depth 
(logn).Proof: Take any depth-�rst sear
h tree, and 
onsider the root-leaf path de�ned as follows:at ea
h step, move into the largest subtree. Suppose this path has length l and that theverti
es on this path have degrees d1; : : : ; dl in the depth-�rst tree. Then sin
e a depth-�rsttree has no 
ross edges, removing the l verti
es on this path ne
essarily dis
onne
ts ea
hof the 
hildren of these l verti
es from all the others, yielding exa
tly P(di � 1) 
onne
ted
omponents. By the 1-toughness property, we know that P(di � 1) � l, i.e. P di � 2l. Onthe other hand, sin
e we take the largest bran
h at ea
h step, it is ne
essarily the 
ase thatthe subtree rooted at dj has size at least n( 1d1 1d2 � � � 1dj�1 ). Thus, �di � n. For any �xed l,the produ
t �di is maximized (under the 
onstraint P di � 2l) by making all the di equal,namely di = 2. That is, the root-leaf path length l is minimum (and is �(log n)) when ea
hof the di is 2. Therefore, l � logn.2Corollary 1: In a Hamiltonian graph on m edges, a path of length k 
an be found inO(m+ k2!) time.Proof: By the same arguments as the previous theorem, at any level of the depth-�rsttree, the number of nodes at that level is at most equal to the number of nodes in allthe previous levels (thus, the tree that is found is very 
lose to being a binary tree in an\average" sense). If the depth of the tree ex
eeds k, then we are done. Otherwise, �ndsome subtree 
ontaining between k and k2 verti
es. Su
h a subtree must exist sin
e, byarguments similar to those above, every tree node has at most k 
hildren). The path fromthe root to this subtree, whi
h 
ontains at most k verti
es, 
uts the subtree o� from the restof the graph, so the Hamiltonian path 
an enter and then exit the subtree at most k times.It follows that this subtree 
ontains a path of length k, whi
h 
an be found by exhaustivesear
h. 4



22.1. Tough Graphs with Short PathsWe now prove an upper bound of O(log n) on the longest path in 1-tough graphs. In fa
t,we prove that there exist graphs satisfying the 1-2-3 properties that have a longest pathof length O(logn). We de�ne a graph Gk(Vk; Ek) for ea
h non-negative integer k(refer toFig. 1). The graph 
onsists of 2k � 1 normal verti
es and 2 super verti
es. The normalverti
es are arranged in a 
omplete binary tree. The tree is augmented by an edge betweenea
h pair of siblings. We will distinguish between the tree edges and the sibling edges. Thetwo super verti
es are 
alled s1 and s2, and they are adja
ent to every other vertex in thegraph, in
luding ea
h other. The size of Vk is n = 2k + 1.
s s21

Figure 1: A weakly Hamiltonian graph with no long paths.The following lemmas show that Gk has the 1-2-3 properties.Lemma 1: The graph Gk is 1-tough.Proof: Suppose that the graph Gk did not 
ontain the super verti
es. We then show thatthe removal of any set W of normal verti
es yields an indu
ed subgraph Gk[Vk �W ℄ withat most jW j+1 
onne
ted 
omponents. This is proved by indu
tion on jW j. It is ne
essaryto prove a stronger indu
tive 
laim, whi
h is as follows: by removing the set W of verti
es,the graph is de
omposed into at most jW j+1 
omponents and ea
h 
omponent is a binarytree (not ne
essarily 
omplete) with additional edges between ea
h siblings.The 
laim is trivially true in the 
ase jW j = 0. Let us assume that the 
laim is true forjW j = r. Now suppose that we delete the set W [ fwg, where w 62 W is a normal vertex.There are two 
ases, depending on whether the vertex w is a leaf or a non-leaf vertex of the
omponent of Gk[Vk �W ℄ 
ontaining it. If it is a leaf, then the number of 
omponents isun
hanged by the additional deletion. But if it is a not a leaf vertex, then it is easy to see5



that the 
omponent in whi
h w lies is split into two 
omponents. Also, it remains true thatthere is an edge between ea
h pair of siblings. This establishes the indu
tive 
laim.Now 
onsider the super verti
es also. Suppose we delete a set W � Vk from Gk. Clearly,the residual graph remains 
onne
ted if W does not 
ontain both s1 and s2. Let us restri
tour attention to the 
ase where s1 2 W and s2 2 W , and let W 0 = W � fs1; s2g. By thepre
eding 
laim, the removal of W from Gk 
an yield at most jW 0 j + 1 
omponents. Thisimplies that the number of 
omponents is jW j � 1, establishing the 1-toughness of Gk.2Lemma 2: The graph Gk has a 2-fa
tor.Proof: First noti
e that the set of normal verti
es in any two su

essive levels of the treeare easily de
omposable into a disjoint 
olle
tion of triangles.Consider �rst the 
ase where the number of levels (i.e. k) is even. We 
an pair up the levelsof the graph and obtain a set of disjoint triangles involving all the verti
es ex
ept the twosuperverti
es. The two super verti
es 
an now be 
ombined with any one triangle to yield aK5, i.e. the 
omplete graph on 5 verti
es. Sin
e K5 
ontains a 5-
y
le, we obtain a 
olle
tionof disjoint 
y
les that in
ludes ea
h vertex. This is a 2-fa
tor. When the number of levelsis odd, the two super verti
es form a triangle with the root and the remaining levels arepartitioned into triangles as before, yielding a 2-fa
tor.2Lemma 3: The graph Gk is 3-
y
lable.Proof: Let v1; v2; v3 be any three verti
es. Assume for now that none of the three is asuper vertex. Clearly, there is a path between v1 and v2 using only the tree edges. We 
anappend the two super verti
es to the two end-points of this path, and use the edge from s1to v3 and from v3 to s2 to 
omplete a 
y
le 
ontaining all three verti
es. Suppose now thatone of the three verti
es, without loss of generality v3, is a super vertex. Then there existsa path from v1 to v2 not in
luding v3. Sin
e v3 is a super vertex, it is adja
ent to both v1and v2, and those edges 
omplete the 
y
le. If two of the verti
es are super verti
es, thenwe obtain a triangle 
ontaining all three verti
es.2The following lemma helps establish that the longest path of Gk is of length O(log n),Lemma 4: The longest path in the graph Gk not 
ontaining the super verti
es is of length�(log n)Proof: Consider the graph obtained by deleting the two super verti
es; it is a 
ompletebinary tree with all the sibling edges thrown in. For 
onvenien
e, we will measure thelength of a path in terms of the number of edges in it. We prove the lemma by indu
tionon the number of levels in the binary tree. The indu
tive hypothesis is that the length ofthe longest path is at most 4k and the length of the longest path ending at the root is atmost 2k. The base 
ase, for k = 1, is trivial.Now 
onsider the graph with k levels, and note that k = logn. The longest path in thisgraph 
onsists of the longest path in the left subtree of the root ending at its root, a
onne
ting path of length two through the root, and the longest path in the right subtree
6



of the root ending at its root. Hen
e, the length of the longest path in a graph of k levels
an be at most two more than the sum of the lengths of the longest path in left and rightsubtrees (both with k � 1 levels) ending at their roots. By the indu
tive hypothesis, thismeans the longest path is no more than 4k. Also, the length of the longest path ending atthe root is at most 2 greater than the length of the longest path ending at the root in eitherthe left or the right subtree. Again, by the indu
tive hypothesis, the longest path endingat the root is at most 2k.It is not hard to see that these upper bounds are tight within small additive 
onstants.2The length of the longest path in Gk 
an be greater than the length of the longest path notin
luding the super verti
es by at most a fa
tor of 3. This is be
ause any path 
ontainingthe two super verti
es 
onsists of three paths not 
ontaining the super verti
es, stit
hedtogether by the super verti
es. We have established a bound on the longest path in theentire graph Gk.Theorem 5: The graph Gk satis�es the 1-2-3 properties, and the longest path in this graphis of length �(logn).3. Finding Long Paths in Sparse Random GraphsWe now turn to the issue of random Hamiltonian graphs. It should be noted that theampli�
ation des
ribed later in the paper be
omes ine�e
tual when we 
onsider �ndingpaths of length n�. It is therefore an interesting 
oin
iden
e that on random Hamiltoniangraphs, a path of length 
(pn= log n) 
an in fa
t be found. The following analysis appliesto numerous distributions on graphs|in fa
t, to any random graph obtained by adding anynumber of edges to a Hamiltonian 
y
le, su
h that ea
h non-Hamiltonian edge has an equalprobability of o

urring. For example, the random edges 
ould form a Gn;p graph, or arandom regular graph [5℄. For the 
ase of random Hamiltonian graphs with average degreemu
h larger than 3, Broder et al [6℄ give an algorithm that a
tually �nds the Hamiltonian
y
le in polynomial-time. However, they leave open the question of what 
an be done forsparse graphs, e.g. graphs of degree 3.Theorem 6: Let G be a random 3-regular Hamiltonian graph on n verti
es. There is apolynomial-time algorithm that �nds a path of length 
(pn= log n) in G, with high probabilityof su

ess.A random 3-regular Hamiltonian graph 
an be viewed as a Hamiltonian 
y
le with a randomperfe
t mat
hing added. We will therefore refer to the edges on the Hamiltonian path asHamiltonian edges, and will refer to the other edges as mat
hing edges. We will 
all theneighbor of a vertex along a mat
hing edge its mat
h. The key property of the randomedges used in this analysis is that for any vertex, its mat
h is 
hosen uniformly at randomfrom among the other verti
es. Finally, let the Hamiltonian distan
e between two verti
esbe the length of the shortest path between them made up entirely of Hamiltonian edges.The algorithm pro
eeds as a series of trials. In ea
h trial, we start at a randomly sele
tedvertex of the graph and perform a random walk, with the modi�
ation that the last edge7



traversed in not 
onsidered as a possibility for the next step, so that we do not immediatelyba
k up along the walk. Mark ea
h vertex as it is visited. The trial ends when we visita marked vertex, and su

eeds if we visit k = 
(pn= log n) verti
es before en
ountering avertex that is already marked (during this or any previous trial). We 
laim that with highprobability, we will �nd a path of length k within O(log n) trials.Consider the tth trial, t = O(log n). At the end of this trial at most kt verti
es 
an havebeen marked. Analyze the walk during this trial as a series of epo
hs. An epo
h ends whenthe walk traverses a mat
hing edge. Sin
e at ea
h step of the walk a mat
hing edge istraversed with probability 1=2, epo
hs have length O(log n) with high probability. Call avertex safe if its Hamiltonian distan
e from any marked vertex ex
eeds 
(logn). Call anepo
h safe if it begins at a safe vertex. It follows that with high probability no markedvertex is visited during a safe epo
h. Thus, the path 
ontinues to extend safely so long assafe epo
hs o

ur.Consider the end of a safe epo
h. This happens when a mat
hing edge is traversed. Sin
ethe endpoints of a mat
hing edge are random, this means that the starting vertex of thenext epo
h is 
hosen uniformly at random from among the unvisited verti
es. Sin
e atmost kt verti
es are marked, there are O(kt log n) unsafe verti
es; thus, the next epo
his unsafe with probability O(kt log n=n) = O(logn=pn). It follows that with 
onstantprobability 
(pn= log n) safe epo
hs o

ur during the trial. Clearly the length of the paththat is found is equal to at least the number of epo
hs, so we get the desired path length.Furthermore, sin
e a trial ends when we visit an unsafe vertex, we 
an treat the trials asindependent. Thus, with high probability one of the O(logn) trials su

eeds.In fa
t, the algorithm itself 
an be made deterministi
. All that is required is that an epo
h(in the sense des
ribed above) ends in O(log n) steps. To ensure this we use a form of\universal non-traversal sequen
e." Consider assigning labels to the edges of the graph inthe standard traversal sequen
e manner. It is simple to interpret a sequen
e over f0; 1g sothat when one arrives at a given vertex via some edge, the next symbol in the sequen
edetermines whi
h of the other two edges should be traversed to leave that vertex. We 
annow modify traversal sequen
es in the following way to produ
e walks that do not \ba
kup." Given a traversal sequen
e drawn from f1; 2g�, interpret it as follows: at ea
h step,examine the label on the edge the walk arrived from. If i is the traversal symbol and j thelabel of the edge just traversed, then next traverse the edge labeled (i+ j) mod 3.Now 
onsider the parti
ular modi�ed traversal sequen
e that 
auses a traversal of the Hamil-tonian path. This is a sequen
e of length n, and it therefore follows that some sequen
e oflength logn+ 1 does not o

ur as a substring of the traversal sequen
e (sin
e there are 2npossible sequen
es of whi
h only n o

ur in the Hamiltonian traversal). If we try all 2n su
hsequen
es, we will eventually stumble upon one satisfying the property. If we 
onstru
t ourwalk using this sequen
e (repeated over and over again) then it is 
lear that we will traversea mat
hing edge at least on
e every 2 log n steps of our walk, and then the analysis givenabove is appli
able.The random walk algorithm 
an also be generalized to any other random graph distribution,so long as the endpoint of a randomly 
hosen non-Hamiltonian edge out of v is uniformlydistributed among the verti
es of G. The argument goes through un
hanged, ex
ept in the8




ase that some of the verti
es of G have degree two (i.e, only Hamiltonian edges. If su
hverti
es are forbidden in the distribution, then we have the desired result immediately.The degree two situation 
an be re
ti�ed if for any input graph we �rst \short
ut" anydegree two vertex v. repla
ing (u; v) and (v; w) by (u;w). Any path we 
onstru
t in theshort
ut graph yields a longer path in the original graph. If the original graph had theuniform endpoint distribution property, then so does the new graph. If the number ofverti
es in the short
ut graph is less than n2=3, then there must have been a path of degreetwo verti
es of length n1=3 in the original graph. If not, then we �nd a path of length atleast n1=3 in the short
ut graph, yielding a path of at least this length in the original graph.4. Hardness ResultsIt is important to keep in mind that it may be possible to a
hieve better performan
eguarantees on graphs that are known to be Hamiltonian than on arbitrary input graphs.This is analogous to the 
hromati
 number problem where signi�
ant improvements 
an beobtained if the input graph is known to be 3-
olorable [4℄. We �rst 
onsider the \easier"problem and prove that, for any 
onstant � < 1, no polynomial-time algorithm 
an �nd apath of length n� n� in an n-vertex Hamiltonian graph, unless P = NP. Next we demon-strate a self improvability result for approximating longest paths. The self-improvabilityresult is used to show that �nding 
onstant fa
tor approximations to the longest path prob-lem is NP-hard. We also provide eviden
e that it is unlikely to be the 
ase that there existsany o(nÆ) ratio approximation algorithm for this problem. Our results extend to showingthe hardness of the longest path problem even in the 
ase of bounded degree graphs.4.1. Hardness Result for Hamiltonian GraphsThe following theorem easily generalizes to the approximation of longest paths in arbitrary(non-Hamiltonian) graphs. But the subsequent results are mu
h stronger for that problem.Theorem 7: For any � < 1, the problem of �nding a path of length n�n� in a Hamiltoniangraph is NP-
omplete.We present only a sket
h of the proof. Let G = (V;E) be a Hamiltonian graph on n verti
es,and de�ne K = (n + 2)�=(1��). We de�ne an auxiliary graph G0 = (V 0; E0). Informally, G0
onsists of K 
opies of G \glued" together in a 
y
le by K \spe
ial" verti
es. The K
opies of G are arranged in a 
y
le and any two su

essive 
opies of G are separated by aspe
ial vertex that is 
onne
ted to all the verti
es of both the 
opies. In more formal terms,V 0 = (V [ fvsg)� f1; 2; : : : ;Kg, where vs is a spe
ial vertex. Any two verti
es (v1; k1) and(v2; k2) in V 0 share an edge in E0 if and only if one of the following 
onditions hold.� k1 = k2 and (v1; v2) 2 E.� v1 = vs and k2 = (k1 + 1) (mod K).� v1 = vs and k2 = (k1 � 1) (mod K). 9



Let A be an algorithm that is guaranteed to �nd a path of length at least n � n� in aHamiltonian graph on n verti
es. Consider what happens when we run algorithm A on G0.We 
laim that A �nds a Hamiltonian path in at least one of the 
opies of G in G0. Sin
ethere are only a polynomial number of 
opies of G in G0, this gives us a polynomial-timealgorithm to �nd a Hamiltonian path in G.To see this 
laim, we �rst observe that any simple path in G0 is a disjoint 
olle
tion ofsimple paths in 
opies of G \stit
hed" together by spe
ial verti
es. In this 
olle
tion, there
an be at most one simple path per 
opy of G (ex
ept the �rst or last visited 
opies) sin
ethere is exa
tly one spe
ial vertex to enter a 
opy of G and one spe
ial vertex to leave the
opy, and these verti
es 
annot be visited twi
e in a simple path. There 
an be at most twosimple non-disjoint paths from either the �rst or the last visited 
opies of G (but not both).For instan
e, the path P may start within the �rst 
opy of G and use a spe
ial vertex toexit and then \turn ba
k" into a se
ond disjoint path within the same 
opy before movingout through the se
ond spe
ial vertex into the se
ond 
opy of G and so on.Now, sin
e jV 0j = (n+ 1)K, by running A on G0 we obtain a path P of length l, wherel > (n+ 1)K � ((n+ 1)K)� > (n+ 1)K � (n+ 2)(1+�=(1��))� + 1 = (n+ 1)K �K + 1:In other words, P in
ludes all but at most K � 2 verti
es of G0. Sin
e there are K 
opiesof G, we 
an 
on
lude that P in
ludes all the verti
es of at least two 
opies of G. All theverti
es of at least one of these 
opies of G must o

ur 
ontiguously within P . Hen
e thepath P in
ludes a Hamiltonian path from that 
opy of G.4.2. Self-Improvability and Hardness Results for Longest PathsWe now show that if the longest path 
an be approximated to some 
onstant k in polynomial-time, then we 
an approximate it to any 
onstant k0, also in polynomial-time. To this end,we de�ne the following novel de�nition of a graph produ
t.De�nition 4: For a graph G(V;E), its edge square graph G2(V 2; E2) is obtained asfollows. Repla
e ea
h edge e = (u; v) in G by a 
opy of G, 
all it Ge, and 
onne
t both uand v to ea
h vertex in Ge. The verti
es u and v are referred to as the 
onta
t verti
es ofGe.If the graph G has n verti
es, then G2 will have at most n3 verti
es. Observe that theedge square of a Hamiltonian graph need not be Hamiltonian. It is pre
isely for this reasonthat the subsequent results apply only to the more general problem of approximating thelongest path in arbitrary graphs, as opposed to the possible easier problem where the inputis guaranteed to be Hamiltonian. The following lemma relates the length of the longestpaths in G and G2.Lemma 5: Let G = (V;E) be any graph. If the longest simple path in G has length l thenthe longest simple path in G2 has length at least l2. Moreover, given a path of length m inG2, we 
an obtain in polynomial-time a path of length pm� 1 in G.Proof: First, we exhibit a path P 2 of length l2 in G2. Suppose that a longest path in G isthe path P with end-points x and y. The path P 2 traverses the edge 
opies Ge in exa
tly10



the same order as the edges in P . Moreover, in ea
h Ge being traversed, it traverses exa
tlythe path 
orresponding to P . It is easy to see that the resulting path is of length l(l + 2).Consider any path Q of length m in G2. We show that it is possible to derive a path oflength at least pm� 1 in G. The path Q 
an enter or leave a given 
opy of G in G2 onlyvia its 
onta
t verti
es. Therefore, all the verti
es of any 
opy of G o

ur 
ontiguously inQ, ex
ept possibly for the �rst and the last 
opy visited by Q. In other words, the path Qstarts o� in some 
opy Ge, and then visits a sequen
e of 
opies that are all distin
t, ex
eptthat it 
ould �nish o� ba
k inside the 
opy Ge. The sequen
e of verti
es visited inside anyparti
ular edge 
opy forms a simple path in G, ex
ept that in Ge there 
ould be two disjointsimple paths. We 
laim that one of the following holds.1. One of the simple paths inside the edge 
opies visited by Q is of length at least pm�1.2. The number r of distin
t 
opies of G traversed by Q is at least pm� 1.The proof is by 
ontradi
tion. Let r be the number of distin
t 
opies of G visited, and let sbe the length of the longest path traversed in any edge 
opy. Observe that the total numberof 
opies visited 
ould be r + 1, sin
e the �rst and the last 
opy visited may be identi
al.In terms of r and s, the length of Q must be at most (r + 1)s+ r. Assume both the above
onditions are violated, i.e. r < pm� 1 and s < pm� 1. Then, we obtain thatm � rs++s+ r< (m� 2pm+ 1) + (pm� 1) + (pm� 1)= m� 1This gives a 
ontradi
tion.Given the path Q, it is fairly easy to 
onstru
t a path of length s in G, and also a path oflength r � 1. This gives the desired result.2We apply this lemma to obtain the following theorem.Theorem 8: If the longest path problem has a polynomial-time algorithm that a
hieves a
onstant fa
tor approximation, then it has a PTAS.Proof: Let Ak be a polynomial-time approximation algorithm with a performan
e ratio ofk > 1, i.e. it obtains a path of length l=k in a graph with longest path length l. Let p bethe smallest integer ex
eeding log 2 log klog(1 + �)Given an input graph G with longest path length l, suppose we run the algorithm Ak onthe graph G2p obtained by squaring G repeatedly p times; this yields a path of length atleast l2p=k in G2p . Using Lemma 5, a simple 
al
ulation shows that we obtain in G a pathof length at least  l2pk !1=2p � p � lp1 + � � p � l1 + �11



provided l � 2p(1 + �)=�. Observe that for small l, we 
an 
ompute the optimal solution bybrute-for
e in polynomial time. Moreover, the running time of the resulting algorithm ispolynomial for �xed �, sin
e the graph G2p has at most n3p verti
es. This gives the desiredPTAS.2We now show the non-existen
e of a PTAS for longest paths. The proof is based on there
ent results of Arora et al. [1℄.Theorem 9: There is no PTAS for the longest path problem, unless P = NP.Proof: We �rst 
laim that it suÆ
es to demonstrate the hardness result when the longestpath problem is restri
ted to instan
es 
ontaining a Hamiltonian 
y
le. Clearly, if it isNP-hard to �nd a 
onstant fa
tor approximation to the longest path in graphs with aHamiltonian 
y
le, then this is also the 
ase for the more general problem of approximatingthe longest path in arbitrary graphs.Let us denote by TSP(1,2) the problem of �nding an optimal traveling salesman tour in a
omplete graph where all edge lengths are either 1 or 2. The approximation version of thisproblem has been shown to be MAX SNP-hard by Papadimitriou and Yannakakis [24℄.Their redu
tion is from a version of the MAX 3SAT problem whi
h is also MAX SNP-
omplete. We 
laim that the following statement 
an be obtained as a 
onsequen
e of theirresult. Suppose that for every Æ > 0 there is a polynomial-time algorithm that on anyinstan
e of TSP(1,2) with optimum value n returns a tour of 
ost at most (1 + Æ)n, thenMAX 3SAT has a PTAS. Observe that having an optimum solution of size n 
orrespondsto having a Hamiltonian 
y
le using only the edges of length 1.Suppose now that we have a PTAS for the longest path problem in Hamiltonian graphs. Inparti
ular, this implies that we 
an �nd paths of length at least (1�Æ)n, for any �xed Æ > 0,in graphs that possess a Hamiltonian path. Clearly, this works equally well with graphsthat possess a Hamiltonian 
y
le. Given any instan
e of TSP(1,2) with optimum value n,the edges of weight 1 form a Hamiltonian graph. Using the PTAS for longest paths, we 
an
onstru
t a path of length (1� Æ)n using only the edges of weight 1. This 
an be 
onvertedinto a tour of weight at most (1 + Æ)n in the instan
e of TSP(1,2) by extending the pathwith the edges of length 2. Thus, the PTAS for the longest path problem 
an be used toobtain a PTAS for su
h instan
es of TSP(1,2).But the results of Arora et al. [1℄ show that if any MAX SNP-hard problem has a PTAS,then P = NP. By the redu
tion of Papadimitriou and Yannakakis, we may 
on
lude thatMAX 3SAT has a PTAS, and therefore P = NP.2The self-improvability result implies the NP-hardness of 
onstant fa
tor approximations tolongest paths. Unfortunately, this result does not hold for the 
ase of Hamiltonian graphssin
e the edge produ
t of a graph with itself does not preserve Hamiltoni
ity. The next
orollary follows by 
ombining Theorems 8 and 9.Corollary 2: There does not exist a 
onstant fa
tor approximation algorithm for thelongest path problem, unless P = NP.
12



Sin
e �nding 
onstant fa
tor approximations to the longest path problem is hard, the nextstep would be to try to �nd weaker approximations. The following theorem provides evi-den
e that �nding su
h weaker approximations may also be very diÆ
ult. The proof usesthe edge produ
t to amplify the gap in the longest path lengths.Theorem 10: If there is a poly-time algorithm for the longest path problem with a perfor-man
e ratio of 2O(plog n), then NP � DTIME�2O(log5n)�.Proof: Suppose that a polynomial-time algorithm A 
an approximate the longest path towithin the spe
i�ed ratio. Let G = (V;E) be any instan
e of the longest path problemwith n verti
es and longest path length l. Choose p to be the smallest integer su
h thatN = n3p = 2log5n. Noti
e that 3p = log4n, and that 2p � log2:5n.We use the edge squaring operation de�ned earlier to produ
e the graph G2. We apply thisoperation repeatedly p times, to obtain the graph G2p with a longest path length of at leastl2p . The algorithm A �nds a path of length at least l2p=f(N), where f(N) = 2O(plogN).Using a repeated appli
ation of Lemma 5, we 
an then obtain a path of length at leastlg(n) � p in G, su
h thatg(n) = f(N)1=2p = 2O�plogN2p � = 2O� log2:5n2p � = O(1)Sin
e p = O(log logn), we obtain a 
onstant fa
tor approximation for l = 
(log n= log log n);otherwise, Monien's algorithm 
an be used to �nd the exa
t solution. This implies thatthe longest path in G 
an be approximated within a 
onstant fa
tor in time poly(N) =2O(log1=�n). But we already know that �nding a 
onstant fa
tor approximation to the longestpath is NP-
omplete. Thus, we obtain the desired simulation of NP.2The previous theorem 
an be strengthened if one 
an de�ne an edge squaring operation ongraphs that only squares the number of verti
es, instead of 
ubing it as 
urrently de�ned.We a
hieve the same e�e
t by 
onsidering a restri
ted 
lass of graphs, namely graphs ofbounded degree. Sin
e the number of edges in su
h graphs is linear, the number of verti
esin the edge squared graph is quadrati
 instead of 
ubi
. All the above hardness results 
analso be extended to the 
ase where the input graphs are of bounded degree.We brie
y explain the reason here. The TSP(1,2) redu
tion of Papadimitriou and Yan-nakakis also applies to the 
ase where the edges of length 1 indu
e a bounded degree graph.Re
all from Lemma 5 that in the graphG2, the only verti
es that had their degrees in
reasedwere the 
onta
t verti
es u and v, In the bounded degree 
ase, we need to modify the 
on-stru
tion of the graph G2 so that the maximum degree of the verti
es remains the sameduring the squaring operation, while maintaining the longest-path properties. To a
hievethis, we 
onsider the problem of approximating the longest path between a spe
i�ed pair ofverti
es, say s and t. A hardness result for this problem 
an be easily extended to the moregeneral longest path problem. Now, instead of using a \fan-out" from verti
es u and v toG(u;v), we 
onne
t verti
es u and v only to verti
es s and t of G(u;v), respe
tively. It 
anbe shown that regardless of the number of squaring operations, the maximum degree in thegraph in
reases by at most 1. The remaining argument is identi
al to the 
ase of generalgraphs. We obtain the following theorem by using the new edge squaring operation.13



Theorem 11: For any � > 0, if there is a polynomial-time algorithm for approximating thelongest path to a ratio of 2O(log1��n) then NP � DTIME�2O(log1=�n)�. The theorem holdseven for the spe
ial 
ase of bounded degree graphs.Proof: Suppose that a polynomial-time algorithm A 
an approximate the longest path towithin the spe
i�ed ratio. Let G = (V;E) be any instan
e of the longest path problem withn verti
es and longest path length l. Choose p to be the smallest integer su
h thatN = n2p = 2log1=�nWe use the squaring operation de�ned in Lemma 5 that produ
es the graph G2. We applythis operation repeatedly p times, to obtain the graph G2p with a longest path length ofat least l2p . The algorithm A �nds a path of length at least l2p=f(N), where f(N) =2O(log1��N). Using a repeated appli
ation of Lemma 5, we 
an then obtain a path of lengthat least lg(n) � p in G, su
h that g(n) = f(N)1=2p= 2O� log1��N2p �= 2O� log1��n2�p �= 2O(1) = O(1)Sin
e p = O(log logn), we obtain a 
onstant fa
tor approximation for l = 
(log n= log log n);otherwise, Monien's algorithm 
an be used to �nd the exa
t solution. This implies thatthe longest path in G 
an be approximated within a 
onstant fa
tor in time poly(N) =2O(log1=�n). But we already know that �nding a 
onstant fa
tor approximation to the longestpath is NP-
omplete. Thus, we obtain the desired simulation of NP.2The argument used in the proof of this theorem 
an be easily extended to show the following.Theorem 12: For any Æ > 0, if there is a polynomial-time algorithm for approximatingthe longest path to a ratio of 2O� log nlog log n� then NP � DTIME �2O(nÆ)�.Proof: Let G = (V;E) be any graph. Let l be the length of its longest path. We usethe squaring operation de�ned in Lemma 5 that produ
es the graph G2. We apply thisoperation repeatedly k times, to obtain the graph G2k . It is easy to verify that the longestpath of G2k is of length l2k .We proved that �nding a 
onstant fa
tor approximation to the longest path isNP-
omplete.In parti
ular, 
onsider the problem of �nding a path of length l=21=Æ in G. By Lemma 5, itis equivalent to the problem of �nding a path of length (l=21=Æ)2k in the graph G2k . Choosek su
h that n2k = 2nÆ .Let A be a polynomial-time algorithm that approximates longest path to a ratio of2log n=log log n. We 
laim that A �nds a path of the required length (l=21=Æ)2k in the graphG2k 
orresponding to the above 
hoi
e of k. 14



To see this, let N = n2k = 2nÆ ;and let GN be G2k . The longest path in GN is of length l2k . Hen
e, A �nds a path of lengthl2k=K, where, K = 2logN=log logN= 2nÆ=(Æ log n)= n2k=(Æ log n)= 22k=ÆTherefore, A �nds a path of lengthl2k=22k=Æ = (l=21=Æ)2kin GN . Hen
e, by running A on GN we 
an �nd a 
onstant ratio approximation to Hamil-tonian path in time polynomial in N . Sin
e the 
onstant ratio problem is NP-
omplete, itfollows that NP � DTIME �2nÆ�.2A
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