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1. IntrodutionThe area of approximation algorithms forNP-hard optimization problems has reeived a lotof attention over the past two deades [16, 22℄. Although some notable positive results havebeen obtained, suh as the fully polynomial approximation sheme for bin paking [14, 19℄,it has now beome apparent that even the approximate solution of a large lass of NP-hardoptimization problems remains outside the bounds of feasibility. For example, a sequeneof results [13, 8, 2, 1℄ established the intratability of approximating the largest lique ina graph, ulminating in the result of Arora, Lund, Motwani, Sudan and Szegedy [1℄ thatfor some onstant Æ > 0, there does not exist any polynomial-time algorithm that willapproximate the maximum lique within a ratio of nÆ unless P = NP. Arora et al. [1℄ alsoestablished that unlessP = NP, there do not exist polynomial-time approximation shemes(PTAS) for optimization problems that are MAX SNP-hard. The lass SNP is a stritversion of NP and was de�ned by Papadimitriou and Yannakakis [23℄ based on a syntatiharaterization of NP due to Fagin [12℄. They also provided a notion of approximation-preserving redutions for problems in this lass and, under this redution, identi�ed a largenumber of approximation problems that are MAX SNP-hard, and are therefore unlikelyto have any PTAS. These problems inlude suh widely studied problems as MAX 3SAT,vertex over, metri TSP and Steiner trees. Reently, Lund and Yannakakis [20℄ settledanother important open problem by showing that the hromati number of a graph is ashard to approximate as the lique number.In this ontext, a major outstanding open problem is that of determining the approxima-bility of the longest path in an unweighted undireted graph. The optimization versionof this problem is NP-hard sine it inludes the Hamiltonian path problem as a speialase. Therefore, it is natural to look for polynomial-time algorithms with a small perfor-mane ratio, where the performane ratio is de�ned as the ratio of the longest path in theinput graph to the length of the path produed by the algorithm. Our results attempt topin down the best possible performane ratio ahievable by polynomial-time approximationalgorithms for longest paths. We provide some approximation algorithms for this problem,but unfortunately the performane ratio of these algorithms is as weak as in the ase ofthe best-known approximation algorithms for lique [7℄ and hromati number [4, 18℄. Weexplain the diÆulty of obtaining better performane guarantees for longest path approxi-mations by providing hardness results. These results ome fairly lose to establishing ouronjeture that the situation for longest paths is essentially as bad as for the above twoproblems, i.e. if there exists an approximation algorithm that has a performane ratio ofnÆ, for some onstant Æ > 0, then P = NP.In Setion 2, we present several polynomial-time approximation algorithms for longest paths.A simple greedy algorithm is presented and it is shown that it �nds long paths in densegraphs. At this point, this is the best algorithm known for arbitrary dense graphs. Inthe ase of liques and hromati number, the extreme hardness of the problem led to thestudy of speial inputs where the optimum was guaranteed to take on an extreme value;for example, the approximate oloring of 3-olorable graphs was studied by Blum [4℄ andKarger, Motwani and Sudan [18℄, and the approximation of liques in graphs ontaining alinear-sized lique is studied by Boppana and Halldorsson [7℄. We therefore formulate the1



problem of �nding long paths in Hamiltonian graphs. For the purposes of this paper, thereis no essential di�erene between the ases where the input graph has Hamiltonian pathsor Hamiltonian yles, and we onentrate on the latter ase. Our seond algorithm �ndspaths of a logarithmi length in Hamiltonian graphs. In fat, we show that this algorithmwill �nd suh paths in a muh larger lass of graphs, viz. weakly Hamiltonian graphs, oreven 1-tough graphs. Some variants of this algorithm are also analyzed. This result is thebest possible in the sense that we an demonstrate the existene of suh graphs where thelongest path is of logarithmi length.The hard ase appears to be that of �nding better approximations for sparse Hamiltoniangraphs. In Setion 3, we onsider sparse random Hamiltonian graphs and show that it ispossible to �nd paths of length 
(pn= log n). Surprisingly, this algorithm works in anygraph obtained by adding any number of random edges to a Hamiltonian yle. Thisresult partially answers an open question posed by Broder, Frieze and Shamir [6℄. Theyhad onsidered the problem of �nding Hamiltonian yles in graphs obtained by adding arelatively large number of random edges to a Hamiltonian yle.In Setion 4, we provide hardness results for the problem of approximating the longest path.We �rst onsider the problem of �nding long paths in Hamiltonian graphs and show that forany � < 1, it is impossible to �nd paths of length n� n� in an n-vertex Hamiltonian graphunless P = NP. The problem of �nding long paths is easier for Hamiltonian graphs than forarbitrary inputs. Therefore, it is not surprising that we an prove muh stronger negativeresults in general input graphs. We �rst prove a self-improvability result for the longestpath problem. Combining this with the reent results on the intratability of approximationproblems that are MAX SNP-hard, we obtain that no polynomial-time algorithm an�nd a onstant fator approximation for the longest path problem unless P = NP. Weonjeture that the result an be strengthened to say that for some onstant Æ > 0, �ndingan approximation of ratio nÆ is also NP-hard. As evidene towards this onjeture, weshow that if any polynomial-time algorithm an approximate the longest path to a ratio of2O(log1��n), for any � > 0, then NP has a quasi-polynomial deterministi time simulation.The hardness results apply even to the speial ase where the input onsists of boundeddegree graphs.These hardness results have found appliation to the Moderate-Mean Cyle problem. Sub-ramanian [25℄ established that the Moderate-Mean Cyle problem is NP-omplete by re-duing the Hamiltonian yle problem to it. The redution also establishes that �nding anapproximate solution to Moderate-Mean Cyle is at least as hard as �nding good approxi-mations to Hamiltonian paths, and so our hardness results arry over to the new problemtoo.Before desribing our results in greater detail we review some related work. Monien [21℄presented an O(k!nm) time algorithm that �nds paths of length k in a Hamiltonian graphwith n verties and m edges. Our results are an improvement on this sine in polynomial-time Monien's algorithm an only �nd paths of length O(log n= log logn). Furer andRaghavahari [15℄ present approximation algorithms for the minimum-degree spanning treeproblem that delivered absolute performane guarantees (within an additive fator of 1).From this we an derive a polynomial-time algorithm for �nding logarithmi length paths
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in Hamiltonian graphs, mathing our result for that ase. However, note that our resulteven in that ase is more general in that it applies to a wider lass of graphs, viz. the weaklyHamiltonian graphs. No hardness results for longest paths were known earlier, although aseemingly related problem has been studied by Berman and Shnitger [8℄. They show thatthe hardness onjeture we stated is true for the problem of approximating the longest in-dued path in an undireted graph. Note that the indued path problem is stritly harderand their hardness result does not arry over to the problem under onsideration here.Bellare [3℄ onsiders a generalization of the longest paths problem alled the longest olor-respeting path problem. This involves graphs with 2-olored edges and labeled verties,and a feasible path must have the property that at eah vertex its label spei�es whetherthe inident edges of the path are of the same olor or not. He obtains essentially the samehardness results through di�erent tehniques. Our results are stritly stronger sine thereare no olor onstraints on the paths.1.1. Weak HamiltoniityChvatal [9, 10, 11℄ onsidered several neessary onditions for Hamiltoniity obtained viaan integer linear programming formulation of the problem. The graphs satisfying theseonditions are known as weakly Hamiltonian graphs. We omit the formal de�nition andinstead provide three properties of weakly Hamiltonian graphs { these are referred to asthe \1-2-3" properties. Given a graph G(V;E), and a set U � V , we will denote the vertexindued subgraph of G by G[U ℄.De�nition 1: [1-Toughness℄ A graph G = (V;E) is said to be 1-tough if for any setU � V , the indued subgraph G[V � U ℄ has at most jU j onneted omponents.In other words, by removing any k verties from the graph, the graph annot be deomposedinto more than k onneted omponents.De�nition 2: [2-Fators℄ A graph G = (V;E) is said to have a 2-fator if there existsE0 � E suh that in the graph G0 = (V;E0), eah vertex v 2 V has degree 2.That is, a 2-fator is a subgraph of G made up of yles that over all the verties.De�nition 3: [3-Cylability℄ A graph G = (V;E) is said to be 3-ylable if for everythree verties u; v; w 2 V , there exists a yle in the graph G ontaining u, v and w.Theorem 1: [Chvatal℄ Any weakly Hamiltonian graph G = (V;E) is 1-tough, has a 2-fator and is 3-ylableIt is not very hard to see that every Hamiltonian graph G satis�es these three properties.Removing any k verties from a yle deomposes it into a olletion of k paths; hene,a Hamiltonian graph an be deomposed into at most k onneted omponents upon theremoval of k verties, implying 1-toughness. A Hamiltonian yle is a 2-fator of the graphG. Finally, 3-ylability follows from the fat that every set of three verties lies on theHamiltonian yle.Theorem 2: Every Hamiltonian graph is weakly Hamiltonian.
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2. Algorithms for Finding Long PathsWe now give algorithms for �nding long paths in 1-tough graphs. Unless otherwise spei�ed,for any graph G(V;E) we will assume that jV j = n and jEj = m. We will measure thelength of a path in terms of the number of verties in it. All logarithms are to base 2. Firstwe desribe a simple algorithm that �nds long paths in dense graphs. Then, we show howto �nd a path of length �(log n) in any one tough graph.Theorem 3: Any graph with m edges and n verties ontains a path of length d = m=n.Proof: Consider �rst a graph with minimum degree d. Clearly, any maximal path in thisgraph has length at least d. Thus, a greedy onstrution will �nd a path of this length.Now, onsider a graph with n verties and m edges, and let d = m=n. Repeatedly hoosea vertex of degree smaller than d, and remove this vertex and all inident edges from thegraph. This proess terminates when the residual graph has minimum degree at least d.Clearly, the residual graph annot be empty sine at most (d � 1)n < m edges an beremoved from the graph in the proess of deleting small degree verties. But this graph hasminimum degree d, so a greedy onstrution works.2Theorem 4: Let G be a 1-tough graph with n verties. Then the depth-�rst searh tree ofG has depth 
(logn).Proof: Take any depth-�rst searh tree, and onsider the root-leaf path de�ned as follows:at eah step, move into the largest subtree. Suppose this path has length l and that theverties on this path have degrees d1; : : : ; dl in the depth-�rst tree. Then sine a depth-�rsttree has no ross edges, removing the l verties on this path neessarily disonnets eahof the hildren of these l verties from all the others, yielding exatly P(di � 1) onnetedomponents. By the 1-toughness property, we know that P(di � 1) � l, i.e. P di � 2l. Onthe other hand, sine we take the largest branh at eah step, it is neessarily the ase thatthe subtree rooted at dj has size at least n( 1d1 1d2 � � � 1dj�1 ). Thus, �di � n. For any �xed l,the produt �di is maximized (under the onstraint P di � 2l) by making all the di equal,namely di = 2. That is, the root-leaf path length l is minimum (and is �(log n)) when eahof the di is 2. Therefore, l � logn.2Corollary 1: In a Hamiltonian graph on m edges, a path of length k an be found inO(m+ k2!) time.Proof: By the same arguments as the previous theorem, at any level of the depth-�rsttree, the number of nodes at that level is at most equal to the number of nodes in allthe previous levels (thus, the tree that is found is very lose to being a binary tree in an\average" sense). If the depth of the tree exeeds k, then we are done. Otherwise, �ndsome subtree ontaining between k and k2 verties. Suh a subtree must exist sine, byarguments similar to those above, every tree node has at most k hildren). The path fromthe root to this subtree, whih ontains at most k verties, uts the subtree o� from the restof the graph, so the Hamiltonian path an enter and then exit the subtree at most k times.It follows that this subtree ontains a path of length k, whih an be found by exhaustivesearh. 4



22.1. Tough Graphs with Short PathsWe now prove an upper bound of O(log n) on the longest path in 1-tough graphs. In fat,we prove that there exist graphs satisfying the 1-2-3 properties that have a longest pathof length O(logn). We de�ne a graph Gk(Vk; Ek) for eah non-negative integer k(refer toFig. 1). The graph onsists of 2k � 1 normal verties and 2 super verties. The normalverties are arranged in a omplete binary tree. The tree is augmented by an edge betweeneah pair of siblings. We will distinguish between the tree edges and the sibling edges. Thetwo super verties are alled s1 and s2, and they are adjaent to every other vertex in thegraph, inluding eah other. The size of Vk is n = 2k + 1.
s s21

Figure 1: A weakly Hamiltonian graph with no long paths.The following lemmas show that Gk has the 1-2-3 properties.Lemma 1: The graph Gk is 1-tough.Proof: Suppose that the graph Gk did not ontain the super verties. We then show thatthe removal of any set W of normal verties yields an indued subgraph Gk[Vk �W ℄ withat most jW j+1 onneted omponents. This is proved by indution on jW j. It is neessaryto prove a stronger indutive laim, whih is as follows: by removing the set W of verties,the graph is deomposed into at most jW j+1 omponents and eah omponent is a binarytree (not neessarily omplete) with additional edges between eah siblings.The laim is trivially true in the ase jW j = 0. Let us assume that the laim is true forjW j = r. Now suppose that we delete the set W [ fwg, where w 62 W is a normal vertex.There are two ases, depending on whether the vertex w is a leaf or a non-leaf vertex of theomponent of Gk[Vk �W ℄ ontaining it. If it is a leaf, then the number of omponents isunhanged by the additional deletion. But if it is a not a leaf vertex, then it is easy to see5



that the omponent in whih w lies is split into two omponents. Also, it remains true thatthere is an edge between eah pair of siblings. This establishes the indutive laim.Now onsider the super verties also. Suppose we delete a set W � Vk from Gk. Clearly,the residual graph remains onneted if W does not ontain both s1 and s2. Let us restritour attention to the ase where s1 2 W and s2 2 W , and let W 0 = W � fs1; s2g. By thepreeding laim, the removal of W from Gk an yield at most jW 0 j + 1 omponents. Thisimplies that the number of omponents is jW j � 1, establishing the 1-toughness of Gk.2Lemma 2: The graph Gk has a 2-fator.Proof: First notie that the set of normal verties in any two suessive levels of the treeare easily deomposable into a disjoint olletion of triangles.Consider �rst the ase where the number of levels (i.e. k) is even. We an pair up the levelsof the graph and obtain a set of disjoint triangles involving all the verties exept the twosuperverties. The two super verties an now be ombined with any one triangle to yield aK5, i.e. the omplete graph on 5 verties. Sine K5 ontains a 5-yle, we obtain a olletionof disjoint yles that inludes eah vertex. This is a 2-fator. When the number of levelsis odd, the two super verties form a triangle with the root and the remaining levels arepartitioned into triangles as before, yielding a 2-fator.2Lemma 3: The graph Gk is 3-ylable.Proof: Let v1; v2; v3 be any three verties. Assume for now that none of the three is asuper vertex. Clearly, there is a path between v1 and v2 using only the tree edges. We anappend the two super verties to the two end-points of this path, and use the edge from s1to v3 and from v3 to s2 to omplete a yle ontaining all three verties. Suppose now thatone of the three verties, without loss of generality v3, is a super vertex. Then there existsa path from v1 to v2 not inluding v3. Sine v3 is a super vertex, it is adjaent to both v1and v2, and those edges omplete the yle. If two of the verties are super verties, thenwe obtain a triangle ontaining all three verties.2The following lemma helps establish that the longest path of Gk is of length O(log n),Lemma 4: The longest path in the graph Gk not ontaining the super verties is of length�(log n)Proof: Consider the graph obtained by deleting the two super verties; it is a ompletebinary tree with all the sibling edges thrown in. For onveniene, we will measure thelength of a path in terms of the number of edges in it. We prove the lemma by indutionon the number of levels in the binary tree. The indutive hypothesis is that the length ofthe longest path is at most 4k and the length of the longest path ending at the root is atmost 2k. The base ase, for k = 1, is trivial.Now onsider the graph with k levels, and note that k = logn. The longest path in thisgraph onsists of the longest path in the left subtree of the root ending at its root, aonneting path of length two through the root, and the longest path in the right subtree
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of the root ending at its root. Hene, the length of the longest path in a graph of k levelsan be at most two more than the sum of the lengths of the longest path in left and rightsubtrees (both with k � 1 levels) ending at their roots. By the indutive hypothesis, thismeans the longest path is no more than 4k. Also, the length of the longest path ending atthe root is at most 2 greater than the length of the longest path ending at the root in eitherthe left or the right subtree. Again, by the indutive hypothesis, the longest path endingat the root is at most 2k.It is not hard to see that these upper bounds are tight within small additive onstants.2The length of the longest path in Gk an be greater than the length of the longest path notinluding the super verties by at most a fator of 3. This is beause any path ontainingthe two super verties onsists of three paths not ontaining the super verties, stithedtogether by the super verties. We have established a bound on the longest path in theentire graph Gk.Theorem 5: The graph Gk satis�es the 1-2-3 properties, and the longest path in this graphis of length �(logn).3. Finding Long Paths in Sparse Random GraphsWe now turn to the issue of random Hamiltonian graphs. It should be noted that theampli�ation desribed later in the paper beomes ine�etual when we onsider �ndingpaths of length n�. It is therefore an interesting oinidene that on random Hamiltoniangraphs, a path of length 
(pn= log n) an in fat be found. The following analysis appliesto numerous distributions on graphs|in fat, to any random graph obtained by adding anynumber of edges to a Hamiltonian yle, suh that eah non-Hamiltonian edge has an equalprobability of ourring. For example, the random edges ould form a Gn;p graph, or arandom regular graph [5℄. For the ase of random Hamiltonian graphs with average degreemuh larger than 3, Broder et al [6℄ give an algorithm that atually �nds the Hamiltonianyle in polynomial-time. However, they leave open the question of what an be done forsparse graphs, e.g. graphs of degree 3.Theorem 6: Let G be a random 3-regular Hamiltonian graph on n verties. There is apolynomial-time algorithm that �nds a path of length 
(pn= log n) in G, with high probabilityof suess.A random 3-regular Hamiltonian graph an be viewed as a Hamiltonian yle with a randomperfet mathing added. We will therefore refer to the edges on the Hamiltonian path asHamiltonian edges, and will refer to the other edges as mathing edges. We will all theneighbor of a vertex along a mathing edge its math. The key property of the randomedges used in this analysis is that for any vertex, its math is hosen uniformly at randomfrom among the other verties. Finally, let the Hamiltonian distane between two vertiesbe the length of the shortest path between them made up entirely of Hamiltonian edges.The algorithm proeeds as a series of trials. In eah trial, we start at a randomly seletedvertex of the graph and perform a random walk, with the modi�ation that the last edge7



traversed in not onsidered as a possibility for the next step, so that we do not immediatelybak up along the walk. Mark eah vertex as it is visited. The trial ends when we visita marked vertex, and sueeds if we visit k = 
(pn= log n) verties before enountering avertex that is already marked (during this or any previous trial). We laim that with highprobability, we will �nd a path of length k within O(log n) trials.Consider the tth trial, t = O(log n). At the end of this trial at most kt verties an havebeen marked. Analyze the walk during this trial as a series of epohs. An epoh ends whenthe walk traverses a mathing edge. Sine at eah step of the walk a mathing edge istraversed with probability 1=2, epohs have length O(log n) with high probability. Call avertex safe if its Hamiltonian distane from any marked vertex exeeds 
(logn). Call anepoh safe if it begins at a safe vertex. It follows that with high probability no markedvertex is visited during a safe epoh. Thus, the path ontinues to extend safely so long assafe epohs our.Consider the end of a safe epoh. This happens when a mathing edge is traversed. Sinethe endpoints of a mathing edge are random, this means that the starting vertex of thenext epoh is hosen uniformly at random from among the unvisited verties. Sine atmost kt verties are marked, there are O(kt log n) unsafe verties; thus, the next epohis unsafe with probability O(kt log n=n) = O(logn=pn). It follows that with onstantprobability 
(pn= log n) safe epohs our during the trial. Clearly the length of the paththat is found is equal to at least the number of epohs, so we get the desired path length.Furthermore, sine a trial ends when we visit an unsafe vertex, we an treat the trials asindependent. Thus, with high probability one of the O(logn) trials sueeds.In fat, the algorithm itself an be made deterministi. All that is required is that an epoh(in the sense desribed above) ends in O(log n) steps. To ensure this we use a form of\universal non-traversal sequene." Consider assigning labels to the edges of the graph inthe standard traversal sequene manner. It is simple to interpret a sequene over f0; 1g sothat when one arrives at a given vertex via some edge, the next symbol in the sequenedetermines whih of the other two edges should be traversed to leave that vertex. We annow modify traversal sequenes in the following way to produe walks that do not \bakup." Given a traversal sequene drawn from f1; 2g�, interpret it as follows: at eah step,examine the label on the edge the walk arrived from. If i is the traversal symbol and j thelabel of the edge just traversed, then next traverse the edge labeled (i+ j) mod 3.Now onsider the partiular modi�ed traversal sequene that auses a traversal of the Hamil-tonian path. This is a sequene of length n, and it therefore follows that some sequene oflength logn+ 1 does not our as a substring of the traversal sequene (sine there are 2npossible sequenes of whih only n our in the Hamiltonian traversal). If we try all 2n suhsequenes, we will eventually stumble upon one satisfying the property. If we onstrut ourwalk using this sequene (repeated over and over again) then it is lear that we will traversea mathing edge at least one every 2 log n steps of our walk, and then the analysis givenabove is appliable.The random walk algorithm an also be generalized to any other random graph distribution,so long as the endpoint of a randomly hosen non-Hamiltonian edge out of v is uniformlydistributed among the verties of G. The argument goes through unhanged, exept in the8



ase that some of the verties of G have degree two (i.e, only Hamiltonian edges. If suhverties are forbidden in the distribution, then we have the desired result immediately.The degree two situation an be reti�ed if for any input graph we �rst \shortut" anydegree two vertex v. replaing (u; v) and (v; w) by (u;w). Any path we onstrut in theshortut graph yields a longer path in the original graph. If the original graph had theuniform endpoint distribution property, then so does the new graph. If the number ofverties in the shortut graph is less than n2=3, then there must have been a path of degreetwo verties of length n1=3 in the original graph. If not, then we �nd a path of length atleast n1=3 in the shortut graph, yielding a path of at least this length in the original graph.4. Hardness ResultsIt is important to keep in mind that it may be possible to ahieve better performaneguarantees on graphs that are known to be Hamiltonian than on arbitrary input graphs.This is analogous to the hromati number problem where signi�ant improvements an beobtained if the input graph is known to be 3-olorable [4℄. We �rst onsider the \easier"problem and prove that, for any onstant � < 1, no polynomial-time algorithm an �nd apath of length n� n� in an n-vertex Hamiltonian graph, unless P = NP. Next we demon-strate a self improvability result for approximating longest paths. The self-improvabilityresult is used to show that �nding onstant fator approximations to the longest path prob-lem is NP-hard. We also provide evidene that it is unlikely to be the ase that there existsany o(nÆ) ratio approximation algorithm for this problem. Our results extend to showingthe hardness of the longest path problem even in the ase of bounded degree graphs.4.1. Hardness Result for Hamiltonian GraphsThe following theorem easily generalizes to the approximation of longest paths in arbitrary(non-Hamiltonian) graphs. But the subsequent results are muh stronger for that problem.Theorem 7: For any � < 1, the problem of �nding a path of length n�n� in a Hamiltoniangraph is NP-omplete.We present only a sketh of the proof. Let G = (V;E) be a Hamiltonian graph on n verties,and de�ne K = (n + 2)�=(1��). We de�ne an auxiliary graph G0 = (V 0; E0). Informally, G0onsists of K opies of G \glued" together in a yle by K \speial" verties. The Kopies of G are arranged in a yle and any two suessive opies of G are separated by aspeial vertex that is onneted to all the verties of both the opies. In more formal terms,V 0 = (V [ fvsg)� f1; 2; : : : ;Kg, where vs is a speial vertex. Any two verties (v1; k1) and(v2; k2) in V 0 share an edge in E0 if and only if one of the following onditions hold.� k1 = k2 and (v1; v2) 2 E.� v1 = vs and k2 = (k1 + 1) (mod K).� v1 = vs and k2 = (k1 � 1) (mod K). 9



Let A be an algorithm that is guaranteed to �nd a path of length at least n � n� in aHamiltonian graph on n verties. Consider what happens when we run algorithm A on G0.We laim that A �nds a Hamiltonian path in at least one of the opies of G in G0. Sinethere are only a polynomial number of opies of G in G0, this gives us a polynomial-timealgorithm to �nd a Hamiltonian path in G.To see this laim, we �rst observe that any simple path in G0 is a disjoint olletion ofsimple paths in opies of G \stithed" together by speial verties. In this olletion, therean be at most one simple path per opy of G (exept the �rst or last visited opies) sinethere is exatly one speial vertex to enter a opy of G and one speial vertex to leave theopy, and these verties annot be visited twie in a simple path. There an be at most twosimple non-disjoint paths from either the �rst or the last visited opies of G (but not both).For instane, the path P may start within the �rst opy of G and use a speial vertex toexit and then \turn bak" into a seond disjoint path within the same opy before movingout through the seond speial vertex into the seond opy of G and so on.Now, sine jV 0j = (n+ 1)K, by running A on G0 we obtain a path P of length l, wherel > (n+ 1)K � ((n+ 1)K)� > (n+ 1)K � (n+ 2)(1+�=(1��))� + 1 = (n+ 1)K �K + 1:In other words, P inludes all but at most K � 2 verties of G0. Sine there are K opiesof G, we an onlude that P inludes all the verties of at least two opies of G. All theverties of at least one of these opies of G must our ontiguously within P . Hene thepath P inludes a Hamiltonian path from that opy of G.4.2. Self-Improvability and Hardness Results for Longest PathsWe now show that if the longest path an be approximated to some onstant k in polynomial-time, then we an approximate it to any onstant k0, also in polynomial-time. To this end,we de�ne the following novel de�nition of a graph produt.De�nition 4: For a graph G(V;E), its edge square graph G2(V 2; E2) is obtained asfollows. Replae eah edge e = (u; v) in G by a opy of G, all it Ge, and onnet both uand v to eah vertex in Ge. The verties u and v are referred to as the ontat verties ofGe.If the graph G has n verties, then G2 will have at most n3 verties. Observe that theedge square of a Hamiltonian graph need not be Hamiltonian. It is preisely for this reasonthat the subsequent results apply only to the more general problem of approximating thelongest path in arbitrary graphs, as opposed to the possible easier problem where the inputis guaranteed to be Hamiltonian. The following lemma relates the length of the longestpaths in G and G2.Lemma 5: Let G = (V;E) be any graph. If the longest simple path in G has length l thenthe longest simple path in G2 has length at least l2. Moreover, given a path of length m inG2, we an obtain in polynomial-time a path of length pm� 1 in G.Proof: First, we exhibit a path P 2 of length l2 in G2. Suppose that a longest path in G isthe path P with end-points x and y. The path P 2 traverses the edge opies Ge in exatly10



the same order as the edges in P . Moreover, in eah Ge being traversed, it traverses exatlythe path orresponding to P . It is easy to see that the resulting path is of length l(l + 2).Consider any path Q of length m in G2. We show that it is possible to derive a path oflength at least pm� 1 in G. The path Q an enter or leave a given opy of G in G2 onlyvia its ontat verties. Therefore, all the verties of any opy of G our ontiguously inQ, exept possibly for the �rst and the last opy visited by Q. In other words, the path Qstarts o� in some opy Ge, and then visits a sequene of opies that are all distint, exeptthat it ould �nish o� bak inside the opy Ge. The sequene of verties visited inside anypartiular edge opy forms a simple path in G, exept that in Ge there ould be two disjointsimple paths. We laim that one of the following holds.1. One of the simple paths inside the edge opies visited by Q is of length at least pm�1.2. The number r of distint opies of G traversed by Q is at least pm� 1.The proof is by ontradition. Let r be the number of distint opies of G visited, and let sbe the length of the longest path traversed in any edge opy. Observe that the total numberof opies visited ould be r + 1, sine the �rst and the last opy visited may be idential.In terms of r and s, the length of Q must be at most (r + 1)s+ r. Assume both the aboveonditions are violated, i.e. r < pm� 1 and s < pm� 1. Then, we obtain thatm � rs++s+ r< (m� 2pm+ 1) + (pm� 1) + (pm� 1)= m� 1This gives a ontradition.Given the path Q, it is fairly easy to onstrut a path of length s in G, and also a path oflength r � 1. This gives the desired result.2We apply this lemma to obtain the following theorem.Theorem 8: If the longest path problem has a polynomial-time algorithm that ahieves aonstant fator approximation, then it has a PTAS.Proof: Let Ak be a polynomial-time approximation algorithm with a performane ratio ofk > 1, i.e. it obtains a path of length l=k in a graph with longest path length l. Let p bethe smallest integer exeeding log 2 log klog(1 + �)Given an input graph G with longest path length l, suppose we run the algorithm Ak onthe graph G2p obtained by squaring G repeatedly p times; this yields a path of length atleast l2p=k in G2p . Using Lemma 5, a simple alulation shows that we obtain in G a pathof length at least  l2pk !1=2p � p � lp1 + � � p � l1 + �11



provided l � 2p(1 + �)=�. Observe that for small l, we an ompute the optimal solution bybrute-fore in polynomial time. Moreover, the running time of the resulting algorithm ispolynomial for �xed �, sine the graph G2p has at most n3p verties. This gives the desiredPTAS.2We now show the non-existene of a PTAS for longest paths. The proof is based on thereent results of Arora et al. [1℄.Theorem 9: There is no PTAS for the longest path problem, unless P = NP.Proof: We �rst laim that it suÆes to demonstrate the hardness result when the longestpath problem is restrited to instanes ontaining a Hamiltonian yle. Clearly, if it isNP-hard to �nd a onstant fator approximation to the longest path in graphs with aHamiltonian yle, then this is also the ase for the more general problem of approximatingthe longest path in arbitrary graphs.Let us denote by TSP(1,2) the problem of �nding an optimal traveling salesman tour in aomplete graph where all edge lengths are either 1 or 2. The approximation version of thisproblem has been shown to be MAX SNP-hard by Papadimitriou and Yannakakis [24℄.Their redution is from a version of the MAX 3SAT problem whih is also MAX SNP-omplete. We laim that the following statement an be obtained as a onsequene of theirresult. Suppose that for every Æ > 0 there is a polynomial-time algorithm that on anyinstane of TSP(1,2) with optimum value n returns a tour of ost at most (1 + Æ)n, thenMAX 3SAT has a PTAS. Observe that having an optimum solution of size n orrespondsto having a Hamiltonian yle using only the edges of length 1.Suppose now that we have a PTAS for the longest path problem in Hamiltonian graphs. Inpartiular, this implies that we an �nd paths of length at least (1�Æ)n, for any �xed Æ > 0,in graphs that possess a Hamiltonian path. Clearly, this works equally well with graphsthat possess a Hamiltonian yle. Given any instane of TSP(1,2) with optimum value n,the edges of weight 1 form a Hamiltonian graph. Using the PTAS for longest paths, we anonstrut a path of length (1� Æ)n using only the edges of weight 1. This an be onvertedinto a tour of weight at most (1 + Æ)n in the instane of TSP(1,2) by extending the pathwith the edges of length 2. Thus, the PTAS for the longest path problem an be used toobtain a PTAS for suh instanes of TSP(1,2).But the results of Arora et al. [1℄ show that if any MAX SNP-hard problem has a PTAS,then P = NP. By the redution of Papadimitriou and Yannakakis, we may onlude thatMAX 3SAT has a PTAS, and therefore P = NP.2The self-improvability result implies the NP-hardness of onstant fator approximations tolongest paths. Unfortunately, this result does not hold for the ase of Hamiltonian graphssine the edge produt of a graph with itself does not preserve Hamiltoniity. The nextorollary follows by ombining Theorems 8 and 9.Corollary 2: There does not exist a onstant fator approximation algorithm for thelongest path problem, unless P = NP.
12



Sine �nding onstant fator approximations to the longest path problem is hard, the nextstep would be to try to �nd weaker approximations. The following theorem provides evi-dene that �nding suh weaker approximations may also be very diÆult. The proof usesthe edge produt to amplify the gap in the longest path lengths.Theorem 10: If there is a poly-time algorithm for the longest path problem with a perfor-mane ratio of 2O(plog n), then NP � DTIME�2O(log5n)�.Proof: Suppose that a polynomial-time algorithm A an approximate the longest path towithin the spei�ed ratio. Let G = (V;E) be any instane of the longest path problemwith n verties and longest path length l. Choose p to be the smallest integer suh thatN = n3p = 2log5n. Notie that 3p = log4n, and that 2p � log2:5n.We use the edge squaring operation de�ned earlier to produe the graph G2. We apply thisoperation repeatedly p times, to obtain the graph G2p with a longest path length of at leastl2p . The algorithm A �nds a path of length at least l2p=f(N), where f(N) = 2O(plogN).Using a repeated appliation of Lemma 5, we an then obtain a path of length at leastlg(n) � p in G, suh thatg(n) = f(N)1=2p = 2O�plogN2p � = 2O� log2:5n2p � = O(1)Sine p = O(log logn), we obtain a onstant fator approximation for l = 
(log n= log log n);otherwise, Monien's algorithm an be used to �nd the exat solution. This implies thatthe longest path in G an be approximated within a onstant fator in time poly(N) =2O(log1=�n). But we already know that �nding a onstant fator approximation to the longestpath is NP-omplete. Thus, we obtain the desired simulation of NP.2The previous theorem an be strengthened if one an de�ne an edge squaring operation ongraphs that only squares the number of verties, instead of ubing it as urrently de�ned.We ahieve the same e�et by onsidering a restrited lass of graphs, namely graphs ofbounded degree. Sine the number of edges in suh graphs is linear, the number of vertiesin the edge squared graph is quadrati instead of ubi. All the above hardness results analso be extended to the ase where the input graphs are of bounded degree.We briey explain the reason here. The TSP(1,2) redution of Papadimitriou and Yan-nakakis also applies to the ase where the edges of length 1 indue a bounded degree graph.Reall from Lemma 5 that in the graphG2, the only verties that had their degrees inreasedwere the ontat verties u and v, In the bounded degree ase, we need to modify the on-strution of the graph G2 so that the maximum degree of the verties remains the sameduring the squaring operation, while maintaining the longest-path properties. To ahievethis, we onsider the problem of approximating the longest path between a spei�ed pair ofverties, say s and t. A hardness result for this problem an be easily extended to the moregeneral longest path problem. Now, instead of using a \fan-out" from verties u and v toG(u;v), we onnet verties u and v only to verties s and t of G(u;v), respetively. It anbe shown that regardless of the number of squaring operations, the maximum degree in thegraph inreases by at most 1. The remaining argument is idential to the ase of generalgraphs. We obtain the following theorem by using the new edge squaring operation.13



Theorem 11: For any � > 0, if there is a polynomial-time algorithm for approximating thelongest path to a ratio of 2O(log1��n) then NP � DTIME�2O(log1=�n)�. The theorem holdseven for the speial ase of bounded degree graphs.Proof: Suppose that a polynomial-time algorithm A an approximate the longest path towithin the spei�ed ratio. Let G = (V;E) be any instane of the longest path problem withn verties and longest path length l. Choose p to be the smallest integer suh thatN = n2p = 2log1=�nWe use the squaring operation de�ned in Lemma 5 that produes the graph G2. We applythis operation repeatedly p times, to obtain the graph G2p with a longest path length ofat least l2p . The algorithm A �nds a path of length at least l2p=f(N), where f(N) =2O(log1��N). Using a repeated appliation of Lemma 5, we an then obtain a path of lengthat least lg(n) � p in G, suh that g(n) = f(N)1=2p= 2O� log1��N2p �= 2O� log1��n2�p �= 2O(1) = O(1)Sine p = O(log logn), we obtain a onstant fator approximation for l = 
(log n= log log n);otherwise, Monien's algorithm an be used to �nd the exat solution. This implies thatthe longest path in G an be approximated within a onstant fator in time poly(N) =2O(log1=�n). But we already know that �nding a onstant fator approximation to the longestpath is NP-omplete. Thus, we obtain the desired simulation of NP.2The argument used in the proof of this theorem an be easily extended to show the following.Theorem 12: For any Æ > 0, if there is a polynomial-time algorithm for approximatingthe longest path to a ratio of 2O� log nlog log n� then NP � DTIME �2O(nÆ)�.Proof: Let G = (V;E) be any graph. Let l be the length of its longest path. We usethe squaring operation de�ned in Lemma 5 that produes the graph G2. We apply thisoperation repeatedly k times, to obtain the graph G2k . It is easy to verify that the longestpath of G2k is of length l2k .We proved that �nding a onstant fator approximation to the longest path isNP-omplete.In partiular, onsider the problem of �nding a path of length l=21=Æ in G. By Lemma 5, itis equivalent to the problem of �nding a path of length (l=21=Æ)2k in the graph G2k . Choosek suh that n2k = 2nÆ .Let A be a polynomial-time algorithm that approximates longest path to a ratio of2log n=log log n. We laim that A �nds a path of the required length (l=21=Æ)2k in the graphG2k orresponding to the above hoie of k. 14
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