On Approximating the Longest Path in a Graph

David Karger * Rajeev Motwani T G.D.S. Ramkumar *

Department of Computer Science
Stanford University
Stanford, CA 94305

Abstract

We consider the problem of approximating the longest path in undirected graphs. In an
attempt to pin down the best achievable performance ratio of an approximation algorithm
for this problem, we present both positive and negative results. First, a simple greedy
algorithm is shown to find long paths in dense graphs. We then consider the problem of
finding paths in graphs that are guaranteed to have extremely long paths. We devise an
algorithm that finds paths of a logarithmic length in Hamiltonian graphs. This algorithm
works for a much larger class of graphs (weakly Hamiltonian), where the result is the
best possible. Since the hard case appears to be that of sparse graphs, we also consider
sparse random graphs. Here we show that a relatively long path can be obtained, thereby
partially answering an open problem of Broder, Frieze and Shamir.

To explain the difficulty of obtaining better approximations, we prove some strong
hardness results. We show that, for any € < 1, the problem of finding a path of length
n —n¢ in an n-vertex Hamiltonian graph is NP-hard. We then show that no polynomial-
time algorithm can find a constant factor approximation to the longest path problem unless
P = NP. We conjecture that the result can be strengthened to say that for some constant
§ > 0, finding an approximation of ratio n% is also NP-hard. As evidence towards this
conjecture, we show that if any polynomial-time algorithm can approximate the longest
path to a ratio of 20(1°g1_€”), for any € > 0, then NP has a quasi-polynomial deterministic
time simulation. The hardness results apply even to the special case where the input
consists of bounded degree graphs. These hardness results have found application towards
establishing limits on the approximability of the Moderate-Mean Cycle problem.

*Supported an NSF Graduate Fellowship, NSF Grant CCR-9010517, and grants from Mitsubishi Corpo-
ration and OTL.

fSupported by an Alfred P. Sloan Research Fellowship, an IBM Faculty Development Award, grants from
Mitsubishi and OTL, NSF Grant CCR-9010517, and NSF Young Investigator Award CCR-9357849, with
matching funds from IBM, Schlumberger Foundation, Shell Foundation, and Xerox Corporation.

iSupported by a grant from Toshiba Corporation.

1. Introduction

The area of approximation algorithms for NP-hard optimization problems has received a lot
of attention over the past two decades [16, 22]. Although some notable positive results have
been obtained, such as the fully polynomial approximation scheme for bin packing [14, 19],
it has now become apparent that even the approximate solution of a large class of NP-hard
optimization problems remains outside the bounds of feasibility. For example, a sequence
of results [13, 8, 2, 1] established the intractability of approximating the largest clique in
a graph, culminating in the result of Arora, Lund, Motwani, Sudan and Szegedy [1] that
for some constant § > 0, there does not exist any polynomial-time algorithm that will
approximate the maximum clique within a ratio of n? unless P = NP. Arora et al. [1] also
established that unless P = NP, there do not exist polynomial-time approximation schemes
(PTAS) for optimization problems that are MAX SNP-hard. The class SNP is a strict
version of NP and was defined by Papadimitriou and Yannakakis [23] based on a syntactic
characterization of NP due to Fagin [12]. They also provided a notion of approximation-
preserving reductions for problems in this class and, under this reduction, identified a large
number of approximation problems that are MAX SNP-hard, and are therefore unlikely
to have any PTAS. These problems include such widely studied problems as MAX 3SAT,
vertex cover, metric TSP and Steiner trees. Recently, Lund and Yannakakis [20] settled
another important open problem by showing that the chromatic number of a graph is as
hard to approximate as the clique number.

In this context, a major outstanding open problem is that of determining the approxima-
bility of the longest path in an unweighted undirected graph. The optimization version
of this problem is NP-hard since it includes the Hamiltonian path problem as a special
case. Therefore, it is natural to look for polynomial-time algorithms with a small perfor-
mance ratio, where the performance ratio is defined as the ratio of the longest path in the
input graph to the length of the path produced by the algorithm. Our results attempt to
pin down the best possible performance ratio achievable by polynomial-time approximation
algorithms for longest paths. We provide some approximation algorithms for this problem,
but unfortunately the performance ratio of these algorithms is as weak as in the case of
the best-known approximation algorithms for clique [7] and chromatic number [4, 18]. We
explain the difficulty of obtaining better performance guarantees for longest path approxi-
mations by providing hardness results. These results come fairly close to establishing our
conjecture that the situation for longest paths is essentially as bad as for the above two
problems, i.e. if there exists an approximation algorithm that has a performance ratio of
n?, for some constant § > 0, then P = NP.

In Section 2, we present several polynomial-time approximation algorithms for longest paths.
A simple greedy algorithm is presented and it is shown that it finds long paths in dense
graphs. At this point, this is the best algorithm known for arbitrary dense graphs. In
the case of cliques and chromatic number, the extreme hardness of the problem led to the
study of special inputs where the optimum was guaranteed to take on an extreme value;
for example, the approximate coloring of 3-colorable graphs was studied by Blum [4] and
Karger, Motwani and Sudan [18], and the approximation of cliques in graphs containing a
linear-sized clique is studied by Boppana and Halldorsson [7]. We therefore formulate the

problem of finding long paths in Hamiltonian graphs. For the purposes of this paper, there
is no essential difference between the cases where the input graph has Hamiltonian paths
or Hamiltonian cycles, and we concentrate on the latter case. Our second algorithm finds
paths of a logarithmic length in Hamiltonian graphs. In fact, we show that this algorithm
will find such paths in a much larger class of graphs, viz. weakly Hamiltonian graphs, or
even 1-tough graphs. Some variants of this algorithm are also analyzed. This result is the
best possible in the sense that we can demonstrate the existence of such graphs where the
longest path is of logarithmic length.

The hard case appears to be that of finding better approximations for sparse Hamiltonian
graphs. In Section 3, we consider sparse random Hamiltonian graphs and show that it is
possible to find paths of length (y/n/logn). Surprisingly, this algorithm works in any
graph obtained by adding any number of random edges to a Hamiltonian cycle. This
result partially answers an open question posed by Broder, Frieze and Shamir [6]. They
had considered the problem of finding Hamiltonian cycles in graphs obtained by adding a
relatively large number of random edges to a Hamiltonian cycle.

In Section 4, we provide hardness results for the problem of approximating the longest path.
We first consider the problem of finding long paths in Hamiltonian graphs and show that for
any € < 1, it is impossible to find paths of length n — n® in an n-vertex Hamiltonian graph
unless P = NP. The problem of finding long paths is easier for Hamiltonian graphs than for
arbitrary inputs. Therefore, it is not surprising that we can prove much stronger negative
results in general input graphs. We first prove a self-improvability result for the longest
path problem. Combining this with the recent results on the intractability of approximation
problems that are MAX SNP-hard, we obtain that no polynomial-time algorithm can
find a constant factor approximation for the longest path problem unless P = NP. We
conjecture that the result can be strengthened to say that for some constant § > 0, finding
an approximation of ratio n® is also NP-hard. As evidence towards this conjecture, we
show that if any polynomial-time algorithm can approximate the longest path to a ratio of
20(103;1_6”), for any € > 0, then NP has a quasi-polynomial deterministic time simulation.
The hardness results apply even to the special case where the input consists of bounded
degree graphs.

These hardness results have found application to the Moderate-Mean Cycle problem. Sub-
ramanian [25] established that the Moderate-Mean Cycle problem is NP-complete by re-
ducing the Hamiltonian cycle problem to it. The reduction also establishes that finding an
approximate solution to Moderate-Mean Cycle is at least as hard as finding good approxi-
mations to Hamiltonian paths, and so our hardness results carry over to the new problem
too.

Before describing our results in greater detail we review some related work. Monien [21]
presented an O(k!nm) time algorithm that finds paths of length &k in a Hamiltonian graph
with n vertices and m edges. Our results are an improvement on this since in polynomial-
time Monien’s algorithm can only find paths of length O(logn/loglogn). Furer and
Raghavachari [15] present approximation algorithms for the minimum-degree spanning tree
problem that delivered absolute performance guarantees (within an additive factor of 1).
From this we can derive a polynomial-time algorithm for finding logarithmic length paths

in Hamiltonian graphs, matching our result for that case. However, note that our result
even in that case is more general in that it applies to a wider class of graphs, viz. the weakly
Hamiltonian graphs. No hardness results for longest paths were known earlier, although a
seemingly related problem has been studied by Berman and Schnitger [8]. They show that
the hardness conjecture we stated is true for the problem of approximating the longest in-
duced path in an undirected graph. Note that the induced path problem is strictly harder
and their hardness result does not carry over to the problem under consideration here.
Bellare [3] considers a generalization of the longest paths problem called the longest color-
respecting path problem. This involves graphs with 2-colored edges and labeled vertices,
and a feasible path must have the property that at each vertex its label specifies whether
the incident edges of the path are of the same color or not. He obtains essentially the same
hardness results through different techniques. Our results are strictly stronger since there
are no color constraints on the paths.

1.1. Weak Hamiltonicity

Chvatal [9, 10, 11] considered several necessary conditions for Hamiltonicity obtained via
an integer linear programming formulation of the problem. The graphs satisfying these
conditions are known as weakly Hamiltonian graphs. We omit the formal definition and
instead provide three properties of weakly Hamiltonian graphs — these are referred to as
the “1-2-3” properties. Given a graph G(V, E), and a set U C V', we will denote the vertex
induced subgraph of G by G[U].

Definition 1: [1-Toughness| A graph G = (V,E) is said to be 1-tough if for any set
U C V, the induced subgraph G|V — U] has at most |U| connected components.

In other words, by removing any k vertices from the graph, the graph cannot be decomposed
into more than k£ connected components.

Definition 2: [2-Factors| A graph G = (V, E) is said to have a 2-factor if there exists
E' C E such that in the graph G = (V, E'), each vertex v € V' has degree 2.

That is, a 2-factor is a subgraph of G made up of cycles that cover all the vertices.

Definition 3: [3-Cyclability] A graph G = (V, E) is said to be 3-cyclable if for every
three vertices u,v,w € V, there exists a cycle in the graph G containing u, v and w.

Theorem 1: [Chvatal] Any weakly Hamiltonian graph G = (V, E) is 1-tough, has a 2-
factor and is 3-cyclable

It is not very hard to see that every Hamiltonian graph G satisfies these three properties.
Removing any k vertices from a cycle decomposes it into a collection of k£ paths; hence,
a Hamiltonian graph can be decomposed into at most k& connected components upon the
removal of k vertices, implying 1-toughness. A Hamiltonian cycle is a 2-factor of the graph
G. Finally, 3-cyclability follows from the fact that every set of three vertices lies on the
Hamiltonian cycle.

Theorem 2: Every Hamiltonian graph is weakly Hamiltonian.

2. Algorithms for Finding Long Paths

We now give algorithms for finding long paths in 1-tough graphs. Unless otherwise specified,
for any graph G(V, £) we will assume that |V| = n and |E| = m. We will measure the
length of a path in terms of the number of vertices in it. All logarithms are to base 2. First
we describe a simple algorithm that finds long paths in dense graphs. Then, we show how
to find a path of length O(logn) in any one tough graph.

Theorem 3: Any graph with m edges and n vertices contains a path of length d = m/n.

Proof: Consider first a graph with minimum degree d. Clearly, any maximal path in this
graph has length at least d. Thus, a greedy construction will find a path of this length.
Now, consider a graph with n vertices and m edges, and let d = m/n. Repeatedly choose
a vertex of degree smaller than d, and remove this vertex and all incident edges from the
graph. This process terminates when the residual graph has minimum degree at least d.
Clearly, the residual graph cannot be empty since at most (d — 1)n < m edges can be
removed from the graph in the process of deleting small degree vertices. But this graph has
minimum degree d, so a greedy construction works.

O

Theorem 4: Let G be a I-tough graph with n vertices. Then the depth-first search tree of
G has depth Q(logn).

Proof: Take any depth-first search tree, and consider the root-leaf path defined as follows:
at each step, move into the largest subtree. Suppose this path has length ! and that the
vertices on this path have degrees dy, ..., d; in the depth-first tree. Then since a depth-first
tree has no cross edges, removing the [vertices on this path necessarily disconnects each
of the children of these [vertices from all the others, yielding exactly > (d; — 1) connected
components. By the 1-toughness property, we know that > (d; — 1) <1, i.e. Y d; <2[. On
the other hand, since we take the largest branch at each step, it is necessarily the case that
the subtree rooted at d; has size at least n(d—lld—l2 e d%l) Thus, IId; > n. For any fixed [,
the product IId; is maximized (under the constraint) d; < 2[) by making all the d; equal,
namely d; = 2. That is, the root-leaf path length / is minimum (and is ©(logn)) when each
of the d; is 2. Therefore, [> logn.

O

Corollary 1: In a Hamiltonian graph on m edges, a path of length k can be found in
O(m + k?!) time.

Proof: By the same arguments as the previous theorem, at any level of the depth-first
tree, the number of nodes at that level is at most equal to the number of nodes in all
the previous levels (thus, the tree that is found is very close to being a binary tree in an
“average” sense). If the depth of the tree exceeds k, then we are done. Otherwise, find
some subtree containing between k and k? vertices. Such a subtree must exist since, by
arguments similar to those above, every tree node has at most &k children). The path from
the root to this subtree, which contains at most k vertices, cuts the subtree off from the rest
of the graph, so the Hamiltonian path can enter and then exit the subtree at most &k times.
It follows that this subtree contains a path of length %, which can be found by exhaustive
search.

2.1. Tough Graphs with Short Paths

We now prove an upper bound of O(logn) on the longest path in 1-tough graphs. In fact,
we prove that there exist graphs satisfying the 1-2-3 properties that have a longest path
of length O(logn). We define a graph Gy (V, Ej) for each non-negative integer k(refer to
Fig. 1). The graph consists of 2¥ — 1 normal vertices and 2 super vertices. The normal
vertices are arranged in a complete binary tree. The tree is augmented by an edge between
each pair of siblings. We will distinguish between the tree edges and the sibling edges. The
two super vertices are called s; and s9, and they are adjacent to every other vertex in the
graph, including each other. The size of Vi is n = 2k + 1.

Figure 1: A weakly Hamiltonian graph with no long paths.

The following lemmas show that G has the 1-2-3 properties.
Lemma 1: The graph Gy is 1-tough.

Proof: Suppose that the graph G did not contain the super vertices. We then show that
the removal of any set W of normal vertices yields an induced subgraph Gy[V}, — W] with
at most |W|+1 connected components. This is proved by induction on |W|. It is necessary
to prove a stronger inductive claim, which is as follows: by removing the set W of vertices,
the graph is decomposed into at most |W |+ 1 components and each component is a binary
tree (not necessarily complete) with additional edges between each siblings.

The claim is trivially true in the case |IW| = 0. Let us assume that the claim is true for
|W| = r. Now suppose that we delete the set W U {w}, where w ¢ W is a normal vertex.
There are two cases, depending on whether the vertex w is a leaf or a non-leaf vertex of the
component of Gi[Vy — W] containing it. If it is a leaf, then the number of components is
unchanged by the additional deletion. But if it is a not a leaf vertex, then it is easy to see

that the component in which w lies is split into two components. Also, it remains true that
there is an edge between each pair of siblings. This establishes the inductive claim.

Now counsider the super vertices also. Suppose we delete a set W C Vj from Gj. Clearly,
the residual graph remains connected if W does not contain both s; and ss. Let us restrict
our attention to the case where s; € W and s, € W, and let W' = W — {s1,s2}. By the
preceding claim, the removal of W from G}, can yield at most |W'| 4+ 1 components. This
implies that the number of components is |W| — 1, establishing the 1-toughness of Gy.

O

Lemma 2: The graph Gy has a 2-factor.

Proof: First notice that the set of normal vertices in any two successive levels of the tree
are easily decomposable into a disjoint collection of triangles.

Consider first the case where the number of levels (i.e. k) is even. We can pair up the levels
of the graph and obtain a set of disjoint triangles involving all the vertices except the two
supervertices. The two super vertices can now be combined with any one triangle to yield a
K3, i.e. the complete graph on 5 vertices. Since K5 contains a 5-cycle, we obtain a collection
of disjoint cycles that includes each vertex. This is a 2-factor. When the number of levels
is odd, the two super vertices form a triangle with the root and the remaining levels are
partitioned into triangles as before, yielding a 2-factor.

O

Lemma 3: The graph Gy, is 3-cyclable.

Proof: Let vy,v,v3 be any three vertices. Assume for now that none of the three is a
super vertex. Clearly, there is a path between v; and vy using only the tree edges. We can
append the two super vertices to the two end-points of this path, and use the edge from s;
to vs and from vs to so to complete a cycle containing all three vertices. Suppose now that
one of the three vertices, without loss of generality vs, is a super vertex. Then there exists
a path from vy to ve not including vs. Since vs is a super vertex, it is adjacent to both vy
and v, and those edges complete the cycle. If two of the vertices are super vertices, then
we obtain a triangle containing all three vertices.

O

The following lemma helps establish that the longest path of Gy, is of length O(logn),

Lemma 4: The longest path in the graph Gy not containing the super vertices is of length
©(logn)

Proof: Consider the graph obtained by deleting the two super vertices; it is a complete
binary tree with all the sibling edges thrown in. For convenience, we will measure the
length of a path in terms of the number of edges in it. We prove the lemma by induction
on the number of levels in the binary tree. The inductive hypothesis is that the length of
the longest path is at most 4k and the length of the longest path ending at the root is at
most 2k. The base case, for k = 1, is trivial.

Now consider the graph with k levels, and note that k& = logn. The longest path in this
graph consists of the longest path in the left subtree of the root ending at its root, a
connecting path of length two through the root, and the longest path in the right subtree

of the root ending at its root. Hence, the length of the longest path in a graph of k levels
can be at most two more than the sum of the lengths of the longest path in left and right
subtrees (both with k£ — 1 levels) ending at their roots. By the inductive hypothesis, this
means the longest path is no more than 4k. Also, the length of the longest path ending at
the root is at most 2 greater than the length of the longest path ending at the root in either
the left or the right subtree. Again, by the inductive hypothesis, the longest path ending
at the root is at most 2k.

It is not hard to see that these upper bounds are tight within small additive constants.
O

The length of the longest path in G, can be greater than the length of the longest path not
including the super vertices by at most a factor of 3. This is because any path containing
the two super vertices consists of three paths not containing the super vertices, stitched
together by the super vertices. We have established a bound on the longest path in the
entire graph Gj.

Theorem 5: The graph Gy, satisfies the 1-2-3 properties, and the longest path in this graph
is of length ©(logn).

3. Finding Long Paths in Sparse Random Graphs

We now turn to the issue of random Hamiltonian graphs. It should be noted that the
amplification described later in the paper becomes ineffectual when we consider finding
paths of length n¢. It is therefore an interesting coincidence that on random Hamiltonian
graphs, a path of length Q(y/n/logn) can in fact be found. The following analysis applies
to numerous distributions on graphs—in fact, to any random graph obtained by adding any
number of edges to a Hamiltonian cycle, such that each non-Hamiltonian edge has an equal
probability of occurring. For example, the random edges could form a Gy, graph, or a
random regular graph [5]. For the case of random Hamiltonian graphs with average degree
much larger than 3, Broder et al [6] give an algorithm that actually finds the Hamiltonian
cycle in polynomial-time. However, they leave open the question of what can be done for
sparse graphs, e.g. graphs of degree 3.

Theorem 6: Let G be a random 3-regular Hamiltonian graph on m wvertices. There is a
polynomial-time algorithm that finds a path of length Q(\/n/logn) in G, with high probability
of success.

A random 3-regular Hamiltonian graph can be viewed as a Hamiltonian cycle with a random
perfect matching added. We will therefore refer to the edges on the Hamiltonian path as
Hamiltonian edges, and will refer to the other edges as matching edges. We will call the
neighbor of a vertex along a matching edge its match. The key property of the random
edges used in this analysis is that for any vertex, its match is chosen uniformly at random
from among the other vertices. Finally, let the Hamiltonian distance between two vertices
be the length of the shortest path between them made up entirely of Hamiltonian edges.

The algorithm proceeds as a series of trials. In each trial, we start at a randomly selected
vertex of the graph and perform a random walk, with the modification that the last edge

traversed in not considered as a possibility for the next step, so that we do not immediately
back up along the walk. Mark each vertex as it is visited. The trial ends when we visit
a marked vertex, and succeeds if we visit k = Q(y/n/logn) vertices before encountering a
vertex that is already marked (during this or any previous trial). We claim that with high
probability, we will find a path of length k& within O(logn) trials.

Consider the ¢ trial, t = O(logn). At the end of this trial at most k¢ vertices can have
been marked. Analyze the walk during this trial as a series of epochs. An epoch ends when
the walk traverses a matching edge. Since at each step of the walk a matching edge is
traversed with probability 1/2, epochs have length O(logn) with high probability. Call a
vertex safe if its Hamiltonian distance from any marked vertex exceeds 2(logn). Call an
epoch safe if it begins at a safe vertex. It follows that with high probability no marked
vertex is visited during a safe epoch. Thus, the path continues to extend safely so long as
safe epochs occur.

Consider the end of a safe epoch. This happens when a matching edge is traversed. Since
the endpoints of a matching edge are random, this means that the starting vertex of the
next epoch is chosen uniformly at random from among the unvisited vertices. Since at
most kt vertices are marked, there are O(ktlogn) unsafe vertices; thus, the next epoch
is unsafe with probability O(ktlogn/n) = O(logn/y/n). It follows that with constant
probability 2(y/n/logn) safe epochs occur during the trial. Clearly the length of the path
that is found is equal to at least the number of epochs, so we get the desired path length.
Furthermore, since a trial ends when we visit an unsafe vertex, we can treat the trials as
independent. Thus, with high probability one of the O(logn) trials succeeds.

In fact, the algorithm itself can be made deterministic. All that is required is that an epoch
(in the sense described above) ends in O(logn) steps. To ensure this we use a form of
“universal non-traversal sequence.” Consider assigning labels to the edges of the graph in
the standard traversal sequence manner. It is simple to interpret a sequence over {0,1} so
that when one arrives at a given vertex via some edge, the next symbol in the sequence
determines which of the other two edges should be traversed to leave that vertex. We can
now modify traversal sequences in the following way to produce walks that do not “back
up.” Given a traversal sequence drawn from {1,2}*, interpret it as follows: at each step,
examine the label on the edge the walk arrived from. If ¢ is the traversal symbol and j the
label of the edge just traversed, then next traverse the edge labeled (i + j) mod 3.

Now consider the particular modified traversal sequence that causes a traversal of the Hamil-
tonian path. This is a sequence of length n, and it therefore follows that some sequence of
length logn + 1 does not occur as a substring of the traversal sequence (since there are 2n
possible sequences of which only n occur in the Hamiltonian traversal). If we try all 2n such
sequences, we will eventually stumble upon one satisfying the property. If we construct our
walk using this sequence (repeated over and over again) then it is clear that we will traverse
a matching edge at least once every 2logn steps of our walk, and then the analysis given
above is applicable.

The random walk algorithm can also be generalized to any other random graph distribution,
so long as the endpoint of a randomly chosen non-Hamiltonian edge out of v is uniformly
distributed among the vertices of G. The argument goes through unchanged, except in the

case that some of the vertices of G have degree two (i.e, only Hamiltonian edges. If such
vertices are forbidden in the distribution, then we have the desired result immediately.

The degree two situation can be rectified if for any input graph we first “shortcut” any
degree two vertex v. replacing (u,v) and (v,w) by (u,w). Any path we construct in the
shortcut graph yields a longer path in the original graph. If the original graph had the
uniform endpoint distribution property, then so does the new graph. If the number of
vertices in the shortcut graph is less than n?/3, then there must have been a path of degree
two vertices of length n!/3 in the original graph. If not, then we find a path of length at
least n'/3 in the shortcut graph, yielding a path of at least this length in the original graph.

4. Hardness Results

It is important to keep in mind that it may be possible to achieve better performance
guarantees on graphs that are known to be Hamiltonian than on arbitrary input graphs.
This is analogous to the chromatic number problem where significant improvements can be
obtained if the input graph is known to be 3-colorable [4]. We first consider the “easier”
problem and prove that, for any constant € < 1, no polynomial-time algorithm can find a
path of length n — n® in an n-vertex Hamiltonian graph, unless P = NP. Next we demon-
strate a self improvability result for approximating longest paths. The self-improvability
result is used to show that finding constant factor approximations to the longest path prob-
lem is NP-hard. We also provide evidence that it is unlikely to be the case that there exists
any o(n%) ratio approximation algorithm for this problem. Our results extend to showing
the hardness of the longest path problem even in the case of bounded degree graphs.

4.1. Hardness Result for Hamiltonian Graphs

The following theorem easily generalizes to the approximation of longest paths in arbitrary
(non-Hamiltonian) graphs. But the subsequent results are much stronger for that problem.

Theorem T7: For any e < 1, the problem of finding a path of length n—n in a Hamiltonian
graph is NP-complete.

We present only a sketch of the proof. Let G = (V, E) be a Hamiltonian graph on n vertices,
and define K = (n + 2)9/(1-9. We define an auziliary graph G' = (V', E'). Informally, G’
consists of K copies of G “glued” together in a cycle by K “special” vertices. The K
copies of (G are arranged in a cycle and any two successive copies of G are separated by a
special vertex that is connected to all the vertices of both the copies. In more formal terms,
VI = (VU{vs}) x{L1,2,..., K}, where v, is a special vertex. Any two vertices (v, k;) and
(v9,k2) in V' share an edge in E’ if and only if one of the following conditions hold.

e k1 = ko and (1)1,’1)2) € FE.
e vy =vs and ky = (k1 + 1) (mod K).

e v =vs and ko = (k; — 1) (mod K).

Let A be an algorithm that is guaranteed to find a path of length at least n — n® in a
Hamiltonian graph on n vertices. Consider what happens when we run algorithm A on G'.
We claim that A finds a Hamiltonian path in at least one of the copies of G in G'. Since
there are only a polynomial number of copies of G in G’, this gives us a polynomial-time
algorithm to find a Hamiltonian path in G.

To see this claim, we first observe that any simple path in G’ is a disjoint collection of
simple paths in copies of G “stitched” together by special vertices. In this collection, there
can be at most one simple path per copy of G (except the first or last visited copies) since
there is exactly one special vertex to enter a copy of G and one special vertex to leave the
copy, and these vertices cannot be visited twice in a simple path. There can be at most two
simple non-disjoint paths from either the first or the last visited copies of G (but not both).
For instance, the path P may start within the first copy of G and use a special vertex to
exit and then “turn back” into a second disjoint path within the same copy before moving
out through the second special vertex into the second copy of G and so on.

Now, since |V'| = (n + 1)K, by running A on G’ we obtain a path P of length [, where
I>n+1)K—(n+1)K)>n+1)K —(n+2)0+/0=9 41 = (n+ 1)K — K + 1.

In other words, P includes all but at most K — 2 vertices of G’. Since there are K copies
of G, we can conclude that P includes all the vertices of at least two copies of G. All the
vertices of at least one of these copies of G must occur contiguously within P. Hence the
path P includes a Hamiltonian path from that copy of G.

4.2. Self-Improvability and Hardness Results for Longest Paths

We now show that if the longest path can be approximated to some constant k in polynomial-
time, then we can approximate it to any constant k', also in polynomial-time. To this end,
we define the following novel definition of a graph product.

Definition 4: For a graph G(V,E), its edge square graph G*(V?,E?) is obtained as
follows. Replace each edge e = (u,v) in G by a copy of G, call it Ge, and connect both u
and v to each vertex in G,. The vertices u and v are referred to as the contact vertices of

Ge.

If the graph G has n vertices, then G? will have at most n? vertices. Observe that the
edge square of a Hamiltonian graph need not be Hamiltonian. It is precisely for this reason
that the subsequent results apply only to the more general problem of approximating the
longest path in arbitrary graphs, as opposed to the possible easier problem where the input
is guaranteed to be Hamiltonian. The following lemma relates the length of the longest
paths in G and G2.

Lemma 5: Let G = (V, E) be any graph. If the longest simple path in G has length | then
the longest simple path in G? has length at least 1?. Moreover, given a path of length m in
G2, we can obtain in polynomial-time a path of length /m — 1 in G.

Proof: First, we exhibit a path P? of length [? in G?. Suppose that a longest path in G is
the path P with end-points # and y. The path P? traverses the edge copies G, in exactly

10

the same order as the edges in P. Moreover, in each G, being traversed, it traverses exactly
the path corresponding to P. It is easy to see that the resulting path is of length (I + 2).

Consider any path @ of length m in G2. We show that it is possible to derive a path of
length at least /m — 1 in G. The path @Q can enter or leave a given copy of G' in G? only
via its contact vertices. Therefore, all the vertices of any copy of G occur contiguously in
Q, except possibly for the first and the last copy visited by Q. In other words, the path @
starts off in some copy G, and then visits a sequence of copies that are all distinct, except
that it could finish off back inside the copy G.. The sequence of vertices visited inside any
particular edge copy forms a simple path in G, except that in G, there could be two disjoint
simple paths. We claim that one of the following holds.

1. One of the simple paths inside the edge copies visited by @ is of length at least v/m — 1.

2. The number r of distinct copies of G traversed by @ is at least v/m — 1.

The proof is by contradiction. Let r be the number of distinct copies of G visited, and let s
be the length of the longest path traversed in any edge copy. Observe that the total number
of copies visited could be r + 1, since the first and the last copy visited may be identical.
In terms of r and s, the length of @ must be at most (r + 1)s + r. Assume both the above
conditions are violated, i.e. r < /m — 1 and s < /m — 1. Then, we obtain that

m < rs++s+r

< (m—2m+ 1)+ (Vi - 1) + (Vm - 1)

= m-—1

This gives a contradiction.

Given the path @), it is fairly easy to construct a path of length s in GG, and also a path of
length » — 1. This gives the desired result.
O

We apply this lemma to obtain the following theorem.

Theorem 8: If the longest path problem has a polynomial-time algorithm that achieves a
constant factor approzimation, then it has a PTAS.

Proof: Let Ay be a polynomial-time approximation algorithm with a performance ratio of
k > 1, i.e. it obtains a path of length [/k in a graph with longest path length [. Let p be

the smallest integer exceeding
2log k

°8 log(1 +¢€)
Given an input graph G with longest path length [, suppose we run the algorithm Ay on
the graph G obtained by squaring G repeatedly p times; this yields a path of length at
least [?" /k in G?". Using Lemma 5, a simple calculation shows that we obtain in G' a path

of length at least
P
12\ ? . L
K P=VTre P71+

provided [> 2p(1 +¢€)/e. Observe that for small I, we can compute the optimal solution by
brute-force in polynomial time. Moreover, the running time of the resulting algorithm is
polynomial for fixed €, since the graph G?* has at most n3 vertices. This gives the desired
PTAS.

O

We now show the non-existence of a PTAS for longest paths. The proof is based on the
recent results of Arora et al. [1].

Theorem 9: There is no PTAS for the longest path problem, unless P = NP.

Proof: We first claim that it suffices to demonstrate the hardness result when the longest
path problem is restricted to instances containing a Hamiltonian cycle. Clearly, if it is
NP-hard to find a constant factor approximation to the longest path in graphs with a
Hamiltonian cycle, then this is also the case for the more general problem of approximating
the longest path in arbitrary graphs.

Let us denote by TSP(1,2) the problem of finding an optimal traveling salesman tour in a
complete graph where all edge lengths are either 1 or 2. The approximation version of this
problem has been shown to be MAX SNP-hard by Papadimitriou and Yannakakis [24].
Their reduction is from a version of the MAX 3SAT problem which is also MAX SNP-
complete. We claim that the following statement can be obtained as a consequence of their
result. Suppose that for every 6 > 0 there is a polynomial-time algorithm that on any
instance of TSP(1,2) with optimum value n returns a tour of cost at most (1 4 d)n, then
MAX 3SAT has a PTAS. Observe that having an optimum solution of size n corresponds
to having a Hamiltonian cycle using only the edges of length 1.

Suppose now that we have a PTAS for the longest path problem in Hamiltonian graphs. In
particular, this implies that we can find paths of length at least (1 —d)n, for any fixed 6 > 0,
in graphs that possess a Hamiltonian path. Clearly, this works equally well with graphs
that possess a Hamiltonian cycle. Given any instance of TSP(1,2) with optimum value n,
the edges of weight 1 form a Hamiltonian graph. Using the PTAS for longest paths, we can
construct a path of length (1 — d)n using only the edges of weight 1. This can be converted
into a tour of weight at most (1 4+ d)n in the instance of TSP(1,2) by extending the path
with the edges of length 2. Thus, the PTAS for the longest path problem can be used to
obtain a PTAS for such instances of TSP(1,2).

But the results of Arora et al. [1] show that if any MAX SNP-hard problem has a PTAS,
then P = NP. By the reduction of Papadimitriou and Yannakakis, we may conclude that
MAX 3SAT has a PTAS, and therefore P = NP.

O

The self-improvability result implies the NP-hardness of constant factor approximations to
longest paths. Unfortunately, this result does not hold for the case of Hamiltonian graphs
since the edge product of a graph with itself does not preserve Hamiltonicity. The next
corollary follows by combining Theorems 8 and 9.

Corollary 2: There does not exist a constant factor approzimation algorithm for the
longest path problem, unless P = NP.

12

Since finding constant factor approximations to the longest path problem is hard, the next
step would be to try to find weaker approximations. The following theorem provides evi-
dence that finding such weaker approximations may also be very difficult. The proof uses
the edge product to amplify the gap in the longest path lengths.

Theorem 10: If there is a poly-time algorithm for the longest path problem with a perfor-
mance ratio of 2°0V187) then NP C DTIME (20(1°g5”)),

Proof: Suppose that a polynomial-time algorithm A can approximate the longest path to
within the specified ratio. Let G = (V, E) be any instance of the longest path problem
with n vertices and longest path length [. Choose p to be the smallest integer such that
N =n3" = 296’ Notice that 37 = log*n, and that 27 > log?®n.

We use the edge squaring operation defined earlier to produce the graph G2?. We apply this
operation repeatedly p times, to obtain the graph G?" with a longest path length of at least

12", The algorithm A finds a path of length at least I2”/f(N), where f(N) = 20(VIogN),
Using a repeated application of Lemma 5, we can then obtain a path of length at least

ﬁ — p in G, such that

o) = sny o2 CF) L0 (5) o

Since p = O(loglogn), we obtain a constant factor approximation for [= (logn/loglogn);
otherwise, Monien’s algorithm can be used to find the exact solution. This implies that
the longest path in G can be approximated within a constant factor in time poly(N) =
20(0g"/n) " But we already know that finding a constant factor approximation to the longest
path is NP-complete. Thus, we obtain the desired simulation of NP.

O

The previous theorem can be strengthened if one can define an edge squaring operation on
graphs that only squares the number of vertices, instead of cubing it as currently defined.
We achieve the same effect by counsidering a restricted class of graphs, namely graphs of
bounded degree. Since the number of edges in such graphs is linear, the number of vertices
in the edge squared graph is quadratic instead of cubic. All the above hardness results can
also be extended to the case where the input graphs are of bounded degree.

We briefly explain the reason here. The TSP(1,2) reduction of Papadimitriou and Yan-
nakakis also applies to the case where the edges of length 1 induce a bounded degree graph.
Recall from Lemma, 5 that in the graph G, the only vertices that had their degrees increased
were the contact vertices v and v, In the bounded degree case, we need to modify the con-
struction of the graph G? so that the maximum degree of the vertices remains the same
during the squaring operation, while maintaining the longest-path properties. To achieve
this, we consider the problem of approximating the longest path between a specified pair of
vertices, say s and t. A hardness result for this problem can be easily extended to the more
general longest path problem. Now, instead of using a “fan-out” from vertices u and v to
G (u,0), We connect vertices u and v only to vertices s and ¢ of G(,), respectively. It can
be shown that regardless of the number of squaring operations, the maximum degree in the
graph increases by at most 1. The remaining argument is identical to the case of general
graphs. We obtain the following theorem by using the new edge squaring operation.

13

Theorem 11: For any e > 0, if there is a polynomial-time algorithm for approximating the
") then NP C DTIME (ZO(logl/E”)). The theorem holds
even for the special case of bounded degree graphs.

€

longest path to a ratio of 90(log*~

Proof: Suppose that a polynomial-time algorithm A can approximate the longest path to
within the specified ratio. Let G = (V, F) be any instance of the longest path problem with
n vertices and longest path length /. Choose p to be the smallest integer such that

N = n2p — 210g1/5n

We use the squaring operation defined in Lemma 5 that produces the graph G?. We apply
this operation repeatedly p times, to obtain the graph G?* with a longest path length of
at least [%°. The algorithm A finds a path of length at least 1% /f(N), where f(N) =
20(log! ~*N) Using a repeated application of Lemma 5, we can then obtain a path of length
at least ﬁ — p in G, such that

gln) = [NV

o logl—¢n
2 2

Since p = O(log logn), we obtain a constant factor approximation for [= Q(logn/loglogn);
otherwise, Monien’s algorithm can be used to find the exact solution. This implies that
the longest path in G can be approximated within a constant factor in time poly(N) =
920(0g"*n) " But we already know that finding a constant factor approximation to the longest
path is NP-complete. Thus, we obtain the desired simulation of NP.

a
The argument used in the proof of this theorem can be easily extended to show the following.

Theorem 12: For any 6 > 0, if there is a polynomial-time algorithm for approximating
logn
the longest path to a ratio of 20(loglogn) then NP C DTIME (20("6)).

Proof: Let G = (V,E) be any graph. Let [be the length of its longest path. We use
the squaring operation defined in Lemma 5 that produces the graph G?. We apply this

operation repeatedly k£ times, to obtain the graph G2 Tt is easy to verify that the longest
path of G2* is of length 12"

We proved that finding a constant factor approximation to the longest path is NP-complete.
In particular, consider the problem of finding a path of length {/ 21/9 in G. By Lemma 5, it
is equivalent to the problem of finding a path of length (I/2%/ ‘5)21C in the graph G?*. Choose
k such that n2* = 27°.

Let A be a polynomial-time algorithm that approximates longest path to a ratio of
glogn/loglogn - We claim that A finds a path of the required length (l/21/5)2k in the graph
G? corresponding to the above choice of k.

14

To see this, let
k 4
N=p¥ =2" ,

and let Gy be G, The longest path in Gy is of length 12" Hence, A finds a path of length
l2k/K, where,

K = 9logN/loglog N
on’ /(8 logn)
_ n2k/(610g n)
22k/6
Therefore, A finds a path of length
lzk /22k/5 _ (1/21/5)2'“

in Gn. Hence, by running A on Gy we can find a constant ratio approximation to Hamil-
tonian path in time polynomial in N. Since the constant ratio problem is NP-complete, it

follows that NP C DTIME (2”5).
O

Acknowledgements

We would like to express our gratitude to Sanjeev Arora, Yossi Azar, Sanjeev Khanna,
Madhu Sudan and Mihalis Yannakakis for valuable comments. We also thank Umesh Vazi-
rani for useful discussions during the early stages of this work.

References

[1] S. ArORrRA, C. LunD, R. MOTWANI, M. SUDAN AND M. SzZEGEDY, Proof Verifica-
tion and Hardness of Approximation Problems, Proc. 33rd Annual IEEE Symp. on
Foundations of Computer Science, 1992, pp. 14-23.

[2] S. ARORA AND S. SAFRA, Approzimating Clique is NP-complete, Proc. 33rd Annual
IEEE Symp. on Foundations of Computer Science, 1992, pp. 2-13.

[3] M. BELLARE, Interactive Proofs and Approzimation, IBM Research Report RC 17969,
1992.

[4] A. BLuwm, Some tools for approzimate 3-coloring, Proc. 31st IEEE Symp. on Founda-
tions of Computer Science, 1990, pp. 554-562.

[6] B. BoLLOBAS, Random Graphs. Academic Press, 1985.

[6] A. BRODER, A.M. FRIEZE AND E. SHAMIR, Finding hidden Hamiltonian cycles, Proc.
23rd ACM Symp. on Theory of Computing, 1991, pp. 182-189.

15

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

R. B. BorrANA AND M. M. HALLDORSSON, Approzimating mazimum independent
sets by excluding subgraphs, Proc. of the 2nd Scandanavian Workshop on Algorithmic
Theory, Lecture Notes in Computer Science, No. 447, Springer-Verlag, 1990, pp. 13-25.

P. BERMAN AND G. SCHNITGER, On the Complexity of Approximating the Independent
Set Problem, Information and Computation, 96 (1992), pp. 77-94.

V. CHVATAL, Tough graphs and Hamiltonian circuits, Discrete Mathematics, 5 (1973),
pp- 215-228.

V. CHVATAL, FEdmonds Polytopes and Weakly Hamiltonian Graphs, Mathematical
Programming, 5 (1973), pp. 29-40.

V. CHVATAL, Hamiltonian cycles, In The Traveling Salesman Problem: A Guided
Tour of Combinatorial Optimization (ed: E.L. Lawler et al.), 1985, pp. 402-430.

R. FAGIN, Generalized First-Order Spectra and Polynomial-time Recognizable Sets, In
Complexity of Computer Computations (ed: Richard Karp), AMS, 1974.

U. FEIGE, S. GOLDWASSER, L. LOVASz, S. SAFRA, AND M. SZEGEDY, Approzimating
clique is almost NP-complete, Proc. 32nd IEEE Symp. on Foundations of Computer
Science, 1991, pp. 2-12.

W. FERNANDEZ DE LA VEGA AND G.S. LUEKER, Bin Packing can be solved within
1 + € in Linear Time, Combinatorica, 1 (1981), pp. 349-355.

M. FURER AND B. RAGHAVACHARI, Approzimating the Minimum Degree Spanning
Tree to within One from the Optimal Degree, Proc. 3rd Annual ACM-SIAM Symp. on
Discrete Algorithms, 1992, pp. 317-324.

MiCHAEL R. GAREY AND DAVID S. JOHNSON, Computers and Intractability: A Guide
to the Theory of NP-Completeness, W. H. Freeman, 1979.

DaviD S. JOHNSON, The Tale of the Second Prover, THE NP-COMPLETENESS COL-
UMN: AN ONGOING GUIDE. Journal of Algorithms, 13 (1992), pp. 502-524.

DAvID R. KARGER, RAJEEV MOTWANI, AND MADHU SUDAN. Approximate graph
coloring by semidefinite programming. In Proceedings of the 35" Annual Symposium
on the Foundations of Computer Science, pages 2—-13. To appear in JACM.

N. KARMAKAR AND R.M. KARP, An Efficient Approximation Scheme For The One-
Dimensional Bin Packing Problem, Proc. 23rd IEEE Symp. on Foundations of Com-
puter Science, 1982, pp. 312-320.

C. LUND AND M. YANNAKAKIS, On the Hardness of Approzimating Minimization
Problems, Proc. 25th ACM Symp. on Theory of Computing, 1993 (to appear).

B. MoONIEN, How to find long paths efficiently, Annals of Discrete Mathematics, 25
(1984), pp. 239-254.

16

[22] R. MOTWANI, Lecture Notes on Approzimation Algorithms, Technical Report
No. STAN-CS-92-1435, Department of Computer Science, Stanford University, 1992.

[23] C. H. PAPADIMITRIOU AND M. YANNAKAKIS, Optimization, Approzimation, and
Complexity Classes, Proc. 20th ACM Symp. on Theory of Computing, 1988, pp. 229—
234.

[24] C. H. PAPADIMITRIOU AND M. YANNAKAKIS, The traveling salesman problem with
distances one and two, Mathematics of Operations Research, to appear.

[25] A. SUBRAMANIAN. Personal communication, 1994.

17

