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Abstract. The Semantic Web promises to open innumerable opportunities for 
automation and information retrieval by standardizing the protocols for meta-
data exchange. However, just as the success of the World Wide Web can be at-
tributed to the ease of use and ubiquity of Web browsers, we believe that the 
unfolding of the Semantic Web vision depends on users getting powerful but 
easy-to-use tools for managing their information. But unlike HTML, which can 
be easily edited in any text editor, RDF is more complicated to author and does 
not have an obvious presentation mechanism. Previous work has concentrated 
on the ideas of generic RDF graph visualization and RDF Schema-based form 
generation. In this paper, we present a comprehensive platform for constructing 
end user applications that create, manipulate, and visualize arbitrary RDF-
encoded information, adding another layer to the abstraction cake. We discuss a 
programming environment specifically designed for manipulating RDF and in-
troduce user interface concepts on top that allow the developer to quickly as-
semble applications that are based on RDF data models. Also, because user 
interface specifications and program logic are themselves describable in RDF, 
applications built upon our framework enjoy properties such as network upda-
tability, extensibility, and end user customizability—all desirable characteristics 
in the spirit of the Semantic Web. 

1 Introduction 

One reason underlying the initial success of the World Wide Web is the facility with 
which people can author Web pages and post them online. Web browsers proved to be 
an easy client-side platform on which to develop, due to the simplicity and forgiving 
nature of HTML syntax and the quick turnaround time of the edit-debug process of 
authoring HTML content. HTML was also sufficiently expressive as a layout lan-
guage that creative page designs could be realized. Early adopters found a whole new 
medium in which to express and share their thoughts, designs, and artwork. As 
HTML matured, programming languages such as JavaScript were called upon to 
provide support for implementing client-side dynamic content, making HTML even 
more expressive.   

Perhaps an even more important reason for the Web’s success is the fact that 
HTML-based content is extremely easy to navigate. Using the almost ubiquitous Web 
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browser, content located virtually anywhere in the world, regardless of the server on 
which it is hosted, can be browsed with point-and-click simplicity.  

In contrast, the Resource Description Framework (RDF) [2], the corresponding 
standard language for the Semantic Web [3], enjoys none of these properties. Compo-
sition of RDF is difficult in its XML form, as is evidenced by the creation of several 
alternate syntaxes for RDF [5]. Separate from the syntax is the conceptual difficulty 
of crystallizing knowledge in terms of ontologies, a more complicated process than 
copying and pasting pieces of hypertext. Furthermore, there are no standard ap-
proaches to visualizing RDF, and the generalized approaches of graph visualization 
and key/value pair editing employed by many projects do not provide the intuitive 
interface presented by the Web [17]. 

For the Semantic Web to develop organically, various kinds of users must be able 
to participate in its growth. User interfaces must be constructed to facilitate the crea-
tion and distribution of RDF-encoded information and to visualize extant RDF meta-
data on the Semantic Web in an intuitive fashion. Developers will need tools for pro-
ducing such user interfaces that give them easy access to RDF data and user interface 
components that are specially designed to handle the generality of RDF’s data model. 

An example of a user interface that gives normal humans the ability to interact with 
RDF is Haystack [1]. Haystack brings the Semantic Web to end users by leveraging 
key Semantic Web technologies that allow users to easily manage their documents, e-
mail messages, appointments, tasks, etc. The Haystack user interface is capable of 
visualizing a variety of different types of information; meanwhile, the interface gives 
few clues to the notion that the underlying data model is represented in RDF. Present-
ing information in a manner familiar and intuitive to users is key, as few users are 
familiar with ontological vocabulary and descriptive logic. Additionally, users are 
unlikely to accept a system that requires them to explicitly shuttle information be-
tween their current systems and an RDF representation. In other words, end user Se-
mantic Web applications need to be developed in such a way that users need not even 
be aware that the Semantic Web is involved!  

In addition to serving as an exemplar, Haystack has been built as an extensible 
platform that allows various kinds of functionality to be developed easily and inde-
pendently and incorporated seamlessly. In this paper we describe our observations on 
the kinds of tools that are needed by developers of RDF-based client software and 
demonstrate these key concepts of the Haystack system that can be reused by others. 

2 Approach 

The layers of Haystack’s infrastructure are designed to tackle specific aspects of the 
problem of creating end user Semantic Web applications. Enabling the data layer of 
the system is Adenine, a new domain-specific programming language we have devel-
oped for manipulating RDF data. Like RDF/XML and Notation3 [5], it can be used to 
record RDF, but unlike them, it can express programming constructs that manipulate 
such data. Adenine adopts a combination of Python, Notation3, and Scheme [9] syn-
tax in order to conveniently express frequently-used RDF operations. Furthermore, 
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because Adenine can be compiled into an RDF representation, Adenine code and 
RDF data can be freely intermixed and distributed together.  

The basis for the Haystack system is a layer that supports back-end components 
called services that are responsible for incorporating data from other systems and 
processing existing data in the background. Haystack’s RDF information store holds 
all RDF data known to the system and serves as a blackboard that coordinates the 
workings of different services, allowing one service to build on the results produced 
by other services. Services can be written in a variety of languages, including Java, 
Python, and Adenine. 

We turn our attention to the problems of presenting the RDF information that is 
managed by services to the user. As mentioned, one important part of the appeal of 
HTML is its expressiveness and ease in coding layout and presentation. Haystack 
supports an analogous, extensible user interface ontology called Ozone that exploits 
the power of RDF to describe on screen presentation. Using Ozone we can construct 
user interface elements called views that represent resources described in RDF on 
screen. 

Not only do we need to present RDF data to the user, but we also need to give us-
ers intuitive tools with which to interact with such data. We allow users to manipulate 
resources with direct manipulation techniques such as context menus and drag and 
drop. The actual commands that are exposed by such techniques are specified accord-
ing to an ontology for declaring operations on RDF data. Operations—akin to menu 
items and toolbar buttons in existing environments—can be defined to work on spe-
cific classes of RDF resources and are written in Adenine. 

A special type of operation is object and document creation, which is the explicit 
means through which the user adds data to the system. We define the notion of a 
constructor, an adaptation of templates, factories, and other construction paradigms 
used in object-oriented systems [4], to the Semantic Web. Constructors, like opera-
tions, are Adenine functions that set up the basic properties of an object, potentially 
also displaying a user interface to prompt the user for necessary information in the 
process. We will show how this abstraction can address the issue of how users create 
new resources and describe existing resources to the system. 

Our contributions can be reused in systems other than Haystack. Adenine, for in-
stance, can code information processing algorithms on Web servers that handle RDF 
data. Haystack’ s UI framework can be adapted to serve Dynamic HTML pages built 
up by nesting HTML representations of pieces of RDF data. However, it is through 
the Haystack system that we wish to illustrate how the combined use of all of these 
techniques can ease the development of an environment that brings the benefits of the 
Semantic Web directly to end users.  

3 Related Work 

We believe that the availability of tools for prototyping and building programs that 
both produce content for and render content from the Semantic Web can help to im-
prove the reception of Semantic Web technologies. The current generation of tools 
represents the first step in this direction in that they expose programming interfaces 
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for manipulating information. Toolkits for generating, processing, and visualizing 
graphs of RDF data are widely available on most platforms [14] [15]. Tools for edit-
ing data according to specific ontologies, such as Ont-O-Mat and Protégé, give 
knowledge engineers powerful tools for creating and manipulating data that corre-
sponds to specific schemata [10] [11]. Furthermore, server-side software packages 
have been developed to aggregate RDF information for presentation to users [13]. 

Building on these toolkits, Haystack exposes functionality to users for interacting 
with information at higher levels of abstraction. Rather than exposing information as a 
series of RDF statements, Haystack concentrates on the concepts that are important to 
users of that information: documents, messages, properties, annotations, etc. The 
Placeless Documents project at Xerox PARC [3] similarly developed an architecture 
for storing documents based on properties specified by the user and by the system. 
Both Haystack and Placeless Documents support arbitrary properties on objects and a 
collection mechanism for aggregating documents. It also specified in its schema ac-
cess control attributes and shared properties useful for collaboration. We have taken 
advantage of many ideas that arose from this research in developing the user interface 
paradigms exposed to users in Haystack for working with RDF-encoded information. 

4 Adenine Programming Language 

In any system built upon an RDF data model, a sizeable amount of code—both in 
services and in user interface components—is devoted to the creation and manipula-
tion of RDF-encoded metadata. We observed early on that the development of a lan-
guage that facilitated the types of operations we frequently perform with RDF would 
greatly increase our productivity. This lead to the creation of Adenine. An example 
snippet of Adenine code is given below. 

 
# Prefixes for simplifying input of URIs 
@prefix : <urn:test-namespace:> 
 
:ImportantMethod rdf:type rdfs:Class 
 
method :expandDerivedClasses ; 
rdf:type :ImportantMethod ; 
rdfs:comment "x rdf:type y, y rdfs:subClassOf z => x rdf:type z" 
 # Perform query 
 # First parameter is the query specification 
 # Second is a list of the variables to return, 

# in order 
 = data (query {  
  ?x rdf:type ?y 
  ?y rdfs:subClassOf ?z 
 } @(?x ?z)) 
  
 # Assert base class types 

 for x in data 
  # Here, x[0] refers to ?x  
  # and x[1] refers to ?z 
  add { x[0] rdf:type x[1] } 

  
The impetus for creating this language is twofold. The first key motivation is hav-

ing the language’s syntax support the data model. Introducing the RDF data model 
into a standard object-oriented language is fairly straightforward; after all, object-
oriented languages were designed specifically to be extensible in this fashion. Nor-
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mally, one creates a class library to support the required objects. However, more 
advanced manipulation paradigms specific to an object model begin to tax the syntax 
of the language. In languages such as C++, C#, and Python, operator overloading 
allows programmers to reuse built-in operators for manipulating objects, but one is 
restricted to the existing syntax of the language; one cannot easily construct new 
syntactic structures. In Java, operator overloading is not supported, and this results in 
verbose APIs being created for any object-oriented system.  

Arguably, this verbosity can be said to improve the readability of code. On the 
other hand, lack of syntactic support for a specific object model can be a hindrance to 
rapid development. Programs can end up being much longer than necessary because 
of the verbose syntactic structures used. This is the reason behind the popularity of 
domain-specific programming languages, such as those used in Matlab, Macromedia 
Director, etc. Adenine is such a language. It includes native support for RDF data 
types and makes it easy to interact with RDF stores and RDF-based services. 

4.1 RDF Representation 

The other motivation for creating Adenine was to be able to combine executable code 
with data in the same representation. To achieve this, Adenine is compilable directly 
into RDF according to the Adenine ontology. The benefits of this capability can be 
classified as portability and extensibility. Since 1996, bytecode-based virtual machine 
execution models have resurged as a result of Java’s popularity. Their key benefit has 
been portability, enabling interpretation of software written for these platforms on 
vastly different computing environments. In essence, bytecode is a set of instructions 
written to a portable, predetermined, and byte-encoded ontology. 

Adenine takes the bytecode concept one step further by making the ontology ex-
plicit and extensible and by replacing byte codes with RDF. In other words, instruc-
tions are represented as RDF resources, connected by “next instruction”  predicates. 
Execution occurs by following a chain of such instruction resources. Instead of deal-
ing with the syntactic issue of introducing byte codes for new instructions and seman-
tics, Adenine takes advantage of RDF’s ability to extend the directed “object code”  
graph with new instruction node types. 

One recent example of a system that uses metadata-extensible languages is Micro-
soft’s Common Language Runtime (CLR). In a language such as C#, developer-
defined attributes can be placed on methods, classes, and fields to declare metadata 
ranging from thread safety to serializability. Compare this to Java, where serializabil-
ity was introduced only through the creation of a new language keyword called “ tran-
sient” . The keyword approach requires knowledge of these extensions by the com-
piler; the attributes approach delegates this knowledge to the runtime and makes the 
language truly extensible. 

In Adenine, RDF assertions can be applied to any statement, such as comments, 
classifications, authorship attributions, and information about concurrency safety. 
This fact enables a number of different features, from self-modifying code to auto-
mated object code analysis. Most importantly, it means that Adenine can be packaged 
together with schemas and other ontological metadata and manipulated in the same 
fashion as other RDF data. In particular, one feature that has proven to be highly 
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useful is the ability to annotate functions with specialized types such as “asynchro-
nous constructor” or “query operator”. This feature is used heavily in the implementa-
tion of operations, which is discussed later in this paper. 

Adenine’s RDF representation and its treatment of the RDF triple as a native data 
type make Adenine very similar to Lisp, in that both support open-ended data models 
and both blur the distinction between data and code. However, there are some signifi-
cant differences. The most superficial difference is that Adenine’s syntax and seman-
tics are especially well-suited to manipulating RDF data. Adenine is mostly statically 
scoped, but exposes dynamic variables that address the current RDF containers from 
which existing statements are queried and to which new statements are written. (An 
RDF container is simply a data structure that holds RDF statements.) Adenine’s run-
time model is also better adapted to being run off of an RDF container. Unlike most 
modern languages, Adenine supports two types of program state: in-memory, as is 
with most programming languages, and RDF container-based. Adenine in effect sup-
ports two kinds of closures, one being an in-memory closure as is in Lisp, and the 
other being persistent in an RDF container. This affords the developer more explicit 
control over the persistence model for Adenine programs and makes it possible for 
services written in Adenine to be distributed. 

4.2 Defining Data in Adenine 

RDF data is written in much the same way in Adenine as it is in Notation3. Double 
quotes enclose RDF literals and create instances of the Li t er al  class. Angle brackets 
(<>) enclose URIs and create instances of the Resour ce class. 

Prefixes can be declared as a convenient way of referring to frequently-used URIs. 
For example: 

 
@pr ef i x  t est :  <ht t p: / / t est . or g/ > 
 
i f  ( == t est : hi - t her e <ht t p: / / t es t . or g/ hi - t her e>)  
    pr i nt  ' Success! '  

 
The r df , r df s , daml , xsd, and adeni ne prefixes are predefined with their standard 

values.1 
Collections of RDF statements are enclosed within curly braces ({ } ). The tokens 

within the { }  operator are of the form: 
 

{  [ subj ect ]  [ pr edi cat e]  [ obj ect ]   
  [ subj ect 2]  [ pr edi cat e2]  [ obj ec t 2]  … }  

 
No separator is required between consecutive statements, unlike Notation3. The 

semicolon (; ) can be used in the subject field to refer to the last used subject. Expres-
sions within the { }  operator are handled as follows: Expressions that evaluate to 

                                                           
1 rdf :  ht t p: / / www. w3. or g/ 1999/ 02/ 22- r df - synt ax- ns# 
r df s:  ht t p: / / www. w3. or g/ 2000/ 01/ r df - schema# 
daml :  ht t p: / / www. daml . or g/ 2001/ 03/ daml +oi l # 
xsd:  ht t p: / / www. w3. or g/ 2001/ XMLSchema# 
adeni ne:  ht t p: / / hayst ack. l cs. mi t . edu/ schemat a/ adeni ne# 
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Resour ce or Li t er al  objects are used directly. Lists are expressed with the @( )  opera-
tor and are expressed as DAML+OIL lists. Other objects are converted into Li t -

er al ’s. The { }  expression itself evaluates to an object exposing the I RDFCont ai ner  
interface. 

Anonymous nodes can be created from Adenine using the ${ }  operator (the 
equivalent of the [ ]  operator in Notation3). Syntactically, an anonymous node ex-
pression has type Resour ce and can be used anywhere a resource is needed. This 
feature is useful when you need a unique, “anonymous” URI for a set of statements. 
The following set of statements states that Mary’s son is 15 years old and is named 
“Bob” (add is the command used to insert RDF statements into the store): 

 
add {  
    <ur n: per son: mar y> <ur n: per son: hasSon> ${  
        <ur n: per son: age> “ 15”  ;   
        <ur n: per son: name> “ Bob”   
    }  
}  

4.3 Writing Executable Code 

The syntax of Adenine code resembles a combination of Python and Lisp. As in Py-
thon, indentation levels denote lexical block structure (indentation is ignored within 
{ }  expressions). Adenine is an imperative language, and as such contains standard 
constructs such as functions, for loops, arrays, and objects. Function calls resemble 
Lisp syntax in that they are enclosed in parentheses and do not use commas to sepa-
rate parameters. Arrays are indexed with square brackets as they are in Python or 
Java. Also, because the Adenine interpreter is written in Java, Adenine code can call 
methods and access fields of Java objects using the dot operator, as is done in Java or 
Python. The execution model is quite similar to that of Java and Python in that an in-
memory environment is used to store variables; in particular, execution state is not 
represented in RDF. Values in Adenine are represented as Java objects.  

Adenine methods are functions that are named by URI and are compiled into RDF. 
To execute these functions, the Adenine interpreter is instantiated and passed the URI 
of the method to be run and the parameters to pass to it. The interpreter then con-
structs an initial in-memory environment binding standard names to built-in functions 
and executes the code one instruction at a time. Because methods are simply re-
sources of type adeni ne: Met hod, one can also specify other metadata for methods, as 
was mentioned earlier. In the example given, an r df s: comment  is declared and the 
method is given an additional type, and these assertions will be entered directly into 
the RDF container that receives the compiled Adenine code.  

Adenine methods are usually executed by interpretation of a method’s instructions 
from an RDF store. A prototype interpreter has been implemented in Java and is used 
to run much of Haystack. However, to improve performance, a tool is available for 
compiling Adenine methods into Java Virtual Machine bytecode. While eliminating 
some of the dynamic nature of Adenine, translation into Java does provide a signifi-
cant performance increase. 

The top level of an Adenine file is used for data (i.e., add instructions) and method 
declarations and cannot contain executable code. This is because Adenine is in es-
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sence an alternate syntax for RDF. Within method declarations, however, is code that 
is compiled into RDF; hence, method declarations are like syntactic sugar for the 
equivalent Adenine RDF “bytecode”. 

Development on Adenine is ongoing, and Adenine is being used as a platform for 
testing new ideas in writing RDF-manipulating services and user interface compo-
nents. More information about Adenine can be found at the following URL off of our 
website: http://haystack.lcs.mit.edu/documentation/adenine.pdf. 

5 Services 

In the past, programs that aggregated data from multiple sources, such as mail merge 
or customer relationship management, had to be capable of speaking numerous proto-
cols with different back ends to generate their results. With a rich corpus of informa-
tion described in a single format, namely RDF, the possibility for automation be-
comes significant because services can now be written against a single unified ab-
straction. In Haystack, services encapsulate key pieces of functionality that manipu-
late RDF data and execute independently of the user interface. Furthermore, services 
can be written to help users deal with problem such as information overload by ex-
tracting key information from e-mail messages and other documents and presenting 
the user with summaries. In short, services massage data of importance to the user for 
consumption by the user interface. 

Services in Haystack are callable entities that expose a Java interface. (A Java-
implemented stub class that calls Adenine methods is also available and frequently 
used.) The core services are mostly written in Java, but some are written in Adenine 
and some in Python (these services are hosted by the Jython interpreter). We utilize an 
RDF ontology derived from WSDL [6] for describing the interfaces to services as 
well as for noting which server processes hosts which services. As a consequence, we 
are able to support different protocols for communicating between services, from 
simply passing in-process Java objects around to using HTTP-based RPC mecha-
nisms such as HTTP POST and SOAP [8]. In other words, Haystack services are in 
effect Web Services whose implementation implements the 
edu.mit.lcs.haystack.server.service.IService Java interface and where the 
appropriate WSDL metadata has been entered into the store; the system takes care of 
exposing services via whatever protocols are supported.  

One specific class of service is of great importance in Haystack: the RDF store. 
RDF stores, as their name implies, hold RDF statements and allow clients to query 
their contents. As all persistent system state is described in RDF, Haystack uses RDF 
stores much as modern software uses the file system.  

5.1 Core Infrastructure 

Sitting at the core of the Haystack system is a service manager, a Java process that is 
responsible for starting up the services it hosts. At system startup the service manager 
reads an RDF configuration file to determine where the root RDF store is. The service 
manager then connects to this root store, much as a UNIX system mounts its root file 
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system at startup, and determines what services should be started based on the values 
of the config:hostsService property of the service manager’s resource (all service 
managers are named by URIs). 

All services are run within the context of a root store and a service manager. The 
root store provides a container for services to persist their state. Furthermore, the 
service manager is responsible for allowing services to connect to one another. If a 
service requests to connect to a service running on the same service manager, the 
service manager can return a reference to the other service directly; otherwise, the 
service manager uses the information about the service encoded in the WSDL ontol-
ogy to construct a proxy. 

Because services in Haystack share an underlying store, services can interoperate 
with each other by treating the store as a “blackboard”. Blackboard architectures 
permit multiple services to attack a problem by allowing services to use information 
on the blackboard to perform some specific analysis and to pose new information that 
is derived from that analysis. RDF stores have built-in support for registering events, 
which allows services to learn when new information (i.e., RDF statements) has been 
posted to the store. New functionality can be introduced by adding services that per-
form certain tasks when specific forms of information enter the system. 

5.2 Automation 

One useful application for services that is core to the Semantic Web is automation. 
Services are used in Haystack to automatically retrieve and process information from 
various sources, such as e-mail, calendars, the World Wide Web, etc. Haystack in-
cludes services that retrieve e-mail from POP3 servers, extract plaintext from HTML 
pages, generate text summaries, perform text-based classification, download RSS 
subscriptions on a regular basis, fulfill queries, and interface with the file system and 
LDAP servers. 

Services are particularly useful for analyzing collections of documents and finding 
patterns, which can then aid the system when trying to present such a collection to the 
user. Modern information retrieval algorithms are capable of grouping documents by 
similarity or other metrics, and previous work has found these automatic classifica-
tions to be useful in many situations [19]. Additionally, users can build collections 
prescriptively by making a query. A service, armed with a specification of what a user 
is looking for, can create a collection from the results of a query, and it can watch for 
new data entering the system that matches the query. For example, one service that 
exists in Haystack automatically filters a user’s e-mail for documents that appear to fit 
in one or more collections defined by the user, such as “Website Project” or “Letters 
from Mom” [19].  

6 Ozone Presentation Ontology 

We have defined an ontology called Ozone that can be used to encode page layout 
and content much like that expressible in HTML. The following code snippet illus-
trates how a simple page (Fig. 1) can be authored in Ozone: 
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@prefix slide: 
<http://haystack.lcs.mit.edu/schemata/ozoneslide#> 
 
= mySlide ${ 
   rdf:type   slide:Slide ; 
   slide:margin  "10" ; 
   slide:bgcolor  "lightGray" ; 
   slide:color  "#444444" ; 
   slide:fontFamily  "Arial" ; 
   slide:fontSize  "10" ; 
   slide:child ${ 
     rdf:type  slide:Paragraph ; 
     slide:children @( 
      ${  rdf:type  slide:Text ; 
          slide:text  "Welcome to Haystack" ; 
          slide:fontSize "120%" ; 
          slide:fontBold "true" 
      } 
      ${  rdf:type  slide:Break } 
      ${  rdf:type  slide:Text ; 
          slide:text "The current user is:" 
      } 
      ${  rdf:type  slide:Block ; 
          slide:marginLeft "20" ; 
          slide:borderWidth "1" ; 
          slide:child ${ 
            rdf:type slide:Paragraph ; 
            slide:children @( 
              ${  rdf:type  ozone:ViewContainer ; 
                  ozone:initialResource (__identity__.getResource) ; 
                  ozone:viewPartClass   ozone:InlineViewPart 
              } 
            ) 
          } 
      } 
    ) 
  } 
} 

 

 
 

Fig. 1. Sample slide 

The code specifies a new slide (analogous to an HTML page) with all margins set 
to 10 pixels, the background color set to light gray, and the foreground (text) color set 
to a dark shade of gray as defined by an RGB triple. The text on the page will be in 
Arial, 10 point. These color and font settings are inherited by all descendant resources 
of the slide; they can also be overridden by the descendant resources when necessary, 
as is the case with Cascading Style Sheets. 

The sample slide has one child, a slide:Paragraph resource (similar to the <P> tag 
in HTML). The slide:Paragraph resource has four child resources: two slide:Text 
resources, one slide:Break resource, and one slide:Block resource. The first 
slide:Text resource redefines its font size and boldens its text. The Block resource is 
like the <DIV> tag in HTML: it allows specification of block-specific attributes such 
as margins, borders, clearances, drop shadow, etc. Inside the Block resource is a 
placeholder for a view (discussed later), which renders the name of the current user. 
The current user is expressed by the Adenine expression 
(__identity__.getResource), which is embedded within the slide definition. 
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Note the hierarchical form of the code snippet: in this way, Ozone is very similar to 
HTML and should be somewhat familiar to HTML programmers who know RDF. 
Adenine makes it easy to write pieces of code that can both manipulate RDF data and 
generate Ozone data. This is important when, as in many cases, the Ozone data to be 
generated depends on data in the RDF store. 

More information about Ozone can be found on our website at the following URL: 
http://haystack.lcs.mit.edu/documentation/ui.pdf. 

7 Views as Representations of Resources 

Using Ozone we can construct user interface elements called views that present in-
formation about resources in the RDF store. Specifically, a view is a component that 
displays certain types of resources in a particular way. A given RDF class may have 
any number of different views associated with it. Furthermore, views are described in 
RDF, allowing a view to be characterized according to the RDF classes it supports 
and how it displays resources (e.g., full screen, in a one line summary, as an applet-
sized view, etc.). When a resource needs to be displayed in Haystack in a certain way, 
such as full screen, a view is chosen that possesses the necessary characteristics. 

As components, views enable pieces of user interface functionality to be reused. 
The developer of a one line summary view for people (perhaps displaying a person’s 
name and telephone number) provides an RDF description to the system that enables 
developers that need to display summaries of contacts to reuse the component. The 
best example of reuse can be seen in the case of views that embed views of other 
resources. For example, a view of an address book containing contacts and mailing 
lists needs not implement views for displaying contacts and mailing lists; Ozone pro-
vides a way for views to specify that a resource needs to be displayed at a certain 
location on the screen in a certain fashion (e.g., as a one line summary). In this way 
composite views can be constructed that leverage the specialized user interface func-
tionality of the child views that are embedded. 

When a view is instantiated, the system passes the view a context object that in-
forms it of the resource to be displayed. The context object also contains a pointer to 
the parent view’s context object, if one exists as a result of a view being embedded 
within another view. In this way views are made aware of the context in which they 
are displaying information. For example, if an address book view is displaying a list 
of people by embedding individual person views, the person view can know not to 
display the “Add to Address Book” button, since it knows that it is embedded within 
the address book’s view and hence is displaying a resource that is already in the ad-
dress book. 

Also, because the system is responsible for instantiating views and keeping track of 
where child views are to be embedded within parent views, the system can provide 
default implementations of certain direct manipulation features for free. A good ex-
ample is drag and drop: When the user starts to drag on a view, the system knows 
what resource is being represented by that view, such that when the view is dropped 
elsewhere in the user interface, the drop target can be informed of what resource was 
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involved instead of simply the textual or graphical content of the particular represen-
tation that was dragged. 

Take the example of filling in a list of meeting attendees on a form. Instead of re-
typing or copying and pasting names of people from an address book, a user can drag 
and drop contacts from an address book into the list. Because the views representing 
contacts in the address book are associated with the resources they represent and not 
just the names of the contacts, the identities of the contacts’ resources can be pre-
served. The alternative opens the possibility for ambiguity because information is lost. 
For example, what if there are two people named “John Doe” known to the system? 
Specifying the text string alone is not sufficient to disambiguate which John Doe is 
intended, even though it is clear that the John Doe desired is the one that the user 
selected in the address book. 

8 Operations 

Most systems provide some mechanism for exposing prepackaged functionality that 
can be applied under specific circumstances. For example, in Java one can expose 
methods in a class definition that perform specific tasks when invoked. In C one can 
define functions that accept arguments of particular types. Under Windows, one can 
define verbs, which are bound to specific file types and perform actions such as open-
ing or printing a document when activated through a context menu in the Windows 
Explorer shell. In general, these mechanisms all permit parameterized operations to be 
defined and exposed to clients. 

In Haystack, the analogous construct is called an operation, which can accept any 
number of parameters of certain types and perform some task. Operations are Adenine 
methods annotated with key metadata such as parameter types [18]. The operation 
ontology is best explained in the context of an example. The definition of the “Browse 
To” operation is given in the following code snippet. 

 
@prefix op: <http://haystack.lcs.mit.edu/schemata/operation#>  
 
add { :target 
    rdf:type  op:Parameter ; 
    rdf:type  daml:ObjectProperty ; 
    rdfs:label  "Target" ; 
    op:required  "true" ; 
    rdfs:range  daml:Thing 
} 
 
method :browseTo :target = target ;  
rdf:type       op:Operation ; 
dc:title        "Browse to" ; 
ozone:icon      <http://haystack.lcs.mit.edu/icons/verbs/browseto.gif> ; 
adenine:preload "true" 
  ozone:navigate target[0] 
 

The definition of an operation (e.g. :browseToOperation) includes basic informa-
tion such as its name, an icon, as well as a set of named parameters. Notice that opera-
tions are defined using the method syntax; this is possible because operation is a sub-
class of Adenine method. Parameters (e.g. :target) are also given names, but in 
addition parameters can also be typed, in a variety of different ways. The most basic 
mechanism for typing is simply specifying an rdfs:Class as a parameter’s class 
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using the rdfs:range predicate. A parameter’s 
type can also be constrained by giving an Ade-
nine validator method, which given a value veri-
fies that it can be used for that parameter. Fi-
nally, parameters can be specified to be either 
mandatory or optional. 

When an operation is invoked, the values as-
signed to the operation’s parameters are passed 
to the operation. Parameters can have multiple 
values; for example, a send mail operation may 
allow multiple recipients to be specified. To 
allow for this, the Adenine method receives a list 
of all values for each named parameter. 

The Haystack user interface exposes the op-
erations installed in the system in various ways. Operations are displayed on the tool 
pane (the right hand pane) in Haystack as well as in context menus (Fig. 2). In fact, 
operations are also used for commands such as “Shutdown Haystack”, where no pa-
rameters are needed. In this way, operations can play the roles normally played by 
menus and toolbars in applications today. 

Furthermore, the Haystack framework eliminates the need for developers to create 
specialized user interfaces for user-performable operations in many cases. When an 
operation that requires parameters is activated, Haystack checks to see if the target 
object (in the case of the command being issued from a context menu or the tool 

 

Fig. 2. Operations in Haystack 

Fig. 3. Sample UI continuation 
(taken from left hand pane) 
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pane) satisfies any of the operation’ s parameters. If there are unresolved parameters, 
Haystack presents a UI continuation, depicted in Fig. 3 [18].  

Like a dialog box, a UI continuation prompts the user for needed information—in 
this case, the unresolved parameters. However, unlike most dialog boxes, which are 
modal, UI continuations are modelessly placed on the left hand pane, allowing the 
user to use whatever tools in the system he or she is most familiar with to find the 
information needed to complete the operation. By default, the system takes the user to 
a convenient place to find the required information, such as in the case of a send e-
mail operation, the user’s address book. This interface is similar to a shopping cart on 
an e-business website: the user can drag and drop relevant items into the “bins”  repre-
senting the operation’ s parameters. The user can even decide to perform other tasks 
and come back to the operation later. When the user has finished obtaining the neces-
sary information and is ready to commence the operation, he or she can click the 
“Done”  button on the UI continuation. The system then returns to the state that was 
present when the operation was initiated (hence the term continuation) and performs 
the operation. By providing UI continuation functionality, the system frees the devel-
oper from needing to design specialized, miniature user interfaces for retrieving in-
formation from within modal dialog boxes by reusing the existing browsing environ-
ment and at the same time providing the user with a seamless experience. 

The operation abstraction allows the functionality of the system to be arbitrarily 
extended, without special plug-in interfaces or points of extensibility needing to be 
defined on a per-application basis. Furthermore, developers can declaratively specify 
new functionality to the system rather than modify monolithic dialog boxes, menus, 
or toolbars. However, since the UI continuation is displayed using Haystack’ s view 
technology, developers are free to customize the display of a UI continuation by de-
fining new view parts. 

9 Constructors 

The operations ontology is able to describe a large portion of the functionality ex-
posed by an application. However, one particular type of functionality provided by 
many applications deserves special focus: object creation. Object creation manifests 
itself in many different forms, ranging from the addition of a text box to a slide in a 
presentation graphics program to the composing of an e-mail. Applications that sup-
port object creation usually expose interfaces for allowing users to choose the appro-
priate type of object to create or to find a template or wizard that can help guide them 
through the process of creating the object. 

In RDF, the process of creation can naïvely be thought of as the coining of a fresh 
URI followed by an rdf:type assertion. The corresponding choice list for creating 
objects in RDF could be implemented by displaying a list of all rdfs:Class resources 
known by the system. However, there are many issues not addressed by this solution. 
The user’ s mental model of object creation may map onto three distinct activities in 
the programmatic sense: (1) creation of the resource; (2) establishing some default 
view; (3) population of the resource with default data. For example, the creation of a 
picture album from the perspective of the data model is straightforward in that a pic-



Haystack: A Platform for Authoring End User Semantic Web Applications      15 

ture album is simply a collection of resources that 
happen to be pictures. However, if the user begins 
viewing this blank picture album with an address 
book view, he or she may believe that the system 
has created the wrong object. With respect to the 
third point, Gamma et al. assert that object crea-
tion can come about in various ways, ranging 
from straightforward instantiation to creating 
objects according to some fixed pattern [4]. 

Furthermore, the classical framing of the object 
creation problem does not address the user inter-
face implications entailed by certain kinds of 
instantiations. Some objects can be created with-
out further input from the user, such as empty 
collections, while some objects require configura-
tion data or other information to be properly ini-
tialized, such as a POP3 mail service. 

To solve these problems, Haystack makes use 
of a constructor ontology, which describes re-
sources called constructors that create objects. 
Constructors have type construct:Constructor, 
which derives from adenine:Method. (Construc-
tors that are exposed to the user also have type 
op:Operation.) Like all other objects in Haystack, 
constructors can be browsed to in the user inter-
face and have custom views associated with them. 
The default view for a constructor’s UI continua-
tion simply contains a button that invokes the 
constructor and browses to the created object. However, for constructors that require a 
custom user interface to be presented, a custom view part can be provided with spe-
cific controls for creating the object. Fig. 4 shows an example of the annotation pane 
in Haystack, which takes advantage of this functionality. Annotations in Haystack are 
not limited to text but can be constructed from any kind of object. The annotation 
pane exposes a drop down list of possible constructors; when the user completes the 
constructor, the newly created annotation is hooked to the object being annotated. 

10 Conclusion 

In this paper we have explored a number of the tools built into Haystack for develop-
ing Semantic Web applications for end users. These tools focus on applying RDF 
technology to improving the developer experience, by allowing developers to declara-
tively define concepts such as operations and user interface components. Many of 
these technologies have been built on top of Adenine, which facilitates the manipula-
tion of RDF data and provides syntactic sugar for defining RDF ontologies and user 
interface designs. We believe these tools have lowered the barrier for creating truly 

 

Fig. 4. Annotation UI 
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usable and compelling applications that can deliver on the promises of automation 
and uninhibited data exchange on the Semantic Web. 
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