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Given an undirected graph with edge costs and a subset of k ≥ 3 nodes called terminals, a multiway, or k-way,
cut is a subset of the edges whose removal disconnects each terminal from the others. The multiway cut problem
is to find a minimum-cost multiway cut. This problem is Max-SNP hard. Recently, Calinescu et al. (Calinescu,
G., H. Karloff, Y. Rabani. 2000. An improved approximation algorithm for Multiway Cut. J. Comput. System
Sci. 60(3) 564–574) gave a novel geometric relaxation of the problem and a rounding scheme that produced a
�3/2− 1/k�-approximation algorithm.
In this paper, we study their geometric relaxation. In particular, we study the worst-case ratio between the value

of the relaxation and the value of the minimum multicut (the so-called integrality gap of the relaxation). For k= 3,
we show the integrality gap is 12/11, giving tight upper and lower bounds. That is, we exhibit a family of graphs
with integrality gaps arbitrarily close to 12/11 and give an algorithm that finds a cut of value 12/11 times the
relaxation value. Our lower bound shows that this is the best possible performance guarantee for any algorithm
based purely on the value of the relaxation. Our upper bound meets the lower bound and improves the factor of
7/6 shown by Calinescu et al.
For all k, we show that there exists a rounding scheme with performance ratio equal to the integrality gap,

and we give explicit constructions of polynomial-time rounding schemes that lead to improved upper bounds. For
k= 4 and 5, our best upper bounds are based on computer-constructed rounding schemes (with computer proofs
of correctness). For general k we give an algorithm with performance ratio 1�3438− �k.
Our results were discovered with the help of computational experiments that we also describe here.
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1. Introduction. As the field of approximation algorithms matures, methodologies are
emerging that apply broadly to many NP-hard optimization problems. One such approach
(cf. Leighton and Rao 1999, Linial et al. 1995, Aumann and Rabani 1998, Goemans and
Williamson 1995, Even et al. 2000) has been the use of metric and geometric embeddings in
addressing graph optimization problems. Faced with a discrete graph optimization problem,
one formulates a relaxation that maps each graph node into a metric or geometric space,
which in turn induces lengths on the graph’s edges. One solves this relaxation optimally
and then derives from the relaxed solution a near-optimal solution to the original problem.
This approach has been applied successfully (Calinescu et al. 2000) to the min-cost mul-

tiway cut problem, a natural generalization of the minimum �s� t�-cut problem to more than
two terminals. An instance consists of a graph with edge-costs and a set of distinguished
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nodes (the terminals). The goal is to find a minimum-cost set of edges whose removal
separates the terminals. If the number of terminals is k, we call such a set of edges a
k-way cut.
The first approximation algorithm for the multiway cut problem in general graphs was

given by Dahlhous et al. (1994). It used a traditional minimum �s� t�-cut algorithm as a
subroutine and had a performance guarantee of 2− 2/k.
In the work that prompted ours, Calinescu et al. (2000) used a novel geometric relax-

ation of the k-way cut in a �3/2− 1/k�-approximation algorithm. Their relaxation uses the
k-simplex 
= �x ∈�k: x ≥ 0, ∑i xi = 1�, which has k vertices; the ith vertex is the point
x in 
 with xi = 1 and all other coordinates 0. The relaxation is as follows: map the nodes
of the graph to points in 
 such that terminal i is mapped to the ith vertex of 
. Each edge
is mapped to the straight line between its end points. The goal is to minimize the volume
of G,

vol�G�
�= ∑
edges e

cost�e� · �e��

where cost�e� is taken to be the cross-sectional area of edge e and �e� denotes the length
of the embedded edge e, defined as half the L1 distance between its end points. The factor
half in the length function is present to scale the distance between terminals to 1, so the
embedding is a relaxation of the minimum k-way cut problem.
To see that the given embedding is a relaxation of the k-way cut, consider any k-way

cut and let Si be the set of nodes reachable from terminal i in the graph with the cut-edges
removed. Consider a geometric embedding in which all nodes in Si are mapped to vertex
i of 
. For any edge, its embedded length is either 0, if the end points lie in the same Si,
or 1, if the end points lie in distinct Si. Hence the volume of this embedding is equal to the
cost of the k-way cut.
The algorithm of Calinescu et al. (2000) finds a minimum volume embedding by lin-

ear programming. It then uses a randomized rounding scheme to extract a cut from this
embedding. Ignoring the graph, the scheme chooses (from a carefully selected distribution)
a k-way cut of the simplex—a partition of the simplex into k polytopes, each containing
exactly one vertex of the simplex. The k-way cut of the simplex naturally induces a k-way
cut in the embedded graph, namely, the set of edges with end points in different blocks
of the partition. This cut has expected cost at most 3/2 − 1/k times the volume of the
embedding.

1.1. Our results. Our goal is to further understand the geometric relaxation, with the
hope of developing better approximation algorithms. We aim to determine the integrality gap
of the relaxation and to find an algorithm whose approximation ratio matches the integrality
gap. (Formally, the integrality gap is the supremum, over all weighted graphs G, of the
minimum cost of any k-way cut of G divided by the minimum volume of any embedding
of G. Note that the integrality gap is the best approximation ratio we can prove using an
analysis that bounds the optimum cut only by the value of the relaxation.)
In this paper, we resolve this question for 3-cut and provide improved results for the

general k-cut problem. For k = 3 we give a rounding algorithm with performance ratio
12/11, improving the Calinescu et al. (2000) bound of 3/2−1/3= 7/6. We also show that
12/11 is the best possible bound, exhibiting a graph family with a gap of 12/11− o�1�
between its embedded volume and minimum 3-way cut. Thus, for k= 3, we determine the
exact integrality gap and give an optimal rounding algorithm.
For larger k, we obtain results based on both computation and analysis. We give a

nonconstructive proof that, for every k, there exists a (not necessarily polynomial time)
rounding scheme whose performance guarantee equals the integrality gap. For k= 4�5, we
use LP-derived and LP-analyzed rounding schemes to give explicit approximation bounds
of 1.1539 and 1.2161 respectively, improving the corresponding Calinescu et al. (2000)
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bounds of 1.25 and 1.3. For larger k we give an algorithm obtaining a (analytic) bound of
1�3438− �k where �k > 0. The quantity �k can be evaluated computationally for any fixed
k; we use this to prove that 1�3438− �k < 3/2− 1/k for all k.
Our efforts to find geometric cutting schemes that achieve good guarantees were guided

by experiments: we formulated the problem of determining an optimal probability distri-
bution on k-way cuts of the simplex as an infinite-dimensional linear program and solved
discrete approximations of this linear program and its dual. From these solutions we were
able to deduce the lower bound and, using that, the upper bound for k= 3. These experi-
ments also guided our search for cutting schemes that work for larger values of k.
The upper and lower bounds for k = 3 were discovered independently by Cunningham

and Tang (1999).

1.2. Presentation overview. In §2 we discuss the geometric ideas underlying the prob-
lem. In §3 we describe the computational experiments we undertook and the results it gave
for small k. In §§4 and 5 we resolve the 3-terminal case, giving matching upper and lower
bounds. Finally, in §6, we present our improved algorithm for general k. In the Appendix
we prove that, for all k, there exists a rounding scheme matching the integrality gap.

2. The geometric problem. Finding the integrality gap of and a rounding scheme for
the relaxation turns out to be expressible as a geometric question. That is, we can express
integrality gaps and algorithmic performance purely in terms of the simplex, without con-
sidering particular graphs or embeddings.
Consider an edge e, which under the relaxation is embedded as a line segment in the sim-

plex. We overload e to denote this embedded segment as well. For any segment (or edge) e,
we let el denote the projection of e onto the lth coordinate axis, namely the one-dimensional
interval �xl � x ∈ e�. We write min el = minx∈e xl for the minimum value in the projected
interval, max el = maxx∈e xl for the maximum value in the projected interval, and �el� =
max el−min el. Finally, we have defined the length �e� of an edge e to be half its L1 norm,
that is,

�e� =
k∑
l=1

�el�/2�

The factor half sets the distance between two vertices of the simplex to 1 so that the
embedding is a relaxation of the cut problem.

2.1. Density. Recall that a k-way cut of the simplex is a partition of the simplex into
k subsets, each containing a unique vertex of the simplex, and that such a cut induces a
k-way cut of any embedded graph. By a cutting scheme, we mean a probability distribution
P on k-way cuts of the simplex. For any line segment e, the density of P on segment e,
denoted �k�P� e�, is the expected number of times a random cut from P cuts e, divided by
the length �e� of e. (Note that in principle a line segment could be cut more than once by
the k-way cut of the simplex. We therefore speak of the expected number of times that e is
cut, rather than the probability that e is cut.)
Define the maximum density of P , �k�P� and the minimal maximum density �∗k as follows:

�k�P�
�= sup

e

�k�P� e� and �∗k = inf
P
�k�P��

There is always a line segment of infinitesimal length that achieves the maximum density,
since any segment can be divided into two edges, one of which has density no less than
the original. Thus, in the remainder of this paper, we will focus the discussion on such
infinitesimal segments.
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The relevance of �∗k is the following (this is implicit in the work of Calinescu et al. 2000):

Lemma 2.1. For any cutting scheme P and embedded graph G, the expected cost of the
k-way cut of G induced by a random k-way cut from P is at most �k�P� times the cost of
the embedding of G.

Corollary 2.2. Any cutting scheme P yields a randomized approximation algorithm
with approximation ratio at most �k�P�.

Proof. The end points of any edge e are embedded at two points in the simplex, so
the edge corresponds to a segment connecting those two points. The expected number of
times the edge is cut is at most �k�P� e� · �e�. By the Markov inequality this upper bounds
the probability that the edge is cut. Thus, the expected cost of the k-way cut is at most∑

e

��k�P� e� · �e�� cost�e� ≤ �k�P�
∑ �e� · cost�e�

= �k�P�vol�G��

We have already argued that vol�G� lower bounds the optimum k-way cut, so the result
follows. �

The above argument implies that no cutting scheme P can have a maximum density
�k�P� below the integrality gap. In fact, we show that there always exists a cutting scheme
whose maximum density equals the integrality gap.

Theorem 2.3. There exists a cutting scheme whose maximum density equals the inte-
grality gap; thus, �∗k equals the integrality gap.

We give the proof in the Appendix. The proof is based on the observation that the
problem of choosing a rounding scheme to minimize the performance ratio is itself a (infinite
dimensional) linear programming problem; furthermore, its dual is the problem of choosing
a weighted graph to maximize the integrality gap. This observation seems to hold in a fairly
general setting beyond the k-cut problem (details are in the Appendix).
Calinescu et al.’s (2000) algorithm gives a cutting scheme showing that �∗k ≤ 3/2− 1/k.

In this paper we show that �∗3 = 12/11, and that, for all k, �∗k ≤ 1�3438.

2.2. Alignment. We have just argued that the key question to study is the maximum
density of (infinitesimal) line segments relative to a cutting scheme. Calinescu et al. (2000)
showed that one can restrict attention to segments in certain orientations. We say a segment
e in 
 is i� j-aligned if e is parallel to the edge connecting vertices i and j of 
. We say it
is aligned if it is i� j-aligned for some pair of vertices. Calinescu et al. (2000) observed that
the end points of any segment e can be connected by a piecewise linear path of total length
�e� whose segments are aligned. The segment e is cut if and only if some edge on this path
is cut. Given any embedding of a graph, Calinescu et al. (2000) apply this transformation
to each segment connecting two embedded vertices, without changing the volume of the
embedding. Thus, they show that without loss of generality one may restrict attention to
embeddings in which all edges are aligned.

Fact 2.4. Segment e is i� j-aligned if and only if �e� = �ei� = �ej � and �el� = 0 for l 	= i� j .

(Note that �e� denotes half the L1 norm, while �e1� and �e2� are standard absolute values.)

2.3. Side parallel cuts (sparcs). In this paper, we mainly restrict attention to a partic-
ular class of cutting schemes. Define 
xi=�

�= �x ∈
� xi = �� and 
xi≥�
�= �x ∈
� xi ≥ ��.

Note that 
xi=� is a hyperplane that runs parallel to the face of the simplex opposite terminal
i and is at distance � from that face; it divides the simplex into two parts, of which 
xi≥� is
the “corner” containing terminal i. An i� j-aligned segment �x� y� is cut by the hyperplane

xl=� if and only if l ∈ �i� j� and � is between xl and yl.
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We define a side-parallel cut �sparc� of the simplex:
(1) Choose a permutation � of the vertices;
(2) For each vertex i in order by � (except possibly the last), choose some �i ∈ �0�1�;
(3) Assign to vertex i all points of 
xi≥�i not already assigned to a previous terminal. We

say that terminal i captures all these points, and that terminal i cuts an edge e if it captures
some but not all of the yet-uncaptured part of e.
This scheme cuts up the simplex using hyperplanes 
xi=�. In this context, we call each


xi=� a slice.
We consider algorithms that sample randomly from some probability distribution over

sparcs. Our restriction to sparcs was motivated by several factors. The rounding algorithm
of Calinescu et al. (2000) uses only sparcs. Furthermore, our computational study of the
3-terminal problem (discussed below) and some related analytic work gave some evidence
that the optimal algorithm was a distribution over sparcs (this conjecture was confirmed
analytically for the 3-terminal case). Lastly, sparcs have concise descriptions (as sequences
of k− 1 slicing distances) that made them easy to work with computationally and analyti-
cally. It is conceivable, though, that one might do better with cuts that are not sparcs. For
example, one might wish to slice off two terminals simultaneously, and then separate the
two from each other. Indeed, we know of no proof that for k > 3 the optimal cut must be
made up of hyperplanes; curved surfaces might do better.
For segment e, recall that el is the interval �xl � x ∈ e�. The key properties of sparcs are

expressed in the following fact.

Fact 2.5. An i� j-aligned segment e is cut by a sparc if and only if it is cut by terminal
i or j . Furthermore, for l ∈ �i� j�, the following conditions are all necessary for segment e
to be cut by terminal l:

(1) �l ∈ el;
(2) for all terminals h preceding l, �h >min eh;
(3) terminal l is not last in the order.

For the following, let e be an i� j-aligned segment. For probability distributions P on spa-
rcs, one can obtain bounds on �k�P� e� by using Conditions (1)–(3) above. For example, we
can restrict our attention to Condition (1): If �i and �j are uniformly distributed over [0, 1],
Condition (1) holds for terminal i with probability �ei� = �e�, and similarly for terminal j .
Thus, by linearity of expectation, the expected number of times e is cut is at most 2�e�.
Next, consider adding Condition (3). Suppose that the ordering of terminals is random,

meaning that i is last with probability 1/k. The probability that e is cut by i becomes
�1− 1/k��e�, so �k�P� e�≤ �2− 2/k�. Thus, uniformly random �l’s and a random ordering
gives a performance guarantee of 2− 2/k, matching the bound of Dahlhous et al. (1994).
To improve these bounds, one must use Condition (2). Calinescu et al. (2000) choose

a sparc by selecting � uniformly at random in [0, 1], setting �l = � for each terminal l,
and slicing off terminals in random order. Conditions (1) and (3) again derive a density
bound of 1 − 1/k for terminal i and j . Calinescu et al. (2000) improve this analysis as
follows. Suppose that the edge e is farther from j than from i. We will argue that the density
contribution from terminal j (i.e., the contribution to �k�P� e� due to terminal j cutting e)
is only 1/2. The point is that if � is such that j potentially cuts e, i.e., � ∈ ej , and if i
(which is closer to e) precedes j in the random slice ordering, then i will capture all of e
and prevent j from cutting it.
Formally, we argue as follows. Without loss of generality, assume that min ei ≥ max ej

(note that any i� j-aligned edge can be split in two with one part closer to i and one part
closer to j , and our assumption then applies to each part separately). As was argued before,
the contribution of terminal i is at most 1− 1/k. On the other hand, with probability 1/2,
i precedes j . If so, since �i = �j , Condition (1)—that �j ∈ ej—contradicts Condition (2)
for i—that �i >min ei. Thus e can only be cut by terminal j if j precedes i, in which case
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by Condition (1), the density contribution from j is 1. Thus the density contribution from
terminal j is 1/2, leading to a total density of 3/2− 1/k.
To improve on the 3/2 bound, we made stronger use of Condition (2). The analysis of

Calinescu et al. (2000) only considers that a segment may be captured by the two terminals
with which it is aligned. We derive stronger results by observing that other terminals may
capture the segment as well. To do so, we had to change the cut distribution as well as the
analysis. It can be shown that no distribution that holds all �i equal can do better in the limit
than the 3/2 factor of Calinescu et al. (2000). For independent, uniformly distributed �i we
also get the 3/2 factor. The 3/2 factor can be improved somewhat in the limit by using a
nonuniform distribution on each (independent) �i. However, the best cutting schemes we
have found are based on combining dependence and nonuniformity. One such scheme for
a 3-way cut gives us a bound of 12/11, which is optimal over all schemes for a 3-way cut.
Another scheme gives us a bound of 1.3438 that holds for any number of terminals. This
latter scheme is designed for large k; optimizing it for smaller k gives better bounds.

2.4. Additional observations.

What is the best embedding? Perhaps the first natural question to ask is whether the
embedding chosen by Calinescu et al. (2000) is the best possible.

Lemma 2.6. Among all relaxations based on embeddings in the simplex that minimize
some norm (without adding other constraints) the L1 norm has the smallest possible inte-
grality gap.

Proof. We show that the L1 norm maximizes the measured volume of any embedded
graph; thus it minimizes the integrality gap.
Suppose we use some norm 
·
′ instead of the (scaled) L1 norm �·�. If the norm provides

a relaxation, the distance between simplex vertices must be at most one; that is, for any
edge e connecting simplex end points, we have 
e
′ ≤ 1= �e�. Consider some embedded
edge e. As discussed in §2.2, we know that under the L1 norm it is connected by a path
of aligned edges e1� ! ! ! � er such that �e� =

∑ �ei�. Since any norm-based distance measure
is translation invariant and proportion preserving, this implies that for each ei (which is a
scaled, translated version of an edge of the simplex) we have 
ei
′ ≤ �ei�. It follows from
the triangle inequality that


ei
′ ≤
∑
ei
′

≤ ∑ �ei�
= �e��

Since 
·
′ assigns no greater length to every embedded edge than �·�, it also assigns no
greater volume to any embedded graph. Thus, its integrality gap is no better than that
induced by the L1 norm. �

Symmetry. A second observation is that there is no benefit in trying to identify a “good
terminal order” in which to cut up the simplex.

Lemma 2.7. There is a sparc cutting scheme whose maximum density is minimum among
all sparc cutting schemes and that has the following form:

(1) Choose slice distances �d1� ! ! ! � dk−1� from some probability distribution;
(2) Apply the slice distances (in order) to a uniform random permutation of the

terminals.

An analogous “order independence” statement holds for the best possible (possibly
nonsparc) algorithm.
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Proof. For any cutting scheme P , let P ′ the corresponding “symmetrized” cutting
scheme, i.e.,

Pr�P ′ cuts corner 1 at distance d1, then cuts corner 2 at distance d2, etc.�

= 1
k!

∑
�

Pr�P cuts corner ��1� at distance d1, then ! ! ! ��

where � varies over all permutations of 1� ! ! ! � k.
For a line segment e and a permutation � , let ��e� denote the line segment obtained by

permuting by � the coordinates of the start point and end point of e.
Then for any line segment e,

density of P ′ on e= 1
k!

∑
�

density of P on ��e��

Let � be the maximum density of P . Then for any � , the density of P on ��e� is at
most � . The density of P ′ on e is thus the convex combination of values all of which are
at most � , so it is in turn at most � . Thus the density of P ′ is no more than that of P . �

The above lemma shows that there is no worst-case benefit to considering specific termi-
nal ordering. The duality argument of §2.1 carries over to show that a sparc with optimum
expected maximum density can be specified simply as a distribution over slicing distances,
without reference to an input graph embedding.

3. Our computational study. In this section we describe some computational experi-
ments we carried out to help us understand the behavior of the geometric embedding. These
experiments also yielded the best rounding schemes so far for the 4- and 5-terminal cut
problems. One need not read this section in order to understand the sections that follow.
As discussed above, our goal was to find a distribution over cuts of the k-simplex that

minimized the density of any segment in the simplex. This problem can be formulated as an
infinite-dimensional linear program, with one variable per cut of the simplex, corresponding
to the probability that that cut is chosen, and one constraint for every (aligned, infinitesimally
small) line segment inside the simplex, which measures the expected number of times the
chosen cut will cut that segment. Of course, it is not tractable to solve the infinite LP
computationally, but we expected that discretized versions of it would be informative.
We applied this approach in two distinct ways. For the 3-terminal case, we devised an

LP that exploited the planarity of the 3-terminal relaxation to home in on a “worst-case”
embedded graph. By examining this graph, we were able to deduce requirements for the
optimal algorithm, which led to its identification. For the general case, we devised an
LP whose solutions are (provable) upper bounds on the performance of certain rounding
algorithms. We solved this LP for small numbers of terminals (3–9), deriving algorithms
with (computer aided) proofs of the best-known performance ratios for these problems. The
solution suggested certain properties that appear to hold in the “optimal” rounding scheme;
we used these suggestions in our development of (analytic) solutions for arbitrary numbers
of terminals.

3.1. The 3-terminal case. For the 3-terminal problem we exploited planarity. The
3-simplex can be viewed as a triangle in the plane. We discretized the linear program by
defining a triangular mesh over the simplex and considering only edges of the mesh instead
of all line segments in the simplex. A (rather coarse) example mesh is shown in Figure 1.
Note that we have augmented the triangular mesh with rays starting at the corners of the
simplex and heading out to infinity.
We used the planarity of the 3-simplex to simplify our LP formulation. The planar dual

of the augmented mesh is shown in Figure 2. Note that because of the augmentation, the
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Figure 1. Triangular mesh used in the linear program for the 3-terminal case.
Note. The mesh is augmented with rays going from the corners of the simplex to infinity.

dual has three auxiliary nodes A, B, and C corresponding to infinite regions of the primal,
one node for each side of the simplex.
Any minimal 3-way cut of the mesh corresponds to a collection of two or three paths

(representing the boundary of the cut) through the planar dual of the augmented mesh.
Specifically, the cut corresponds to either
(1) two paths whose end points are the nodes A, B, and C (illustrated in Figure 3), or
(2) three paths, all of which originate at some interior dual node and terminating at the

nodes A, B, and C (illustrated in Figure 4).
Given an assignment of weights to the edges of the mesh, the weight of the minimum

3-way cut of the first type is

min
X∈�A�B�C�

sum of distances in the dual graph from X to each of the other auxiliary nodes

and the minimum 3-way cut of the second type is

min
x ordinary node of dual

sum of distances in the dual graph from x to A, B, and C.

To find an embedded graph that is a “worst case” (up to the discretization), we solve
a linear program that has a weight variable wuv for each edge uv of the triangular mesh

A B

C

Figure 2. The planar dual.
Note. The planar dual is shown in boldface type. The nodes A, B, and C correspond to the three infinite regions

of the primal.
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A B

C

Figure 3. An example of a 3-way cut corresponding to a pair of paths.

(not including the rays). The linear program also has a distance variable dxy for every pair
x� y of nodes of the dual (including auxiliary nodes). The objective is to minimize the total
weight

∑
e xe subject to the condition that every 3-way cut has value at least 1. This condition

can be expressed by a collection of constraints on distances through the dual graph.

min
∑
uv

wuv s.t.

dxA +dxB +dxC ≤ 1 for each ordinary dual node x�

dAB +dAC ≥ 1�
dBA +dBC ≥ 1�
dCA +dCB ≥ 1�

dxz ≤ dxy +wyz for each ordinary dual edge yz�

dxx = 0 for each dual node x�

wuv ≥ 0 for each edge uv�

dxy ≥ 0 for each dual edge xy�

A B

C

Figure 4. An example of a 3-way cut corresponding to three paths.
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Using the above linear program, we first deduced the general form of the dual solu-
tion, giving us the lower bound for k = 3. From this we deduced the necessary structure
of any optimal primal solution (using complementary slackness conditions), including the
important idea of “ball cuts” versus “corner cuts,” which we will discuss in the following
sections.

3.2. The general case. In the general case, the lack of a planar embedding prevented us
from exploiting nice properties of its cuts; we were faced with the problem of enumerating
cuts as well as edges. Based on the work of Calinescu et al. (2000) and our own results for
the optimal 3-terminal solution, we decided to limit our exploration to sparcs as discussed
above.
There is still an infinite space of possible sparcs, so we discretized our problem. Fix an

integer grid size N . A discrete sparc is described by a vector �q1� ! ! ! � qk−1� where each qi
is an integer in the range �0�N − 1�. Given such a vector, we choose a random sparc by
setting di uniformly in the range �qi/N � �qi + 1�/N �. This defines a probability distribution
on sparcs. We now define a linear program to search for a probability distribution over
all discrete sparcs (which induces a probability distribution over all sparcs). We define a
variable for each discrete sparc, which reflects the probability of choosing that discrete
sparc, and provide constraints that upper bound the density of every possible segment under
this probability distribution. We then aim to minimize the largest of these densities.
There are infinitely many segments, but we define a finite set of constraints that allow

us to upper bound the density of all of them, as follows. The slices at distances q/N
�q = 1�2� ! ! ! �N − 1) for each terminal partition the simplex into cells

{
�x1� ! ! ! � xk�� qi/N ≤ xi ≤ �zi + 1�/N

}
�

For a given distribution on the discrete sparcs, we can compute a (linear) upper bound on
the density induced on any segment with a given alignment within a cell, and specify one
constraint saying that this upper bound should be small. Since the cells are small, we expect
all segments with a given alignment to have roughly the same density under our cutting
scheme, so we hope that the upper bound is reasonably tight. With this simplification, the
number of constraints is bounded by the number of cells times the number of segment
alignments per cell, which is at most k2Nk.
We determine the upper bound for a cell as follows. For any discrete cut, the slices

generated from it will fall into one of three categories. If the ith coordinate of the discrete
cut is different from that of the cell, then the ith slice will not pass through that cell:
depending on whether the coordinate is larger or smaller it will either capture the entire cell
or none of the cell. If the ith coordinates are the same, then the slice might pass through
the cell; we can use the fact that the slice is uniformly distributed over a range to determine
its density contribution.
An i� j-aligned segment can only be cut if the slices for terminal i or j go through its cell

(and no earlier slice captures the entire cell). If only one of the two slices goes through the
terminal then its contribution to a segment’s density is at most N (the length of the segment
divided by the width of the cell). If both slices go through the cell, their contribution is at
most 2N . We ignore the fact that different slices within the cell might capture the segment
before it can be cut, thus introducing some slack in our upper bound.
In view of Lemma 2.7, we need only represent cutting schemes that consider terminals in

random order. Recall that each assignment of integers in �0�N − 1� to q1� ! ! ! � qk−1 defines
a discrete sparc. We let xq1� ! ! ! �qk−1 be the variable assigning a probability to this sparc in
the cutting scheme. For any permutation � of �1� ! ! ! � k�, the probability of applying this
sparc to the sequence of terminals ��1�� ! ! ! ���k� is �1/k!�xq1� ! ! ! �qk−1 .
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In order to present the linear program, we require a bit of notation. For q1� ! ! ! � qk−1,
a1� ! ! ! � ak ∈ �0� ! ! ! �N −1� (the ql’s representing a discrete sparc and the al’s representing
a cell), for a permutation � of �1� ! ! ! � k�, and for i ∈ �1� ! ! ! � k�, define

f �
i ��q1� ! ! ! � qk−1�� �a1� ! ! ! � ak��=

{
0 if ∃m<�−1�i�� qm > a��m��

1 otherwise�

The value of f �
i is 0 if some slice earlier than the slice for terminal i captures the cell

defined by a1� ! ! ! � ak.
Define 1�m�n� to be 1 if m= n and zero otherwise.
The linear program minimizes � subject to the following constraints.∑

q1� ! ! ! �qk−1

xq1� ! ! ! �qk−1 = 1�

1
Nk

∑
q1� ! ! ! �qk−1

1
k!

∑
�

(
f �
i ��q1� ! ! ! � qk−1�� �a1� ! ! ! � ak��1�q�−1�i�� ai�N

+ f �
j ��q1� ! ! ! � qk−1�� �a1� ! ! ! � ak��1�q�−1�j�� aj�N

)
xq1� ! ! ! � qk−1 ≤ ��

We can exploit symmetry to further reduce the number of constraints we consider. Since
by assumption our sparc slices terminals in random order, two segments that are identical
under permutation of coordinates will have the same densities, so we need consider only
one of them. Thus, we restrict our constraints to 1,2-aligned segments in which the remain-
ing coordinates are in nondecreasing order. For each such segment and cell, we use one
constraint to measure the average density induced by a given sparc over all permutations of
the terminal orders.

3.3. LP results. Exploiting symmetry as discussed above, we were able to solve rela-
tively fine discretizations of the problem. We wrote a simple program to generate the linear
programs automatically, and used CPLEX to solve them. While it is difficult to “prove”
programs correct, our computations did converge to the correct 12/11 approximation ratio
for the 3-terminal case.
We give our results below in tabular form. We derived improved bounds for 4–9 terminals.

Note that these programs optimize a proven upper bound on the approximation ratio; thus,
under the assumption that the programs were correct, these numbers are proven upper
bounds. In fact, since the programs output a particular distribution over discrete cuts, their
performance ratio could be proven analytically via a tedious case analysis on each cell of
the discretized grid (which we have not performed).

Grid Corner cut
k size probability Bound 3/2− 1/k
3 90 0�284 1�0941 1�167
4 36 0�289 1�1539 1�250
5 18 0�314 1�2161 1�300
6 12 0�376 1�2714 1�333
7 9 0�397 1�3200 1�357
8 6 0�414 1�3322 1�375

Our experiments also revealed one interesting fact: in all cases, the optimum cut distri-
bution made use of “corner cuts.” That is, the output distribution had the following form:
with some probability, place each slice at a distance chosen uniformly between 0 and 1/3
from its terminal; otherwise, use a (joint) distribution that places every slice at a distance
greater than 1/3 from its terminal.
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Adding constraints that forced the corner cuts to operate over a range other than 1/3 of
the way from the terminals worsened the computed performance ratio, hinting that perhaps
the optimal algorithm uses corners of size exactly 1/3. This result is consistent with the
optimal 3-terminal algorithm, but inconsistent with the corner cut placement in the analytical
solution for higher k that we give later. We may be observing a misleading artifact of
working with a small discretized problem, or we may be missing something in our analytic
solution.

4. Upper bound for k= 3. Our analytic upper bound of 12/11 for k= 3 comes from
a new cutting scheme that we call the ball/corner scheme. Though for simplicity we present
a nonsparc scheme, there is a similar scheme using sparcs that achieves the same bound.
For k= 3, the simplex 
 can be viewed as a triangle in the plane, which simplifies our

pictures. However, we continue to use the original three-dimensional coordinate system to
locate points in the simplex. Our cut of the simplex is determined by some lines and rays
drawn through the triangle; we refer to them as boundaries. We will show that no segment
has high density with respect to our random choice of boundaries.
As illustrated in Figure 5, number the vertices of the simplex 1, 2, and 3. Let points

a�b� ! ! ! � f divide the edges in thirds, so that a–b–f –d–c–e–a is the hexagon in 
 with
side length 1/3, with side c–d on the side of the triangle connecting terminals 2 and 3.
(Remember that we measure length as half the L1 norm.) Note that this hexagon is (a scaled
version of) the unit ball for our distance metric. The points on the boundary of the hexagon
are each at a distance 1/3 from the hexagon’s center. Outside the hex, we have a corner for
each terminal i consisting of the points x with xi > 2/3.

4.1. The ball/corner scheme. The ball/corner scheme chooses a ball cut with proba-
bility 8/11; otherwise it chooses a corner cut. These two types of cuts are defined next.
The scheme is illustrated in Figure 5.

Ball cut. Choose a point r uniformly at random from either line a–c or line b–d.
Consider the three lines 
xi=ri (i= 1�2�3) parallel to the triangle’s sides and passing through
the point r . Each such line is divided at the point r into two rays. Thus we get six rays.
Each side of the triangle intersects two of these rays. For each side, choose uniformly at
random one of the two rays that hit it. This gives three rays; they form the boundary of
the 3-way cut. (For a sparc-based equivalent of this algorithm, we can choose (in random
order) two of the three sparcs that pass through the chosen point r .)

Corner cut. Choose two terminals in �1�2�3�, and a value � ∈ �2/3�1�, uniformly at
random. For each of the two chosen terminals i, let li = 
xi=�. The two lines li form the
boundaries of the 3-way cut. (Note that a corner cut is a sparc.)
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Figure 5. Illustration of the cuts used for the case k= 3.
Notes. The ball is contained within the dotted lines. The left-most diagram shows how r might be chosen for

the ball cut. The middle diagram shows one possible resulting ball cut (bold lines). The right-most diagram shows
a corner cut (bold lines).
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4.2. Analysis. We first state two simple properties of the ball cut that we need to
analyze the performance of the cutting scheme:

Fact 4.1. Each of the three coordinates of the random point r is uniformly distributed
in �0�2/3�.

Fact 4.2. Once r is chosen, each one of the six candidate rays connecting r to one
side of the triangle is chosen with probability 1/2.

Theorem 4.3. The maximum density of the ball/corner scheme is 12/11, so �∗3 ≤ 12/11.
Proof. We show that the expected density of any segment e is at most �e� · 12/11. For

the ball cuts, we use only the two facts claimed above. Since these two facts, as well as
the corner cut scheme, are symmetric with respect to the three coordinates, it suffices to
prove the claim only for a 1,2-aligned segment e. Further, we may assume that e is entirely
contained in either a corner or the hex; for otherwise, as discussed in §2.1, we can just
split e into corresponding pieces, calculating the density for each piece separately. We will
consider several cases, depending on where e is located.
First, assume e is located entirely in the hex. Such a segment cannot be cut by a corner

cut, so we need only consider the density when a ball cut is made and multiply by the
probability of choosing a ball cut, namely, 8/11. Assume a ball cut is made. Then e can
only be cut by rays in 
xi=ri for i= 1�2. By Fact 4.1, ri is uniformly distributed in [0, 2/3].
Hence, the probability that 
xi=ri goes through e is �e�/�2/3� since e is 1,2-aligned. If

xi=ri touches e, it is at a single point. By Fact 4.2, the ray of 
xi=ri containing this point
is picked for the cut with probability 1/2. Thus the expected number of times e is cut is
�8/11� · 2 · ��e�/�2/3�� · 1/2= �12/11��e�.
Exactly the same argument applies if the edge is in the corner closest to terminal 3. The

ball cut contributes the same 12/11 density, while the corner cut contributes nothing (note
that a 1,2-aligned edge is parallel to the line 
x3=r3 , so it cannot be cut by it).
Finally, suppose segment e is in the corner closest to terminal 1 (a symmetric argument

applies if e is in the corner closest to terminal 2). In this case, if a ball cut is made, the
above analysis applies except that only the line 
x2=r2 can cut e (the line 
x1=r1 never enters
the corner), so the density contribution of the ball cut is halved to �e��6/11�. But the edge
can also be cut by a corner cut. A corner cut is chosen with probability 3/11. When it
is, two of the three terminals are chosen, so terminal 1 is chosen with probability 2/3. If
terminal 1 is chosen, then, since the cutting line near terminal 1 is of the form 
x1=1−p,
where p is chosen uniformly in [0, 1/3], the probability that the line cuts e is �e�/�1/3�.
Thus, the expected number of times that the edge e is cut (by a ball cut or corner cut) is
�e��6/11�+ �3/11� · �2/3� · ��e�/�1/3��= �e��12/11�. �

5. Lower bound for k= 3.
Theorem 5.1. For k= 3, the minimum maximum density �∗3 ≥ 12/11. Hence, the inte-

grality gap for the geometric relaxation is 12/11.

Note that this theorem applies to all cutting schemes, not just sparcs. Thus, the scheme
of the previous section is optimal.
Proof. Fix N to be any positive integer. We construct an embedded weighted graph

GN with no 3-way cut of cost less than 12N , but with an embedding of cost 11N + 1.
This immediately demonstrates an integrality gap of 12N/�11N + 1�. Furthermore, it
implies that no cutting scheme has maximum density less than 12N/�11N +1�, because by
Lemma 2.1 such a cutting scheme applied to GN would yield a 3-way cut with expected
cost less than 12N , a contradiction. Since N is arbitrary, the result follows. Our construction
(for N = 7) is shown in Figure 6.
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Figure 6. The lower bound for k= 3 (here, N = 7).
Notes. The paths from 2 to 3 are on the left. The entire graph is on the right. On the border, overlapping paths

are drawn side by side for clarity, so line width represents edge cost.

For any pair of distinct terminals i� j and number d ∈ �0�1�, define an embedded path
p�i� j�d� as follows. Let l be the terminal in �1�2�3�− �i� j�, let a be the point on segment
il at distance d from i, and let b be the point on segment jl at distance d from j . Then
p�i� j�d� is the union of the three segments ia, ab, and bj .
We form the graph from 9N paths p�i� j�d� for 0 ≤ d ≤ 2/3, where d is an integer

multiple of 1/�3N�. Although we describe the graph as a set of paths, technically it is
a planar graph consisting of nodes and edges as follows: For every point in 
 whose
coordinates are integer multiples of 1/�3N�, there is a node in the graph embedded at that
point; for every pair of nodes embedded 1/�3N� units apart, G has an edge with cost equal
to the number of paths that pass through both nodes.
With this understanding, we now specify the graph. For each of the 3 distinct pairs of

terminals i� j , there are 3N paths. Of these paths, N run directly between the terminals; that
is, there are N copies of p�i� j�0�. The remaining 2N paths are the paths p�i� j�m/�3N��
where m= 1�2� ! ! ! �2N .
The total cost of the embedding is the total length of the paths. Since a path

p�i� j�m/�3N�� has length 1+m/�3N�, a direct calculation shows that the total length of
the paths is 3�N +∑2N

m=1 1+m/�3N��= 11N + 1.
Next we lower bound the cost of any 3-way cut. Since the graph is planar, any minimal

3-way cut corresponds either to a disconnected cut (meaning that the cut is the union of
two disjoint 2-way cuts, each separating some terminal from both other terminals), such as
our upper bound’s corner cut, or a connected cut (meaning that the cut edges give, in the
planar dual, three paths connected at some central node and going to the three sides of the
triangle), such as our upper bound’s ball cut.
Any 3-way cut must cut all of the 9N paths at least once. To finish the proof, we will

argue that for either type of 3-way cut (connected or not), at least 3N paths are cut twice,
so that the edges cut by the 3-way cut cost at least 12N . This is easy to verify for a
disconnected cut: a disconnected cut is the union of two 2-way cuts, so the 3N paths running
between the two terminals that are cut off must be cut twice.
Now consider any connected cut. In the planar dual of GN , the connected cut corresponds

to a central node and three paths from the node to each side of the triangle. Let x= �x1� x2� x3�
be any point inside the face of GN corresponding to the central node. Consider a path
p�i� j�d� such that d ≥ xl, where l 	= i� j . That is, x is inside the cycle formed by the union
of p�i� j�d� and p�i� j�0�. Then the path p�i� j�d� is cut at least twice by the connected cut.
For fixed i and j , the number of such paths (with d ≥ xl) is �2N − xl3N + 1�> 2N − 3xlN .
Thus, the total number of such paths is more than 6N − 3�x1+ x2+ x3�N = 3N . �

6. Improvement for general k. We now present an algorithm for an arbitrary number
of terminals. While this algorithm seems unlikely to be the best possible, it improves on
the previous best bound. As discussed in §2.3, the essential observation in this analysis is
that many slices can capture an edge before it has a chance to be cut.
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Theorem 6.1. For all k, �∗k ≤ 1�3438. Moreover, there is a k-way cut randomized
approximation algorithm with an approximation guarantee of 1.3438.

Our bound improves on the Calinescu et al. (2000) bound of 1�5− 2/k for all k ≥ 14.
For k < 14, we show that �∗k < 1�5−2/k by specializing the analysis for small k (see §6.1).
To prove the theorem, we will use a (sparc) cutting scheme; that is, we choose k slicing

thresholds �i, and apply the slices 
xi=�i to a random permutation � of the terminals. We
are going to apply either an independent cut (ICUT) or a corner cut:

ICUT. Each �i is chosen independently and uniformly in [0, 6/11].

Corner cut. All �i are chosen equal to a single random � picked uniformly in [6/11, 1].
We will apply ICUT with probability 6 = 0�667186 and apply a corner cut with the

remaining probability.
Before proving that the above sparc achieves a maximum density below 1.3438, as in

Theorem 6.1, we first draw parallels to our scheme for k= 3. The corner cut is completely
analogous, except that � is now chosen in the interval [6/11, 1] instead of [2/3, 1]. However,
ICUT is very different from the ball cut. For example, the �i are now independent, whereas
they were highly dependent in the ball cut. The reader may wonder why we did not just
generalize the ball/corner cut scheme. Corner cuts are only meaningful for � = �1/2�1�
since this is the region in which the 
xi=� are disjoint. On the other hand, the maximal
ball of the k-simplex has center �1/k� ! ! ! �1/k� and radius 1/k. Already for k = 4, the
simplex cannot be covered by a ball and corners, and for k large, the measure of the ball
is vanishingly small. Hence, the concept of ball cuts is not really relevant for large k.
To bound the cutting density of our scheme, we will bound the density of every segment.

As justified in §2.2, we consider a segment of length � > 0, and let � approach zero. As
in the ball/corner scheme, by symmetry we can assume without loss of generality that the
segment is 1,2-aligned.
Define dk�x1� ! ! ! � xk� to be the density with which ICUT cuts a 1,2-aligned segment of

infinitesimal length located at x1� x2� ! ! ! � xk. We will show:

Lemma 6.2.

dk�x1� ! ! ! � xk�≤
{
2�014096 if x1� x2 ≤ 6/11�
11/12 otherwise�

By Lemma 6.2, this combined scheme gives a density of 2�0140966 for noncorner seg-
ments (since they are cut only if ICUT is used, and then only with probability 2.014096), and
a density of �11/12�6+ �11/5��1− 6� for corner segments (combining their probabilities
of being cut by the two schemes), for a maximum density of max��2�014096�6� �11/12�6+
�11/5��1 − 6�� ≤ 1�3438, proving Theorem 6.1. To finish the proof of Theorem 6.1, it
remains only to prove Lemma 6.2.
ICUT’s cumulative probability distribution function for any �i is F �z�=min��11/6�z�1�.

The corresponding probability density function is

F ′�z�=
{
11/6 if z ∈ �0�6/11��
0 otherwise.

Consider a 1,2-aligned segment of length � with one end point fixed at x1� x2� ! ! ! � xk.
As � goes to zero, the density of this segment goes to

(1) dk�x1� ! ! ! � xk�=
1
k!

∑
�

(
F ′�x1�

∏
i� ��i�<��1�

�1−F �xi��+F ′�x2�
∏

i� ��i�<��2�

�1−F �xi��

)
�
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where the sum is over all k! orderings of the terminals. This formula follows from Fact 2.5.
The first term measures the probability that the segment is cut by terminal 1, which happens
if the slice for terminal 1 goes through the segment while all slices preceding terminal 1 in
the ordering fail to capture the segment. The second term similarly measures the probability
that the segment is cut by terminal 2. Considering the slices for terminals other than 1 and
2 is the crucial element in improving the density bound of 3/2 for large k. The formula
assumes that F is continuous around each xi and that F

′ is continuous in an open region
around x1 and x2. The latter is not the case around 6/11. However, as discussed §2.1, we
may assume that all segments e considered have been subdivided so that for each i= 1�2,
either maxxi ≤ 6/11 or min xi > 6/11.
Note that dk�x1� ! ! ! � xi�0� ! ! ! �0� = di�x1� ! ! ! � xi� (provided i ≥ 2), because xj = 0

implies terminal j cannot save the edge. Note also that dk is symmetric with respect to the
variables xi for i > 2. Define

Dk�x1� x2�
�= max
x3� ! ! ! � xk

dk�x1� x2� ! ! ! � xk��

Ck�x1� x2�
�= dk�x1� x2� c� ! ! ! � c� where c= �1− x1− x2�/�k− 2��

D��x1� x2�
�= lim
k→�

Dk�x1� x2��

C��x1� x2�
�= lim
k→�

Ck�x1� x2��

In these definitions, �x1� x2� ! ! ! � xk� is required to lie in the k-simplex.
Dk�x1� x2� is the maximum density of any 1,2-aligned infinitesimal segment with an

end point whose first two coordinates are x1� x2. Note that the maximum is well defined
and achieved by some x3� ! ! ! � xk because the simplex is closed under limits.
To understand ICUT, our first goal is to characterize Dk. We consider Ck as it is one

candidate for Dk.

Lemma 6.3. Dk�x1� x2�≤Dk+1�x1� x2� for all k.

Proof. max dk�x1�! ! ! �xk�=max dk+1�x1�! ! ! �xk�0�≤max dk+1�x1�! ! ! �xk�xk+1�. �

Thus for fixed x1� x2, �D2�x1� x2��D3�x1� x2�� ! ! ! � is a nondecreasing sequence bounded
from above (by 2). This implies that D� is well defined. We will see later that C� is also
well defined.
Next we show that for fixed x1 and x2, the maximum for dk occurs at either the “central

point” x1� x2� c� c� ! ! ! � c or the “three-terminal” point x1� x2�1− x1− x2�0� ! ! ! �0.

Lemma 6.4.

dk�x1� ! ! ! � xk�≤
{
Ck�x1� x2� if ∀ i > 2� xi ≤ 6/11�
C3�x1� x2� if ∃ i > 2� xi ≥ 6/11�

Proof. Fix x1 and x2. Let c= �1− x1− x2�/�k− 2�.
Claim 1. Among all x3� ! ! ! � xk such that 0≤ xi ≤ 6/11 for all i > 2 (and x1� x2� ! ! ! � xk

is in the simplex), the unique maximizer of dk�x1� x2� x3� ! ! ! � xk� satisfies x3 = x4 = · · · =
xk, so it is equal to Ck�x1� x2�.

Suppose for contradiction that some other such x3� x4� ! ! ! � xk maximizes dk. Then xi < xj
for some i� j > 2. Consider a function of xi and xj (holding the other coordinates fixed)

(2) dk�x1� ! ! ! � xk�= p+ q�1− F �xi��+ r�1− F �xj��+ s�1− F �xi���1− F �xj���

where p, q, r and s are nonnegative and independent of xi and xj . Furthermore q = r
because dk is symmetric in xi and xj . Consider increasing xi and decreasing xj at equal
rates. This maintains 0≤ xi� xj ≤ 6/11 but increases dk at a rate proportional to

q�F ′�xj�− F ′�xi��+ s
(
F ′�xj��1− F �xi��− F ′�xi��1− F �xj��

)
�
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This is positive because F ′�z�= 11/6 for z < 6/11 and F �xj� > F �xi� (recall that xi < xj ≤
6/11). This contradicts the choice of x3� ! ! ! � xk.

Claim 2. Among all x3� ! ! ! � xk such that xi ≥ 6/11 for some i > 2 (and x1� ! ! ! � xk is
in the simplex), the unique maximizer of dk�x1� x2� x3� ! ! ! � xk� satisfies xi = 1−x1−x2 and
xj = 0 for j 	= i, so it is equal to C3�x1� x2�.

Suppose for contradiction that some other such x3� x4� ! ! ! � xk maximizes dk. Fix some
j > 2 such that 0< xj < 6/11≤ xi. Since by assumption xi ≥ 6/11, we have F �xi�= 1 and
thus the expression (2) reduces to p+ r�1−F �xj��. If we increase xi and decrease xj at the
same rate, the rate of increase in dk is rF

′�xj� > 0, contradicting the choice of x3� ! ! ! � x4.
The two claims together prove the lemma. �

Lemma 6.5. For k≥ 4, Ck�x1� x2�≤Ck+1�x1� x2�.

Proof.

Ck�x1� x2� = dk�x1� x2� c� ! ! ! � c�

= dk+1�x1� x2� c� ! ! ! � c�0�

≤ Ck+1�x1� x2��

Here c = �1− x1 − x2�/�k− 2�. The last inequality follows from Lemma 6.4 (using c ≤
1/2< 6/11). �

An immediate corollary is that C��x1� x2� is well defined and Ck�x1� x2� ≤ C��x1� x2�
for all k. Using this and Lemma 6.4, to bound D� it suffices to bound C3 and C�. We
begin with C�.

Lemma 6.6.

C��x1� x2�≤
{
2�014096 if x1� x2 ≤ 6/11�
11/12 otherwise�

Proof. Fix x1 and x2. Our first goal is to derive a closed-form expression for Ck�x1� x2�
for any k. Fix k for now and let xi = c= �1− x1− x2�/�k− 2� for i > 2.
For j = 1�2, let Sj denote the probability that the segment at �x1� x2� ! ! ! � xk� is not

captured by a terminal other than j before terminal j’s cut is made:

Sj
�= 1
k!

∑
�

∏
i� ��i�<��j�

�1− F �xi���

Then Ck�x1� x2�= S1F
′�x1�+ S2F

′�x2�.
We will derive a closed-form expression for S1 (and by symmetry for S2). Recall that

xi = c for i > 2. We thus rewrite

S1 =
1
k

k−1∑
q=0

(
q

k− 1 �1− F �c��q−1�1− F �x2��+
(
1− q

k− 1
)
�1− F �c��q

)
�

Here we condition on q, the number of i such that ��i� < ��1�. Note that q is uniform in
�0�1� ! ! ! � k− 1� while q/�k− 1� is the probability that ��2� < ��1�, given q. A change
of variables and rewriting give

S1 =
(
1+ 1− F �x2�

k− 1
) k−2∑

q=0

�1− F �c��q

k
− F �x2�

k−2∑
q=0

q�1− F �c��q

k2− k
�

Now we let k → �. The two sums above have standard closed forms that tend respec-
tively to

�1− e−a�a−1 and �1− �1+ a�e−a�a−2�
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where a
�= limk→� kF �c�= �1− x1− x2�F

′�0�. Thus, as k→�,
S1 → �1− e−a�a−1− F �x2��1− �1+ a�e−a�a−2�

Of course S2 tends to the above with x1 replacing x2. This gives us our closed-form expres-
sion for C��x1� x2�:

C��x1� x2� = �F ′�x1�+ F ′�x2��×
1− e−a

a
(3)

− �F ′�x1�F �x2�+ F ′�x2�F �x1��×
1− �1+ a�e−a

a2
�

where a= �1− x1− x2�F
′�0�.

The above equality holds for any suitably well-behaved F . Using this closed form and
our particular choice of F , we now show the two desired bounds on C�.

Case 1. x1� x2 ≤ 6/11. In this case a= �11/6��1− x1− x2�, F
′�x1�= F ′�x2�= 11/6, and

F �x1�+ F �x2�= �11/6��x1+ x2�= 11/6− a. So (3) gives

C��x1� x2�=
11
3
1− e−a

a
− 121
36

(
1− 6

11
a

)
1− �1+ a�e−a

a2
�

where a= �11/6��1− x1− x2� so a ∈ �0�11/6�. Let C�a�= C��x1� x2�. In the rest of this
case (Case 1), we will prove that C�a� ≤ 2�014096 for a ∈ �0�11/6�. The cases a = 0
and a = 11/6 follow by the continuity of C. The claim is “obvious” from a plot but the
somewhat technical proof appears below.
We show that C�a� is strictly concave for a ∈ �0�11/6�. It therefore has a unique

maximum at some a0, where C
′�a0� = 0. By substitution, C ′�0�294� ≥ 0�00045 > 0 and

C ′�0�295�≤−0�00009< 0, so a0 ∈ �0�294�0�295�. Hence
max

a∈�0�11/6�
C�a�≤C�0�295�− 0�001 ·C ′�0�295�≤ 2�014096�

To show C�a� is strictly concave, we show that C ′′�a� is strictly negative. Now,

C ′�a�= 11
36
7e−aa2− 18a− 4e−aa

a3
+ 11
36
6e−aa3+ 22− 22e−a

a3
�

and

C ′′�a�=− 11
36a4

�7e−aa3+ 3e−aa2− 36a− 30e−aa+ 6e−aa4+ 66− 66e−a��
To show that C ′′�a� is negative, it suffices to prove that

D�a�=−7e−aa3− 3e−aa2+ 36a+ 30e−aa− 6e−aa4− 66+ 66e−a

is negative. By substitution, D�0�= 0 and D�11/6�= 0, so it suffices to show that D′ has
only one zero a1, D

′�a� < 0 for a< a1 and D
′�a� > 0 for a> a1. Here

D′�a�=−17e−aa3− 18e−aa2− 36e−aa+ 36− 36e−a + 6e−aa4

and D′′�a� = e−aa2�−6a2 + 41a − 33�. For a ∈ �0�11/6�, D′′ has only one zero a2 =
�41−√

889�/12≈ 0�93 and D′′�a� < 0 for a< a2 and D
′′�a� > 0 for a> a2. That is, D

′ is
first decreasing and then increasing. Since D′�0�= 0 and D′�11/6�≥ 4�108> 0, it follows
that D′ has only one zero a1 for a ∈ �0�11/6�.

Case 2. x1 or x2 ≥ 6/11. Assume x1 ≥ 6/11 (the case x2 ≥ 6/11 is symmetric). In this
case, F ′�x1�= 0 and F �x1�= 1, so we get

C��x1� x2�=
11
6
1− e−a

a
− 11
6
1− �1+ a�e−a

a2
�
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As before, let C�a� = C��x1� x2�. We will prove that C�a� ≤ 11/12 for a ∈ �0�11/6�.
First, lima→0C�a� = 11/12, so C�a� ≤ 11/12 follows if we can show that C ′�a� ≤ 0 for
a ∈ �0�11/6�. We have

C ′�a�= 11
6a3

�−a− e−aa+ 2− 2e−a��
Define E�a�=−a− e−aa+ 2− 2e−a. Since 11/6a3 > 0 for a > 0, C�a� ≤ 0 if and only
if E�a�≤ 0. Since E�0�= 0, we can infer E�a�≤ 0 if E ′�a�≤ 0 for all a ∈ �0�11/6�. We
have E ′�a�=−1+ e−a�a+ 1�. Note that E ′�0�= 0, so E ′�a�≤ 0 follows if E ′′�a�≤ 0 for
a ∈ �0�11/6�. We have E ′′�a�=−e−aa, so E ′′�a�≤ 0. We conclude that C��x1� x2�≤ 11/6
if x1 > 6/11. �

Lemmas 6.4 through 6.6 prove that, for x such that xi ≤ 6/11 for all i > 2,
dk�x1� ! ! ! � xk� ≤ C��x1� x2�

≤
{
2�012096 if x1� x2 ≤ 6/11�
11/12 otherwise.

The remaining case is when xi ≥ 6/11 for some i > 2. In this case by Lemma 6.4,
dk�x1� ! ! ! � xk�≤C3�x1� x2�= d3�x1� x2�1− x1− x2�

and x1+x2 ≤ 5/11. Thus, to finish the proof of the theorem, it suffices to show the following
lemma.

Lemma 6.7. If x1+ x2 ≤ 5/11, then C3�x1� x2�≤ 11/6≤ 2�012096.
Proof. Let x3 = 1− x1− x2 ≥ 6/11.
Then F �x3�= 1 while F �x1�= �11/6�x1, F �x2�= �11/6�x2, and F

′�x1�= F ′�x2�= 11/6.
By inspection of (1), C3�x1� x2� = d3�x1� x2� x3� = �1/6��11/6��6− �11/6��x1 + x2�� ≤

11/6. �

This proves Lemma 6.2.

6.1. Improvements for small values of k. For particular values of k it is possible to
refine the analysis in the proof of Theorem 6.1 to get improved bounds. In this case it is
useful to modify the algorithm so that it only uses k−1 cuts instead of k. In particular, we
do not use the cut for the terminal j with ��j�= k. The analysis for this modified algorithm
goes similarly, with our definitions appropriately modified to reflect that we are using k−1
instead of k cuts.
Then, instead of passing to the limit, Ck�x1� x2� can be evaluated directly. Following this

approach we obtained the following performance guarantees for particular k:

Corner ICUT
k placement probability Bound

3 0�641 0�675 1�131
4 0�607 0�663 1�189
5 0�588 0�659 1�223
6 0�576 0�659 1�244
7 0�565 0�657 1�258
8 0�557 0�656 1�269
9 0�557 0�659 1�277
10 0�557 0�661 1�284
12 0�554 0�661 1�293
20 0�554 0�666 1�314
35 0�550 0�666 1�327
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“Corner placement” is the placement of the corner (analogous to 6/11) and “ICUT probabil-
ity” is the probability of choosing ICUT. These parameters were chosen to try to minimize
the resulting bound on the performance ratio, shown under “bound.” These numbers are
approximate; the ratios were evaluated numerically without formal verification.

7. Conclusion. We have provided a better analysis of an embedding relaxation for the
multiway cut problem. We have exactly determined the integrality gap for the 3-terminal
problem, and given an approximation algorithm achieving the bound. For larger values of
k, we have defined a class of cutting schemes called sparcs that, through a combination
of nonuniform and dependent rounding, provide better approximation ratios than the best
previous schemes. However, the question of the exact integrality gap remains open.

8. Appendix.
Proof of Theorem 2.3. We show that there necessarily exists a cutting scheme whose

maximum density equals the integrality gap of the relaxation. The basis of this proof is that
the two quantities are solutions to dual linear programs. Although the linear programs are
infinite, we show they have no duality gap.
Interestingly, most of the proof holds in the following more general setting: We have a

nonnegative real vector x representing a relaxed solution to some problem. There is a set
S of allowable solutions (also nonnegative real vectors), and we want to round x to some
solution y ∈ S. The method for rounding x is represented by a randomized rounding scheme,
which is simply a probability distribution P on S.
We assume that the cost of x is given by w · x =∑

i wixi for some nonnegative weight
function w, and likewise the cost of any y ∈ S is w ·y. We want to choose a single rounding
scheme P that has a good performance ratio against all possible weight functions w. (We
will see that this is analogous to choosing a single rounding scheme of the simplex that has
good performance ratio against all embedded graphs.)
Define the performance ratio of a rounding scheme P to be

sup
w

Ey∈P �w · y�
w · x �

(This corresponds to the maximum density of a cutting scheme.) Here the notation Ey∈P �w ·y�
signifies the expectation over y ∈ S chosen according to the probability distribution P .
Define the integrality gap to be

sup
w

infy∈S w · y
w · x �

the worst-case ratio of the minimum-cost of any true solution to the cost of the relaxed
solution.

Lemma 8.1. The performance ratio can be reformulated as

sup
w

Ey∈P �w · y�
w · x = sup

i

Ey∈P �yi�
xi

�

In the case of a k-cut, each index i corresponds to a “seglet” (edge of the divided simplex),
and w corresponds to an embedded graph (wi corresponds to the number, or total weight, of
edges embedded along seglet i). In that case the lemma says that, to check the performance
guarantee of a rounding scheme, it suffices to check it for each seglet.
The proof is similar to the observation regarding two-player zero-sum matrix games that

once one player has fixed their mixed strategy, the other player has an optimal mixed
strategy that is pure.
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Proof. Clearly the left-hand side is greater than or equal to the right-hand side (take
w to be any of the i unit vectors with a single coordinate equal to 1 and the others 0). To
finish we show that the left-hand side is at most the right-hand side for any fixed w.
Fix w. Let : equal the right-hand side above. Note that by linearity of expectation, the

left-hand side is ∑
i wiEy∈P �yi�
w · x �

By the definition of :, Ey∈P �yi�≤ :xi, so the quantity above is at most∑
i wi:xi
w · x = :� �

Theorem 8.2. If S and the dimension of x are finite, then there exists a rounding scheme
P whose performance ratio equals the integrality gap.

Proof. Let Py be the probability that we choose solution y. Choosing an optimum
rounding scheme is equivalent to the following linear program:

minimize
P

�

subject to




∑
y∈S

Py
yi
xi

≤ � �∀ i��
∑
y∈S

Py = 1�

Py ≥ 0 �∀y ∈ S��
The dual of this program is

maximize
q

:

subject to




∑
i

qi
yi
xi

≥ : �∀y ∈ S��
∑
i

qi = 1�

qi ≥ 0 �∀ i��
By the change of variables wi = qi/xi, this is equivalent to

maximize
w

:

subject to




∑
i

wiyi ≥ : �∀y ∈ S��
∑
i

wixi = 1�

wi ≥ 0 �∀y ∈ S��
But it is easy to verify that this is equivalent to the problem of choosing a weight function
w to achieve the integrality gap. If x and the vectors in S are finite-dimensional and S is
finite, then strong duality implies that the linear programs have equal values. �

Next we describe how this relates to the rest of the paper. Define edge set �� to be
all edges (pairs of points) in the simplex. Define xe = �e� for e ∈ ��. Define S to contain
the characteristic vectors y�C� of k-way cuts C of the simplex: ye�C� = 1 if e is cut by
C and 0 otherwise. An embedding of a particular weighted graph G in the simplex then
corresponds to a particular weight function w�G�, where we�G� equals the total weight of
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edges embedded on simplex edge e. With this x, S, and interpretation of w, we have the
following correspondences:

General setting k-way cut

w ↔ embedded G
w · x = vol�G�
y ∈ S ↔ k-way cut of G
w · y = cost of k-way cut C of G

Rounding scheme P ↔ Cutting scheme P
infP performance ratio of P = �∗k

Integrality gap = Integrality gap

Thus, if S and the dimension of x were finite, we could conclude by the theorem that the
�∗k equals the integrality gap of the relaxation. This yields an immediate corollary:

Corollary 8.3. For input graph instances of any bounded size, there is a rounding
scheme whose performance is equal to the integrality gap of the relaxation.

Proof. Consider the set of all graphs whose size is bounded by some quantity. Each has
a bounded number of vertices, and the (rational) weights on the graph are also of bounded
size. The linear programming relaxation thus also has bounded size. It follows that any
vertex solution to the linear programming relaxation, which assigns embedding coordinates
to all the vertices, has bounded size—meaning that the coordinates are rational numbers
of bounded size. The set of coordinates at which vertices might be located in an optimal
embedding therefore forms a discrete grid within the simplex, with a finite number of points.
The embedded edges connect these points, so there is a finite number of embedded edges
in the optimal solution. An input instance is determined entirely by the weights assigned to
these edges, so it has finite dimension. Similarly, for the purposes of rounding we need only
consider k-way partitions of the finitely many grid vertices. There are only finitely many of
these partitions.
Since the dimension of inputs and the number of output solutions is finite, the previous

theorem applies and shows that there is a rounding scheme with performance equal to the
integrality gap of the embedding. �

If we want a rounding scheme that works (uniformly) for graphs of arbitrary size, we
have to work somewhat harder. We show that the desired result follows as a limiting case
of Theorem 8.2.
In what follows, we restrict the k-way cut problem to various particular subsets E of the

edge set �� of the simplex. A k-way cut of E is defined to be a subset C of E such that
E−C contains no terminal-to-terminal path. By the minimal maximum density with respect
to E we mean

��E�= inf
P
sup
e∈E
Pr�P cuts e�/�e��

where P ranges over cutting schemes of E (probability distributions over k-way cuts of E).
By the integrality gap with respect to E we mean

gap�E�= sup
w

inf
C

∑
e∈C w�e�∑

e∈E w�e��e�
�

where w ranges over weight functions on E with finite support.
Our goal is to show �����= gap����. Since we know gap����≤ �����, it suffices to show

�����≤ gap����.
Define � to contain those edges in �� with rational end points. (In fact, any countable

dense set will do in place of the rationals.) Fix any enumeration of the edges in �. Let set
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�n contain the first n edges in the enumeration. It suffices to show the following equality:

(4) sup
n

���n�= ������

because by Theorem 8.2 we know ���n� = gap��n�, and clearly gap��n� ≤ gap����, so
combining with (4) proves the theorem via

�����= sup
n

���n�= sup
n

gap��n�≤ gap�����
Thus, to prove Theorem 2.3, we need only prove (4). In the remainder of the section we
prove it as follows: We first show we can extend any sequence of cutting schemes, one for
each �n, to a single good cutting scheme for their union � (edges with rational end points).
This shows supn ���n�= ����. We then show that we can extend the cutting scheme on �
to a cutting scheme on �� (all edges). This shows ����= �����.
One measure-theoretic issue that we must first address is how we formally define a

probability distribution P on our infinite sets �� and �. For this we use Kolmogorov’s
Existence Theorem (Billingsley 1995, Chapter 7).
Before we explain, we introduce some terminology. Note that any cutting scheme P of

a set F ⊆ �� induces a cutting scheme PE on each subset E ⊆ F by restriction. We say that
any P from which PE can be so obtained is consistent with PE .
Kolmogorov’s Existence Theorem implies the following. Fix any F ⊆ ��. Consider a

family of cutting schemes �PE� E ⊆ F �E finite� of the finite subsets of ��. If this family
is consistent, meaning that whenever two cutting schemes PE and PE′ in the family satisfy
E ⊆E ′, the second scheme is consistent with the first one, then there exists a single cutting
scheme P of F , with P consistent with each PE in the family.
In this section, to describe any cutting scheme on �� (or �), we specify the consistent

family of cutting schemes it induces on the finite subsets. The following lemma gives a
useful condition for the existence of such a family. We will use it twice.

Lemma 8.4. Let F be any subset of ��. Suppose there exists a sequence of cutting
schemes �Q�1��Q�2�� ! ! ! � that converges in the following sense: for each finite E ⊆ F and
each k-way cut C of E, the limit

(5) lim
n→�Q

�n�
E �C�

is well defined. Define PE to be the cutting scheme of E that, for each k-way cut C
of E, chooses C with probability in (5), i.e., PE�C� �= limn→�Q

�n�
E �C�. Then �PE� E ⊆ F ,

E finite� is a consistent family of cutting schemes, so by Kolmogorov’s Existence Theorem
there exists a cutting scheme P of F consistent with each PE .

Proof. We need to verify the following:
(1) Each PE is a cutting scheme:

∑
C PE�C�= 1 with each PE�C�≥ 0, where C ranges

over all cuts of E.
(2) For PE and PE′ with E ⊆ E ′ both finite, PE′ is consistent with PE . That is, for any

cut C of E,
PE�C�=

∑
C ′
PE′�C ′��

where C ′ ranges over all k-way cuts of E ′ such that C ′ ∩E =C.
In each case, the desired property holds for the cutting scheme induced on E (and/or E ′)

by Q�m� for large enough m. For example, to verify the second property, use

PE�C�−
∑
C ′
PE′�C ′� = lim

n
Q

�n�
E �C�−∑

C ′
lim
n
Q

�n�
E′ �C

′�

= lim
n

[
Q

�n�
E �C�−∑

C ′
Q

�n�
E′ �C

′�
]

= 0�
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The first equality is by definition of PE , the second is because the finite sum of the limits
is the limit of the sums, and the last is because, for n large enough, the term inside the
limit is well defined and necessarily 0 (simply because Q�n� is a cutting scheme, so the
induced cutting schemes Q�n�

E and Q�n�
E′ are necessarily consistent). The first property follows

similarly. �

We need one last “utility” lemma. It will help us construct a sequence of cutting schemes
�Q�i�� that converges in the sense needed for Lemma 8.4.
Lemma 8.5. Consider a countable collection � of countable sequences of real numbers,

where each sequence q = �q�1�� q�2�� ! ! ! � in � lies in some finite interval Is .
Then there exists an infinite index set � ⊆ �1�2� ! ! ! � such that for each sequence q ∈�,

the limit

lim
n∈�� n→�

q�n�

is well defined.

Proof. The proof is a “dovetailing” variation of the standard proof that any sequence
in a compact set contains an infinite convergent subsequence.
Order the sequences arbitrarily and consider the infinite matrix whose jth row is

the jth sequence. Associate with each sequence q an interval I ′q , initially Iq . Visit the
sequences in the standard dovetailing order; that is, visit the jth sequence for each j =
1�1�2�1�2�3�1�2�3�4� ! ! ! , so that each sequence is visited infinitely often.
While visiting a sequence q, narrow the associated interval to either its upper or lower

half, and then delete from the matrix all the columns i such that q�i� is no longer in the
associated interval. Further, make the choice of upper or lower half so that infinitely many
columns remain undeleted. (This is possible because each of the infinitely many q�i�’s lying
in a column that was previously not deleted lies in one of the two halves.)
To complete the construction, define i�n� to be the smallest index larger than n of

any column that remains undeleted after the nth step of the construction, and take � =
�i�n�� n= 1�2� ! ! ! �. It is easy to verify that for each q ∈�, the subsequence �q�i�� i ∈��
converges. �

Now we can begin our two-step proof that �����= ����= supn ���n�. First we show that
if each �n has a good cutting scheme, then there is an equally good cutting scheme of �.

Lemma 8.6. There exists a cutting scheme P of � with maximum density supn ���n�.
Thus, ����= supn ���n�.

Proof. Let �sup = supn ���n�. Say a sequence of cutting schemes �P�n�� is good if each
P�n� is a cutting scheme of �n and has maximum density at most �sup with respect to �n. By
the definition of �sup, there exists a good sequence of cutting schemes �Q�n�� n= 1�2� ! ! ! �.
Consider each pair �E�C� where E is a finite subset of � and C is a cut of E. Since

there are only countably many such pairs, Lemma 8.5 implies that there exists an infinite
index set � ⊆ �1�2� ! ! ! � such that, for each pair �E�C�,

PE�C� �= lim
n∈�� n→�

Q
�n�
E �C�

is well defined. By Lemma 8.4, each PE is a cutting scheme and there exists a cutting
scheme P of � that is consistent with each PE .
It remains to verify that P has maximum density �sup with respect to �. Observe that, for

any edge e ∈� and any cutting scheme Q, Q�e� is a cutting scheme that chooses among at
most two cuts, the set �e� itself and (possibly) the empty set, and that the probability that
Q�e� chooses the set �e� is the probability that Q chooses some cut that contains e.



Karger et al.: Rounding Algorithms for a Geometric Embedding
460 Mathematics of Operations Research 29(3), pp. 436–461, © 2004 INFORMS

For any edge e ∈�,

Pr�P cuts e� = Pr�P�e� chooses the cut �e��

= lim
n∈�� n→�

Q
�n�

�e���e��

= lim
n∈�� n→�

Pr�Q�n� cuts e�

≤ lim
n∈�� n→�

�e��sup�

Hence, for any edge e, the probability that P cuts e is at most �e��sup. �

Lemma 8.7. Let P be the cutting scheme of � of maximum density ���� (shown to exist
in Lemma 8.6). There is a cutting scheme �P of �� that has maximum density ���� with
respect to ��. Thus �����= ����.

Proof. For each point p in the simplex, fix a sequence of rational points �p�1�� p�2�� ! ! ! �
converging to p. For any set F ⊆ ��, let F �n� denote ��p�n�� q�n��� �p� q� ∈ F �.
Define a sequence of cutting schemes �P�n�� n= 1�2� ! ! ! � of �� by P�n��C�= P�C�n��.

That is, P�n� maps each real point to its nth rational approximation, then cuts using a random
cut from P . We claim that for each finite E ⊆ �� and each cut C of E, the limit

lim
n→�P

�n�
E �C�= lim

n→�PE�n� �C�n��

is well defined.
To show the claim, it is enough to show that for all � > 0, �PE�n� �C�n��−PE�m��C�m��� ≤ �

for all large enough n and m. Let E ′ =E�n� ∪E�m� and C ′ =C�n� ∪C�m�. By consistency,

PE′�C ′�≤ PE�n� �C�n��≤ PE′�C ′�+∑
D

PE′�D��

where D ranges over all the cuts of E ′ other than C ′ that are consistent with C. Each
of the cuts that D takes on cuts at least one of the segments �p�n�� p�m�� where p ranges
over the end points of the edges in E, so the corresponding term in the sum is at most
�����p�n� − p�m��. Since there are finitely many terms and ���� is finite and p�n� → p,
it follows that the sum on the right is arbitrarily small for large enough n and m. Thus
�PE�n� �C�n��−PE′�C ′�� (and likewise �PE�m��C�m��−PE′�C ′��) tends to zero for large m and n.
Thus so does �PE�n� �C�n��−PE�m��C�m���. This proves the claim.
Define �PE�C� �= limn→� P

�n�
E �C�. By Lemma 8.4, there is a cutting scheme �P of �� that

is consistent with each �PE . The argument used at the end of the proof of Lemma 8.6 shows
that, for any edge e ∈ ��,

Pr�P cuts e� = lim
n→�P

�n�

�e� �C�

= lim
n→�P�e�

�n� �C�n��

= lim
n→�Pr�P cuts e

�n��

≤ lim
n→� ��P��e

�n��
= ��P� lim

n→��e�n��
= ��P��e��

Thus the maximum density of �P is at most ��P�. �
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