A Better Algorithm For an Ancient Scheduling Problem

David R. Karger *

Steven J. Phillips *

Eric Torng *

Department of Computer Science
Stanford University
Stanford, CA 94305-2140

Abstract

One of the oldest and simplest variants of multiprocessor
scheduling is the on-line scheduling problem studied by
Graham in 1966. In this problem, the jobs arrive on-line
and must be scheduled non-preemptively on m identical
machines so as to minimize the makespan. The size of
a job 1s known on arrival. Graham proved that the List
Processing Algorithm which assigns each job to the currently
least loaded machine has competitive ratio (2 — 1/m).
Recently algorithms with smaller competitive ratios than
List Processing have been discovered, culminating in Bartal,
Fiat, Karloff, and Vohra’s construction of an algorithm with
competitive ratio bounded away from 2. Their algorithm
has a competitive ratio of at most (2 — 1/70) ~ 1.986 for
all m; hence for m > 70, their algorithm is provably better
than List Processing.

We present a more natural algorithm that outperforms
List Processing for any m > 6 and has a competitive ratio
of at most 1.945 for all m, which is significantly closer
to the best known lower bound of 1.837 for the problem.
We show that our analysis of the algorithm is almost tight
by presenting a lower bound of 1.9378 on the algorithm’s

competitive ratio for large m.

1 Introduction

Scheduling n jobs on m machines is one of the most
widely studied problems in computer science. One of its
earliest and simplest variants 1s the on-line scheduling
problem introduced by Graham [5] in 1966. The m
machines are identical, and the n nonpreemptable,
single task jobs are all independent. Job ? has size
Ji > 0. The jobs arrive one by one, and each job
must be immediately and irrevocably scheduled without
knowledge of later jobs. The size of a job is known
on arrival, and the jobs are executed only after the
scheduling is completed. The goal is to minimize the
makespan — the completion time of the last job to
finish.

This problem is also referred to as load-balancing.

Supported by NSF Grant CCR-9010517, NSF' Young Investi-
gator Award CCR-9357849, and grants from Mitsubishi Corpora-
tion and OTL.

For example, the “machines” can be communication
channels, and the “jobs” can be requests for communica-
tion bandwidth. When a customer requests bandwidth,
a channel must be chosen on which the required band-
width is immediately and permanently made available
to the customer. Under this interpretation, the goal is
to minimize the maximum load on any channel.

Because of the online nature of the problem, the
performance of a scheduler is measured by its compet-
itive ratio. For a job sequence o, let A(o) denote the
makespan of algorithm A’s schedule, and let OPT(o)
denote the minimum makespan of all m-machine sched-
ules for . The competitive ratio of A i1s defined by

def A(o)
Ca = 5UP 5pr(e)
where the supremum is over all nonempty job sequences.

The natural question is, how small can Cy4 be?
Graham showed that the List Processing Algorithm
(List for brevity) which assigns each job to the least
loaded machine has competitive ratio exactly 2 — %
Starting in 1991, several algorithms were developed [4,
6] with better competitive ratios than List, and recently
Bartal, Fiat, Karloff, and Vohra [1] gave an algorithm
with a competitive ratio of 2 — % ~ 1.986. Faigle, Kern,
and Turan [3] proved lower bounds on the achievable
deterministic competitive ratio of 2 — % for m = 2 and
3and 1+ % for m > 4 (so List is optimal for m = 2
and 3). Bartal, Karloff, and Rabani [2] improved this
lower bound for m > 4 to 1 + % + €,,, which becomes
1.837 for m large enough.

This paper presents a deterministic algorithm,
ALG, that is more natural than the algorithm of Bar-
tal et al. The algorithm ALG, uses a parameter o that
affects 1ts behavior; the best choice of « depends on m.
For m > 6, there is an « such that ALG, outperforms
List; furthermore, ALG 945 has a competitive ratio of
1.945 for all m. Figure 1 shows how ALG, (under the
best choice of «) compares to List, Bartal et al’s algo-
rithm, and the asymptotic lower bound.

We show that our analysis of ALG, is almost
tight by presenting a lower bound of 1.9378 on the

2.0
1.98
1.96
competitive 194
ratio 1.92
1.90
1.88
1.86
1.84
1.82
1.8

List
BFKV Algorithm

New Algorithm

............ -

Lower Bound for Large m

2 4 8 16 128 1024 8192

number of machines (log scale)

Figure 1: Comparison of our algorithm to List, Bartal
et al’s algorithm, and the asymptotic lower bound

competitive ratio of ALG, (for each choice of «) for
large m.

2 Definition of ALG,

In order to do better than List, we must see what List
does wrong in its worst case, a sequence of m(m — 1)
jobs of size 1 followed by one job of size m. List assigns
the large job to a machine that already has m — 1 small
jobs while the optimal schedule assigns the large job to
its own machine. The problem is that List keeps the
schedule so flat that when the large job arrives it has to
go on a relatively tall machine. The algorithm ALG,
strives to maintain an imbalance in the processor loads
so that a large job can always be assigned to a relatively
short machine. However, it cannot create too large an
imbalance because this would immediately imply a poor
competitive ratio.

k) k
(@) Our Algorithm (b) List

Figure 2: Scheduling many small jobs, then one big job

Define the height (or load) of a machine to be the
sum of the sizes of all jobs currently assigned to it.

DEFINITION 2.1. Timet is the time just before the
" job is scheduled. At time t: M} is the (i + 1)*¢
shortest machine (e.g. M{ is the shortest machine), h}
is the height of M} (0 < i < m), Al is the average height
of the 1 shortest machines, 1 <1 < m, and Al = co.

Note that A%, is the average height of all m ma-
chines at time ¢ and is thus a lower bound on OPT.

DEeFINITION 2.2. The algorithm ALG, works as

Karger, Phillips, Torng

follows: when job t arrives, it is placed on the tallest
machine M} such that hl, + J; < a Al .

The parameter o determines the degree of imbal-
ance that ALG, tries to maintain. Note that with the
above definition of A}, any very tall job will be placed
on the shortest machine. The algorithm of Bartal et al
is a discrete version of AL(G, where a job can only be
placed on machine M{ (the smallest machine) or ma-
chine M{, & ~ 0.445.

The reader may wonder why we use the average
height of the shorter machines before adding the new job
rather than the average height of the shorter machines
after adding the new job (i.e. comparing hl, + J; to
ozAZ‘,H where k' is the rank of machine M} with job ¢
at time ¢ + 1). Furthermore, why not compare the new
height of the machine to the average height of all the
machines (i.e. compare hf +.J; to aALF1)? Both of these
are better approximations to OPT(c), so they would
seem to be better choices. However, neither algorithm
is better than (2 — %)—competitive. In particular, when
these algorithms schedule a long sequence of equal-sized
jobs, they distribute almost all of the jobs evenly on
slightly more than half the machines while the rest of the
machines get only a small number of jobs. An adversary
can then insert approximately 7 large jobs to create a
completely flat schedule, after which a single large job
makes the makespan 2 — % times the optimal makespan.

In the next two sections we prove the following
theorem.

THEOREM 2.1. For each m > 6, there exists some
a such that ALG, outperforms List, and for a > 1.945,
ALG, 1s a-competitive for all m.

3 Upper Bound: Fixed m

Fix m > 6, and fix o, 1 < a < 2. This section shows
how to compute an upper bound on the competitive
ratio of ALG, on m machines, by induction on the
length of the job sequence. Let o be a job sequence
of length n, normalized so that the total size of all
jobs in ¢ is m (and thus A%t = 1). Let o,_; be
the first n — 1 jobs in ¢, and assume inductively that
ALGy(0p—1) < aOPT(0p-1). The rest of this section
is devoted to showing that ALG (o) < «OPT(0).

The following lower bounds on OPT(c) will be
used.

Fact 3.1. The

bounds on OPT(c):
1. % times the total size of all jobs in o (=1).

following quantities are lower

2. The largest job in o (> Jp).

3. Twice the size of the (m + 1)*" largest job in o.

A Better Algorithm For an Ancient Scheduling Problem

If ALG (o) # ki + Jp, then the definition of ALG,
and the inductive assumption easily imply ALG (o) <
aOPT(c). If ALGu(0) < a or ALG,(0) < aldy,
then Fact 3.1 (part (1) or (2) respectively) implies
ALG4(0) < a«OPT(c). Therefore, for the rest of this

section, assume

(3.1) ALGo(0) = hy+ Jn,
(3.2) ALGo(0) > o,
(3.3) ALGy(0) > ady.

We prove that for m > 6, the (m + 1)¢ largest job
in ¢ has size at least

lALGa(U)

(3.4) S

(for a suitable choice of a), which combined with
Fact 3.1 part (3) proves ALG (o) < aOPT (o).

DEFINITION 3.1. Define § by 1 — 3 = hi. Define

€e=2—a. Deﬁneb:%ll:f. Definea=1— 3 —b.

DEFINITION 3.2. A machine is tall of it has height
at least 1 — [3; otherwise it is short. Let s be the current
number of short machines (so A% is the average height
of the short machines at time t). A job is large if it has
size > b.

DEFINITION 3.3. An elevating job raises a machine
from being short to being tall, and we say that an
elevating job elevates the machine it 1s placed on.

Each machine is tall by time n, so there are m
elevating jobs in o. We will prove that the last
job is large and that all the elevating jobs are large.
Lemma 3.2 below shows that a large job has size at
least %%"(U), as required by (3.4) above.

The sequence o 1s divided into two phases. In the
first phase, A} < a, and each elevating job in this phase
must go on the smallest machine and is therefore large.
Al increases monotonically with ¢ until we reach the
second phase (called the kickstart) when A% > a.

The kickstart is analyzed in reverse: starting with
the last elevating job in ¢ and moving backwards
in time, we show that each elevating job is large.
Eventually a time ¢ is reached where so much processing
time 1s taken by the jobs in the tall machines and the
later elevating jobs that we must have A < a. Thus the
first phase of the proof applies to all preceding times.

3.1 Large jobs
LEMMA 3.1. [satisfies 0 < 3 < e.
Proof. The fact that g > 0 follows from 1 — 3 =

h? < An < Al = 1. To see that 3 < ¢, we have
from (3.1) (3.2) and (3.3) above that Ay + J, > aJ,

and hg 4+ Jp > «. The first inequality gives

hg

In < .
—1l—c¢

(3.5)
Substituting this upper bound for J,, into the second
inequality gives

1

— €

) >«

- bl

hg (1
0(+1

which simplifiesto 1 — 8 =hg > 1 — €.

LEMMA 3.2. b > %%"(U)

Proof. Equation (3.5) above gives ALG,(0) = A} +
R =

22 The lemma follows from
the definition b = %1—

IS

1—¢
l1—€-
1 ALG. (o)
t 1 amseld),

Thus a large job has size at leas =

LEMMA 3.3. Ife < 1 — w% ~ .29, then job n is
large.

Proof. Job n raises a machine from height 1 — 3 to
at least « = 2 —¢€,80 J, > 1 —€e+4 (. Job n is large

whenever 1 — e+ 3 > %11:6 Setting 8 = 0, the worst
case, this simplifies to e < 1 — % ~ .29.

3.2 The First Phase

This section proves that ¢ can be broken into two
phases, such that A} < a during the first phase, A% > a
in the second phase, and all elevating jobs in the first
phase are large.

LEMMA 3.4. Ifjobt is an elevating job for machine
M}, then Al > a.

Proof. Suppose job ¢ goes on machine M. The rule
for ALG, implies that a A} > hf + J;. Since job t is an
elevating job, we have hl 4+ J; > 1 — 3. By transitivity,
aAZZl—ﬁ,soAZZ%>a.

LEMMA 3.5. Ifjobt is an elevating job and AL < a,
then job t goes on the shortest machine M{ and is large.

Proof. For all 0 < i < s, Al < A% < a. Therefore,
by Lemma 3.4, elevating job ¢ cannot go on any short
machine except the shortest, machine M{. Since M{ is
the shortest machine, hfy < AL < a. Job ¢ is an elevating
job, so hl +J; > 1 — 3 which implies J; > 1 —3—a = b.
Therefore, job £ is large.

LEMMA 3.6. If AiTL < a then A < AlF! < a.
Proof.

Case 1: job t is not elevating. The number of short
machines is the same at times ¢ and ¢ + 1. The
only difference between time ¢ and time ¢ + 1 is the
absence of job t at time . Therefore, A% < Al+L,

Case 2: job t is elevating. There is one more short
machine at time ¢ than at time ¢ + 1. We show
that job ¢ must be placed on the shortest machine
at time ¢t. This implies A, < A!*!) since the
average height of the short machines is increased
by the removal from consideration of the shortest
such machine.

Assume that elevating job ¢ 1s placed on short
machine M}, with & > 0. Now A} = AZ‘H (since
for j < k, hY = R§t). But AitN < AP < a
and A! > a by Lemma 3.4, giving a contradiction.
Therefore, job ¢ must go on machine M.

COROLLARY 3.1. If Al < a, then AY < Al < a for
all u < t. If AS > a, then AY > a for all u > 1.

COROLLARY 3.2. Each elevating job that arrives
during the first phase s large.

3.3 The Kickstart

This section shows that all elevating jobs that arrive
during Phase 2 are large. Consider the elevating jobs
in reverse order of arrival. Let e, be the s'” elevating
job from the last to arrive; say it arrives at time t;.
Given lower bounds on the heights ej,...,es_1, we
derive a lower bound on e; (note s is the number of
short machines at time ¢;). We continue until the lower
bound on sts ej is so large that the fact that A"+ =1
forces Als < a, proving that time ¢; must be in Phase
1. If each lower bound on e;, j < s, exceeds b, then we
have proven that all elevating jobs that arrive during
Phase 2 are large.

LEMMA 3.7. Given B, «, and lower bounds for
e1---es—1, and assuming that A's > a, a lower bound
fores for ALG,, can be computed by solving the follow-
ing linear program. Minimize es subject to

mAfg—l—Zej—l—l—e—l—ﬁ

(3.6) m >
j=1
(3.7) h;s > maa:(ozAz»s —es,1—0),
s<j<m
(38) Al* > a
-1
(3.9) Ay = lii@ 1<j<m
J k=0

Proof. At any time 0 < ¢t < n, the size of the jobs
that arrive before ¢ and the size of the jobs that arrive
after t must sum to m. The sum of the jobs that arrive
before time t; is at least mA’:s while the sum of the
jobs that arrive after time ¢ is at least 25:1 e; + Jn,
and J, > 1 — e+ F (from Lemma 3.3). This implies

equation (3.6). Refer to figure 3. The m — s equations

Karger, Phillips, Torng

in (3.7) follow from the fact that e, cannot go on any of
the tall machines (because it is an elevating job). Refer
to figure 4. Equation (3.8) is part of the hypothesis of
the lemma, while equation (3.9) is the definition of A;S.

nls tall
machines

length of all jobs =m

i

i

i

i

i

i

i

short i
i

machines '
i

J

m-1 s 0 m-1 0

Figure 3: Equation (3.6)

elevating
job eg

\L l

|
|
'
'
ts '
'
'
'
'
|

m-1 j s 0
k

Figure 4: Equation (3.7)

COROLLARY 3.3. For any m, «, and (3, let
€1,...,€5,...,6s_1 be successive solutions to the linear
program of Lemma 3.7. If e; s large for 1 < j < s and
there is no feasible solution to the linear program for e,
then Als < a and each elevating job that arrives during
Phase 2 1is large.

Proof. The fact that the program of
Lemma 3.7 for e, is infeasible implies that the assumed
conditions at time #; cannot hold which means A%* < a.
Therefore, Phase 1 must last at least until time ¢;. We
have calculated the minimum values of all later elevat-

linear

ing jobs, and, by assumption, they are large. Therefore,
all elevating jobs that arrive during Phase 2 must be
large.

Note that Corollary 3.3 depends on 3. We remove
this dependence by showing that the worst value of 3
for our analysisis § = e.

LEMMA 3.8. Assume that e < 0.2. If the conditions
of Corollary 3.3 hold (so the kickstart is successful) for
0 =€, then they hold for all 5, 0 < g < e.

Proof. Let a superscript on a variable denote the
value of that variable with 3 equal to the superscript
(e.g. b7 is the value of b when § = 7). Lemma 3.8 is
proven by showing that if ef ---ef > b° and the linear
program for ej ,, is infeasible, then for some j < k, we

A Better Algorithm For an Ancient Scheduling Problem

ol 8l : SO
have e} ---e/ > b7 and the linear program for ¢/, 1s

infeasible. The full proof is included in the appendix.

Thus to determine if ALG, is a-competitive on
m machines, we need to solve the linear programs
described in Lemma 3.7 and Corollary 3.3 only for the
case [= e.

COROLLARY 3.4. If the conditions of Corollary 3.3
hold for o and m (and B = ¢€), so that ALG,
15 a-competitive for m machines, then ALG, 1is ~v-
competitive for m machines for a <~y < 2.

Proof. This follows from the fact that the con-
straints of Lemma 3.7 are tighter for larger a.

LEMMA 3.9. When 6 < m < 13000, there exists an
« less than 2 — % and at most 1.943 such that ALG, 1s
a-competitive on m machines.

Proof. We have written code to solve the linear
programs of Lemma 3.7 for 6 < m < 13000 and
1 < s < m. It uses binary search to find the smallest «
(within a tolerance of .00001) such that the conditions
of Corollary 3.3 are satisfied, and hence ALG,(c) <
aOPT(o). In all cases, a < 2 — % and o < 1.943.

4 Upper Bound: Large m

The linear programs of Lemma 3.7 only apply to a
specific value of m, and it is impossible to solve them
for all m. To give a bound for all large m, we discretize
the linear program of Lemma 3.7, effectively regarding
groups of machines as having the same height.

Let # be a constant such that m > x(x — 2). Let
b = [2], and let ¢ [ZEJ for all variables i. Unless
J is a multiple of b, we change the constraint on h; in
equation (3.7) to the weaker constraint h;s > h;s_l. We

similarly change the constraint on A%. Furthermore,
for j > m'b, we change the constraint on h; in
equation (3.7) to the weaker constraint h; =1 — 3. We
weaken constraint (3.6) by discarding the terms 1—e+ 4
(our lower bound for J,) and e; for j in s’s block
(s'b < j < (s'4+1)b). This changes the linear program of
Lemma 3.7 to the following linear program: Minimize
es subject to

m s'b
(410) m > > hF4(s+Dba+) ¢
J=(s'"+1)b j=1
(4.11) h;s > max(aA‘;ib —es, 1 — 1),
(s +1)b<j<mb
(412) by = 1-p, mb<j<m
413) a < Ay,
j'b—1

1
j’_b thj, s+2<i <m
k=0

Note that we have grouped all the machines into — 1
blocks of b machines with one last block of the tallest
machines of size less than or equal to b (this follows
from the assumption that m > x(x — 2)). In particular,
the linear programs for e; and e; are identical when
i = j'. Using this fact to simplify the equations,
m is easily eliminated from equation (4.11). Lastly
m is eliminated from equations (4.12) and (4.10) by
pessimistically assuming that there are & machines in
the last block (this is an upper bound). The linear
program now simplifies to the following one: Minimize
es: subject to

z—1 s'—1
r > Z h;i—i—(s/—l—l)a—l—Zej/
Ji=s'+1 ji=1
hzﬁ > max(aA??—es/,l—ﬁ)
s+1<ji<z—1
hyoy = 1-p
Ai?_l_l > a
i
A= =3 hy, s2<f<e—1
J
k=0

This linear program gives a valid bound for any m >
z(x — 2). Therefore, we now have a technique to prove
that for some o, ALG, is a-competitive for m > my.

LEMMA 4.1. When o > 1.945 and m > 13000,
ALG, 1s a-competitive.

Proof. We have written code that solves the linear
program above, and for & = 1.945 and # = 115, (and
hence for m > 115 x 113 = 12995), Al* eventually falls
below a and all elevating jobs that arrive after ¢; are
large. Again, by Corollary 3.2, the rest of the elevating
jobs are large. By Lemma 3.3, the last job is large
as well which means that there are m + 1 large jobs.
Therefore, in all cases ALGy(c) < aOPT (o) and the
lemma follows.

This completes the proof of our main result. We
have actually shown that for m > 20000%, ALG,, is a-
competitive for 1.943 < o < 2 (by running the code
once for # = 20000 and o = 1.943). We expect that
ALG, 18 a-competitive for 1.943 < o < 2 for all m, but
we lack the computing resources to verify 1.943 for all
m up to 200002,

5 Lower Bounds

We now prove lower bounds on the performance of
ALG,, for both small m and large m. We first prove for
m = 4 and m = 5 that for no o i1s ALG, better than
2 — %—competitive. We then show that our analysis of
ALG, is almost tight by describing a sequence of jobs

such that ALG o378 1s not 1.9378-competitive on that
sequence. Similar sequences can be constructed to prove
that ALG, is not 1.9378-competitive for o < 1.9378,
and these will appear in the journal version of this
paper. Clearly, if & > 1.9378, then for large enough m,
ALG, 1s no better than 1.9378-competitive on a long
sequence of equal sized jobs.

5.1 Lower Bound for Small m

LEMMA 5.1. For no o is ALG, better than (2—%)-
competitive for m =4 or m = 5.

Proof. First consider the case for m = 4. For
a > 175, ALG,, 1s clearly worse than 1.75- competitive

on a long sequence of equal sized jobs. For a < 32, 1t
is not hard to verify that ALG, must act exactly like
List on the sequence 1,1,1,1,2,2,2,2 4 giving ALG,,
a makespan of 7 while the optimal makespan is easily
seen to be 4. Thus, for m = 4, Carg, > 1.75. The
proof is almost identical for m = 5. For a > g?,
ALG, is clearly worse than 1.8-competitive on a long
sequence of equal sized jobs. For a < %, it is not
hard to verify that ALG, must act exactly like List on
the sequence 1,1,1,1,1,2,2,2,2,2,5,5,5,5,5,10 giving
ALG, a makespan of 18 while the optimal makespan is
easily seen to be 10. Thus, for m =5, Cure, > 1.8.

6 Lower Bound for Large m

6.1 Sketch

The lower bound job sequence ¢, which demon-
strates that ALGq 9378 1s not 1.9378-competitive for
large m, i1s extracted from the upper bound proof, which
shows that a sequence that is bad for ALG, first causes
it to create a flat schedule and then hits it with one final
job of size 1. The method of constructing a flat schedule
closely follows the kickstart.

The sequence ¢ makes the average machine height
1, as in the upper bound. The main part of & (Phases 2
and 3) forces ALG,, to create a schedule with (1 — A)m
tall machines (with height 1 —¢) and Am short machines
(with height @ = 1/2—¢€). The final part of o (Phase 4)
then forces ALG,, to follow the kickstart by repeatedly
setting the height of the next job to be just large enough
to prevent its going on any of the tall machines. The
parameter A is set so that the first jobs in Phase 4 have
height % so that two can be scheduled off-line on one
machine. Finally, the last job of size 1 follows. The one
complication is that we need to ensure that o can be
scheduled with a makespan of just 1. To do this, the
first part of o (Phase 1) consists of a large number of
extremely small jobs which the off-line algorithm can
use as filler.

The rest of this section is organized as follows.

Karger, Phillips, Torng

Sections 6.2 through 6.5 give details of phases 1 through
4. Section 6.6 shows how OPT can pack the jobs so
that all machines have the same height. Throughout,
we assume that m is large so that O(1/m) terms can be
ignored.

6.2 Phasel

Phase 1 consists of a sequence of infinitesimal jobs
which bring the average machine height to ¢, where ¢ =
0.2238 (the reason for this value is given in Section 6.3).

1-¢

m 1 0

Figure 5: Schedule at end of Phase 1

The algorithm places the infinitesimal jobs so that
the machine heights obey the relation h; = aA;. This
gives a recurrence for A;, whose solution is

where the binomial coefficient (2) is defined by (T)
Murk—“l for real » and positive integer k, and

()—1Whenk—0 Then

h0<a—|—i—1) h0<0z+_])
A; = — . = — . .
! Z] i i\ J

1<J

oc+m))

Since A, = ¢, we have hy = cm/(Lastly,

applying Stirling’s approximation gives

(6.15) h; = ca (%)a_l (1 +0 G))
(6.16) A; = ¢ (%)W1 (1 +0 G))
6.3 Phase 2

Phase 2 consists of Am jobs which are placed on
the current shortest machine and bring that machine’s
height to exactly @ = 1/2—e. The value of ¢ (the average
machine height after Phase 1) is determined to ensure

A Better Algorithm For an Ancient Scheduling Problem

1- ¢
.b-¢
c
m 1 (1- MY m 0

Figure 6: Schedule at end of Phase 2

that the algorithm does indeed place each job in Phase
2 on the machine with current smallest height.

The value of ¢ is bounded by two constraints. First,
a Phase 2 job must not be placed on a machine whose
height is already a. Let A} and h be the values of
Aj; and h; respectively at the end of Phase 1. Since
I, increases with j, the tightest constraint on ¢ is when
the last Phase 2 job is being inserted, and the constraint
involves adding a job of size a — A, _; and requiring
that it be too tall to go on a height @ machine:

a+ (a - />\m—1)

> aAm_1

a(Am —=2)+ mAL, — (Am —1)A%,,,_,
o bl

m—1

Substituting the approximations (6.15) and (6.16) above
gives (for large m):

a(2 — al)
a(l+4 a1 =)o)
~ 0.2238,

using A = 0.392 and ¢ = .0622 (determined in Sec-
tion 6.5). The second constraint on ¢ is that a Phase
2 job must not be placed on a machine whose height is
not yet a, but that is not the current smallest machine.
Some straightforward calculations show that this is a
weaker constraint on ¢. Hence we take ¢ = 0.2238.

6.4 Phase 3

Phase 3 consists of (1 — A)m jobs which will be
placed on the current shortest machine and bring that
machine’s height to exactly 1 — e.

For this to work, we need to check that the algo-
rithm will not place a Phase 3 job on any machine ex-
cept the smallest at the time. The smallest job of Phase

Am

m1

Figure 7: Schedule at end of Phase 3

3 has size 1 — ¢ — ca > 0.504 (using ¢ = .0622, deter-
mined below), so clearly no Phase 3 job will be placed
on any nonminimal-height machine of height a or less.
The average of the machine heights at any time in Phase
3isat most (1—¢€)(1—=A)+aX ~ 0.742, while adding any
Phase 3 job to a machine of height 1 — ¢ would raise it
to height at least 1 — ¢ + 0.504 = 1.442 > .742«. Hence
the algorithm places each Phase 3 job on the smallest
machine at the time.

6.5 Phase 4

Phase 4 consists of Am jobs where each job size is
minimal subject to the constraint that the algorithm
places the job on the smallest machine at the time. The
parameter A is chosen so that the first job of Phase 4
has size 1/2, breaking the kickstart. Thus A satisfies:

1—€+1/2 > aA,_q
a((I—€e)(1 = A) +al),

which gives A as a function of €. The constraint that
the algorithm places the job on the smallest machine at
the time gives a lower bound for J;, which, after some
calculations, 1s:

so we set J; =1/2+ ‘%j__lm) (plus a tiny perturba-

tion). Lastly, the fact that the set of all jobs has total
size m determines a value for e. Setting the sum of all
the job sizes to be m and solving for € gives € = 0.0622

and A = 0.392.

6.6 Packing

To prove that OPT = 1, we need to show that the
jobs can be assigned to machines so that each machine
has height 1. This is done as follows: to make room
for the job of size 1 (which gets its own machine), we

place the six smallest Phase 2 jobs on 2 machines, 3 per
machine. We place the six smallest Phase 4 jobs on 3
machines, 2 per machine. Each of the remaining Phase
4 jobs gets its own machine. The remaining Phase 2
jobs are paired with Phase 3 jobs — the largest Phase
2 job with the smallest Phase 3 job, the second largest
Phase 2 job with the second smallest Phase 3 job, and
so on. Finally the infinitesimal Phase 1 jobs bring are
used as filler to make each machine have height 1.
To check that this assignment does not make any
machine too tall, observe the following facts:
e The smallest Phase 2 jobs have size @ — caA®™! <

1/3.
e The smallest Phase 4 jobs have size 1/2.

e The smallest Phase 3 job has size 1 — € — ca, while
the largest Phase 2 job has size 1/2—¢ for a total of
less than 1. Furthermore, since the schedule after
Phase 1 is convex, if the smallest Phase 3 job and
the largest Phase 2 add to less than 1, then so do
the second smallest Phase 3 job and the second
largest Phase 2 job, and so on.

7 Extensions

We have been able to improve our algorithm slightly
by melding it with the algorithm that compares to the
average height of all machines.

DErFINITION 7.1. The algorithm ALG . 4 works as
follows: when a j0b J arrives, it s placed on the tallest

machine k such that hy, +J < a((1 — ¢)Ap + ¢ Am+1).

For a judicious choice of ¢, ALG, ¢ outperforms
ALG,. Unfortunately we can currently only prove a
small improvement of about .001 in the competitive
ratio for large m.

One unfortunate property of ALG,, is that its worst
case performance ratio occurs on a set of identically
sized jobs. One might desire an algorithm that performs
well on such a job set, even at the cost of increasing the
competitive ratio. We have shown such a tradeoff for
ALG, namely that if 1.5 < a < 2, then there is an
d > 0 such that ALG is (2 — §)-competitive for large
m. The details will be in the full paper. Clearly, for
smaller a; ALG,, achieves a better makespan when all
the jobs are the same size.

A related observation is that any algorithm which
does well in the worst case cannot be optimal in the
average case — 1t 1s easy to show that for any a < 2
there is a ¢ such that any a-competitive algorithm,
given a long sequence of identical jobs, must construct
a schedule whose makespan exceeds (1 + §)OPT.

This leaves three interesting open problems. First,
to close the gap between the upper and lower bounds

Karger, Phillips, Torng

for C(ALGy). Second, is ALG, (2 — §)-competitive
for ¢ > 57 And third, from the analysis of bad job
sequences for ALG, in Section 5, can one derive a better
lower bound for all algorithms, or determine how an
algorithm could improve on C(ALG)?

8 Acknowledgements

We thank Alan Hu for contributing the example demon-
strating that ALG, cannot outperform List when m =

4.

References

[1] Y. Bartal, A. Fiat, H. Karloff, and R. Vohra. New
algorithms for an ancient scheduling problem. In Proc.
24nd ACM Symp. on Theory of Computing, pages 51—
58, 1992.

[2] Y. Bartal, H. Karloff, and Y. Rabani. Private Commu-
nication.

[3] U. Faigle, W. Kern, and G. Turdn. On the performance
of on-line algorithms for particular problems. Acta
Cybernetica, 9:107-119, 1989.

[41] G. Galambos and G. Woeginger. An on-line scheduling
heuristic with better worst case ratio than Graham’s
list scheduling. SIAM J. Comput., 22:349-355, 1993.

[5] R. Graham. Bounds for certain multiprocessing
anomalies. Bell System Technical Journal, 45:1563—
1581, 1966.

[6] P. Narayanan and R. Chandrasekaran. Optimal on-
line algorithms for scheduling. Manuscript, University
of Texas at Dallas, 1991.

Appendix
We present here the full proof of Lemma 3.8.

Proof. Let 0 < v < e. Let a superscript on a
variable denote the value of that variable with 5 equal
to the superscript (e.g. 67 is the value of b when 5 = 7).
We show that if ef---ef > b° and the linear program
for ef . is infeasible, then for some j <k, el ~e} > b
and the linear program for e}+1 is infeasible.

Let § = e—~. We have b7 = %11;_} = %—i—%liﬁ while
b* = 1. Meanwhile, a” = 1 —~ — %11:: =1—e+3=24

e

This gi\zles us the following two differences: A(b) =
b7 — b = ﬁé and A(a) = a¥ — a® = %:325. We
prove that for 1 < ¢ < k, if the linear program for ¢
is feasible, then A(e;) =] — ef > A(b), so e] is large
if €¢ is large. If the linear program for €] is feasible for
I <@ <k, then the fact that the linear program for ej .
is infeasible implies that the linear program for 6Z+1 18
also infeasible (since the constraints are all tighter in
the latter program).

For the remainder of this proof, considering the

linear program for elevating job e;, s < k, arriving

while a¢ =

A Better Algorithm For an Ancient Scheduling Problem

at time t;. We reserve the superscript on all variables
(including ~ and A) to denote the value of 3 and omit
the 0, #s.

Assume that €] ---e]_; are indeed A(b) larger than
their counterparts for § = e. We show that e} is as well
by showing that if we set e} = S + A(b), and minimize
h] subject to (3.7), then h] > h for each of the tall
machines M; at this time. Let A(4;) = A — Af and let
A(h;) = h] — h§ for each tall machine M;. Using this
notation, we want to prove that A(k;) > 0 for ¢ > s.
Proving thls Wlll be easy for ¢ close to s because, in
these cases, h = 1 — 3 which implies A(h;) = 4. The
only problem we might have arises when A{ finally rises
above 1 —e.

Let j be the minimal index where a A7 —ef > 1—c.
In this case, from Equation (3.7), we get A(h]) >
aA(A;) — A(b). If we can prove that A(h;) > A(A4;),
then a simple induction proves that for [> j, A(4;) >
A(A;) which implies A(hl) > A(4;) > 0. Thus we
need (1 — E)A(A]) > =0 which means we need
A(4y) = 2(1 BE
need A(A4;) > .76 while for .15 < e < .2, this means we
need A(A4;) > .794.

If j > 2s, then A(4;) > Ala)s+ds _ (1 2e+1)

7-32¢ 2
4. For 0 < e < .15, this means we

2s 2—2¢

3 46(5 For € < .15, this implies A(A4;) > .76 which,
from the argument above, implies that for [> 7,
A(h) > 0. Similarly, ifj > 4s, A(4;) > g gz
For .15 < e < .2, this means A(A4;) > .846 > .79
which, from the argument above, implies that for [> j,
A(h;) > 0. Thus we simply need to prove that for
0 < e < .15 that A{ does not rise above 1 — ¢ for ¢ < 2s
and that for .15 < ¢ < .2, that h§ does not rise above
1 — e for i < 4s.

For the remainder of this proof, 7 = ¢. Let j
be the first point where aAd; —e; > 1 — ¢e. Clearly,
this is the first point where h; rises above 1 — e.

% for A; and simplifying

Substituting
=s. For € > 0, W > 2 while

leads to _] > m
for.2>e¢> .15 > 4. This completes the proof

of the lemma.

> 11— 4 +262

