
A Better Algorithm For an Ancient Scheduling ProblemDavid R. Karger � Steven J. Phillips � Eric Torng �Department of Computer ScienceStanford UniversityStanford, CA 94305-2140AbstractOne of the oldest and simplest variants of multiprocessorscheduling is the on-line scheduling problem studied byGraham in 1966. In this problem, the jobs arrive on-lineand must be scheduled non-preemptively on m identicalmachines so as to minimize the makespan. The size ofa job is known on arrival. Graham proved that the ListProcessing Algorithm which assigns each job to the currentlyleast loaded machine has competitive ratio (2 � 1=m).Recently algorithms with smaller competitive ratios thanList Processing have been discovered, culminating in Bartal,Fiat, Karlo�, and Vohra's construction of an algorithm withcompetitive ratio bounded away from 2. Their algorithmhas a competitive ratio of at most (2 � 1=70) � 1:986 forall m; hence for m > 70, their algorithm is provably betterthan List Processing.We present a more natural algorithm that outperformsList Processing for any m � 6 and has a competitive ratioof at most 1:945 for all m, which is signi�cantly closerto the best known lower bound of 1:837 for the problem.We show that our analysis of the algorithm is almost tightby presenting a lower bound of 1:9378 on the algorithm'scompetitive ratio for large m.1 IntroductionScheduling n jobs on m machines is one of the mostwidely studied problems in computer science. One of itsearliest and simplest variants is the on-line schedulingproblem introduced by Graham [5] in 1966. The mmachines are identical, and the n nonpreemptable,single task jobs are all independent. Job i has sizeJi > 0. The jobs arrive one by one, and each jobmust be immediately and irrevocably scheduled withoutknowledge of later jobs. The size of a job is knownon arrival, and the jobs are executed only after thescheduling is completed. The goal is to minimize themakespan | the completion time of the last job to�nish.This problem is also referred to as load-balancing .�Supported by NSF Grant CCR-9010517, NSF Young Investi-gator Award CCR-9357849, and grants fromMitsubishi Corpora-tion and OTL.

For example, the \machines" can be communicationchannels, and the \jobs" can be requests for communica-tion bandwidth. When a customer requests bandwidth,a channel must be chosen on which the required band-width is immediately and permanently made availableto the customer. Under this interpretation, the goal isto minimize the maximum load on any channel.Because of the online nature of the problem, theperformance of a scheduler is measured by its compet-itive ratio. For a job sequence �, let A(�) denote themakespan of algorithm A's schedule, and let OPT (�)denote the minimummakespan of all m-machine sched-ules for �. The competitive ratio of A is de�ned byCA def= sup� A(�)OPT (�) ;where the supremum is over all nonempty job sequences.The natural question is, how small can CA be?Graham showed that the List Processing Algorithm(List for brevity) which assigns each job to the leastloaded machine has competitive ratio exactly 2 � 1m .Starting in 1991, several algorithms were developed [4,6] with better competitive ratios than List, and recentlyBartal, Fiat, Karlo�, and Vohra [1] gave an algorithmwith a competitive ratio of 2� 170 � 1:986. Faigle, Kern,and Turan [3] proved lower bounds on the achievabledeterministic competitive ratio of 2� 1m for m = 2 and3 and 1 + 1p2 for m � 4 (so List is optimal for m = 2and 3). Bartal, Karlo�, and Rabani [2] improved thislower bound for m � 4 to 1 + 1p2 + �m which becomes1:837 for m large enough.This paper presents a deterministic algorithm,ALG�, that is more natural than the algorithm of Bar-tal et al. The algorithmALG� uses a parameter � thata�ects its behavior; the best choice of � depends on m.For m � 6, there is an � such that ALG� outperformsList; furthermore, ALG1:945 has a competitive ratio of1:945 for all m. Figure 1 shows how ALG� (under thebest choice of �) compares to List, Bartal et al's algo-rithm, and the asymptotic lower bound.We show that our analysis of ALG� is almosttight by presenting a lower bound of 1:9378 on the1

2 Karger, Phillips, Torng
2 4 8 16 128 1024 8192

1.82

1.84

1.86

1.88

1.90

1.92

1.94

1.96

1.98

2.0

1.8

number of machines (log scale)

ratio
competitive

BFKV Algorithm

List

Lower Bound for Large m

New AlgorithmFigure 1: Comparison of our algorithm to List, Bartalet al's algorithm, and the asymptotic lower boundcompetitive ratio of ALG� (for each choice of �) forlarge m.2 De�nition of ALG�In order to do better than List, we must see what Listdoes wrong in its worst case, a sequence of m(m � 1)jobs of size 1 followed by one job of size m. List assignsthe large job to a machine that already has m� 1 smalljobs while the optimal schedule assigns the large job toits own machine. The problem is that List keeps theschedule so at that when the large job arrives it has togo on a relatively tall machine. The algorithm ALG�strives to maintain an imbalance in the processor loadsso that a large job can always be assigned to a relativelyshort machine. However, it cannot create too large animbalance because this would immediately imply a poorcompetitive ratio.
h k
n h k

n

k k
m-1 m-1 o

(a) Our Algorithm (b) List

oFigure 2: Scheduling many small jobs, then one big jobDe�ne the height (or load) of a machine to be thesum of the sizes of all jobs currently assigned to it.Definition 2.1. Time t is the time just before thetth job is scheduled. At time t: M ti is the (i + 1)stshortest machine (e.g. M t0 is the shortest machine), htiis the height ofM ti (0 � i < m), Ati is the average heightof the i shortest machines, 1 � i � m, and At0 =1.Note that Atm is the average height of all m ma-chines at time t and is thus a lower bound on OPT.Definition 2.2. The algorithm ALG� works as

follows: when job t arrives, it is placed on the tallestmachine M tk such that htk + Jt � �Atk.The parameter � determines the degree of imbal-ance that ALG� tries to maintain. Note that with theabove de�nition of At0, any very tall job will be placedon the shortest machine. The algorithm of Bartal et alis a discrete version of ALG� where a job can only beplaced on machine M t0 (the smallest machine) or ma-chine M t�m; � � 0:445.The reader may wonder why we use the averageheight of the shorter machines before adding the new jobrather than the average height of the shorter machinesafter adding the new job (i.e. comparing htk + Jt to�At+1k0 where k0 is the rank of machine M tk with job tat time t+ 1). Furthermore, why not compare the newheight of the machine to the average height of all themachines (i.e. compare htk+Jt to �At+1m)? Both of theseare better approximations to OPT (�), so they wouldseem to be better choices. However, neither algorithmis better than (2� 1m)-competitive. In particular, whenthese algorithms schedule a long sequence of equal-sizedjobs, they distribute almost all of the jobs evenly onslightly more than half the machines while the rest of themachines get only a small number of jobs. An adversarycan then insert approximately m2 large jobs to create acompletely at schedule, after which a single large jobmakes the makespan 2� 1m times the optimalmakespan.In the next two sections we prove the followingtheorem.Theorem 2.1. For each m � 6, there exists some� such that ALG� outperforms List, and for � � 1:945,ALG� is �-competitive for all m.3 Upper Bound: Fixed mFix m � 6, and �x �, 1 � � < 2. This section showshow to compute an upper bound on the competitiveratio of ALG� on m machines, by induction on thelength of the job sequence. Let � be a job sequenceof length n, normalized so that the total size of alljobs in � is m (and thus An+1m = 1). Let �n�1 bethe �rst n � 1 jobs in �, and assume inductively thatALG�(�n�1) � �OPT (�n�1). The rest of this sectionis devoted to showing that ALG�(�) � �OPT (�).The following lower bounds on OPT (�) will beused.Fact 3.1. The following quantities are lowerbounds on OPT (�):1. 1m times the total size of all jobs in � (= 1).2. The largest job in � (� Jn).3. Twice the size of the (m + 1)st largest job in �.

A Better Algorithm For an Ancient Scheduling Problem 3If ALG�(�) 6= hn0+Jn, then the de�nition of ALG�and the inductive assumption easily imply ALG�(�) ��OPT (�). If ALG�(�) � � or ALG�(�) � �Jn,then Fact 3.1 (part (1) or (2) respectively) impliesALG�(�) � �OPT (�). Therefore, for the rest of thissection, assumeALG�(�) = hn0 + Jn;(3.1) ALG�(�) � �;(3.2) ALG�(�) � �Jn:(3.3)We prove that for m � 6, the (m + 1)st largest jobin � has size at least 12 ALG�(�)�(3.4)(for a suitable choice of �), which combined withFact 3.1 part (3) proves ALG�(�) � �OPT (�).Definition 3.1. De�ne � by 1 � � = hn0 . De�ne� = 2� �. De�ne b = 12 1��1�� . De�ne a = 1� � � b.Definition 3.2. A machine is tall if it has heightat least 1��; otherwise it is short. Let s be the currentnumber of short machines (so Ats is the average heightof the short machines at time t). A job is large if it hassize � b.Definition 3.3. An elevating job raises a machinefrom being short to being tall, and we say that anelevating job elevates the machine it is placed on.Each machine is tall by time n, so there are melevating jobs in �. We will prove that the lastjob is large and that all the elevating jobs are large.Lemma 3.2 below shows that a large job has size atleast 12 ALG�(�)� , as required by (3.4) above.The sequence � is divided into two phases. In the�rst phase, Ats < a, and each elevating job in this phasemust go on the smallest machine and is therefore large.Ats increases monotonically with t until we reach thesecond phase (called the kickstart) when Ats � a.The kickstart is analyzed in reverse: starting withthe last elevating job in � and moving backwardsin time, we show that each elevating job is large.Eventually a time t is reached where so much processingtime is taken by the jobs in the tall machines and thelater elevating jobs that we must have Ats < a. Thus the�rst phase of the proof applies to all preceding times.3.1 Large jobsLemma 3.1. � satis�es 0 < � � �.Proof. The fact that � > 0 follows from 1 � � =hn0 � Anm < An+1m = 1. To see that � � �, we havefrom (3.1) (3.2) and (3.3) above that hn0 + Jn � �Jn

and hn0 + Jn � �. The �rst inequality givesJn � hn01� � :(3.5)Substituting this upper bound for Jn into the secondinequality gives hn0 (1 + 11� �) � �;which simpli�es to 1� � = hn0 � 1� �.Lemma 3.2. b � 12 ALG�(�)�Proof. Equation (3.5) above gives ALG�(�) = hn0+Jn � hn0 (1 + 11��) = �(1��)1�� . The lemma follows fromthe de�nition b = 12 1��1�� .Thus a large job has size at least 12 ALG�(�)� .Lemma 3.3. If � � 1 � 1p2 � :29, then job n islarge.Proof. Job n raises a machine from height 1� � toat least � = 2 � �, so Jn � 1 � � + �. Job n is largewhenever 1 � � + � � 12 1��1�� . Setting � = 0, the worstcase, this simpli�es to � � 1� 1p2 � :29.3.2 The First PhaseThis section proves that � can be broken into twophases, such that Ats < a during the �rst phase, Ats � ain the second phase, and all elevating jobs in the �rstphase are large.Lemma 3.4. If job t is an elevating job for machineM tk, then Atk � a.Proof. Suppose job t goes on machineM tk. The rulefor ALG� implies that �Atk � htk+ Jt. Since job t is anelevating job, we have htk + Jt � 1� �. By transitivity,�Atk � 1� �, so Atk � 1��� > a.Lemma 3.5. If job t is an elevating job and Ats < a,then job t goes on the shortest machine M t0 and is large.Proof. For all 0 < i < s, Ati < Ats < a. Therefore,by Lemma 3.4, elevating job t cannot go on any shortmachine except the shortest, machine M t0. Since M t0 isthe shortest machine, ht0 � Ats < a. Job t is an elevatingjob, so ht0+Jt � 1�� which implies Jt > 1���a = b.Therefore, job t is large.Lemma 3.6. If At+1s < a then Ats � At+1s < a.Proof.Case 1: job t is not elevating. The number of shortmachines is the same at times t and t + 1. Theonly di�erence between time t and time t+1 is theabsence of job t at time t. Therefore, Ats � At+1s .

4 Karger, Phillips, TorngCase 2: job t is elevating. There is one more shortmachine at time t than at time t + 1. We showthat job t must be placed on the shortest machineat time t. This implies Ats � At+1s , since theaverage height of the short machines is increasedby the removal from consideration of the shortestsuch machine.Assume that elevating job t is placed on shortmachine M tk, with k > 0. Now Atk = At+1k (sincefor j < k, htj = ht+1j). But At+1k � At+1s < a,and Atk � a by Lemma 3.4, giving a contradiction.Therefore, job t must go on machine M t0.Corollary 3.1. If Ats < a, then Aus � Ats < a forall u < t. If Ats � a, then Aus � a for all u > t.Corollary 3.2. Each elevating job that arrivesduring the �rst phase is large.3.3 The KickstartThis section shows that all elevating jobs that arriveduring Phase 2 are large. Consider the elevating jobsin reverse order of arrival. Let es be the sth elevatingjob from the last to arrive; say it arrives at time ts.Given lower bounds on the heights e1; : : : ; es�1, wederive a lower bound on es (note s is the number ofshort machines at time ts). We continue until the lowerbound onPj�s ej is so large that the fact thatAn+1m = 1forces Atss < a, proving that time ts must be in Phase1. If each lower bound on ej, j < s, exceeds b, then wehave proven that all elevating jobs that arrive duringPhase 2 are large.Lemma 3.7. Given �, �, and lower bounds fore1 � � � es�1, and assuming that Atss � a, a lower boundfor es for ALG� can be computed by solving the follow-ing linear program. Minimize es subject tom � mAtsm + sXj=1 ej + 1� �+ �(3.6) htsj � max(�Atsj � es; 1� �);(3.7) s � j < mAtss � a(3.8) Atsj = 1j j�1Xk=0htsj ; 1 � j � m(3.9)Proof. At any time 0 � t � n, the size of the jobsthat arrive before t and the size of the jobs that arriveafter t must sum to m. The sum of the jobs that arrivebefore time ts is at least mAtsm , while the sum of thejobs that arrive after time ts is at least Psj=1 ej + Jn,and Jn � 1 � � + � (from Lemma 3.3). This impliesequation (3.6). Refer to �gure 3. The m � s equations

in (3.7) follow from the fact that es cannot go on any ofthe tall machines (because it is an elevating job). Referto �gure 4. Equation (3.8) is part of the hypothesis ofthe lemma, while equation (3.9) is the de�nition of Atsj .
-h k

ts

elevating

jobs

last

job

tall

machines
short

machines

<
length of all jobs = m

0m-1 s

1

0m-1

1 Figure 3: Equation (3.6)
1- ε

εa = .5 -

h k
ts

e s

elevating
job

k

0sjm-1 Figure 4: Equation (3.7)Corollary 3.3. For any m, �, and �, lete1; : : : ; ei; : : : ; es�1 be successive solutions to the linearprogram of Lemma 3.7. If ej is large for 1 � j < s andthere is no feasible solution to the linear program for es,then Atss < a and each elevating job that arrives duringPhase 2 is large.Proof. The fact that the linear program ofLemma 3.7 for es is infeasible implies that the assumedconditions at time ts cannot hold which means Atss < a.Therefore, Phase 1 must last at least until time ts. Wehave calculated the minimum values of all later elevat-ing jobs, and, by assumption, they are large. Therefore,all elevating jobs that arrive during Phase 2 must belarge.Note that Corollary 3.3 depends on �. We removethis dependence by showing that the worst value of �for our analysis is � = �.Lemma 3.8. Assume that � � 0:2. If the conditionsof Corollary 3.3 hold (so the kickstart is successful) for� = �, then they hold for all �, 0 � � � �.Proof. Let a superscript on a variable denote thevalue of that variable with � equal to the superscript(e.g. b is the value of b when � =). Lemma 3.8 isproven by showing that if e�1 � � � e�k > b� and the linearprogram for e�k+1 is infeasible, then for some j � k, we

A Better Algorithm For an Ancient Scheduling Problem 5have e1 � � �ej > b and the linear program for ej+1 isinfeasible. The full proof is included in the appendix.Thus to determine if ALG� is �-competitive onm machines, we need to solve the linear programsdescribed in Lemma 3.7 and Corollary 3.3 only for thecase � = �.Corollary 3.4. If the conditions of Corollary 3.3hold for � and m (and � = �), so that ALG�is �-competitive for m machines, then ALG is -competitive for m machines for � � � 2.Proof. This follows from the fact that the con-straints of Lemma 3.7 are tighter for larger �.Lemma 3.9. When 6 � m � 13000, there exists an� less than 2� 1m and at most 1:943 such that ALG� is�-competitive on m machines.Proof. We have written code to solve the linearprograms of Lemma 3.7 for 6 � m � 13000 and1 � s � m. It uses binary search to �nd the smallest �(within a tolerance of :00001) such that the conditionsof Corollary 3.3 are satis�ed, and hence ALG�(�) ��OPT(�). In all cases, � < 2� 1m and � � 1:943.4 Upper Bound: Large mThe linear programs of Lemma 3.7 only apply to aspeci�c value of m, and it is impossible to solve themfor all m. To give a bound for all large m, we discretizethe linear program of Lemma 3.7, e�ectively regardinggroups of machines as having the same height.Let x be a constant such that m > x(x � 2). Letb = dmx e, and let i0 = b ibc for all variables i. Unlessj is a multiple of b, we change the constraint on hj inequation (3.7) to the weaker constraint htsj � htsj�1. Wesimilarly change the constraint on Atsj . Furthermore,for j � m0b, we change the constraint on hj inequation (3.7) to the weaker constraint hj = 1� �. Weweaken constraint (3.6) by discarding the terms 1��+�(our lower bound for Jn) and ej for j in s0's block(s0b < j � (s0+1)b). This changes the linear program ofLemma 3.7 to the following linear program: Minimizees subject tom � mXj=(s0+1)bhtsj + (s0 + 1)ba+ s0bXj=1 ej(4.10) htsj � max(�Atsj0b � es; 1� �);(4.11) (s0 + 1)b � j < m0bhtsj = 1� �; m0b � j < m(4.12) a � Ats(s0+1)b(4.13)Atsj0b = 1j0b j0b�1Xk=0 htsk ; s0 + 2 � j0 < m0(4.14)

Note that we have grouped all the machines into x� 1blocks of b machines with one last block of the tallestmachines of size less than or equal to b (this followsfrom the assumption that m > x(x� 2)). In particular,the linear programs for ei and ej are identical wheni0 = j0. Using this fact to simplify the equations,m is easily eliminated from equation (4.11). Lastlym is eliminated from equations (4.12) and (4.10) bypessimistically assuming that there are b machines inthe last block (this is an upper bound). The linearprogram now simpli�es to the following one: Minimizees0 subject tox � x�1Xj0=s0+1htsj0 + (s0 + 1)a+ s0�1Xj0=1 ej0htsj0 � max(�Atsj0 � es0 ; 1� �)s0 + 1 � j0 < x� 1htsx�1 = 1� �Atss0+1 � aAtsj0 = 1j0 j0�1Xk=0 htsk ; s0 + 2 � j0 < x� 1This linear program gives a valid bound for any m >x(x � 2). Therefore, we now have a technique to provethat for some �, ALG� is �-competitive for m > m0.Lemma 4.1. When � � 1:945 and m > 13000,ALG� is �-competitive.Proof. We have written code that solves the linearprogram above, and for � = 1:945 and x = 115, (andhence for m � 115� 113 = 12995), Atks eventually fallsbelow a and all elevating jobs that arrive after tk arelarge. Again, by Corollary 3.2, the rest of the elevatingjobs are large. By Lemma 3.3, the last job is largeas well which means that there are m + 1 large jobs.Therefore, in all cases ALG�(�) � �OPT (�) and thelemma follows.This completes the proof of our main result. Wehave actually shown that for m > 200002, ALG� is �-competitive for 1:943 � � � 2 (by running the codeonce for x = 20000 and � = 1:943). We expect thatALG� is �-competitive for 1:943 � � � 2 for all m, butwe lack the computing resources to verify 1:943 for allm up to 200002.5 Lower BoundsWe now prove lower bounds on the performance ofALG� for both smallm and large m. We �rst prove form = 4 and m = 5 that for no � is ALG� better than2 � 1m -competitive. We then show that our analysis ofALG� is almost tight by describing a sequence of jobs

6 Karger, Phillips, Torngsuch that ALG1:9378 is not 1:9378-competitive on thatsequence. Similar sequences can be constructed to provethat ALG� is not 1:9378-competitive for � < 1:9378,and these will appear in the journal version of thispaper. Clearly, if � > 1:9378, then for large enough m,ALG� is no better than 1:9378-competitive on a longsequence of equal sized jobs.5.1 Lower Bound for Small mLemma 5.1. For no � is ALG� better than (2� 1m)-competitive for m = 4 or m = 5.Proof. First consider the case for m = 4. For� � 157 , ALG� is clearly worse than 1:75-competitiveon a long sequence of equal sized jobs. For � < 157 , itis not hard to verify that ALG� must act exactly likeList on the sequence 1; 1; 1; 1; 2;2; 2; 2; 4 giving ALG�a makespan of 7 while the optimal makespan is easilyseen to be 4. Thus, for m = 4, CALG� � 1:75. Theproof is almost identical for m = 5. For � � 5227 ,ALG� is clearly worse than 1:8-competitive on a longsequence of equal sized jobs. For � < 5227 , it is nothard to verify that ALG� must act exactly like List onthe sequence 1; 1; 1; 1;1; 2; 2;2;2; 2; 5; 5;5;5; 5; 10 givingALG� a makespan of 18 while the optimal makespan iseasily seen to be 10. Thus, for m = 5, CALG� � 1:8.6 Lower Bound for Large m6.1 SketchThe lower bound job sequence �, which demon-strates that ALG1:9378 is not 1:9378-competitive forlargem, is extracted from the upper bound proof, whichshows that a sequence that is bad for ALG� �rst causesit to create a at schedule and then hits it with one �naljob of size 1. The method of constructing a at scheduleclosely follows the kickstart.The sequence � makes the average machine height1, as in the upper bound. The main part of � (Phases 2and 3) forces ALG� to create a schedule with (1� �)mtall machines (with height 1��) and �m short machines(with height a = 1=2� �). The �nal part of � (Phase 4)then forces ALG� to follow the kickstart by repeatedlysetting the height of the next job to be just large enoughto prevent its going on any of the tall machines. Theparameter � is set so that the �rst jobs in Phase 4 haveheight 12 so that two can be scheduled o�-line on onemachine. Finally, the last job of size 1 follows. The onecomplication is that we need to ensure that � can bescheduled with a makespan of just 1. To do this, the�rst part of � (Phase 1) consists of a large number ofextremely small jobs which the o�-line algorithm canuse as �ller.The rest of this section is organized as follows.

Sections 6.2 through 6.5 give details of phases 1 through4. Section 6.6 shows how OPT can pack the jobs sothat all machines have the same height. Throughout,we assume that m is large so that O(1=m) terms can beignored.6.2 Phase 1Phase 1 consists of a sequence of in�nitesimal jobswhich bring the average machine height to c, where c =0:2238 (the reason for this value is given in Section 6.3).
0

.5-

m-1

c

1- ε

ε Figure 5: Schedule at end of Phase 1The algorithm places the in�nitesimal jobs so thatthe machine heights obey the relation hj = �Aj. Thisgives a recurrence for hj , whose solution ishj = h0��+ j � 1j �;where the binomial coe�cient �rk� is de�ned by �rk� =r(r�1):::(r�k+1)k! for real r and positive integer k, and�rk� = 1 when k = 0. ThenAj =Xi<j h0j ��+ i � 1i � = h0j ��+ jj �:Since Am = c, we have h0 = cm=��+mm �. Lastly,applying Stirling's approximation giveshj = c�� jm���1�1 +O�1j��(6.15) Aj = c� jm���1�1 + O�1j��(6.16)6.3 Phase 2Phase 2 consists of �m jobs which are placed onthe current shortest machine and bring that machine'sheight to exactly a = 1=2��. The value of c (the averagemachine height after Phase 1) is determined to ensure

A Better Algorithm For an Ancient Scheduling Problem 7
c

0(1-)mm-1

.5-

1- ε

ε

λFigure 6: Schedule at end of Phase 2that the algorithm does indeed place each job in Phase2 on the machine with current smallest height.The value of c is bounded by two constraints. First,a Phase 2 job must not be placed on a machine whoseheight is already a. Let A0j and h0j be the values ofAj and hj respectively at the end of Phase 1. Sinceh0j increases with j, the tightest constraint on c is whenthe last Phase 2 job is being inserted, and the constraintinvolves adding a job of size a � h0�m�1 and requiringthat it be too tall to go on a height a machine:a+ (a� h0�m�1)> �Am�1= �a(�m � 2) +mA0m � (�m � 1)A0�m�1m � 1 ;Substituting the approximations (6.15) and (6.16) abovegives (for large m):c < a(2� ��)�(1 + ���1 � ��)� 0:2238;using � = 0:392 and � = :0622 (determined in Sec-tion 6.5). The second constraint on c is that a Phase2 job must not be placed on a machine whose height isnot yet a, but that is not the current smallest machine.Some straightforward calculations show that this is aweaker constraint on c. Hence we take c = 0:2238.6.4 Phase 3Phase 3 consists of (1 � �)m jobs which will beplaced on the current shortest machine and bring thatmachine's height to exactly 1� �.For this to work, we need to check that the algo-rithm will not place a Phase 3 job on any machine ex-cept the smallest at the time. The smallest job of Phase

0m-1

.5-

1-

c

m

ε

ε

λFigure 7: Schedule at end of Phase 33 has size 1 � � � c� > 0:504 (using � = :0622, deter-mined below), so clearly no Phase 3 job will be placedon any nonminimal-height machine of height a or less.The average of the machine heights at any time in Phase3 is at most (1��)(1��)+a� � 0:742, while adding anyPhase 3 job to a machine of height 1� � would raise itto height at least 1� �+ 0:504 = 1:442 > :742�. Hencethe algorithm places each Phase 3 job on the smallestmachine at the time.6.5 Phase 4Phase 4 consists of �m jobs where each job size isminimal subject to the constraint that the algorithmplaces the job on the smallest machine at the time. Theparameter � is chosen so that the �rst job of Phase 4has size 1=2, breaking the kickstart. Thus � satis�es:1� �+ 1=2 > �Am�1= �((1� �)(1 � �) + a�);which gives � as a function of �. The constraint thatthe algorithm places the job on the smallest machine atthe time gives a lower bound for Jj, which, after somecalculations, is:Jj > 1=2 + j(3=2� � � �a)m � j � 1 ;so we set Jj = 1=2 + j(3=2����a)m�j�1 (plus a tiny perturba-tion). Lastly, the fact that the set of all jobs has totalsize m determines a value for �. Setting the sum of allthe job sizes to be m and solving for � gives � = 0:0622and � = 0:392.6.6 PackingTo prove that OPT = 1, we need to show that thejobs can be assigned to machines so that each machinehas height 1. This is done as follows: to make roomfor the job of size 1 (which gets its own machine), we

8 Karger, Phillips, Torngplace the six smallest Phase 2 jobs on 2 machines, 3 permachine. We place the six smallest Phase 4 jobs on 3machines, 2 per machine. Each of the remaining Phase4 jobs gets its own machine. The remaining Phase 2jobs are paired with Phase 3 jobs | the largest Phase2 job with the smallest Phase 3 job, the second largestPhase 2 job with the second smallest Phase 3 job, andso on. Finally the in�nitesimal Phase 1 jobs bring areused as �ller to make each machine have height 1.To check that this assignment does not make anymachine too tall, observe the following facts:� The smallest Phase 2 jobs have size a � c����1 <1=3.� The smallest Phase 4 jobs have size 1=2.� The smallest Phase 3 job has size 1� �� c�, whilethe largest Phase 2 job has size 1=2�� for a total ofless than 1. Furthermore, since the schedule afterPhase 1 is convex, if the smallest Phase 3 job andthe largest Phase 2 add to less than 1, then so dothe second smallest Phase 3 job and the secondlargest Phase 2 job, and so on.7 ExtensionsWe have been able to improve our algorithm slightlyby melding it with the algorithm that compares to theaverage height of all machines.Definition 7.1. The algorithm ALG�;� works asfollows: when a job J arrives, it is placed on the tallestmachine k such that hk + J � �((1� �)Ak + �Am+1).For a judicious choice of �, ALG�;� outperformsALG�. Unfortunately we can currently only prove asmall improvement of about :001 in the competitiveratio for large m.One unfortunate property of ALG� is that its worstcase performance ratio occurs on a set of identicallysized jobs. One might desire an algorithm that performswell on such a job set, even at the cost of increasing thecompetitive ratio. We have shown such a tradeo� forALG�, namely that if 1:5 < � < 2, then there is an� > 0 such that ALG� is (2 � �)-competitive for largem. The details will be in the full paper. Clearly, forsmaller �, ALG� achieves a better makespan when allthe jobs are the same size.A related observation is that any algorithm whichdoes well in the worst case cannot be optimal in theaverage case | it is easy to show that for any � < 2there is a � such that any �-competitive algorithm,given a long sequence of identical jobs, must constructa schedule whose makespan exceeds (1 + �)OPT .This leaves three interesting open problems. First,to close the gap between the upper and lower bounds

for C(ALG�). Second, is ALG� (2 � �)-competitivefor � � :5? And third, from the analysis of bad jobsequences forALG� in Section 5, can one derive a betterlower bound for all algorithms, or determine how analgorithm could improve on C(ALG�)?8 AcknowledgementsWe thank Alan Hu for contributing the example demon-strating that ALG� cannot outperform List when m =4.References[1] Y. Bartal, A. Fiat, H. Karlo�, and R. Vohra. Newalgorithms for an ancient scheduling problem. In Proc.24nd ACM Symp. on Theory of Computing, pages 51{58, 1992.[2] Y. Bartal, H. Karlo�, and Y. Rabani. Private Commu-nication.[3] U. Faigle, W. Kern, and G. Tur�an. On the performanceof on-line algorithms for particular problems. ActaCybernetica, 9:107{119, 1989.[4] G. Galambos and G. Woeginger. An on-line schedulingheuristic with better worst case ratio than Graham'slist scheduling. SIAM J. Comput., 22:349{355, 1993.[5] R. Graham. Bounds for certain multiprocessinganomalies. Bell System Technical Journal, 45:1563{1581, 1966.[6] P. Narayanan and R. Chandrasekaran. Optimal on-line algorithms for scheduling. Manuscript, Universityof Texas at Dallas, 1991.AppendixWe present here the full proof of Lemma 3.8.Proof. Let 0 � � �. Let a superscript on avariable denote the value of that variable with � equalto the superscript (e.g. b is the value of b when � =).We show that if e�1 � � �e�k > b� and the linear programfor e�k+1 is infeasible, then for some j � k, e1 � � � ej > band the linear program for ej+1 is infeasible.Let � = ��. We have b = 12 1�1�� = 12+ 12 �1�� whileb� = 12 . Meanwhile, a = 1� � 12 1�1�� = 12 � �+ 1�2�2�2��while a� = 12 � �.This gives us the following two di�erences: �(b) =b � b� = 12�2�� and �(a) = a � a� = 1�2�2�2��. Weprove that for 1 � i � k, if the linear program for eiis feasible, then �(ei) = ei � e�i � �(b), so ei is largeif e�i is large. If the linear program for ei is feasible for1 � i � k, then the fact that the linear program for e�k+1is infeasible implies that the linear program for ek+1 isalso infeasible (since the constraints are all tighter inthe latter program).For the remainder of this proof, considering thelinear program for elevating job es, s � k, arriving

A Better Algorithm For an Ancient Scheduling Problem 9at time ts. We reserve the superscript on all variables(including h and A) to denote the value of � and omitthe 0, ts.Assume that e1 � � � es�1 are indeed �(b) larger thantheir counterparts for � = �. We show that es is as wellby showing that if we set es = e�s +�(b), and minimizehi subject to (3.7), then hi � h�i for each of the tallmachinesMi at this time. Let �(Ai) = Ai �A�i and let�(hi) = hi � h�i for each tall machine Mi. Using thisnotation, we want to prove that �(hi) � 0 for i � s.Proving this will be easy for i close to s because, inthese cases, h�i = 1 � � which implies �(hi) = �. Theonly problem we might have arises when h�i �nally risesabove 1� �.Let j be the minimal index where �A�j � e�s � 1� �.In this case, from Equation (3.7), we get �(hj) ���(Aj) � �(b). If we can prove that �(hj) � �(Aj),then a simple induction proves that for l � j, �(Al) ��(Aj) which implies �(hl) � �(Aj) > 0. Thus weneed (1 � �)�(Aj) � 12�2�� which means we need�(Aj) � 12(1��)2 �. For 0 � � � :15, this means weneed �(Aj) � :7� while for :15 � � � :2, this means weneed �(Aj) � :79�.If j � 2s, then �(Aj) � �(a)s+�s2s = �1�2�2�2� + 1� �2 =3�4�4�4��. For � � :15, this implies �(Aj) � :7� which,from the argument above, implies that for l � j,�(hl) � 0. Similarly, if j � 4s, �(Aj) � 7�8�8�8�.For :15 � � � :2, this means �(Aj) � :84� � :79�which, from the argument above, implies that for l � j,�(hl) � 0. Thus we simply need to prove that for0 � � � :15 that h�i does not rise above 1� � for i < 2sand that for :15 � � � :2, that h�i does not rise above1� � for i < 4s.For the remainder of this proof, � = �. Let jbe the �rst point where �Aj � es � 1 � �. Clearly,this is the �rst point where hj rises above 1 � �.Substituting s(12��)+(j�s)(1��)j for Aj and simplifyingleads to j � 2��1�4�+2�2 s. For � � 0, 2��1�4�+2�2 � 2 whilefor :2 � � � :15, 2��1�4�+2�2 � 4. This completes the proofof the lemma.

