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We show that these desirable properties apply to two problems involving matroids: matroidoptimization, which aims to �nd a minimum cost matroid basis, and basis packing, which aims to�nd a maximum set of pairwise-disjoint matroid bases.An early algorithmic use of sampling was in a median �nding algorithm due to Floyd andRivest [FR75]. Their algorithm selects a small random sample of elements from the set; they provethat inspecting this sample gives a very accurate approximation to the value of the median. It isthen easy to �nd the actual median by examining only those elements close to the estimate. Thisalgorithm uses fewer comparisons (in expectation) than any other known median-�nding algorithm.Examination of this algorithm reveals a paradigm involving three parts. The �rst is a de�nitionof a randomly sampled subproblem. The second is an approximation theorem that describes how asolution to the subproblem approximates a solution to the original problem. These two componentsby themselves will typically yield an obvious approximation algorithmwith a speed-accuracy tradeo�.The third component is a re�nement algorithm that takes the approximate solution and turns it intoan exact solution. Combining these three components can yield an algorithm whose running time willbe determined by the re�nement algorithm; intuitively, re�nement should be easier than computinga solution from scratch.This approach been applied successfully to several graph optimization problems. A preliminaryversion of this paper [Kar93] gave a sampling-based algorithm for the minimum spanning tree prob-lem, after which Klein and Tarjan [KT94] showed that a version of it ran in linear time; a mergedjournal version appeared in [KKT95]. This author [Kar97a, Kar96, BK96, Kar97b] used these sam-pling techniques in fast algorithms for �nding and approximating minimum cuts and maximum 
owsin undirected graphs.In this paper, we extend our techniques from graphs to matroids. Besides increasing our under-standing of what is important in the graph sampling results, our matroid sampling techniques haveadditional applications, in particular to packing spanning trees.1.1 MatroidsWe give a brief discussion of matroids and the rami�cations of our approach to them. An extensivediscussion of matroids can be found in [Wel76].The matroid is an abstraction that generalizes both graphs and vector spaces. A matroid Mconsists of a �nite ground set M of which some subsets are declared to be independent. Theindependent sets must satisfy three properties:� The empty set is independent.� All subsets of an independent set are independent.� If U and V are independent, and kUk > kV k, then some element of U can be added to V toyield an independent set.This de�nition clearly generalizes the notion of linear independence in vector spaces [VDW37].However, it was noted [Whi35] that matroids also generalize graphs: in the graphic matroid theedges of the graph form the ground set, and the independent sets are the acyclic sets of edges(forests). Maximal independent sets of a matroid are called bases; bases in a vector space are thestandard ones while the bases in a graph are the spanning forests (spanning trees, if the graphis connected). In the matching matroid of a graph [Law76], bases correspond to the endpoints ofmaximum matchings.Matroids have rich structure and are the subject of much study in their own right [Wel76].Matroid theory is used to solve problems in electrical circuit analysis and structural rigidity [Rec89].A discussion of many optimization problems that turn out to be special cases of matroid problemscan be found in [LR92]. 2



1.2 Matroid OptimizationIn computer science, perhaps the most natural problem involving matroids is matroid optimization.If a weight is assigned to each element of a matroid, and the weight of a set is de�ned as the sum ofits elements' weights, the optimization problem is to �nd a basis of minimum weight. The minimumspanning tree problem is the matroid optimization problem on the graphic matroid. Several otherproblems can also be formulated as instances of matroid optimization [CLR90, Law76, LR92].Edmonds [Edm71] observed that the matroid optimization problem can be solved by the followingnatural greedy algorithm. Begin with an empty independent set I , and consider the matroid elementsin order of increasing weight. Add each element to I if doing so will keep I independent. Applying thegreedy algorithm to the graphic matroid yields Kruskal's algorithm [Kru56] for minimum spanningtrees: grow a forest by repeatedly adding to the forest the minimum weight edge that does not forma cycle with edges already in the forest. An interesting converse result [Wel76] is that if a family ofsets does not satisfy the matroid independent set properties, then there is an assignment of weightsto the elements for which the greedy algorithm will fail to �nd an optimum set in the family.The greedy algorithm has two drawbacks. First, the elements of the matroid must be examinedin order of weight. Thus the matroid elements must be sorted, adding an 
(m logm) term to therunning time of the greedy algorithm on an m-element matroid. Second, the independent set underconstruction is constantly changing, so that the problem of determining independence of elementsis a dynamic one.Contrast the optimization problem with that of verifying the optimality of a given basis. Formatroids, all that is necessary is to verify that no single element of the matroid M \improves" thebasis. Thus in veri�cation the elements of M can be examined in any order. Furthermore, the basisthat must be veri�ed is static. Extensive study of dynamic algorithms has demonstrated that theytend to be signi�cantly more complicated than their static counterparts|in particular, algorithmson a static input can preprocess the input so as to accelerate queries against it.Applying the sampling paradigm, we show in Section 2 how an algorithm for verifying basisoptimality can be used to construct an optimum basis. The reduction is very simple and suggeststhat the best way to develop a good optimization algorithm for a matroid is to focus attention ondeveloping a good veri�cation algorithm.1.3 Basis PackingPacking problems are common in combinatorial optimization. Some well studied problems that canbe seen as packing problems include the maximum 
ow problem (packing paths between a sourceand sink), computing graph connectivity (equivalent to packing directed spanning trees as discussedby Gabow [Gab95]), matching (packing disjoint edges), and bin packing. Schrijver [Sch79] discussespacking problems in numerous settings.Many packing problems have the following form: given a collection of implicitly de�ned feasiblesets over some universe, �nd a maximum collection of disjoint feasible sets. Random sampling appliesto packing problems. A natural random subproblem is de�ned by specifying a random subset ofthe universe and asking for a packing of feasible sets within the random subset. Furthermore, if wepartition the universe randomly into two sets, de�ning two subproblems, the solutions to the twosubproblems can be merged to give an approximate solution to the whole problem.In Section 3, we discuss the problem of packing matroid bases, i.e. �nding a maximum set ofdisjoint bases in a matroid. This problem arises in the analysis of electrical networks and in theanalysis of the rigidity of physical structures (see [LR92] for details). Edmonds [Edm65] gave an earlyalgorithm for the problem. A simpler algorithm was given by Knuth [Knu73]. Faster algorithmsexist for the special case of the graphic matroid [GW92, Bar95] where the problem is to �nd amaximum collection of disjoint spanning trees (this particular problem is important in networkreliability analysis|see for example Colbourn's book [Col87]).3



In Section 4, we apply random sampling to the basis packing problem. Let the packing numberof a matroid be the maximum number of disjoint bases in it. We show that a random sample of a1=k fraction of the elements from a matroid with packing number n has a packing number tightlydistributed around n=k. This provides the approximation results needed to apply sampling.Random sampling lets us reduce algorithms' dependence on the packing number k. A com-plementary \greedy packing" scheme generalizing Nagamochi and Ibaraki's sparse certi�cate tech-nique [NI92] for graphs lets us reduce the running time dependence on the size of the matroid. Wedescribe this scheme in Section 5.In Section 6, we show how combined sampling and greedy packing yields approximate basispacking algorithms whose running times (aside from a linear term) depend only on the rank of theinput matroid, and not its size. In section 7, we give an application of this combination to theproblem of packing spanning trees in a graph.1.4 Related workPolesskii [Pol90] showed a bound on the likelihood that a random sample of the elements of a matroidcontains a basis, as a function of the number of disjoint bases in the matroid. His result is relatedto our study of matroid basis packing in Section 3.Our packing techniques have had some applications to min-cuts and max-
ows in undirectedgraphs. Among our sampling-based results for an m-edge, n-vertex undirected graph are:� A randomized algorithm to �nd minimum cuts in ~O(m)1 time [Kar96],� A randomized algorithm to �nd a packing of c directed spanning trees in ~O(mpc) time,extending Gabow's deterministic ~O(mc) time algorithm, together with some faster maximum
ow algorithms [Kar97a],� A randomized algorithm for approximating s-t min-cuts in ~O(n2) time [BK96]Our matroid algorithm generalizes of the graph algorithms presented there.Reif and Spirakis [RS80] studied random matroids; their results generalized existence proofs andalgorithms for Hamiltonian paths and perfect matchings in random graphs. Their approach wasto analyze the average case behavior of matroid algorithms on random inputs, while our goal is todevelop randomized algorithms that work well on all inputs.Unlike the problem of counting or constructing disjoint bases, the problem of counting the totalnumber of bases in a matroid is hard. This ]P-complete generalization of the problem of countingperfect matchings in a graph has been addressed recently; see for example [FM92].1.5 Preliminaries and De�nitionsThroughout this paper, logm denotes log2m.For any set A, kAk denotes the cardinality of A. The complement of A (with respect to a knownuniverse) is denoted by A.Our algorithms rely on random sampling, typically from some universe U :De�nition 1.1. For a �xed universe U , U(p) is a set generated from U by including each elementindependently with probability p. For A � U , A(p) = A \ U(p).Note that we are overloading the de�nition of A(p)|it re
ects the outcome of the originalexperiment on U , and not of a new sampling experiment performed only on the elements of A.Which meaning is intended will be clear from context.Consider a statement that refers to a variable n. We say that the statement holds with highprobability (w.h.p.) in n if for any constant d, there is a setting of the constants in the statement(typically hidden by O-notation) such that the probability that the statement fails to hold is O(n�d).1 ~O(f) denotes O(f polylog f). 4



1.5.1 Randomized AlgorithmsMany algorithms described in this paper are randomized. We assume these algorithms can call asubroutine RBIT that, in O(1)-time, returns a random bit that is independent (of all other bits) andunbiased (0 or 1 with equal probability). The outcomes of calls to RBIT de�nes a probability spaceover which we measure the probability of events related to the algorithm's execution. When we saythat an algorithm works \with high probability" without reference to a variable then the implicitparameter is the size of our problem input|in our case, the number of elements in the matroid.Although the model allows us to generate only unbiased random bits, a standard construc-tion [KY76] lets us use RBIT to generate random bits that are 1 with any speci�ed probability. Theexpected time to generate such a bit is constant, and the time to generate a sequence of more thanlogn such bits is (amortized) linear in the number of bits with high probability in n. All algo-rithms in this paper use enough random bits to allow this amortization to take place, so we assumethroughout that generating a biased random bit takes constant time.Randomized algorithms can fail to be correct in two ways. A time T (n) Monte Carlo (MC)algorithm runs in time T (n) with certainty on problems of size n and gives the correct answer withhigh probability (in n). A time T (n) Las Vegas (LV) algorithm always gives the correct answer butonly runs in time T (n) with high probability. Any Las Vegas algorithm can be turned into a MonteCarlo algorithm with the same time bounds|simply give an arbitrary answer if the algorithm takestoo long. However, there is no general scheme for turning a Monte Carlo algorithm into a Las Vegasone, since it may not be possible to check whether the algorithm's answer is correct. Our theoremsclaiming time bounds will append (MC) or (LV) to clarify which type of algorithm is being used.1.5.2 The Cherno� BoundA basic tool in our analysis is the Cherno� bound [Che52]:Lemma 1.2 (Cherno� [Che52, MR95]). Let X be a sum of Bernoulli random variables on nindependent trials with success probabilities p1; : : : ; pn and expected value � =P pi. Then for � � 1,Pr[X < (1� �)�] � e��2�=2and Pr[X > (1 + �)�] � e��2�=3In particular, if � = 
(log n), then X = �(�) with high probability in n.1.5.3 MatroidsWe use several standard matroid de�nitions; details can be found in [Wel76].De�nition 1.3. The rank of S �M , written rkS, is the size of any largest independent set in S.De�nition 1.4. A set of elements X spans an element e if rk(X [ feg) = rkX. Otherwise, e isindependent of X .De�nition 1.5. The closure of X in M , cl(X;M), is the set of all elements in M spanned by X .If M is understood from context, we write clX .De�nition 1.6. A set is closed if it contains all the elements it spans.1.5.4 Matroid ConstructionsAny subset S �M can itself be thought of as a matroid: its independent sets are all the independentsets of M contained in S. Its rank as a matroid is the same as its rank as a subset.De�nition 1.7. Let A be any independent set of M . The quotient matroid M=A is de�ned asfollows:� Its elements are all elements of M independent of A5



� Set S is independent in M=A if and only if S [ A is independent in M .Note that the elements of M=A are simply the complement of clA. The rank of M=A, denotedrkC(M=A), is rkM � rkA. In general, the rank of a set in M=A can be di�erent from its rank inM .De�nition 1.8. If B is any subset of M , M=B denotes the quotient M=A where A is any basis ofB; this is independent of the choice of A.2 Finding a Minimum Cost BasisIn this section we address the problem of �nding a minimum cost basis in a matroid. We considersampling at random from a weighted matroid (that is, a matroid in which each element has beenassigned a real-valued weight or cost) and formalize the following intuition: a random sample islikely to contain a nearly minimum cost basis. This shows that if we need to �nd a good butnot necessarily optimum basis, it su�ces to choose a small random sample from the matroid andconstruct its optimum basis. This gives an obvious improvement in the running time; we will makethe speed-accuracy tradeo� precise. Extending this idea, once we have a good basis, we can usea veri�cation algorithm to identify the elements that improve it, preventing it from actually beingoptimum. In Section 2.3 we show how this information can be used to quickly identify the optimumbasis, thus reducing the problem of constructing an optimum basis to that of verifying one.2.1 De�nitionsWe proceed to formalize our ideas. Fix attention on an m-element rank-r matroid M . GivenS � M , let OPT(S) denote the optimum basis of the set S. By ordering same-weight elementslexicographically, we can assume without loss of generality that all element weights are unique,implying that the optimum basis is unique. Suppose we have a (not necessarily minimum weightor full rank) independent set T of G. We say that an element e improves T if e 2 OPT(T [ feg).In other words, an element improves an independent set if adding it allows one to decrease the costof or enlarge that independent set. We have an equivalent alternative formulation: e improves T ifand only if the elements of T weighing less than e do not span e. The proof that these de�nitionsare equivalent can be found in any discussion of optimum bases (e.g. [Wel76]).It is convenient for the discussion, and follows from the de�nition, that the elements of anyindependent set T improve T . It is easy to prove (but not necessary for our discussion) thatOPT(M) is the only independent set with no improving elements other than its own. Furthermore,the optimum basis elements are the only elements that improve all bases. This allows a naturalconcept of approximation of minimum bases:De�nition 2.1. An independent set is k-optimum if at most kr elements improve it.Our de�nition diverges from the more common approach of measuring approximation by theratio of the output value to the optimum. This change is natural since in the comparison modelof computation (in which all of our results apply) any approximation algorithm with a boundedrelative-cost performance guarantee will necessarily be an exact algorithm. This is because theoptimum basis depends only on the order, and not on the values, of elements of the matroid.Note that our de�nitions apply to independent sets of any rank, not just bases.2.2 A Sampling TheoremIn this section we determine the quality of an approximately optimum basis found by randomsampling. Let M(p) denote a random submatroid of M constructed by including each element ofM independently with probability p. We proceed to prove that with high probability OPT(M(p))is (1=p)-optimum in M . This is a generalization of a result for graphs appearing in [KKT95]. In6



preliminary versions of this paper [Kar92, Kar93], we proved the weaker claim that OPT(M(p)) isO((logn)=p)-optimum. Klein and Tarjan [KT94] gave an improved analysis for minimum spanningtrees that immediately generalizes to matroids as follows:Theorem 2.2. The expected number of elements improving OPT(M(p)) is at most r=p. For anyconstant � > 0, the probability that more than (1 + �)r=p elements improve OPT(M(p)) is at moste��2r=2(1+�) = e�
(r).Corollary 2.3. OPT(M(p)) is O(1=p)-optimum in M with high probability in r.Proof. Given a matroidM and �xing p, let T denote the random set OPT(M(p)). Let V denote therandom set of elements of M that improve T but are not in T . Intuitively and in our algorithms, wedetermine V by constructing M(p), �nding its optimum basis, and then identifying the improvingelements. However, to prove the theorem, we interleave the sampling process that constructs M(p)with the process of �nding T and V using the standard greedy algorithm for matroids.The proof uses a variant of the standard greedy algorithm to �nd the optimum basis and theimproving elements of the sample. Recall that the greedy algorithm examines elements in order ofincreasing weight and adds an element to the growing optimum basis if and only if that element isnot spanned by the smaller elements that have already been examined. We modify this algorithmto interleave the sampling process to determine T and V simultaneously. Consider the algorithmGreedy-Sampling of Figure 1.Input: A matroid M with m elementsOutput: An instance of M(p),its optimum basis T , andthe elements V of M that improve T .Order the elements ei by increasing weight.Let T0 = V0 = ;.for i = 1 to mif ei is spanned by Ti thendiscard eielse Flip a coin to sample ei with probability pif ei is sampled thenVi+1 = ViTi+1 = Ti [ fegelse Vi+1 = Vi [ fegTi+1 = Tireturn T = Tm and V = Vm: Figure 1: Greedy-SamplingNote �rst that if we delete the lines involving V from the algorithm, we are left with the standardgreedy algorithm running on the random matroidM(p) (except that we do not bother 
ipping coinsfor elements that we know cannot be in the optimum basis). The only change is that instead ofperforming all the coin 
ips for the elements before running the algorithm, we 
ip the coins onlywhen they are needed. This does not e�ect the outcome, since we could just as easily 
ip all thecoins in advance but keep the results secret until we needed them (this deferred decision principle is7



discussed in [MR95]). Thus we know that the output T is indeed the optimum basis of the sampledmatroid.We next argue that the output V [ T is indeed the set of improving elements. To see this,observe that every element ei is examined by the algorithm. There are two cases (enumerated inthe algorithm) to consider. If ei is spanned by Ti, then since all elements of Ti are smaller than ei,and since Ti � T , by de�nition ei does not improve T . If ei is not spanned by Ti, then ei is placedin one of Ti+1 or Vi+1 and is thus part of the output. Thus all improving elements are in V [ T . Itis also clear that only improving elements are in V [ T . This follows from the fact that any elementin V [ T is not spanned by the elements smaller than itself in the sample.It remains to bound the value of s = kV [Tk. Consider the s elements for which we 
ip coins inthe algorithm. Call each coin 
ip a success if it makes us put an element in T (probability p) and afailure if it makes us put an element in V . The number of improving elements is simply s, the numberof coins 
ipped. Note as well that since T is independent, the number of successes is at most r. Thequestion is therefore: if the success probability is p, how many coins will be 
ipped before we haver successes? This formulation de�nes the well known negative binomial distribution [Fel68, Mul94].The expected number of coin 
ips needed is r=p. Furthermore, the probability that more than(1+ �)r=p coin 
ips are required is equal to the probability that of the �rst (1+ �)r=p coin 
ips, lessthan r successes occur. This probability is exponentially small in r by the Cherno� bound.Remark. Note that we cannot say that the expected number of improving elements is exactly r=p,since our experiment above may terminate before we have r successes (this will occur if M(p) doesnot have full rank). Thus we can only give an upper bound.2.3 Optimizing by VerifyingWe use the results of the previous section to reduce the problem of constructing the optimum basis tothe problem of verifying a basis to determine which elements improve it. Suppose that we have twoalgorithms available: a construction algorithm that takes a matroid with m elements and rank r andconstructs its optimum basis in time C(m; r); and a veri�cation algorithm that takes an m-element,rank-r matroid M and an independent set T and determines which elements of M improve T intime V (m; r). We show how to combine these two algorithms to yield a more e�cient constructionalgorithm when V is faster than C.We begin with a simple observation we will use to simplify some bounds in our sampling-basedalgorithm.Lemma 2.4. Without loss of generality, C(m; r) � m logm+mV (r + 1; r).Proof. We give a construction algorithm that uses the veri�er as a subroutine. This is an implemen-tation of the standard greedy algorithm. First we sort the elements of M in O(m logm) time. Thenwe build the optimum basis incrementally. We maintain an independent set B, initially empty. Wego through the elements e of M in increasing order, asking the veri�er to verify independent set Bagainst matroid B[feg. If the veri�er says that e improves B, it means that B[feg is independent,so we add e to B. After all m elements have been tested, B will contain the optimum basis.We now give sampling-based algorithm for the optimum basis. Suppose we sample each elementof M with probability 1=k and construct the optimum basis OPT(M(p)) of the sample using C.With high probability the sample has size O(m=k) so that this takes C(m=k; r) time. Use theveri�cation algorithm to �nd the set V of elements of M that improve OPT(M(p)); this takes timeV (m; r). Construct OPT(V ); since OPT(M) � V we know OPT(V ) = OPT(M). By Theorem 2.2,V has size O(kr) with high probability; thus this construction takes C(kr; r) time. The overallrunning time is thus V (m; r)+C(m=k; r)+C(kr; r). If we set m=k = kr, the running time becomesV (m; r) + 2C(pmr; r):8



This is a clear improvement when r is signi�cantly less than m. This new algorithm is just assimple as the original construction and veri�cation algorithms were, since it only consists of twoconstruction calls and a veri�cation call.At the cost of some additional complexity, we can improve the running time further by applyingthe reduction recursively. We apply the algorithm Recursive-Refinement of Figure 2.Algorithm Recursive-Refinement(M;C; V )Input: A matroid M with m elements and rank r.A construction algorithm CA veri�cation algorithm V .Output: The optimum basis of M .if m < 3r thenreturn C(M)else S  M(1=2)T  Recursive-Refinement(S)U  elements of M � S improving T (using veri�er V )return C(U) (which is the optimum basis of M)Figure 2: Recursive-RefinementAlgorithm Recursive-Refinement is clearly correct by induction, since at each level of therecursion T will contain all optimum elements of M that are in S. We now analyze its running time.We begin with an intuitive argument. Observe that the expected size ofM(1=2) is m=2. Further-more, Theorem 2.2 says that U has expected size at most 2r. This suggests the following recurrencefor the running time C 0 of the new construction algorithm.C 0(2r; r) = C(2r; r)C 0(m; r) � C 0(m=2; r) + V (m; r) + C(2r; r):If we now make the natural assumption that V (m; r) = 
(m), this recurrence solves toC 0(m; r) = O(V (m; r) + C(2r; r) log(m=r)):Unfortunately, this argument is not rigorous. Our rigorous argument must be careful aboutpassing expectations through the recurrence functions, and must allow for the possibility that Vand/or C have exponential running times. We now give a rigorous high-probability result; anexpected time result follows similarly. The statement of the theorem is simpli�ed signi�cantly if weassume that V is at least linear and at most polynomial in m. After proving the theorem for thiscase, we state the messier general case.Theorem 2.5. Suppose an m element, rank r matroid has algorithms for constructing an optimumbasis in C(m; r) time and for determining the elements that improve a given independent set inV (m; r) time, where V is at least linear and at most polynomial in m. Then with high probability inm, an optimum basis for the matroid can be found in O(V (m; r) + C(3r; r) log(m=r)) time (LV).Proof. We prove an O(1=m) probability of failure; a general high probability bound follows withdi�erent choice of constants. 9



We will need di�erent proofs depending on whether or not r = o(logm). We begin with someobservations that apply to both cases. We �rst determine the size of all problems passed to theveri�er. Consider the recursion tree produced by the algorithm. Let Mi be the set of elements inputto level i of the recursion tree. Thus Mi+1 =Mi(1=2) is the set of elements sampled at level i. LetTi � Mi be the set of elements returned to level i by the (i + 1)st recursive call. Then the set ofelements passed to the veri�er at level i is just (Mi�Mi+1)[Ti. A given element e is in Mi�Mi+1for exactly one value of i, and each Ti has size at most r. It follows that if the recursion reachesdepth d then the total size of problems passed to the veri�er is at most m + rd. Assuming V issuperlinear, it follows that the total time spent verifying is O(V (m+ rd; r)).We now prove the time bound for the case r > 13 lnm. Consider the recursion tree producedby the algorithm. In the recursive step, each element of M is pushed down to the next level of therecursion with probability 1=2. It follows that the probability that an element survives to recursiondepth log(m=r) is O(r=m). Therefore, the expected number of elements at level log(m=r) in therecursion tree is r. By the Cherno� bound with � = 1, the number of elements at this level at most2r with probability 1 � e�r=3 > 1 � m�4, so the recursion terminates with high probability in mat depth log(m=r). It follows from the previous paragraph (assuming V is polynomial, and sincer logm=r = O(m)) that the time spent verifying is O(V (m + r log(m=r))) = O(V (m)) with highprobability.We now determine the time spent in calls to C. Each set passed to C is known by Theorem 2.2to have size upper bounded by a negative binomial distribution with mean 2r. That theorem alsoshows that the probability that the passed set has size exceeding 3r is at most e�(1=2)2r=3 = e�r=12 <m�13=12. We have already argued that the recursion terminates at depth log(m=r), so there are onlylog(m=r) calls to C. Thus the probability that any one of the calls involves a set whose size exceedssize 3r is O(1=m).It remains to consider the case r < 13 lnm. We again begin by bounding the recursion depth.Arguing as in the previous case, we note that the expected number of elements at recursion depth2 logm is 1=m; it follows from Markov's inequality that the recursion terminates at this depth withprobability 1� 1=m. Thus the bound on veri�cation time follows as in the previous case.To bound the time spent in calls to C, note as above that the number of elements passed toC at one level of the recursion is upper bounded by a negative binomial distribution with mean2r. Therefore, the number of elements passed to C over all recursion levels is upper bounded(with high probability) by a negative binomial distribution with mean O(r logm) and is thereforeO(r logm) with high probability in m. Recall from Lemma 2.4 that C(n; r) = O(n logn+ nV (r +1; r)). Therefore, the total time spent on construction is upper bounded by O(r(logm) log(r logm)+V (5r2 logm; r)) = O(m + V (m; r)) and can therefore be absorbed by the bound on veri�cationtime.We now give a generalization that holds without restriction on C and V .Corollary 2.6. An optimum basis can be found in timeO(logm=rXi=1 V (mi + r + logm; r) + C(3r; r) log(m=r) + (log2m)V (logm; r))with high probability (LV) for some mi such that Pmi = m.Proof. The �rst term is from the veri�cation time analysis in the theorem; the second from theconstruction time for the case r > logm, the third for the case r � logm.Since there is, for example, a linear-time algorithm for verifying minimum spanning trees [DRT92]and a simple O(m logn) time algorithm for constructing minimum spanning trees [Kru56], the abovelemma immediately yields an O(m + n logn log(m=n))-time algorithm for constructing minimumspanning trees in n-vertex,m-edge graphs. The nonlinear term re
ects the need to solveO(log(m=n))10



\base cases" on n edges. Karger, Klein and Tarjan [KKT95] observed that this can be improved. Bymerging vertices connected by minimum spanning tree edges as those edges are discovered, we canreduce the rank of the graphic matroid in the recursive calls. This leads to a linear-time recursivealgorithm for the minimum spanning tree problem. A similar technique does not seem to exist forthe general matroid optimization problem.In their survey paper [LR92], Lee and Ryan discuss several applications of matroid optimization.These include job sequencing and �nding a minimum cycle basis of a graph. In the applications theydiscuss, attention has apparently been focused on the construction rather than the veri�cation of theoptimum basis. This work suggests that examining veri�cation would be productive. In particular,applying Lemma 2.4 to the main theorem, we have:Corollary 2.7. Given a matroid veri�cation algorithm with running time V (m; r), an optimumbasis can be found in O(V (m; r) + r log r log(m=r)V (r + 1; r)) time.3 Packing Matroid BasesWe now turn to the basis packing problem. The objective is to �nd a maximum collection of pairwisedisjoint bases in a matroid M . It is closely related to the problem of �nding a basis in a k-foldmatroid sum for M , which by de�nition is a matroid whose independent sets are the sets thatcan be partitioned into k independent sets of M . A rank r matroid contains k disjoint basesprecisely when its k-fold sum has rank kr. An early algorithm for this problem was given byEdmonds [Edm65, Law76].De�nition 3.1. The packing number P (M) for a matroid M is the maximum number of disjointbases in it.Many matroid algorithms access the matroid via calls to an independence oracle that tells whethera given set is independent in the matroid. The running time for such an oracle call can be quite large,but special implementations for, e.g., the graphic matroid [GW92] run quickly. For convenience, wewill state running times in terms of the number of primitive operations plus the number of oraclecalls performed. If we say that an algorithm runs in time T , we are actually saying that, given anoracle with running time T 0, the algorithm will run in time TT 0.Many matroid packing algorithms use a concept of augmenting paths: the algorithms repeatedlyaugment a collection of independent sets by a single element until they form the desired numberof bases. The augmentation steps generally have running times dependent on the matroid sizem, the matroid rank r, and k, the number of bases already found. For example, Knuth [Knu73]gives a \generic" augmenting path algorithm that �nds an augmenting path in O(mrk) calls to anindependence oracle and can therefore �nd a set of k disjoint bases of total size rk (if they exist) inO(mr2k2) \time." (Knuth claims an augmentation time of m2 > mrk, but an examination of hisalgorithm's inner loop shows that each of the at most rk elements of the \current" packing is testedagainst each element of the matroid, yielding the O(mrk) time bound.)In the following sections, we give two techniques for improving the running times of basis packingalgorithms. Random sampling lets us reduce or eliminate the running time dependence on k. Agreedy packing technique lets us replace m by kr ln r � m ln r (or in some cases by kr � m).Combining the two techniques yields algorithms whose running time depends almost entirely on r.We apply them to the problem of packing spanning trees in a graph, previously investigated byGabow and Westermann [GW92] and Barahona [Bar95].We believe that the paradigms developed here will be useful for a wide variety of packing prob-lems. We have used similar ideas [Kar97a, BK96, Kar96] in fast new algorithms for maximum 
ows(packings of paths) and connectivity computations (using a tree packing algorithm developed byGabow [Gab95]).
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3.1 A Quotient FormulationWe �rst present some of the tools we will use in our development. An alternative characterizationof a matroid's packing number is given in the following theorem of Edmonds [Edm65]. Recall(Section 1.5) that any subset A of M has a matroid structure induced by the independent sets ofM contained in A. Let A denote M �A.Theorem 3.2 (Edmonds). A matroid on M with rank r has k disjoint bases if and only if forevery A �M , k rkA+ kAk � kr:Recall the de�nitions of closures and quotients from Section 1.5. In particular, recall that aquotient is any complement of a closed set and that rkC(M=A) = rkM � rkA is the rank of thequotient matroid M=A. Edmonds' Theorem can be rephrased in quotient language as follows:Theorem 3.3. P (M) � k if and only if for every quotient Q of M ,kQk � k rkCQ: (1)Proof. The elements of each quotient Q are a subset of M (and each subset that is a complement ofa closed set de�nes exactly one quotient). Since any independent set of the quotient is independentin M as well, we have rkCQ � rkQ. Therefore, Edmonds' original formulation implies this onetrivially by taking A = Q. For the other direction, suppose the above statement holds and considerany set A �M . Let B = clA, so B is a quotient with rkCB = rkM � rkA. ThenkAk � kBk� k rkCB= k( rkM � rkA)Motivated by the above theorem, we make the following de�nitions:De�nition 3.4. The density of a quotient Q,�(Q) = kQkrkCQ:De�nition 3.5. A sparsest quotient of M is a quotient of minimum density.Corollary 3.6. P (M) is equal to the density of a sparsest quotient, rounded down.As an example of quotients, consider the graphic matroid. Given a set of edges, its closurecorresponds to the connected components of the edge set. An edge is in the closure if both endpointsare in the same connected component. The complement is the set of edges with endpoints in di�erentcomponents. Thus, it corresponds to a (multiway) cut of the graph. The size of the quotient is justthe value of the cut. It is worth distinguishing the minimum density quotient from the minimumcut: the minimum density quotient can have many more edges than the minimum cut if it partitionsthe graph into many components.4 Sampling for PackingWe now show that randomly sampling from the elements of a matroid \scales" the densities of all thequotients in the matroid. It will immediately follow that sampling also scales the packing numberin a predictable fashion. We write x 2 (1� �)y when we mean (1� �)y � x � (1 + �)y.Theorem 4.1. Let P (M) = k. Suppose each element of M is sampled with probability p �18(lnm)=k�2, yielding a matroid M(p). Then with high probability in m, P (M(p)) 2 (1� �)pk.12



Clearly this theorem is only interesting when P (m) = 
(lnm), since obviously we want p < 1and � < 1. We will prove it in Section 4.2. A second proof is given in the appendix.This theorem gives an obvious scheme for approximating P (M): �nd P (M(p)) for some smallsampling probability p. We elaborate on this approach, extending it to exactly compute the optimumpacking, in Section 4.3.To prove the theorem, we consider a correspondence between the quotients inM and the quotientsin a random sample M(p). We use it to prove that no quotient of M(p) has low density. The resultthen follows from Corollary 3.6. We now give this correspondence.Consider a quotient Q ofM(p). Let A =M(p)�Q. It is easy to verify that Q = (M=A)\M(p) =(M=A)(p). In other words, every quotient in M(p) is the sampled part of a corresponding quotientof M . In Lemma 4.6 we show that with high probability every quotient in M(p) contains (1 � �)ptimes as many elements as its corresponding quotient in M . It will follow that� Every quotient of M(p) has density at least (1� �)pk.� The minimum-density quotient in M (with density k) induces a quotient of density at most(1 + �)pk in M(p).Combining these facts with Corollary 3.6 will prove the theorem.4.1 Related ResultsBefore proving the main theorem, we note a few related results.4.1.1 Existence of a BasisThe above theorem proves that the number of bases is predictable. We might settle for knowingthat at least one basis gets sampled.Theorem 4.2. Suppose M contains a+2+ k ln r disjoint bases. Then M(1=k) contains a basis forM with probability 1�O(e�a=k).A proof of this theorem is given in the appendix. Note that Polesskii [Pol90] proved the samefact by giving an explicit construction of the \least reliable" (least likely to contain a basis) matroidcontaining k disjoint bases, for any k.This theorem is in a sense orthogonal to Theorem 2.2. That theorem shows that regardless ofthe number of bases, few elements are likely to be independent of the sample. However, it does notprove that the sample contains a basis. This theorem shows that if the number of bases is largeenough, no elements will be independent of the sample (because the sample will contain a basis).Note also that the sampling probability in the theorem is signi�cantly less than that used in ourmain theorem. At these lower sampling probabilities, we can guarantee one basis, but the numberof bases appears to have a large variance. This conforms to our intuition about simpler samplingexperiments. When the \expected number of bases" pk is ln r, we expect to �nd at least one butcannot predict how many. When pk becomes slightly larger (about lnm), we begin to see tightconcentration about the mean.4.1.2 The Graphic MatroidWe also remark on some particular restrictions to the graphic matroid. Erd�os and Renyi [ER59,Bol85], proved that if a random graph on n vertices is generated by including each edge independentlywith probability exceeding (lnn)=n, then the graph is likely to be connected. Rephrased in thelanguage of graphic matroids, if the edges of a complete graph on n vertices are sampled withthe given probability, then the sampled edges are likely to contain a spanning tree, i.e. a basis.Theorem 4.2 says the same thing, though with weaker constants.In [Kar97a] we prove the following result analogous to Theorem 4.1 for graphs:13



Theorem 4.3. If a graph G has minimum cut k, then (with p and � as in Theorem 4.1) every cutin G(p) has value p(1� �) times its value on the original graphs.Corollary 4.4. If a graph G has minimum cut k, then (with p and � as in Theorem 4.1) G(p) hasminimum cut (1� �)pk.A Theorem of Nash-Williams [NW61] gives a connection between minimum cuts and spanningtree packings|one closely tied to Edmonds' Theorem for matroids. Our sampling theorems formatroids generalize our sampling theorems for graphs. Just as our matroid sampling theorem leadsto algorithms for approximating and �nding basis packings, the graph sampling theorem on cutsleads to fast algorithms for approximating and exactly �nding minimum cuts and s-t minimum cutsand maximum 
ows [Kar97a].4.2 Proof of Theorem 4.1This section is devoted to proving Theorem 4.1. The reader interested only in its applications canskip to the next section. An alternative \constructive" proof is given in the appendix. We actuallyprove the theorem for a slightly smaller sampling probability p = 9(lnmr)=k�2 < 18(lnm)=k�2 sincer � m. It will be clear that using the larger \correct" p can only increase our success probability.As discussed above, we aim to prove that every quotient in M(p) has roughly p times the densityof its corresponding quotient in M . To do so, we prove that every quotient has size roughly p timesthat of its corresponding quotient, and then note that (by Theorem 4.2) the rank of M(p) is thesame as the rank of M . Density scaling then follows from the de�nitions.We �rst prove that the number of elements sampled from every quotient inM is near its expecta-tion with high probability. For any one quotient, this follows immediately from the Cherno� bound.However, a matroid can have exponentially many quotients, implying that even the exponentiallyunlikely event of a Cherno� bound violation might occur. To surmount this problem, we show thatalmost all quotients in a matroid are large. Since the likelihood of deviation from expectation decaysexponentially with the size of the quotient, this su�ces to prove our result.Lemma 4.5. For integer t, the number of quotients of size less than tk is at most (mr)t.Proof. First suppose t > r. Each quotient corresponds to a closed set, which is the closure of someindependent set that spans it, so there is a surjective mapping from independent sets to closures toquotients. Thus the number of quotients is at most the number of independent sets. There are atmost �m0 �+ �m1 �+ � � �+ �mr � � mr such independent sets, proving the lemma for t � r.Now assume t < r. We use a proof that essentially generalizes the Contraction Algorithmof [KS96]. We give an algorithm for randomly choosing a small quotient, and show that every smallquotient has a large chance of being chosen. This proves that there are only a few such quotients.Consider the following randomized algorithm for selecting a quotient of M :Let Mr =MFor i = r downto t+ 1Let xi be an element selected uniformly at random from MiLet Mi�1 =Mi=xiPick a quotient at uniformly at random from MtConsider a particular quotient Q of size less than tk for some real t. We determine the probabilitythis quotient is found by the algorithm. We �rst �nd the probability that this quotient is containedin Mt (i.e., contains only elements independent of xr; : : : ; xt+1). Consider the selection of xr. Byhypothesis, Q has size at most tk. However, since Mr has k disjoint bases of rank r, it has atleast rk elements. Therefore, Pr[xr 2 Q] � tk=rk = t=r. Thus Pr[xr =2 Q] � 1 � t=r. However,if xr =2 Q then, since Q is a quotient, we know that Q � Mr�1 = Mr=xr. Now note that Mr�1still has k disjoint bases (the quotients by xr of the bases in Mr) but has rank r � 1. ThusPr[xr�1 2 Q j xr =2 Q] = 1� t=(r � 1). Continuing, we �nd that14



Pr[Q �Mt] � (1� tr )(1� tr � 1) � � � (1� tt+ 1)� r � tr � r � t� 1r � 1 � � � 1t+ 1= �rt��1� r�tNow suppose the we select a quotient uniformly at random fromMt. The number of quotients ofMt is at most the number of independent sets ofMt. But an independent set inMt can have at mostt elements in it (since Mt has rank t). Thus the number of quotients is at mostPi�t �mi � � m�t, sothe probability that we pick our particular quotient, given that it is a subset of Mt, is at least m�t.Combining the above two arguments, we �nd that the probability of selecting a particular quo-tient of size tk is at least (mr)�t. Therefore, since each quotient of size less than kt has at least thisprobability of being chosen, and the events of these quotients being chosen are disjoint, we knowthat the number of such quotients is at most (mr)t.Lemma 4.6. With high probability, for all quotients Q of M we have kQ(p)k 2 (1� �)pkQk.Proof. Consider a particular quotient Q of size q in M . The probability that Q(p) has size outsidethe range (1� �)pq is, by the Cherno� bound, at most 2e��2pq=3 = 2(mr)�3q=k .Let q1; q2; : : : be the sizes of M 's quotients in increasing order so that k � q1 � q2; � � � . Let pjbe the probability that the jth quotient diverges by more than � from its expected size. Then theprobability that some quotient diverges by more than � is at mostP pj , which we proceed to boundfrom above.We have just argued that pj � 2(mr)�3qj=k. According to Lemma 4.5, for integer t there areat most (mr)t quotients of size less than tk. We now proceed in two steps. First, consider the mrsmallest quotients. Each of them has qj � k and thus pj � 2(mr)�3, so thatXj�mr pj � 2(mr)(mr)�3 = O((mr)�2):Next, consider the remaining larger quotients. Since we have numbered the quotients in increasing or-der, this means that quotient q(mr)t+1; : : : ; q(mr)t+1 all have size at least tk. Thus p(mr)t ; : : : ; p(mr)t+1 �2(mr)�3t It follows that Xj>mr pj � 2Xt�1[(mr)t+1 � (mr)t](mr)�3t� 2Xt�1(mr)1�2t= O((mr)�1):Lemma 4.7. With high probability rk(M(p)) = rkM .Proof. This follows from Theorem 4.2. For a direct proof, suppose that rk(M(p)) < rkM . Thisimplies that M(p) does not span M , meaning that Q =M=M(p) is a nonempty quotient. Edmonds'Theorem implies that in fact such a quotient has at least k elements. From Lemma 4.6 we deducethat Q(p) is nonempty. But from the de�nition of Q we know that Q\M(p) = ;, a contradiction.15



Remark. Theorem 4.2 proves that a signi�cantly smaller value of p than that used here is su�cientto ensure full rank.Lemma 4.8. With high probability, the density of every quotient in M(p) is p(1 � �) times thedensity of the corresponding quotient in M .Proof. Consider a quotient M(p)=A where A � M(p). As discussed at the start of the section, ithas the form Q(p) for the quotient Q =M=A. By Lemma 4.6, we know that kQ(p)k 2 (1� �)pkQk.At the same time, we know from Lemma 4.7 that rk(M(p)) = rkM . It follows that the density�(Q(p)) satis�es �(Q(p)) = kQ(p)krk(M(p))� rkA2 (1� �)pkQkrk(M)� rkA= (1� �)p �(Q)Corollary 4.9. With high probability P (M(p)) � (1� �)p � P (M)Proof. Every quotient in M(p) corresponds to a quotient of density at least P (M) in M .This gives the lower bound; to prove the upper bound, we just need to show that some quotientin M(p) corresponds to the minimum density quotient of M .Lemma 4.10. With high probability P (M(p)) � (1 + �)p � P (M)Proof. Let Q = M � A be the quotient of minimum density in M . Then consider Q(p) andA(p). Clearly rk(A(p)) � rkA; thus by Lemma 4.7 (or Theorem 4.2) we have rkC(M(p)=A(p)) �rkC(M=A). By the Cherno� bound we have kQ(p)k � (1 + �)kQk. It follows that�(Q(p)) = kQ(pkrkC(M(p)=A(p))� (1 + �)pkQkrkC(M=A)= (1 + �)p �(Q):This completes the proof of Theorem 4.1. We have shown that with high probability everyquotient is dense, so P (M(p)) � (1 � �)k, and that some quotient is sparse, so that P (M(p)) �(1 + �)k.4.2.1 Capacitated MatroidsIn some cases (such as the tree packing problem will will address later) it is natural to assign acapacity to each element of the matroid. A basis packing is now one that uses each element no moretimes than the capacity of that element. We can even allow fractional capacities and talk aboutthe maximum fractional packing in which each basis is given a weight and the total weight of basesusing an element can be no more than the capacity of the element.We would like to apply Theorem 4.1 to capacitated matroids. One approach is to represent anelement of capacity c as a set of c identical uncapacitated matroid elements and apply the theoremdirectly. This has the drawback of putting into the error bound of Theorem 4.1 a term dependent16



on the total capacity of matroid elements. In fact, Theorem 4.1 holds for capacitated matroids evenwhen m refers to the number of distinct matroid elements rather than their total capacity.To see this, note that the m term in the error bound arose from only one place: the O((mr)t)bound on the number of quotients of size less than tk, which we would like to turn into a bound onthe number of quotients of total capacity less than tk. The factor of m in this bound arose in turnfrom the mr bound on the number of quotients in an m-element, rank-r matroid, which is at mostthe number of independent sets in the matroid. But now observe that two independent sets withdi�erent copies of the same elements yield the same quotient. This means that replicating elementsdoes not increase the number of independent sets or quotients. Thus the number of independentsets (and quotients) of capacity tk is bounded by (mr)t, where m is the number of distinct elementsof M , regardless of their capacity.Corollary 4.11. Let M be a capacitated matroid with m elements and with P (M) = k. Supposeeach copy of a capacitated element is sampled with probability p � 18(lnm)=k�2, yielding a matroidM(p). Then with high probability in m, P (M(p)) 2 (1� �)pk.To apply this argument to fractional capacities, consider multiplying each capacity by a largeinteger T , rounding down to the nearest integer, and applying the previous theorem. In the limit asT becomes large, we reduce to the integer capacity case. Note that multiplying by T also scales thepacking number by T , which scales the sampling probability of any one element down by a factorof T . The limiting distribution on the number of copies sampled from a given capacitated elementbecomes a Poisson process.Corollary 4.12. Suppose M has fractional packing number k. Build a new matroid M 0 by sam-pling from each capacity w element of M according to a Poisson process with mean pw for p �18(lnm)=k�2. Then with high probability, P (M 0) 2 (1� �)pk.Further details of this approach to sampling capacitated elements can be found in [Kar97a].4.3 Packing by SamplingHaving developed approximation theorems for basis packing, we now use sampling with re�nement todevelop algorithms for exact and approximate basis packing. We �rst note an obvious approximationscheme. To approximate the packing number, we can sample matroid elements with some probabilityp and compute the packing number of M(p) using Knuth's algorithm. By Theorem 4.1, P (M(p))will be roughly pk, so Knuth's algorithm will run faster (by a factor of p2) on the sample. Dividingthe sample's packing number by p will give an estimate for P (M). Before giving the details of thisscheme, we present a speedup of Knuth's algorithm for �nding an exact packing. Using this exactalgorithm instead of Knuth's will yield a faster approximation algorithm based on the above scheme.Theorem 4.13. A maximum packing of k matroid bases in an m element, rank r matroid can befound with high probability in O(mr2k3=2plogm) time (LV).Recall that the su�x (LV) denotes a Las Vegas algorithm. This result \accelerates" Knuth'salgorithm [Knu73] by a factor of pk= logm.Proof. Start by running Knuth's algorithm to �nd out if the packing number is less than logm|return the packing if so. Otherwise, randomly partition the matroid elements into 2 groups by
ipping an unbiased coin to decide which group each element goes in. Find a maximum basispacking in each of the two groups recursively. Combining these two packings gives a (not necessarilymaximum) packing of bases in M . Use Knuth's algorithm to augment this packing to a maximumone.The algorithm is clearly correct; we now analyze its running time. First suppose that the matroidcontains k � logm bases. Then the �rst test takes O(mr2k2) = O(mr2k3=2plogm) time and wethen halt (and our proof is done for this case). Otherwise, the �rst test takes O(mr2 log2m) =O(mr2k3=2plogm) time and we then go on to the (recursive) phase. If the recursive phase executes,we can assume k � logm. 17



We begin with an intuitive argument. Consider a particular node in the recursion tree. Each ofthe two submatroids we construct looks like a random sample with p = 1=2, though the two groupsare not independent. We can apply Theorem 4.1 with p = 1=2 to each submatroid; solving for � yields� =p36(lnm)=k, implying that with high probability in m each group contains k=2�O(pk logm)disjoint bases. Thus, Knuth's algorithm needs to augment the union of the recursive calls by anadditional O(rpk logm) elements, which takes O(mr2kpk logm) time. This gives a recurrence inwhich the �nal cleanup phase dominates the running time.Unfortunately there is a 
aw in this argument: the many leaves in the recursion tree are smalland might fail to obey the high probability arguments. We therefore unroll the recursion to provethe theorem. We add up the work (cleanup augmentations) performed at each node of the recursiontree. We separately bound two di�erent kinds of work at a given node: useful augmentations areaugmentations that eventually contribute to an increase in the number of bases returned; uselessaugmentations are those last few which do not so contribute. At any given node there can be atmost r � 1 useless augmentations since a sequence of r augmentations adds a basis.We �rst analyze the shape of the recursion tree. Note that each node at depth d of the recursiontree contains a random subset of M in which each element appears with probability 1=2d. It followsthat at depth d > 3 logm, every node has at most 1 element with high probability (this can be seenby considering throwing the m elements randomly into the m3 recursion nodes at this depth). Thismeans the recursion depth is O(logm) and thus that the number of recursion nodes is polynomialin m (so that events that are high probability in m can be assumed to happen at every node).Now we separately analyze \shallow" and \deep" recursion tree nodes. First consider the \shal-low" nodes at depth d with 2d = O(k= logm). Applying Theorem 4.1 with p = 2�d to such anode, we deduce that with high probability in m, any such node contains (1� �d)k=2d bases, where�d = O(p2d(logm)=k < 1. In other words, the node contains k=2d�O(pk(logm)=2d) bases. Sincethe number of nodes in the recursion tree is mO(1) with high probability, this argument holds withhigh probability at every (su�ciently shallow) node.It follows that after merging the bases from its two children, each shallow node at depth d mustaugment at most�k=2d +q36k(lnm)=2d�� 2 � �k=2d+1 �q36k(lnm)=2d+1� = O�qk(logm)=2d�additional bases bases to �nish. Since with high probability in m, each of the nodes has O(m=2d)elements, this takes Knuth's augmentation algorithmO�m2d r2qk(logm)=2d�time. Since there are 2d nodes at level d, the total time spent at level d isO�mr2qk(logm)=2d� :To �nd the time spent at all relevant levels, we sum the times at each. This is a geometric seriessumming to O �mr2pk(logm)� :The above argument bounded the number of useful augmentations. It can also cover the timespent in useless augmentations. Since every recursion node is assumed in the above analysis toaugment by at least one basis, we can charge the r useless augmentations to the last r useful ones.It remains to bound the time at \deep" levels with 2d = 
(log(k= logm))). To bound usefulaugmentations, note that each node at this level or below has O(m(logm)=k) elements and O(logm)bases with high probability. Furthermore, among all the nodes at or below this level there can be18



at most k bases added, since each added base contributes to the total output of bases. Therefore,the total cost of adding bases below this level isO(k �mr2(log2m)=k) = O(mr2 log2m)= O(mr2k3=2p(logm))Finally we must account for the useless augmentations. Consider a node with mi elements. Itcan perform at most r useless augmentations, each costing at most O(mir logm) time. Thus thetime spent at a given level is O(Pmir2 logm) = O(mr2 logm). Thus the total time spent over allO(logm) deep levels is (mr2 log2m), which is negligible since k = 
(logm).We now use this faster exact packing algorithm to implement a faster approximation algorithm.Theorem 4.14. For any �, the packing number k of an m-element matroid of rank r can be esti-mated to within (1� �) in O(mr2(log3m)=k�5) time (MC).Proof. Let ẑ = (18 lnm)=�2, and consider sampling with probability p̂ = ẑ=k. Theorem 4.1 tells usthat with high probability, M(p̂) has packing number z 2 (1 � �)ẑ. Thus if we compute z in thesampled matroid, z=p̂ provides an estimate of k with the desired accuracy.As described the algorithm requires a knowledge of k. But this is easy to simulate with a repeateddoubling scheme. Start with p = 1=m < p̂. Repeatedly double p and pack M(p) until M(p) haspacking number z � 2ẑ. The probability that this happens when p < p̂ is negligible. To see this,consider the following scheme for sampling elements with probability p < p̂. First, tentatively sampleeach element with probability p̂. Second, sample each tentatively sampled element with probabilityp=p̂ < 1. As required, each element gets sampled with probability p. But consider the tentativelysampled elements. By Theorem 4.1, the packing number of the tentative sample M(p̂) is at most(1 + �)ẑ � z. Sampling a subset of these elements clearly cannot increase the packing number, sothe claim holds. It follows that with high probability, when the doubling process terminates we havep � p̂, so z=p 2 (1� �)k.To determine the running time, note that at trial i of doubling p we are working with a matroidthat (with high probability) has size O(pm) and packing number O(ẑ). Thus the time to �nd itsoptimum packing is O(pmr2ẑ3=2plogm) by Theorem 4.13. We stop before p > 2ẑ=k. Thus the workover all trials is a geometric series summing to O(mr2 ẑ5=2plogm=k).As a technical detail, note that if p̂ is much too small, we might get a sample with smaller rankthan the original matroid. Bases in this sample will not be bases of M , and the sampling theoremwill not apply. But this case is easy to avoid. To start with, we compute the rank of M in O(m)time by greedily constructing a basis. Before packing a sample, we make sure that it has the samerank (taking time linear in the sample size). The total work is negligible.As another technical detail, note that if p̂ > 1, we just run Knuth's algorithm on the originalmatroid. Since p̂ > 1 implies ẑ > k, meaning k = O(��2 lnm), the original algorithm's running timeof O(mr2k2) is better than the one we claim. Thus the claimed bound is certainly achievable.Corollary 4.15. In the same time bounds as above, we can identify a quotient of M with densityat most (1 + �) times the minimum.Proof. The above algorithm will also identify a sparse quotient in the sample. This quotient, byTheorem 4.1, corresponds to a sparse quotient in the original matroid.Theorem 4.16. A packing of (1� �)k disjoint bases can be found in O(mr2(log2m)=�3) time (LV).Proof. After approximating k with the previous algorithm, partition the elements of M randomlyinto 1=p = �2k=18 lnm groups. Each looks like a sample of the kind discussed in Theorem 4.16 and19



therefore contains pk(1 � �) bases. Run the basis packing algorithm on each group and take theunion of the results. The running time is the time for 1=p executions of the previous algorithm.The algorithm as stated is Monte Carlo in that there is a small probability that the various groupswill not contain (1� �)k bases among them. But if we combine with the previous algorithm, we canguarantee the correctness of the solution. By Corollary 4.15, we can �nd a sparse quotient in theoriginal graph; this provides an upper bound on the value of the packing number. By Theorem 4.16,we can �nd a nearly maximum packing, thus lower bounding the packing number. So long as theupper and lower bounds disagree by more than (1+ �)=(1� �), we can rerun both algorithms. Oncethey agree this closely we will have pinned down the correct value to within �.5 Greedy PackingsThe sampling techniques we have just described let us e�ectively reduce the dependence of a packingalgorithm on the packing number k, partially replacing k with O(logm). We now give a di�erent,deterministic scheme that lets us reduce the dependencies of these algorithms on the matroid size m.We e�ectively replace m by rk for basis packing algorithms. In particular, we give a deterministicbasis packing algorithm with running timeO(m + (rk)3):Sampling then lets us nearly eliminate the newly introduced factor of k, so we are left only with adependence on the rank r, the error parameter �, and log k.The idea behind this approach is a connection between a maximum packing and a maximalpacking. Maximal packings are much easier to construct, but can be made to contain as many basesas the maximum packing. The maximum packing algorithms can then extract those bases fromthe maximal packing instead of from the entire matroid. This approach was explored for graphsby Nagamochi and Ibaraki [NI92], who showed how a maximal packing of forests could be used inminimum cut computations.De�nition 5.1. A greedy packing of M is a partition of the elements of M into independent setsBi, i > 0 such that each Bj is a basis of M �[i<jBi. The \pre�x" B1; : : : ; Bt is a greedy t-packing.A greedy t-packing has at most tr elements and may therefore be smaller than the originalmatroid. However, it still contains a large number of disjoint bases:Lemma 5.2. Let S be a greedy k(1 + ln r)-packing of M . If P (M) � k, then P (S) � k.Proof. Let S = fBig be the greedy packing. We show that for every quotient Q of S, its density�Q � k. The result then follows from the quotient version of Edmonds' Theorem. We use the samecorrespondence as we did for the random sampling proofs. A quotient S=A has the same elementsas S \ (M=A). Since S contains a basis B1 of M , we know that rkC(S=A) = rkC(M=A). Therefore,to show the density claim, we need only prove that the necessary number of elements is selected inS from each quotient Q �M .We begin with Q = M , and show that kSk = P kBik � kr. Write di = kr �Pj�i kBjk; di isthe de�cit in the greedy packing after we have added i sets to it. Once the de�cit reaches 0, thegreedy packing contains kr elements. We derive a recurrence for the di. After removing Bi, we haveremoved a total of kr� di elements. By Edmonds' Theorem (taking A in Theorem 3.2 to be the setof removed elements), the rank of the remaining elements is at least di=k. Therefore, kBi+1k � di=k,meaning that di+1 � di � di=k. In other words, we have the following recurrence:d0 = krdi+1 � (1� 1=k)di20



It follows that di � (1 � 1=k)ikr, meaning that dk ln r � k. Now consider the next k greedy bases.Each of them has size at least 1, unless we have exhausted all the elements of M . Therefore, afteradding these k bases, we will either have kr elements, or else kMk elements. But kMk � kr, whichproves the claim for Q =M .Now consider any other quotient Q �M . We know that Q contains k disjoint bases (containedin the quotients of the k disjoint bases of M). We therefore aim to apply the previous argumentto the matroid Q. To do so, we show that any greedy t-packing fBig constructed in M containsa greedy t-packing of Q. This is almost trivial, as it is immediate that for all i < j, Bi \ Q spansBj \ Q. The only detail to �x is that possibly Bi \ Q is not independent in Q, meaning that it isnot a basis.We �x this as follows. Begin with B1 \Q which certainly spans Q. If this set is not independentin Q, we remove spanned elements from it, one at a time, until the set becomes independent. Foreach element e that we remove, we �nd the smallest i such that Bi \Q does not span e, and placee in Bi. This preserves the invariant that Bi \Q spans Bj \Q whenever i � j. Eventually, we willhave made B1 \Q independent while preserving the invariant; we now move on to do the same withthe remaining Bi. When we �nish, we have a greedy packing of Q.This construction shows that our greedy packing ofM contains a greedy packing of every quotientof M . But every quotient of M is itself a matroid, and we started by proving that a greedy packingof such a matroid contains the claimed number of elements. Thus, the greedy packing of M containsthe required numbers of elements of every quotient of M .Corollary 5.3. A greedy k ln(1=�)-packing of M contains k(1� �) disjoint bases.Proof. Follows from the value of dk ln(1=�) in the previous proof.5.1 Using Greedy Packings|First AttemptThe most obvious way to build a greedy packing is greedily:Lemma 5.4. A greedy t-packing can be constructed in O(tm) time. A greedy packing can be foundin O(m2) time.Proof. Construct one Bi at a time by scanning all as-yet unused elements of M . Constructing abasis requires one independence test per (unused) element. Each independent set we delete containsat least one element, so we use at most m bases.Lemma 5.5. Given a greedy k(1 + ln r)-packing of M , a maximum packing of k matroid bases canbe found in O((kr)3 log r) time.Proof. Run Knuth's [Knu73] algorithm, which takes mr2k2 time on an m element matroid, on theO(rk log r) elements of the greedy packing.Corollary 5.6. A maximum packing of k bases can be found in O(km log r + (rk)3 log r) time.Proof. We need only determine k. To do so, use repeated doubling. Start by guessing k̂ = 1, �nda greedy k̂(1 + ln r)-packing in O(k̂m log r) time, and use the previous lemma. If we �nd less thank̂ bases in the maximum packing, we know that the maximum packing has value k < k̂. It followsthat our greedy packing contains k disjoint bases, and that the packing we found in it is a maximumpacking. If, on the other hand, we �nd more than k̂ bases, we double k̂ and try again.Clearly we will stop at some value of k̂ with k � k̂ � 2k. The time spent is a geometric sumdominated by that spent on the �nal guess for k̂, which is at most 2k. The claimed time boundfollows.
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5.2 Faster Greedy PackingTo improve the previous algorithm, we perform a more e�cient construction of greedy t-packings.Instead of building each basis in turn, we grow all of the bases at once: start with all Bi empty,consider each element of M in turn, and add it to the �rst Bi (with the smallest index i) thatdoes not span the element. This produces exactly the same greedy packing as the naive algorithm.Checking each Bi in turn could take t independence tests, yielding the same time bound as before.But we can do better by observing the following:Lemma 5.7. For any i < j, at all times during the new construction, Bi spans all elements of Bj .Proof. Since an element is added to the �rst Bj that does not span it, all Bi with i < j must spanthe new element. The claim follows by induction.Lemma 5.8. During the new construction, when we consider adding new element x, there exists aj for which x is spanned by B1; : : : ; Bj but independent of Bj+1; : : : ; Bt.Proof. Let j be the largest index for which Bj spans x. For any i < j, we have just argued thatBi spans each element of Bj . It is an elementary fact of matroid theory that if Bi spans Bj andBj spans x, then Bi spans x. Thus, Bi spans x for every i � j, but (by choice of j) the basesBj+1; : : : ; Bt do not span x.Corollary 5.9. A greedy t-packing can be constructed in O(m+rt log t) time. A greedy packing canbe constructed in O(m logm) time.Proof. As we add each element x to the greedy packing, as a �rst step, we check whether Bt spansx. If so, we can immediately discard x since it cannot be in any Bi. Otherwise, we can perform abinary search on B1; : : : ; Bt to �nd the largest j for which Bj spans x, and add x to Bj+1. Thebinary search works because if we test Bi and it spans x, then j � i, otherwise j < i. We need toperform log t independence tests for this binary search. We perform at most tr binary searches sinceeach adds one element to the greedy packing. For each element that is not added to the t-packing,we perform only the one independence test against Bt.5.2.1 Using the Improved AlgorithmCorollary 5.10. A maximum packing of k matroid bases can be found deterministically in O(m log k+(rk)3 log r) time.Proof. If we knew k, we could compute the greedy k(1 + ln r)-packing we need and run Knuth'salgorithm on it. The greedy packing time is O(m + r(k log r) log(k log r)) = O(m + rk logO(1) rk).Of course, k is not known. But this is easy to rectify by repeatedly doubling our guess for k untilwe fail to pack a number of bases exceeding our guess. At this point we will clearly have built alarge-enough greedy packing to �nd the maximum.Overall the running time is dominated by the time to run the algorithm with the �nal guess,which will be at most 2k and yield the claimed time bound. There is one exception: the O(m) term inthe time for a greedy packing. Since we recompute a greedy packing each time our estimate doubles,we compute O(log k) greedy packings and pick up an O(m log k) term in our running time.5.2.2 Another Small ImprovementWe can make one more minor improvement. The O(m log k) term in the above time bounds arisesbecause we perform log k greedy packing constructions to reach the correct value of k for our greedypacking. We now discuss a scheme for reducing this term to O(m). To start with, we sett = mr logm22



and construct a greedy t-packing in O(rt log t) = O(m) time. This provides us with free access togreedy t0-packings in the algorithm of Corollary 5.10 for all t0 < t. If our algorithm terminates beforeneeding a larger greedy packing (which happens so long as 2k(1 + ln r) < t), all is well. Otherwise,t = O(k ln r). We argue that in this case the O(m log k) time bound is dominated by the O((rk)3)term in our running time above and can therefore be ignored. For t = O(k ln r) implies thatmr logm = O(k log r)mlogm = O(kr log r)Now it is straightforward that m= logm = O(z) implies m = O(z log z). In other words,m = O((kr log r) log(kr log r))m log k = O((kr log r) log(kr log r) log k)= kr logO(1) kr:Corollary 5.11. A maximum packing can be found in O(m+(rk)3 log r) time. The total time spentconstructing greedy packings is O(m + rk logO(1) rk).5.3 Interleaving Greedy Packings with AugmentationWe now show that if we interleave the greedy packing process with the augmentations, we can shavean additional log r factor from the running time. This small improvement is not used later and canbe skipped. Our �rst step in removing the log r factor will temporarily introduce an extra factor ofk in our running time, but we then show how to get rid of that.Lemma 5.12. Let S �M contain b < k � 1 disjoint bases, and let T be a greedy kk�b�1 -packing ofM � S. Then S [ T contains b+ 1 disjoint bases of M . If b = k � 1, then a greedy (k(1 + ln r=k))-packing of T achieves the same goal.Proof. As in the initial analysis of greedy packings, we show that every quotient in S[T has densityat least b+1. Consider a quotient Q with rkCQ = q. We need to show that kQ\(S[T )k � q(b+1).As we construct a greedy packing of M �S, we apply Edmonds' Theorem as before to see that untilkQ\ (S [ T )k increases to q(b+1), the rank of the remaining elements will be at least kq�(b+1)qk , sothat each basis of the greedy packing will contain at least (1� b+1k )q elements of Q� S.Since S contains b disjoint bases of M , it contains at least qb elements of Q. Thus, we only needto add q elements of M � S to reach our goal of q(b+1) elements. Since we add (k�b�1k )q elementswith each basis of T , we need only add kk�b�1 bases.If b = k � 1, the above bound is in�nite. However, we can use the original de�cit reductionargument. When b = k � 1, the quotient's de�cit is at most r. Since the de�cit reduces by a(1� 1=k) factor with each greedy basis, we only need k ln(r=k) bases to reduce the de�cit to k, andanother k bases to reduce it to 0.Lemma 5.13. A packing of k matroid bases can be found deterministically (if one exists) in O(mk log k+(rk)3 + r3k2 log r) time.Proof. We maintain a set S of disjoint bases. We operate in phases; in phase b we increment thenumber of disjoint bases in S from b to b + 1. To do so, we compute a greedy kk�b�1 -packing Tof M � S. By the previous theorem, S [ T contains b + 1 bases, of which we already have b in S.Therefore, we can �nd the (b+1)st basis by running r iterations of Knuth's augmentation algorithm23



on the rb+ r kk�b�1 elements of S [ T . Since one augmentation takes O(mrb) time in an m-elementmatroid with b bases, and we perform r augmentations, the running time of phase b isO(m+ r kk � b� 1 log kk � b� 1 + r � r(b + kk � b� 1)rb)For b < k � 1 (so k � b� 1 � 1), we worsen this time bound toO(m+ rk log k + r2(b+ k)rb) = O(m+ rk log k + r3k2) = O(m+ r3k2)since it will not a�ect our analysis. Thus the time for the k� 1 phases is k times the above, namelyO(km+ r3k3)as claimed.In the �nal b = k� 1 phase, when the above bound is in�nite, we use a greedy k ln(r=k)-packingfor T ; the r augmentations then take O(r � rk ln(r=k)rk) = O(r3k2 log r) time.Theorem 5.14. A maximum packing of k bases can be found in O(m+(rk)3 + r3k2 log r = O(m+r3k2max(k; log r)) time. The time spent on greedy packing computations is O(m+ rk logO(1) rk).Proof. Assuming that we know k, build a greedy k(1 + ln r)-packing G that contains k bases inO(m+ r(k ln r) log(k ln r)) time. Run the fast packing algorithm of Lemma 5.13 on G. Since G hasO(rk log r) elements, this takes O((rk log r)k log k+(rk)3+ r3k2 log r) = O((rk)3 + r3k2 log r) time.As before, repeatedly doubling a guess for k allows us to assume that we know k. As withCorollary 5.11, the total time spent on greedy packing can be limited to O(m+ rk logO(1) rk). Theclaimed time bound follows.6 Combining Greedy Packing with SamplingGreedy packings have reduced our algorithms' running-time dependence on m. Using sampling, wecan simultaneously reduce or eliminate the running-time dependence on k.Corollary 6.1. A maximum packing of k matroid bases can be found in O(m + r3k5=2 log3=2 kr))time with high probability (LV).Proof. As before, repeated doubling lets us assume we know k. So we can run the algorithm ofTheorem 4.13 on a greedy k(1 + ln r)-packing. As before, the time to construct the greedy packingis dominated (aside from the linear term) by the time to construct the packing.Corollary 6.2. An �-approximation to the value of a matroid's packing number can be computed inO(m+ r3 logO(1)(kr)=�5) time (MC).Proof. Use a greedy packing in the approximation algorithm of Corollary 4.15.Greedy packings can also be used to �nd approximate sparse quotients. We take care to avoid�nding a quotient that is sparse in the greedy packing but not in the original matroid.Lemma 6.3. Let S = B1 [ � � � [ Bt be a greedy t-packing of M with t = k(2 + ln r). Suppose Q isa quotient of S with density at most (1 + �)k. Then M=Bt=(S �Q) is a quotient of M with densityat most (1 + �)k=(1� �) = (1 + 2�1�� )k in M .
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Proof. Let t = k(ln r + 1) + k and write A = S � Q. Note that M=Bt = S=Bt; it follows that weneed to prove the theorem only for the case S =M . That is, we must prove that if S=A has densityat most (1 + �)k then (S=A)=Bt = (S=Bt)=A has density at most (1 + �)k=(1� �).We �rst suppose A = ; so S=A = S. We have already shown that the �rst k(1+ln r) bases of thegreedy packing contain kr elements of S. Now consider the remaining k bases. If rk(Bt) > �r, thenthe last k bases of our greedy k(2 + ln r) packing (all at least this large) contribute an additional�kr elements to S, implying that S has size exceeding kr+ �kr and thus density exceeding (1+ �)k,a contradiction. So rk(Bt) � �r. It follows that rkC(S=Bt) � r � �r. Thus the density of S=Bt isless than (1 + �)kr=(r � �r) = (1 + �)k=(1� �).Now suppose A 6= ;. We must bound the density of (S=A)=Bt. We consider S=A as a matroidS0 with rank r0. As in Lemma 5.2, we transform fBi=Ag = fBi \ S0g into a greedy packing fB0ig ofS0 by shifting elements to larger-indexed sets until each set is independent. That construction hastwo important properties. First, since elements are shifted to larger-indexed sets, we know that forany j, Xi�j kBik �Xi�j kB0ik:Second, since we only shift \spanned" elements out of a set, we never reduce its rank. That is, inmatroid S0 we have rkBi � rkB0i. It follows that�(S0=Bt) = kS0=Btkrk(S0)� rk(Bt)� kS0=B0tkrk(S)� rk(B0t)= �(S0=B0t)� (1 + �)k=(1� �)where the last line follows by applying our argument above for the A = ; case to matroid S0.Corollary 6.4. For any � < 1, an �-approximation to the sparsest quotient can be found in O(m+r3(logO(1) kr)=�5) time (MC).Proof. Construct a greedy k(2+ ln r)-packing S in M . Note that S has s = O(rk ln r) elements. Bythe above lemma, if we �nd a quotient of density less than (1+ �=3)k in S, it will yield a quotient ofdensity (1+ �=3)k=(1� �=3)� (1+ �)k in M . To �nd an approximately sparsest quotient of S, applyTheorem 4.1: sample each element with probability O((log s)=k�2) and �nd a sparsest quotient ofthe sample (using the algorithm of Corollary 6.1). The running time follows.Corollary 6.5. A (1� �) times maximum packing of disjoint bases can be found in ~O(r3k=�3) time.Proof. Apply the algorithm of Theorem 4.16 to a greedy packing.7 Application: Packing Spanning TreesA particular instance of matroid basis packing is the problem of packing spanning trees in anundirected graph. This problem has applications to fault tolerant communication [IR88, Gus83].It can be formulated on uncapacitated graphs (where each edge can be in at most one tree) orcapacitated graphs (where the number of trees using a given edge must be less than the capacity ofthat edge). The corresponding \quotient" problem is to �nd a (multiway) partition of the graph'svertices that minimizes the ratio between the number (or capacity) of edges cut by the partition and25



one less than the number of sets in the partition; a variant of Edmonds' Theorem on the duality ofthese quantities in graphs was �rst proven by Nash-Williams [NW61].Gabow and Westermann [GW92] give an algorithm that solves the tree packing problem in~O(min(mn;m2=pn)) time on m-edge, n-vertex uncapacitated graphs. Barahona [Bar92] gave an~O(mn3)-time algorithm for �nding the sparsest graph quotient in capacitated graphs, and later [Bar95]followed with a tree packing algorithm that runs in ~O(mn3) time.Theorem 7.1. A (1 + �)-sparsest quotient can be found in ~O(m + n3=2=�4) time on uncapacitatedor capacitated graphs.Proof. We use the fact that Nagamochi and Ibaraki [NI92] give an algorithm that constructs a greedypacking of the graphic matroid in O(m) time on uncapacitated graphs, and in O(m + n logn) timeon capacitated graphs.First consider uncapacitated graphs. As with general basis packing, we use sampling to producea subgraph of G with packing number ẑ = O(��2 logm) that accurately approximates the quotientsof G. We then use Nagamochi and Ibaraki's algorithm to extract a greedy (ẑ lnn)-packing G0 fromthe sampled graph. This packing has m1 = O(nẑ lnn) edges. Therefore, Gabow and Westermann'salgorithm [GW92] �nds the optimum packing (and identi�es a sparsest quotient) in ~O(m21=pn) =~O(n3=2=�4) time.As noted in Section 4.2.1, the algorithm for capacitated graphs is the same, except that we\sample" from each capacitated edge by generating a Poisson random variable with the appropriateparameters.We have ignored the determination of the correct sampling probability. By Nash-Williams the-orem on graph quotients [NW61], any graph with minimum cut c has packing number between c=2and c. Therefore, we can determine a good sampling probability by using the linear-time minimumcut approximation algorithms of Matula [Mat87] or Karger [Kar97a].Lemma 7.2. A (1� �)-maximum tree packing of k trees can be found in ~O(kn3=2=�2) time (LV)Proof. After computing a greedy packing, we apply Theorem 4.16, but use Gabow andWestermann'salgorithm [GW92] to solve each of the random subproblems.Remark. Gabow and Westermann's algorithm is based on augmentations, but does not bene�tfrom having already found a large collection of bases. It is analogous to the blocking 
ow methodfor maximum 
ows|it cheaply �nds a near optimal solution and then spends most of its timeaugmenting to an exact solution. Therefore, the recursive algorithm of Theorem 4.13 does notaccelerate their exact algorithm. An interest open question is whether sampling can be used tospeed up the blocking-
ow type algorithms, for example by proving that only a small number ofadditional blocking 
ows is needed to clean up the output of the approximation algorithm.8 ConclusionThis paper has suggested an approach to random sampling for optimization and given results thatapply to matroids as models for greedy algorithms and as combinatorial objects. Two future direc-tions suggest themselves.In the realm of combinatorics, how much of the theory of random graphs can be extended to themore general matroid model? There is a well de�ned notion of connectivity in matroids [Wel76]; isthis relevant to the basis packing results presented here? What further insight into random graphscan be gained by examining them from a matroid perspective? Erd�os and Renyi showed a tightthreshold of p = (lnn)=n for connectivity in random graphs, whereas our result gives a looser resultof p = 
((logn)=n) for existence of sampled matroid bases. Is there a 0-1 law for bases in a randomsubmatroid? 26



In the realm of optimization, we have investigated a natural paradigm that works particularlywell for matroid problems: generate a small random representative subproblem, solve it quickly,and use the information gained to home in on the solution to the entire problem. In particular,an optimum solution to the subproblem may be a good solution to the original problem which canquickly be improved to an optimum solution. The obvious opportunity: apply this paradigm toother optimization problems.9 AcknowledgmentsThanks to Don Knuth for help with a troublesome summation, and to Daphne Koller for her extensiveassistance in clarifying this paper.A Alternative Sampling Theorems for PackingThis section presents alternative proofs of our theorems about sampling matroid bases. We beginby proving a theorem on the existence of a basis in the sample, and we then generalize this theoremby estimating the number of disjoint bases we will �nd in the sample.A.1 Finding a BasisWe begin with some de�nitions needed in the proof.We use slightly unusual terminology. For the following de�nitions, �x some independent set Tin M .De�nition A.1. A set A is T -independent or independent of T if A [ T is independent in M .De�nition A.2. If A is an independent set, then A=T is any maximal T -independent subset of A.De�nition A.3. B(n; p) is a binomial random variable:Pr[B(n; p) = k] = �nk�pk(1� p)n�k:Lemma A.4. If A is a basis of M , then A=T is a basis for M=T .Lemma A.5. If B is a basis of M=T , then B [ T is a basis of M .Theorem A.6. Suppose M contains a + 2 + k ln r disjoint bases. Then M(1=k) contains a basisfor M with probability 1�O(e�a=k).Proof. Let p = 1=k. Let fBiga+2+k ln ri=1 be disjoint bases of M . We construct the basis in M(p)by examining the sets Bi(p) one at a time and adding some of their elements to an independentset I (initially empty) until I is large enough to be a basis. We invert the problem by asking howmany bases must be examined before I becomes a basis. Suppose we determine U = B1(p), theset of elements of B1 contained in M(p). Note that the size u of U is distributed as B(r; p); thusE[u] = rp. Consider the contraction M=U . By Lemma A.4, this matroid contains disjoint basesB2=U;B3=U; : : : , and has rank r�u. We ask recursively how many of these bases we need to examineto construct a basis B for the contracted matroid. Once we have done so, we know from Lemma A.5that U [ B is a basis for M . This gives a probabilistic recurrence for the number of bases we needto examine: T (r) = 1 + T (r � u); u = B(r; p):If we replaced random variables by their expected values, we would get a recurrence of the formS(r) = 1+S((1� p)r), which solves to S(r) = logb r, where b = 1=(1� p). Probabilistic recurrencesare studied by Karp [Kar91]. His �rst theorem exactly describes our recurrence, and proves that forany a, Pr[T (r) � blogb rc+ a+ 2] � (1� 1=k)a:27



In our case, logb r � k ln r.A.2 Counting BasesTheorem A.7. If P (M) = n then the probability that M(p) fails to contain k disjoint bases of Mis at most r � Pr[B(n; p) � k].Proof. We generalize the technique of the previous section. We line up the bases fBig and passthrough them one by one, adding some of the sampled elements from each basis to an independentset I that grows until it is itself a basis. For each Bi, we set aside some of the elements becausethey may be dependent on elements already added to I ; we then examine the remaining elements ofBi to �nd out which ones were actually sampled and add those sampled elements to I . The changein the procedure is that we do this more than once: to construct the next basis, we examine thoseelements set aside the previous time.Consider a series of phases; in each phase we will construct one basis. At the beginning of phasek, there will be a remaining portion Rkn of basis Bn; the elements of Rkn are those elements of Bn thatwere not examined in any of the previous phases. We construct an independent set Ik by processingeach of the Rkn in order. Let Ikn�1 be the portion of Ik that we have constructed before processingRkn. To process Rkn, we split it into two sets: Rk+1n are those elements that are set aside until thenext phase, while Ekn = Rkn�Rk+1n is the set of elements we examine in this phase. The elements ofEkn will be independent of Ikn�1. Thus as in the single-basis case, we simply check which elementsof Ekn are in the sampled set, identifying the set Ukn = Ekn(p) of elements we use, and add them toour growing basis. Formally, we let Ikn = Ikn�1 [ Ukn ; by construction Ikn will be independent.Ikn Independent set so far.Rkn Remainder of nth basis.Ekn Elements examined for use.Ukn Elements actually used from Ekn, namely Ekn(p).Figure 3: Variables describing nth basis in kth phaseWe now explain precisely how we determine the split of Rkn into Rk+1n and Ekn. Let rkn, ikn, ekn,and ukn be the size of Rkn, Ikn , Ekn, and Ukn respectively. Suppose that we have Ikn�1 in hand, and wishto extend it by examining elements of Rkn. We assume by induction that ikn�1 � rkn. It follows fromthe de�nition of matroids that there must exist a set Ekn � Rkn such that Ikn�1 [ Ekn is independentand has size rkn. De�ning Ekn this way determines Rk+1n = Rkn � Ekn. We then set Ukn = Ekn(p), andIkn = Ikn�1 [ Ukn .To justify our inductive assumption we use induction on k. To prove it for k + 1, note that ourconstruction makes rk+1n = ikn�1. Thus the fact that ikn�2 � ikn�1 implies that rk+1n�1 � rk+1n . Ourconstruction forces ik+1n�1 � rk+1n�1; thus ik+1n�1 � rk+1n as desired.We now use the just noted invariant rk+1n = ikn�1 to derive recurrences for the sizes of the varioussets. As before, the recurrences will be probabilistic in nature. Recall that ukn is the size of Ukn , soukn = B(ekn; p). Thus rk+1n = ikn�1= ikn�2 + ukn�1= rk+1n�1 +B(ekn�1; p):28



It follows that ekn = rkn � rk+1n= [rkn�1 +B(ek�1n�1; p)]� [rk+1n�1 +B(ekn�1; p)]= ekn�1 �B(ekn�1; p) +B(ek�1n�1; p):Now let fkn = E[ekn]. Linearity of expectation applied the recurrence shows thatfkn = (1� p)fkn�1 + pfk�1n�1 :Since we examine the entire �rst basis in the �rst phase, e00 = r and ek0 = 0 for k > 0. Thereforethis recurrence is solved by fkn = �nk�pk(1� p)n�kr:We now ask how big n needs to be to give us a basis in the kth phase. As in Section A.1, itsimpli�es matters to assume that we begin with an in�nite set of disjoint bases, and ask for the valueof n such that in the kth phase, we �nish constructing the kth sampled basis Ik before we reachthe nth original basis Bn. Recall the variable ukn denoting the number of items from Bn used in Ik.Suppose that in the kth phase we use no elements from any basis after Bn. One way this mighthappen is if we never �nish constructing Ik. However, this is a probability 0 event. The only otherpossibility is that we have �nished constructing Ik by the time we reach Bn so that we examine nomore bases.It follows that if ukj = 0 for every j � n, then we must have �nished constructing Ik beforewe examined Bn. Since the ukj are non-negative, this is equivalent to saying that Pj�n ukj = 0. Itfollows that our problem can be solved by determining the value n such thatPj�n ukj = 0 with highprobability.From the Markov inequality [MR95], which says that for positive integer random variables Pr[X >0] � E[X ], and from the fact that E[ukj ] = pE[ekj ] = pfkj , we deduce that the probability that wefail to construct Ik before reaching Bn is at mostskn = E 24Xj�nukj35 = pXj�n fkj :One way to bound skn is to sum by parts. However, an easier method is to consider an in�nitesequence of coin 
ips with heads probability p. The quantity pfkj is then r times the probabilitythat the (k + 1)st head occurs on the jth 
ip. Then skn is just r times the probability that the(k+1)st head appeared after the nth 
ip, which is equivalent to the probability that the �rst n 
ipshad at most k heads, i.e. Pr[B(n; p) � k]. This yields the theorem.The probability of �nding no bases is thus at most s0n � re�np; this is exactly the result provenin the Section A.1.We also consider the converse problem, namely to upper bound the number of bases that survive.Corollary A.8. If P (M) � n, and k > np, then the probability that M(p) contains more than kdisjoint bases of M is at most Pr[B(n; p) � k].Proof. By Edmonds' theorem, there must exist some A �M such that(n+ 1) rkA+ kAk < (n+ 1)r:If rkA = r, the above statement cannot be true. Thus rkA � r � 1. It follows that in fact(n+ 1) rkA+max(kAk; n) < (n+ 1)r:29
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