
Building Steiner Trees with Incomplete Global Knowledge

David R. Karger� Maria Minkoffy
MIT Laboratory for Computer Science

Cambridge, MA 02139, USAfkarger, mariamg@theory.lcs.mit.edu

Abstract

A networking problem of present day interest is that of
distributing a single data item to multiple clients while min-
imizing network usage. Steiner tree algorithms are a nat-
ural solution method, but only when the set of clients re-
questing the data is known. We study what can be done
without this global knowledge, when a given vertex knows
only theprobabilitythat any other client will wish to be con-
nected, and must simply specify a fixed path to the data to
be used in case it is requested. Our problem is an example
of a class of network design problems withconcavecost
functions (which arise when the design problem exhibits
economies of scale).

In order to solve our problem, we introduce a new ver-
sion of the facility location problem: one in which every
open facility is required to have some minimum amount of
demand assigned to it. We present a simple bicriterion ap-
proximation for this problem, one which is loose in both as-
signment cost and minimum demand, but within a constant
factor of the optimum for both. This suffices for our appli-
cation. We leave open the question of finding an algorithm
that produces a truly feasible approximate solution.

1. Introduction

A networking problem of present day interest is that of
distributing a single data item to multiple requesters while
minimizing network usage. In the presence of caches, it is
never necessary for an item to traverse a network link more
than once. Thus, this problem can be modeled as a Steiner
tree problem: connect all requesters to the root using a min-
imum cost set of edges. However, such modeling neglects
the cost, in time and algorithmic complexity, of determining
the full set of requesters who want an item. Because such�Research supported by NSF grant CCR-9624239 and a Packard Foun-
dation FellowshipyResearch supported by AT&T Labs Foundation Fellowship.

global coordination can be difficult, many present day In-
ternet algorithms are designed to make use only of local in-
formation, accepting that some degradation in performance
may result as a consequence of this simplicity.

Such a philosophy has led us to study the followingmay-
becastproblem. We are given a network (possibly with edge
costs), aroot node, and a collection ofN clientsat nodes in
the network. Each clienti will choose to contact the root
independently from others with some probabilitypi. In ad-
vance of the requests we must choose, for each client in the
network, a path from the client’s node to the root. If a client
chooses to contact the root, the edges on this path become
active. Our goal is to minimize, over the random choices of
the clients, the expected number (or cost) of active network
edges. We can think of this as a probabilistic version of the
rooted Steiner tree problem, in which one desires to connect
a set of terminals with the root while minimizing total edge
cost.

This problem models the data distribution problem men-
tioned above. If caches are placed at nodes in the network
then as soon as a requester’s path to the root encounters a
cached copy of the item, the item can be returned without
traversing the rest of the path. Thus every edge on the set
of paths is traversed at most once by the item, so the total
number (resp. total cost) of edges on the paths connecting
root to requesters reflects the total network bandwidth (resp.
total transmission cost) allocated to the distribution of the
item. Alternatively, we can note that traversing a network
link takes some finite amount of time. Assuming that re-
quests occur at sufficiently spread-out times, we can expect
that at most one request will be forced to wait for the item
to traverse any given link—all future requests will be able
to use the cached item immediately. Thus, the total number
of links reflects the average time spent waiting by clients for
the item.

Of course, in the absence ofany information about the
world, it is impossible to make sensible local decisions.
We therefore aim to separate relatively stable global infor-
mation (the structure of the network) that can be used for
preprocessing from unpredictable information (the set of



clients) that becomes available too late to be useful. We also
aim for the solution to have a simple local specification—
a path for each client. (Alternatively, we might require a
“routing tree” solution, in which each node simply specifies
a parent to which it forwards any request it receives, and
the path from any client is determined by following par-
ent pointers. We will show that this is in fact equivalent.)
In the case of large items, one might devote more time to
“planning” the transmission of the item when it is requested;
however, in the (not uncommon) case of small items, even
limited planning may be too expensive.

Our problem is of courseNP-complete, since the
Steiner tree problem is a special case. In fact, our prob-
lem remainsNP-complete even in the uniform case of one
client per network node and unit costs on edges. Thus, the
focus of this paper is on approximation algorithms. We give
a constant-factor approximation algorithm. Our solution re-
lies on some structural analysis of the optimum solution
which leads to application of facility location and Steiner
tree algorithms to solve the problem.

1.1. Overview of Results

We begin with a study of the optimum solution. We show
that the optimum solution is invariably a tree. However, the
obvious first choice of a shortest path tree can cost a factor
as large as�(n1=2) times the optimum in ann-node graph.
To find a better tree, we note that the optimum tree con-
sists of a central “hub” area within which all edges are basi-
cally certain to be used, together with a fringe of “spokes”
in which multiple clients can be considered to be contribut-
ing independently(and linearly) to the cost of the solution.
We use a facility location algorithm to identify a good set
of “hubs” to which we route clients at independent (linear)
costs, and then use a Steiner tree algorithm to connect the
hubs to the root.

To identify a good set of hubs, we introduce a new ver-
sion of the facility location problem: one in which every
open facility is required to have some minimum amount of
demand assigned to it. This problem can also be phrased
as a clustering problem where we wish to minimize the av-
erage radius of clusters without letting any cluster be too
small. We present a simple bicriterion approximation for
this problem, one which is loose in both assignment cost
and minimum demand. This suffices for our application.
We leave open the question of finding an algorithm that pro-
duces a truly feasible approximate solution.

1.2. Related Work

The Steiner tree problem has a constant factor approxi-
mation algorithm, but the set of terminals must be known in
advance. There has been work on anonline algorithm for

the Steiner tree problem, in which terminals are revealed
one at a time and must immediately be connected to the
previously constructed Steiner tree [3]. This approach is
stronger than ours on that it constructs a solution withinO(log2N) of the optimal solution for the specific set of ter-
minals that is chosen, while we are only competitive against
the expected solution cost over all sets of terminals. How-
ever, it is also weaker since, like the standard Steiner tree
algorithm, the online algorithm requires at each step full
knowledge of the previously existing terminal set. Ours
makes its routing decisions oblivious to what set of termi-
nals will eventually be chosen.

Alternatively, the maybecast problem can be represented
as a kind of min-cost flow problem with infinite capacities
and aconcavecost function. We can think of a clienti as
having “demand” for a flow of capacitypi to the root. The
cost of routing along an edge exhibits aneconomy of scale:
the more paths use an edge, the cheaper it is per path. By ap-
proximating our cost function by a piece-wise linear func-
tion, we can establish a connection with the “buy-at-bulk”
network design problem, another problem which exhibits an
economy of scale. As an example, consider the problem of
wiring a telephone network in some metric space such that
every pair of clients is connected by a path of capacity one.
Our approximate cost function would correspond to the sit-
uation in which two types of wires are available: low cost
wires of infinitesimal capacity, and “infinite” capacity wires
of large cost. Awerbuch and Azar [2] provide a random-
izedO(log2 n) approximation algorithm for this problem,
wheren is the number of nodes in the network. Their ap-
proach relies on the tree metric embedding of Bartal; subse-
quent improvements in tree embeddings yield a slightly bet-
ter approximation ratio ofO(log n log logn). Andrews and
Zhang [1] give anO(K2)-approximation algorithm, whereK is the number of different types of wires, for a special
case of the problem. However, the restrictions which they
place on the cost function preclude application to our prob-
lem. Thus, our work is the first that can achieve a constant
factor approximation ratio for our problem.

Simultaneously and independently, Guha, Meyerson and
Munagala [6] studied the same facility location problem
variant that we use in our solution, and developed essen-
tially the same solution. They generalized the approach to
a hierarchical setting that gave results for the buy-at-bulk
network design problem.

2. Preliminaries

In this section we formally define the maybecast problem
and provide some preliminary results regarding the struc-
ture of the optimum solution. We show that the paths of the
optimum solution must define a tree, but that the obvious
shortest paths tree can be a terrible approximation.



2.1. Problem Statement

Input : We consider an undirected graphG = (V;E)
with a non-negative edge weight functionl : E ! <+ and
a root vertexr 2 V . A set ofN clients is assigned to a
subset of verticesS � V . Client i becomes active indepen-
dently with probabilitypi > 0, in which case it communi-
cates with the rootr along some to-be-specified path. Every
edge on the path from an active client to the root becomes
active.
Output : Construct a set of paths connecting each client to
the root; this is the path that will be used if the client be-
comes active. The goal is to minimize theexpectedtotal
weight ofactiveedges.

This problem can be thought of as a probabilistic version
of the rooted Steiner tree problem: we are given some sub-
set of nodes each of which needs to be connected with the
root with some probability. In order to study this problem,
we think ofle as the length of edgee and define a per-unit-
length edge cost functionce reflecting the probability that
an edge will be used. Given a solution, let us denote byUe
the set of clients using edgee to communicate with the root.
Thence = Pr[e is active] = 1�Qi2Ue(1� pi). Using lin-
earity of expectation, we can express the objective function
as the sum over all edges of probabilities that an edge is
active weighted by its lengthE[weight of active edges] =Xe2E 1� Yi2Ue(1� pi)! le
2.2. Solution Structure

In this section, we show that the optimum solution to any
maybecast problem is a tree.

Given a set of paths connecting each client with a root,
let us think of the solution as a flow along those paths. A
client i contributesdi = � ln(1� pi) units of flow to every
edge on its path to the root. Thus, a given edgee carriesfe =Pi2Ue � ln(1�pi) units of flow. The cost of the flow
on that edge is given by 1� Yi2Ue(1� pi)! le =  1� Yi2Ue e�di! le= (1� e�fe)le
This cost function is concave infe, the flow on that edge.

If we have two distinct paths between the same pair of
nodes with non-zero flowsf1 andf2 on each, by properties
of concave functions,cost(f1+f2) � cost(f1)+cost(f2).
This suggests that an optimal solution never sends flow from
a given node to the root along 2 distinct paths. We deduce
that it has to be a tree. We can actually prove this in a gen-
eral setting.

Theorem 2.1. Consider any single-sink min-cost flow
problem where capacities are infinite and every edgee has
a nondecreasing concave cost functionce of the total flow
actually carried by that edge. Then there is an optimal (min-
cost) solution to the flow problem that is a tree (that is, every
vertex has at most one outgoing edge carrying flow).

Proof. For simplicity we provide a proof only for the case
where all cost functions are increasing andstrictly convex
(f(�x+ (1� �)y) > �f(x) + (1� �)f(y)).

Consider an optimum solution. Let us decompose the the
flow into paths carrying flow to the root and cycles carrying
flow in circles. Note that if there is a flow-carrying cycle,
we can decrease flow on every edge of the cycle, decreasing
the solution cost, a contradiction. So the optimum flow is
decomposed into paths to the root.

We will now show that this solution must be a tree. For
the sake of contradiction, assume the solution is not a tree.
This can only happen if there exist two clientsi andj with
paths to the root that intersect at a non-root vertex and then
separate, i.e. use 2 different edges out of that vertex (as a
special case we might havei = j). Let v be a vertex where
the separation happens and letw be the next intersection of
the two paths. LetP denote the segment of the first path
betweenv andw andQ the corresponding segment of the
other path. LetuP denote the amount of flow on pathP ,
anduQ the amount of flow on pathQ. Notice that we can
substitute segmentP for Q to obtain a different valid path
to the root for clienti, and vice versa for clientj. We argue
that at least one of these substitutions yields an improved
solution, violating our assumption of optimality.

To see this, we evaluate the cost of our flow in 3 pieces:
(i) the uP units of flow onP , theuQ units of flow onQ,
and everything else. If we leave out the flow onP andQ,
the remaining flow (which is not feasible, since it violates
conservation atv andw) has some total amount of flowue
on each edgee for some total fixed costC.

To make this flow feasible we must adduPQ = uP +uQ units of flow fromP to Q, but we can distribute this
flow any way we like betweenP andQ. Let us consider
the incremental cost overC of placingu0P units of flow onP andu0Q units onQ such thatu0P + u0Q = uPQ. The
incremental cost on edgee 2 P of sending an additionalu0P units isce(ue+u0P ), which (sincece is strictly concave)
is a concave function ofu0P (offsets of concave functions
are strictly concave). The overall incremental costfP (u0P )
of sendingu0P units onP is thus a sum of strictly concave
functions and thus strictly concave. Similarly, the overall
incremental costfQ(u0Q) of sendingu0Q units of flow onQ
is also strictly concave. PathsP andQ are disjoint, so our
overall solution cost is simplyC + fP (u0P ) + fQ(u0Q). We
wish to minimize this subject tou0P + u0Q = uPQ, and both
positive which means minimizingfP (�uPQ) + fQ((1 ��)u0P ) over0 � � � 1. But sincefP andfQ are strictly



concave functions, this sum is a strictly concave function of�, so is optimized at one of the “endpoints”� = 0 or 1, i.e.u0P = 0 or u0P = uPQ.
This shows that we can find a solution better than the

(presumed optimal) one which sent flow on bothP andQ,
a contradiction.

2.3. The shortest path tree heuristic

Now that we know that an optimal solution is a tree,
a shortest path tree is a logical candidate for an approxi-
mate solution. Unfortunately, the shortest path tree can have
polynomial approximation gap, as the following example il-
lustrates.

Consider an unweightedm � m grid graph with a root
vertex attached to the topm vertices by single edges as
shown in Figure 1a. All edge lengths are 1.

Consider an instance in which only them vertices on the
bottom have clients, each having the same activation prob-
ability p. Let n = m2 + 1 be the total number of ver-
tices. The number of clients in this instance is then given byN = m = pn� 1.

In a shortest path tree solution, every client will use a
path that goes up along vertical edges, until it merges into
the root (see Figure 1b). Let us compute the cost of such a
solution. Consider a vertical path of lengthm. Each edge of
this path is used with probabilityp, so the cost of this path
is p �m. Summing over allm vertical paths, the total cost
of the shortest path solution ispm2.

Now consider an alternative solution, in which all clients
in the bottom row go to the middle vertex of the row, and
then use 1 central vertical path to get to the root (illustrated
in Figure 1c). The central vertical path costs at mostm
since the maximum cost of an edge is 1 and there arem
edges in it. Similarly, the cost of the paths converging in
the center of the bottom row is at mostm � 1. Thus, the
total cost of this solution is at most2m. The ratio of costs
of the shortest path solution and the central path solution
is at leastpm2=2m = 
(ppn� 1) = 
(n1=2) whenp is
constant. Thus, a shortest path tree can give a polynomially-
bad approximate solution.

In a straightforward variation, using an1=3 � n2=3 grid,
one can show that even in the case of uniform probabilitiespi = n�2=3, the shortest path tree solution can be
(n1=3)
worse than optimum.

3. Tools for the Solution

We now know that we are seeking a tree solution to our
problem. In this section, we introduce an approximate cost
function that is easier to work with. We also outline a “hub
and spoke” principle which will guide us in the search for a
solution.

3.1. A price function

To develop our approximation algorithm, we convert our
concave cost function into one that is piecewise linear but
closely approximates our original function.

Given a solution, let us define theunit costof an edgee
in the solution as the probability thate becomes active,ce =1�Qi2Ue(1�pi), whereUe is the set of clients whose paths
to the root containe. We can assume thatjUej > 0, since
we can always throw out edges that are not used by any of
the clients. We can upper boundce by the sum of activation
probabilities of the clients usinge, ce � Pi2Ue pi. Notice
that when this sum is small,ce is very close to it, whereas
for when the sum becomes large (greater than 1),ce rapidly
approaches 1. Based on this observation, let us introduce a
unit pricefunctionĉe = min(Xi2Ue pi; 1)

We have already argued that our unit price function is an
upper bound on the actual unit cost. We show that it is a
tight upper bound: that̂ce is at most some constant timesce, independent of probabilitiespi.
Lemma 3.1. ce � ĉe � 11� 1=ece:
Proof. We have already argued the first inequality. For the
second inequality, let us fixs � Pi2Ue pi. Observe first
that since1� x � e�x,Yi2Ue(1� pi) � Yi2Ue e�pi = e�s:
So we must have thatce � 1� e�s. Now we show thatĉe � 11� 1=e(1� e�s)
which, combined with the previous observation, proves the
lemma.

Case 1:s � 1, soĉe = 1. The desired inequality holds
trivially ĉe1� e�s � 11� 1=e

Case 2:s < 1, soĉe = s. Consider the quantity s1�e�s .
This is an increasing function ofs on the interval(0; 1],
so the maximum is attained ats = 1. So once again,ĉe1� e�s � 11� 1=e



�
�
�
�

root rootroot

c)b)a)

m m m

m m m

Figure 1. The shortest path example. a) m�m grid graph with a root. b) Shortest path tree solution.
c) Alternative stem path solution.

In a problem with edge lengths, the actual contribution
of an edge to the objective function is its length multiplied
by its unit cost,le � ce. Let us refer to this quantity as the
weighted cost of an edge, or simply its cost. We can sim-
ilarly define the (weighted) price of an edge to bele � ĉe.
Because of the linear relationship to unit price and cost, the
weighted price of an edge is an upper bound on its actual
weighted cost and their ratio is bounded by the same con-
stant1� 1=e.

Since costs and prices are related within a constant, we
see that the optimumcostmaybecast tree has cost within a
constant factor of the optimumprice maybecast tree. It fol-
lows immediately that any algorithm that approximates the
minimum price tree to within a constant will also approxi-
mate the minimum cost tree to within a the same constant
timee=(e� 1).
3.2. A hub and spoke model

What the grid graph example demonstrated was that
sometimes instead of using a shortest path to the root, it
pays for clients to cluster together at some node and then
share one path to the root. To get a better understanding of
why this is the case, let us go back to our flow analogy. Sup-
pose each clienti has to sendpi units of flow to the root via
some path. Once the total amount of flow from clients us-
ing the same path reaches a certain value, adding more flow
(from one more client) onto the path doesn’t increase the
real unit cost (the probability of the edges on the path being
active) by much. This is captured by our unit price function
which uniformly charges 1 for every edge once

Pi2Ue pi,
the amount of flow on that edge, reaches1.

Consider any tree solutionT to the maybecast problem.
Every client has a unique path to the root. We will say that
a clienti passes throughnodev if nodev lies oni’s path to
the root. As paths of different clients converge towards the
root, they might start sharing the same edges and passing
through the same nodes. Define ahubto be a node that has
at least1 unit of flow from clients passing through it. The
unit price of every edge on the path from a hub to the root
is 1. Thus, once a client gets to a hub, the rest of its path
to the root is already paid for. Lethub(i) be the first hub
on the path of a clienti to the root. We will say that clienti is assignedto hub(i). In building a solution, if we were
given a set of hubs and an assignment of the clients to the
hubs, to obtain the rest of the solution we would need to
connect all of the hubs up to the root at the minimum edge
cost. But edges on the paths from hubs to the root have
price one, so the optimum “hub tree” is just a Steiner tree
on the hubs (which we can approximate via a Steiner tree
approximation algorithm).

Let us now analyze the cost of assigning a client to a
hub. Any edgee on the path ofi to hub(i) carries no more
than 1 unit of flow; otherwise we would have a hub sitting
earlier on that path. This means that unit price of edgee
is ĉe = Pi2Ue pi, whereUe is the set of clients using that
edge. Thus, clienti contributespi towards the unit price
of every such edge. Leth(i) denote the length of the path
(distance) from clienti to hub(i). Then over all the edges
on its path to a hub, clienti contributespi �h(i) to the overall
solution.

We can therefore decompose our problem into two parts:
first, clustering clients at hubs, and second, connecting hubs
up at minimum cost. Of course, we do not know where the
hubs are, rather we have to create them. In this respect,



the problem is similar to the uncapacitated facility location
problem in which, given costs for opening facilities and as-
signing locations to them, one wants to open a set of fa-
cilities and connect each location to an open facility while
minimizing net cost [7]. There is no direct cost associated
with opening a hub, however the Steiner tree parallel ap-
plies only if there is a large number of clients assigned to
every hub. So how can we find a set of hubs, so that there is
a hub not too far from each client but every hub receives a
substantial amount of demand?

4. A gathering problem

In the uncapacitated facility location problem [4, 5, 7, 9],
we are given a set of facilitiesF , a set of locationsC, a
costfi for opening each facilityi 2 F , and for each pairi 2 F; j 2 C, the costcij of connecting locationj to
(opened) facilityi. The goal is to select a subset of facilities
to open, and assign each location to an opened facility so as
to minimize the total sum of the assignment costs and the
costs of opening facilities. There are a number of constant-
factor approximation algorithms for solving the uncapaci-
tated facility location problem when the assignment costs
satisfy the triangle inequality [4, 5, 7, 9]. The currently best
approximation guarantee, due to Charikar and Guha [4], is1:728. In a demand-weighted version of the problem, we
are also given a non-negative demanddj for each locationj, so that the cost of assigningj to a facility i is djcij .

Intuitively, facility costs are supposed to encourage us to
use facility resources frugally and assign many clients to the
same facility. However, it is still possible to have an optimal
solution in which a facility serves only very few clients. If
we wanted to prevent opening a facility that serves too few
clients, instead of having a fixed cost associated with each
facility, we could require that a facilityi can be opened only
if at least a certain number of clients get assigned toi, or in
the demand-weighted case, facilityi gets to serve at least
some minimum required demand.

Let us define anr-gatheringproblem to be a special type
of demand-weighted facility location problem. The goal is
to open a subset of facilities and assign demands to them,
such that each opened facility has at leastr units of demand
assigned to it, and the total assignment cost is minimized.
In our particular application, the cost of opening a facil-
ity is zero if that facility is feasible. However, the prob-
lem and our solution generalize to include facility-opening
costs, and also to allow different lower bounds at different
facilities.

We can formulate our problem of finding a set of hubs
close to all the clients as an instance of ther-gathering prob-
lem. Take the set of all nodes of the graph to be the set of
potential facilities, and the set of clients to be the set of
locations. Set assignment costs to be the shortest path dis-

tances between nodes. Let the demand of a clientj bepj .
If we solve ther-gathering problem on this instance withr = 1, the opened facilities can be thought of as hubs. Next
we will show that there exists a1-gathering solution of cost
comparable to the cost of an optimum solution to our origi-
nal problem.

Ther-gathering problem also makes sense in the context
of clustering problems: anr-gathering solution attemps to
divide the clients into an arbitrary number of clusters (one
per open facility) so as to minimize the average radius (dis-
tance from the cluster center) while forbidding any cluster
from have few items.

4.1. Solving ther-gathering problem

We now describe an approximation algorithm for ther-
gathering problem. For simplicity, we first consider the case
without facility-opening costs, and assume that all lower
bounds are the same valuer. This is the problem we need
to solve in our maybecast application. This simplified ver-
sion can be described as follows: given a set of potential
facilities (indexed byi), a set of of clients (indexed byj),
each with a demanddj , and a cost matrixcij satisfying the
triangle inequality, we wish to open a set of facilities, and
assign each client to an open facility, such that

1. At leastr units of demand are assigned to each open
facility

2. The total distance traveled by all the demand to its as-
signed facility is minimized.

More formally, we wish to set assignment variablesxij ,
wherexij = 1 if j is assigned toi and0 otherwise, such
that

1. For everyi, Pj xij � r (facility i is open) orPj xij = 0 (facility i is not open).

2. We minimizeC =Pi;j xijcijdj :
We present abicriterion approximationto this problem.

Theorem 4.1. LetC� be the optimum cost of a feasible so-
lution to anr-gathering problem. In polynomial time, we
can find a solution to the problem, of costC, such that

1. For everyi, Pj xij � r=2 (facility i is open)orPj xij = 0 (facility i is not open).

2. C = O(C�).
That is, we can find a solution that gathers at least half

the required demand at every open facility, and does so at
cost within a constant factor of the optimum gathering cost.
There is a typical tradeoff: we can in fact come within(1�



�) of the required demand (nearer feasibility) at every open
facility if we are willing to worsen the approximation ratio.

To prove this theorem, given our gathering problem, we
define a related facility location problem and show that its
solution meets our requirements. To define the facility lo-
cation problem, we assign acostfi to each facilityi. The
cost ofi is defined as twice the minimum cost of movingr
units of demand from the clients to facilityi.

More formally, letj1; j2; : : : ; jn be the clients, ordered
in increasing distance from facilityi (that is,cij1 � cij2 �� � � ). Let k be minimum such thatdj1 + dj2 + � � � djk � r.
For simplicity let us assume this sum is exactly equal tor—
if not, just split clientk into two smaller demands. Then the
cost fi = 2(cij1dj1 + � � �+ cijkdjk ):
Note that for any assignment that assigns at leastr units of
demand toi, we must have

Pj cijxijdj � fi=2.
LetF denote the facility location problem with costscij

inherited from the gathering problemG and with facility
costsfi.
Lemma 4.2. The cost of an optimum solution toF is at
most thrice that ofG.

Proof. Consider any solution toG. It opens certain facilities
and makes assignmentsxij . The same solution is clearly
feasible forF ; let us analyze its cost underF . The assign-
ment cost

Pxijcijdj is the same for both problems; we
need only measure the added cost of opening the facilities
in F .

Consider some facilityi that was opened inG. By fea-
sibility of the solution forG, there are at leastr units of
demand incident oni. It follows that the total cost of ship-
ping this demand toi,Pj xijcijdj � fi=2. Thus, summing
over all openi, we haveXi open

fi � 2 Xi open

Xj xijcijdj ;
that is, the total cost of opening facilities is at most twice
the total assignment cost. But that total assignment cost is
the entire cost ofG, so the cost ofF is at most 3 times the
cost ofG.

Lemma 4.3. Any solution toF can be converted into a so-
lution of no greater cost that assigns at leastr=2 units of
demand to every open facility.

Proof. Suppose we have a solution toF that does not sat-
isfy the gathering requirement. We give a procedure that
modifies the solution to a cheaper one by closing a facility.
We repeat this procedure until the gathering requirement is
satisfied. Clearly this will happen withinn repetitions.

As a first step, convert the solution to one that islocally
optimal: assign every client to the nearest open facility.
Clearly this can only improve the cost.

Now suppose there is an open facilityiwith less thanr=2
incident demand. Consider the nearest clientsj1; : : : ; jk
that are used to definefi. By definition, these clients in
total havedj1 + dj2 + � � � + djk = r units of demand, and
send at mostr=2 units toi, so at leastr=2 of this demand
must be assigned to other facilities. Letc = 1r (dj1cij1 + dj2cij2 + � � �+ djk cijk ) = fi=2r
be theaverage distanceof these units of nearby demand. By
Markov’s inequality, less than half of this nearby demand is
at distance exceeding2c from i. But by assumption less
than r=2 of these nearby demand units are assigned toi.
Thus, some clientj0 not assigned toi is at distance less
than 2c from i. But by local optimality, thisj0 must be
assigned to a facilityi0 at distance less than2c from j0. By
the triangle inequality, this facility is at distance less than4c
from i.

So suppose that we close facilityi, take all the demand
assigned toi, and assign it toi0 instead. By the triangle
inequality, this adds at most4c to the assignment distance
of those units of demand; thus the total increase in assign-
ment cost is the amount of demand ati (less thanr=2) times
the added distance (at most4c) for a total of less than2rc.
But now note thatc = fi=2r, meaning that the change in
assignment cost is less thanfi.

Thus, by closing a facility, we have savedfi in facility
cost, and paid less thanfi in assignment cost. We can repeat
this process until no facility remains with less thanr=2 units
of incident demand.

The conversion outlined in this lemma is clearly algo-
rithmic. This leads to the following result:

Corollary 4.4. Given a�-approximation algorithm for the
facility location problem, and given anr-gathering prob-
lem, we can find a solution of cost at most3� times the
optimum gathering cost that gathers at leastr=2 units of
demand at every open facility.

Proof. Given the gathering problemG with costG, define
the related facility location problem as above, which has
cost at most3G. Run the�-approximation algorithm to find
a solution of cost at most3�G. To that solution apply the
conversion that ensures that every facility has at leastr=2
incident demand at no greater cost.

Applying current approximation bounds for facility lo-
cation yields our initial theorem:

Corollary 4.5. There is a bicriterion approximation algo-
rithm for ther-gathering problem that gives anr=2-gather
costing at most 5.184 times the optimumr-gathering.



Proof. Use the 1.728-approximation algorithm for facility
location [4].

4.2. Generalizations

Our approximation algorithm straightforwardly handles
two generalizations (which are not needed for our applica-
tion):� We can tradeoff between the gathering cost and the

nearness to feasibility (gathering lower bounds).� We can include an actual facility opening costf 0i .� We can allow the lower bound of demand needed to
open each facility to be a distinct valueri.

There is a tradeoff between the approximation factor and
the factor by which the lower bound on demand gets re-
laxed. By scaling our special facility costfi appropriately
we can demonstrate the following result.

Corollary 4.6. There is a bicriterion approximation algo-
rithm for ther-gathering problem that gives anr�-gather
costing at most1+�1�� � 1:728 times the optimumr-gathering.

To handle nonzero facility costs, we simply add our spe-
cial facility costfi (minumum cost to shipr units of de-
mand toi) to the original facility opening costf 0i to get the
facility opening costf 0i + fi in our derived facility loca-
tion problemF . Our analysis still shows thatF has cost
within a constant factor ofG. Furthermore, as in the sim-
pler problem, the added costfi is enough to pay for closing
any facility with less thanr=2 demand and rerouting to a
different open facility. Note that in fact, it suffices to set the
derived problem’s facility cost to bemax(fi; f 0i); this might
improve performance in practice.

To handle distinct lower bounds, we note that our analy-
sis is essentially local to every vertex. If we definefi to be
the minimum cost of shippingri units of demand to facil-
ity i, the entire analysis goes through unchanged. We end
up with a constant factor approximation that places at leastri=2 units of demand on facilityi if it is open.

5. Gathering for maybecast

In this section, we use our gathering algorithm as a black
box for solving the maybecast problem. We apply the fol-
lowing algorithm:

Our algorithm clusters clients into large enough groups
and then connects up all the groups with the root. For clus-
tering purposes, we will think of a clienti as havingpi units
of demand and take assignment costs to be equal to short-
est path distances. We solve anr-gathering problem on this
instance using our bicriterion approximation algorithm and

MAYBECAST ALGORITHM

1. LetF = V , C = Sc. For any pairi 2 F; j 2 C,
let cij = shortest path distance betweeni andj. For
any clientj 2 Sc, let dj = pj . Setr = 1. Run our
bicriterion approximation algorithm on this instance of
ther-gathering problem to obtain a feasible solution to
anr=2-gathering problem.

2. LetH � F be the set of facilities opened in Step 1.
Build an approximately minimum cost Steiner treeTS
connecting nodes inH to the rootr.

3. For a clientj, its pathPj to the root consists of its path
to the facilityi to which it was assigned in Step 1 plus
the path fromi to the root in the treeTS.

4. If there are cycles inPj , remove them.

Figure 2. The Maybecast Algorithm.

then build a Steiner tree on all of the facilities opened by
ther-gathering algorithm, thus connecting each client with
the root via its gathering point. In the last step we simplify
the paths of all clients, clearly without increasing the cost
of solution.

We analyze this algorithm’s performance in two steps.
First, we show that the derived gathering problem has an
optimum cost close to that of the maybecast optimum. Then
we show that, given a solution to the derived gathering prob-
lem, we can convert it to a maybecast solution of similar
cost. Combining these two arguments with our approxima-
tion algorithm for gathering shows that the maybecast algo-
rithm finds a good solution.

5.1. Cost of the derived gathering problem

In this section we analyze the cost of the derived gather-
ing problem.

Theorem 5.1. Given an instanceI of the maybecast prob-
lem with an optimal solution of costOPT , there exists a
solution to the derivedr-gathering problem (r = 1) of costO(OPT ).

To prove this theorem, we will take an optimal maybe-
cast tree for instanceI and construct anr-gathering solution
using the structure of the tree. In the optimal maybecast so-
lution, the path from each client eventually reaches a hub.
By the definition of a hub, an ancestor of a hub is also a
hub, which means that the hubs form a subtreeTH of the
maybecast tree (containing the root) which we will call the
hub tree. Demand from any one client moves on non-hub
edges until it reaches a hub, and then moves on the hub tree
to the root.

Consider the pricêC� = O(OPT ) of the optimum cost
maybecast solution. Let us decompose the price paid for the



overall solution into the price of moving demand from each
client to its first hub in the hub tree (along non-hub edges)
and the price of moving demand from the hubs to the root.
Along non-hub edges, the price function is linear: clienti
sending demandpi along non-hub-edgee contributeslepi to
the price function̂ce. So if we defineh(i) to be the distance
(underle) from clienti to the first hub on its path to the root,
then clienti contributespih(i) in total to the price on non-
hub edges. On the other hand, by definition edges in the
hub tree are carrying demand exceeding1. Thus the price
of each edge is just the length of that edge. SoĈ�H , the price
of edges inTH , is just the total length of hub-tree edges. We
have thus argued thatĈ� = X

clientsi pih(i) + Ĉ�H :
We use this two-part decomposition to construct a solu-

tion to the gathering problem. In the first step of the solu-
tion, we move the demand from each client to its first hub,
exactly as in the optimum solution. This costs us exactly
the first term,

P pih(i). We then gather all this shifted de-
mand from the hubs into facilities, each holding at leastr
demand in total, at cost̂C�H . This provides a solution to the
gathering problem whose cost is the sum of the two parts,
namely

P pih(i) + Ĉ�H . This is precisely the price of the
maybecast solution, which in turn is within a constant factor
of e=(e� 1) times the true cost of the maybecast solution.

That the first part costs
P pih(i) is immediate from the

definition of the (linear) gathering problem objective func-
tion. It remains to prove that we can gather the demand
from where it arrives at the hubs at costĈ�H .

Lemma 5.2. Given any tree with edge costsce � 0, de-
mandsdi � 0 on nodes, and total demand at leastr, there
exists a solution to the demand-weightedr-gathering prob-
lem of cost no more thanr � C, whereC is the total edge
cost ofT .

Proof. By induction on the size of the tree. Suppose first
that there is a leaf (degree-one node) with less thanr units of
demand. Move this demand from the leaf to its parent along
edgee. Since we are moving less thanr units this costs at
most rce. Then we can delete edgee and the leaf. This
leaves a tree with total edge costC� ce and demand which,
by induction, can be gathered at costr(C � ce). Thus, the
total gathering cost is at mostrce + r(C � ce) � rC as
desired.

Now suppose every leaf hasr units of demand. Take one
leaf and open a facility there. Assign all demand on the leaf
to the facility. This has no cost. Then delete the leaf and its
demand. Since all (unrooted) trees have at least two leaves,
the remaining tree still has demand greater thanr so, again
by induction, it can be gathered at costrC.

Theorem 5.1 implies that the cost of an optimalr-
gathering solution isO(OPT ). Ther=2-gathering solution
obtained with our bicriterion approximation algorithm must
then costO(OPT ) as well.

Corollary 5.3. Ther�-gathering solution (0 < � < 1) pro-
duced by our bicriterion approximation algorithm costs at
most 1:7281� 1=e � 1 + �1� � � OPT
5.2. Cost of the Steiner Tree

The previous section showed that the cost of our gather-
ing solution isO(OPT ). In this section, we show that the
cost of the Steiner tree we build on the gathering points is
alsoO(OPT ).
Theorem 5.4. The cost of the minimum Steiner tree on the
gathering points isO(OPT ).
Proof. Consider the following new maybecast instance,
based on our prior solution to ther=2-gathering problem
with r = 1. Move each client to the gathering point to
which it was assigned in the1=2-gathering solution. Since
each gathering point has at least1=2 unit of demand, we
will refer to it as ahalf-hub.

Let us construct a solution to this new maybecast in-
stance. We will first send all the demand back to its origi-
nal nodes (via shortest paths), and from there route them to
the root using an optimal solution to the original maybecast
problem at costOPT . Notice that the price (which is an
upper bound on the cost) of sending demand to its original
nodes is equal to the cost of gathering it, which is preciselycost(r=2-gathering). Let us denote byOPT 0 the cost of an
optimum solution to this modified instance. Thus,OPT 0 � cost(r=2-gathering) +OPT = O(OPT )

As has been already demonstrated in Theorem 2.1, it is
actually suboptimal to send clients from the same node on
different paths to the root. In an optimal solution (to the
modified instance) all of the clients from a given node will
use the same path to the root. Because we gathered at least1=2 unit of demand at each gathering point, each path will
have at least1=2 unit of demand, so every edge on any path
will carry at least1=2 unit of demand. So the unit cost of
each edge on the path from a half-hub to the root in this
optimal solution is at least1�Yi2h(1� pi) � 1� e�Pi2h pi � 1� e�1=2:
It follows that the cost of every edge we use is at least1� e�1=2 times its length, and that the cost of the optimum



solution is at least1� e�1=2 times the sum of the lengths of
edges used.

A Steiner Tree on the gathering points connects all the
half-hubs to the root while minimizing the total edge cost
(length). Hence,(1 � e�1=2) � cost(Steiner) is the lower
bound on theOPT 0. Thus we havecost(Steiner) � OPT 0=�1� e�1=2� = O(OPT )

We can use a known 1.55-approximation algorithm [8]
to build a Steiner tree on the set of facilities opened by our
bicriterion gathering algorithm. By the above theorem it is
guaranteed to costO(OPT ).
Corollary 5.5. The Steiner tree on ther�-gathering points
obtained with our bicriterion approximation algorithm
costs at mostcost(r�-gathering) +OPT1� e�� � 1:55

Notice that we can decrease the cost of the Steiner tree
by picking an appropriate demand relaxation factor�.
5.3. Performance of the approximation algorithm

In this section, we show that our algorithm finds a con-
stant factor approximation to the optimum maybecast solu-
tion.

First let us verify that we don’t increase the cost of the
solution by performing Step 4. Consider some edgee and
the set of clientsUe using it to get to the root before Step 4.
Notice than when we simplify the clients’ paths in Step 4,
we don’t add any clients toe, but we might remove some.
This means that the cost ofe can only decrease after Step 4.
Thus, the cost of solutionT obtained before we simplified
the paths is an upper bound on the cost of the final solution.

To evaluate the performance of the algorithm, we mea-
sure the price of the solution obtained. The price paid can be
decomposed into two components: (i) the price of moving
demand from each client to its gathering point, and (ii) the
price of moving demand from all the gathering points to the
root. The first price component (i) is precisely the cost of
the gathering problem, which we already provedO(OPT ).
The second one is equal to the total price of flow on Steiner
tree edges, which is upper bounded by the total length of the
Steiner tree edges, i.e. the cost of the Steiner tree. We al-
ready showed this cost isO(OPT ). Thus, our total solution
cost isO(OPT ) +O(OPT ) = O(OPT ) as claimed.

We have thus shown that the price of the solutionT is at
mostO(OPT ). Since the price function is an upper bound
on the true cost, we have the following result.

Theorem 5.6. The MAYBECAST ALGORITHM yields anO(1)-approximation solution to the maybecast problem.

We can rebalance the tradeoff between the cost ofr � �-
gathering solution and the cost of the Steiner tree built on
the corresponding gathering points. By setting the demand
relaxation factor� = 0:357, we can obtain a solution to
the maybecast problem which is within a factor of 40.7 of
optimal.

Corollary 5.7. There is an approximation algorithm for the
maybecast problem that produces a solution of cost at most
41 times the optimum cost.

5.4. A local optimization

In our algorithm above, we set the path of every client to
go via the hub to which it was gathered in the derived gath-
ering problem. This can result in a solution which is not
a tree (paths can cross). We can fix this problem, without
making the solution worse, if after finding the Steiner tree
on gather points, we simply assign route each client, via a
shortest path, to the closest point in the steiner tree. Equiv-
alently, we can imagine contracting the Steiner tree into the
root, and building a shortest path tree on what remains. This
will clearly result in a tree solution to the maybecast prob-
lem.

To see that the cost of our modified solution is no worse
than before, note that our analysis above assumes that every
edge in the Steiner tree is saturated, with unit price (and
cost) 1. Thus, no matter how we reroute the client paths,
we will never pay more than we thought on the Steiner tree
edges. As for the remaining edges, we bounded their unit
cost by the total demand (

P pi) of paths through the edge,
thus bounding the total cost on those edges by the sum of
path lengths from each client to the Steiner tree. It follows
that minimizing the sum of path lengths to the Steiner tree
can only improve our solution, and that is precisely what
taking shortest paths to the Steiner tree does.

6. Conclusion

We have studied a particular routing problem in which
certain global information is hard to gather, and developed
a local-decision approximation algorithm that achieves re-
sults within constant of optimum. Our solution is studying a
“concave cost” network design problem. Perhaps the tech-
niques used could be applied as well to more general cost
functions or the design of more complex networks. In par-
ticular, it might lead to more powerful results for the buy at
bulk network design problem, or for general concave-cost
flow problems with capacities.

We might also ask whether our solution can get by
with less global information. At present we require global



knowledge of the set of clients and activation probabil-
ity p. Is it possible to define a path-based scheme which
works regardlessof p? Under such a model, all we are
requiring is that every equally sized subset of clients be
equally likely to activate—a plausible assumption for non-
geographically-dependent requests. Even better would be to
define a scheme in which our path solution is always com-
petitive against the best possible solutionfor the set of active
terminals. But we suspect there are strong lower bounds for
this variant.

More generally, we might consider other problems in
which only part of the solution can be preplanned, while
the remainder must be generated quickly and locally.

7. Acknowledgements

This problem arose from discussions between John Gut-
tag, Ulana Lezegda, and Tom Leighton.

References

[1] M. Andrews and L. Zhang. The access network design
problem. 1999.

[2] B. Awerbuch and Y. Azar. Buy-at-bulk network design.
In Proc. 38th Symposium on Foundations of Computer
Science, pages 542–547, 1997.

[3] B. Awerbuch, Y. Azar, and Y. Bartal. On-line general-
ized steiner problem. InProceedings of the Seventh An-
nual ACM-SIAM Symposium on Discrete Algorithms,
pages 68–74, New York/Philadelphia, Jan. 28–30 1996.
ACM/SIAM.

[4] M. Charikar and S. Guha. A constant-factor approxi-
mation algorithm for thek-median problem. InProc.
40th Symposium on Foundations of Computer Science,
pages 378–388, 1999.

[5] F. Chudak and D. Shmoys. Improved approximation
algorithms for the uncapacitated facility location prob-
lem. 1998.

[6] S. Guha, A. Meyerson, and K. Munagala. Hierarchi-
cal placement and network design problems. InProc.
41st Annual Symposium on Foundations of Computer
Science, 2000.

[7] K. Jain and V. V. Vazirani. Primal-dual approximation
algorithms for metric facility location andk-median
problems. InProc. 40th Symposium on Foundations of
Computer Science, pages 2–13, 1999.

[8] G. Robins and A. Zelikovsky. Improved steiner tree ap-
proximation in graphs. InProceedings of the Tenth An-
nual ACM-SIAM Symposium on Discrete Algorithms,
pages 770–779, 2000.

[9] D. B. Shmoys, E. Tardos, and K. I. Aardal. Approxima-
tion algorithms for facility location problems. InProc.
29th Annual ACM Symposium on Theory of Computing,
pages 265–274, 1997.


