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Abstract global coordination can be difficult, many present day In-
ternet algorithms are designed to make use only of local in-
A networking problem of present day interest is that of formation, accepting that some degradation in performance
distributing a single data item to multiple clients while min- may result as a consequence of this simplicity.
imizing network usage. Steiner tree algorithms are a nat-  Such a philosophy has led us to study the followimay-
ural solution method, but only when the set of clients re- becasproblem. We are given a network (possibly with edge
questing the data is known. We study what can be donecosts), aoot node, and a collection @¥ clientsat nodes in
without this global knowledge, when a given vertex knows the network. Each client will choose to contact the root
only theprobabilitythat any other client will wish to be con-  independently from others with some probabijity In ad-
nected, and must simply specify a fixed path to the data tovance of the requests we must choose, for each client in the
be used in case it is requested. Our problem is an examplenetwork, a path from the client’s node to the root. If a client
of a class of network design problems withncavecost  chooses to contact the root, the edges on this path become
functions (which arise when the design problem exhibits active Our goal is to minimize, over the random choices of
economies of scale). the clients, the expected number (or cost) of active network
In order to solve our problem, we introduce a new ver- edges. We can think of this as a probabilistic version of the
sion of the facility location problem: one in which every rooted Steiner tree problem, in which one desires to connect
open facility is required to have some minimum amount of a set of terminals with the root while minimizing total edge
demand assigned to it. We present a simple bicriterion ap- cost.
proximation for this problem, one which is loose in both as-  Thijs problem models the data distribution problem men-
signment cost and minimum demand, but within a constanttioned above. If caches are placed at nodes in the network
factor of the optimum for both. This suffices for our appli- then as soon as a requester’s path to the root encounters a
cation. We leave open the question of finding an algorithm cached copy of the item, the item can be returned without
that produces a truly feasible approximate solution. traversing the rest of the path. Thus every edge on the set
of paths is traversed at most once by the item, so the total
number (resp. total cost) of edges on the paths connecting
root to requesters reflects the total network bandwidth (resp.
total transmission cost) allocated to the distribution of the
item. Alternatively, we can note that traversing a network
A networking problem of present day interest is that of |ink takes some finite amount of time. Assuming that re-
distributing a single data item to multiple requesters while guests occur at sufficiently spread-out times, we can expect
minimizing network usage. In the presence of caches, it isthat at most one request will be forced to wait for the item
never necessary for an item to traverse a network link moregq traverse any given link—all future requests will be able
than once. Thus, this problem can be modeled as a Steinef se the cached item immediately. Thus, the total number
tree problem: connect all requesters to the root using a min-of jinks reflects the average time spent waiting by clients for
imum cost set of edges. However, such modeling neglectsihe item.
the cost, in time and algorithmic comple_xity, of determining Of course, in the absence afy information about the
the full set of requesters who want an item. Because SUC'\NorId, it is impossible to make sensible local decisions.
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clients) that becomes available too late to be useful. We alsathe Steiner tree problem, in which terminals are revealed
aim for the solution to have a simple local specification— one at a time and must immediately be connected to the
a path for each client. (Alternatively, we might require a previously constructed Steiner tree [3]. This approach is
“routing tree” solution, in which each node simply specifies stronger than ours on that it constructs a solution within
a parent to which it forwards any request it receives, and O(log® N) of the optimal solution for the specific set of ter-
the path from any client is determined by following par- minals thatis chosen, while we are only competitive against
ent pointers. We will show that this is in fact equivalent.) the expected solution cost over all sets of terminals. How-
In the case of large items, one might devote more time toever, it is also weaker since, like the standard Steiner tree
“planning”the transmission of the item when it is requested; algorithm, the online algorithm requires at each step full
however, in the (not uncommon) case of small items, evenknowledge of the previously existing terminal set. Ours
limited planning may be too expensive. makes its routing decisions oblivious to what set of termi-
Our problem is of course\V'’P-complete, since the nals will eventually be chosen.
Steiner tree problem is a special case. In fact, our prob- Alternatively, the maybecast problem can be represented
lem remains\P-complete even in the uniform case of one as a kind of min-cost flow problem with infinite capacities
client per network node and unit costs on edges. Thus, theand aconcavecost function. We can think of a clientas
focus of this paper is on approximation algorithms. We give having “demand” for a flow of capacity; to the root. The
a constant-factor approximation algorithm. Our solution re- cost of routing along an edge exhibits@aonomy of scale
lies on some structural analysis of the optimum solution the more paths use an edge, the cheaper itis per path. By ap-
which leads to application of facility location and Steiner proximating our cost function by a piece-wise linear func-

tree algorithms to solve the problem. tion, we can establish a connection with the “buy-at-bulk”
network design problem, another problem which exhibits an
1.1. Overview of Results economy of scale. As an example, consider the problem of

wiring a telephone network in some metric space such that

We begin with a study of the optimum solution. We show €Very pair o_f clientsis conn_ected by a path of capacity one.
that the optimum solution is invariably a tree. However, the OUr approximate cost function would correspond to the sit-
obvious first choice of a shortest path tree can cost a factot@tion in which two types of wires are available: low cost
as large a®(n'/?) times the optimum in an-node graph. ~ Wires of infinitesimal capacity, and “infinite” capacity wires
To find a better tree, we note that the optimum tree con- ©f large cost. Awerbuch and Azar [2] provide a random-
sists of a central “hub” area within which all edges are basi- i28d O(log" n) approximation algorithm for this problem,
cally certain to be used, together with a fringe of “spokes” Wheren is the number of nodes in the network. Th?'r ap-
in which multiple clients can be considered to be contribut- Proach relies on the tree metric embedding of Bartal; subse-
ing independentlyand linearly) to the cost of the solution. duéntimprovements in tree embeddings yield a slightly bet-
We use a facility location algorithm to identify a good set t€r approximation ratio of(logn loglogn). Andrews and
of “hubs” to which we route clients at independent (linear) Zhang [1] give arO(K*)-approximation algorithm, where

costs, and then use a Steiner tree algorithm to connect thd 1S the number of different types of wires, for a special
hubs to the root. case of the problem. However, the restrictions which they

To identify a good set of hubs, we introduce a new ver- place on the cost function preclude application to our prob-
sion of the facility location problem: one in which every lem. Thus, our work is the first that can achieve a constant
open facility is required to have some minimum amount of factor approximation ratio for our problem.
demand assigned to it. This problem can also be phrased Simultaneously and independently, Guha, Meyerson and
as a clustering problem where we wish to minimize the av- Munagala [6] studied the same facility location problem
erage radius of clusters without letting any cluster be too Variant that we use in our solution, and developed essen-
small. We present a simple bicriterion approximation for tally the same solution. They generalized the approach to
this problem, one which is loose in both assignment cost@ hlerarchlcgl setting that gave results for the buy-at-bulk
and minimum demand. This suffices for our application. Network design problem.

We leave open the question of finding an algorithm that pro-
duces a truly feasible approximate solution. 2. Preliminaries

1.2. Related Work In this section we formally define the maybecast problem

and provide some preliminary results regarding the struc-

The Steiner tree problem has a constant factor approxi-ture of the optimum solution. We show that the paths of the

mation algorithm, but the set of terminals must be known in optimum solution must define a tree, but that the obvious
advance. There has been work onatine algorithm for shortest paths tree can be a terrible approximation.



2.1. Problem Statement Theorem 2.1. Consider any single-sink min-cost flow
problem where capacities are infinite and every eddas
Input: We consider an undirected gragh = (V, E) a nondecreasing concave cost functignof the total flow
with a non-negative edge weight functibn £ — R, and actually carried by that edge. Then there is an optimal (min-
a root vertexr € V. A set of N clients is assigned to a cost) solution to the flow problem that is a tree (that is, every
subset of vertice§ C V. Clienti becomes active indepen- vertex has at most one outgoing edge carrying flow).

dently with probabilityp; > 0, in which case it communi- Proof. For simplicit id ¢ onlv for th
cates with the roat along some to-be-specified path. Every rool. -or SIMpICity We provide a proot only Ior the case
where all cost functions are increasing astdctly convex

edge on the path from an active client to the root becomes
active (FAz + (1= Ny) > Af(z) + (1= A)f ().

Output: Construct a set of paths connecting each client to f Cpn&der;n opt|n_1un}|solut|02. Letus d((jacorrllpose th? the
the root; this is the path that will be used if the client be- ow into paths carrying flow to the root and cycles carrying

comes active. The goal is to minimize tegpectedotal flow in zrcles. N(f)lte that if theredls a ilor\]/v-carrlylng cycle,_
weight ofactiveedges. we can decrease flow on every edge of the cycle, decreasing

This problem can be thought of as a probabilistic version ;he solut|ondc_ost, a ct(])ntradr:cnon. So the optimum flow is
of the rooted Steiner tree problem: we are given some sub- ec\:/smp%se mtcr)] pat hsto:]. N rolot.. b =
set of nodes each of which needs to be connected with the e will now show that this solution must be a tree. For

root with some probability. In order to study this problem, Ephe sake of Icorr]ltradlctl_(;nhassume the sol!ut.|0n :js.no_trz]i tree.
we think ofl, as the length of edgeand define a per-unit- Is can only happen If there exist two clieatand; wit

length edge cost function, reflecting the probability that paths to th_e root that ir_1tersect at a non-root vertex and then
an edge will be used. Given a solution, let us denot&by separate, i.e. use 2 different edges out of that vertex (as a

the set of clients using edgd¢o communicate with the root. special case we might have= ). Letv be a vertex V\(here
Thene, = Prfeis activg = 1 — [] (1— ps). Using lin- the separation happens anddebe the next intersection of
e = = ieU, i)

earity of expectation, we can express the objective functiont)he two pathg. Lef:l der;]ote the segn:fnt of the first ]P T}th
as the sum over all edges of probabilities that an edge is etweenw andw and( the corresponding segment of the
active weighted by its length other path. Let.p denote the amount of flow on pafh,

andug the amount of flow on patty. Notice that we can
substitute segmerit for () to obtain a different valid path
> le to the root for client, and vice versa for clierjt We argue
that at least one of these substitutions yields an improved
solution, violating our assumption of optimality.
To see this, we evaluate the cost of our flow in 3 pieces:
) ) ) ) (i) the up units of flow onP, theug units of flow on@),
In this section, we show that the optimum solutionto any 4nq everything else. If we leave out the flow Brand(),
maybecast problemis a tree. . _ the remaining flow (which is not feasible, since it violates
Given a set of paths connecting each client with a root, ,nservation ab andw) has some total amount of flow
let us think of the solution as a flow along those paths. A 4, each edge for some total fixed cost'.
clients co_ntrlbutesdi = —In(1 — p;) units _of flow to every To make this flow feasible we must adgo = up +
edge on its path to the root. Thus, a given edgaarries ., its of flow from P to @, but we can distribute this
fe =2 icy, —In(1—p;) units of flow. The costofthe flow  f5,y any way we like betweed® and (. Let us consider

Elweight of active edgés= ) _ (1 -1 -m)

ecelE €U,

2.2. Solution Structure

on that edge is given by the incremental cost over of placingu/, units of flow on
P anduy, units onQ such thatu, + uy, = upg. The
: Q@ P Q .
1-JJ=p))te = [1=]]e %)t incremental cost on edge € P of sending an additional
icU, ieU, u'p UNIts isc, (ue +u’p), Which (sincer, is strictly concave)
— _ ot is a concave function of/, (offsets of concave functions
= (Q-e’) P
‘ are strictly concave). The overall incremental cistu’s)
This cost function is concave ifi, the flow on that edge. of sendingu’s units onP is thus a sum of strictly concave

If we have two distinct paths between the same pair of functions and thus strictly concave. Similarly, the overall
nodes with non-zero flows$, and f, on each, by properties  incremental cosfq (u,) of sendingug, units of flow on@
of concave functiongost(fi+ f2) < cost(f1)+cost(fz). is also strictly concave. Patli3 and() are disjoint, so our
This suggests that an optimal solution never sends flow fromoverall solution cost is simplg' + fp(u}p) + fo(ug). We
a given node to the root along 2 distinct paths. We deducewish to minimize this subject to}, + ug, = upq, and both
that it has to be a tree. We can actually prove this in a gen-positive which means minimizingp (Aupg) + fo((1 —
eral setting. Aup) over0 < A < 1. But sincefp and fg are strictly



concave functions, this sum is a strictly concave function of 3.1. A price function
A, so is optimized at one of the “endpoints™= 0 or 1, i.e.

up =00rup = upg. To develop our approximation algorithm, we convert our
This shows that we can find a solution better than the concave cost function into one that is piecewise linear but
(presumed optimal) one which sent flow on bétrandQ, closely approximates our original function.
a contradiction. g Given a solution, let us define thmit costof an edge:
in the solution as the probability thabecomes active, =
2.3. The shortest path tree heuristic 1-[I;cp. (1—p:), whereU., is the set of clients whose paths

to the root contaire. We can assume th#’,| > 0, since

Now that we know that an optimal solution is a tree, we can always throw out edges that are not used by any of
a shortest path tree is a logical candidate for an approxi-the clients. We can upper boundby the sum of activation
mate solution. Unfortunately, the shortest path tree can haveprobabilities of the clients using c. < >-,.,, p;. Notice
polynomial approximation gap, as the following example il- that when this sum is smalt, is very close to it, whereas
lustrates. for when the sum becomes large (greater tham 0apidly

Consider an unweighted, x m grid graph with a root ~ approaches 1. Based on this observation, let us introduce a
vertex attached to the top vertices by single edges as unit pricefunction
shown in Figure 1a. All edge lengths are 1.

Consider an instance in which only thevertices on the & = min { Z s 1}
bottom have clients, each having the same activation prob- ‘ v
ability p. Letn = m? + 1 be the total number of ver-
tices. The number of clients in this instance is then givenby ~ We have already argued that our unit price function is an
N=m=+vn-1. upper bound on the actual unit cost. We show that it is a

In a shortest path tree solution, every client will use a tight upper bound: that. is at most some constant times
path that goes up along vertical edges, until it merges intoc., independent of probabilitigs.
the root (see Figure 1b). Let us compute the cost of such aLemma 31
solution. Consider a vertical path of length Each edge of "
this path is used with probabiliy, so the cost of this path R 1
. . . Ce < Ce < Ce-
is p - m. Summing over alin vertical paths, the total cost - "~ 1-1/e
of the shortest path solution ign?. o .

Now consider an alternative solution, in which all clients Proof. We have.already argued the first inequality. Fpr the
in the bottom row go to the middle vertex of the row, and second inequality, let us fix = 5., pi. Observe first
then use 1 central vertical path to get to the root (illustrated that sincel
in Figure 1c). .The central vertical pgth costs at mast H (1—pi) < H P — o5
since the maximum cost of an edge is 1 and therenare -
edges in it. Similarly, the cost of the paths converging in
the center of the bottom row is at mast — 1. Thus, the So we must have that > 1 — e~*. Now we show that
total cost of this solution is at mo8in. The ratio of costs

€U,

—I

—zrz<e?

1€Ue 1eUe

of the shortest path solution and the central path solution be < ———(1—e7%)

is at leastpm?/2m = Q(pv/n — 1) = Q(n'/?) whenp is 1-1/e

constant. Thus, a shortest path tree can give a polynomiallyyhich, combined with the previous observation, proves the
bad approximate solution. lemma.

In a straightforward variation, usingre/? x n>/3 grid, _ _ _
one can show that even in the case of uniform probabilitiesCase 1:s > 1, so¢, = 1. The desired inequality holds
p; = n~2/3, the shortest path tree solution can(b@/?) trivially

worse than optimum. .
Ce 1

<
l1—e®~1-1/e

3. Tools for the Solution

Case 2:s < 1, so¢. = s. Consider the quantity;—>"—.

We now know that we are seeking a tree solution to our This is an increasing function efon the intervalo, 1],

problem. In this section, we introduce an approximate cost so the maximum is attained at= 1. So once again,
function that is easier to work with. We also outline a “hub .

and spoke” principle which will guide us in the search for a Ce ~ 1

solution. l—e = 1-1/e
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Figure 1. The shortest path example. a) m x m grid graph with aroot. b) Shortest path tree solution.
c) Alternative stem path solution.

O Consider any tree solutidfi to the maybecast problem.
_ . Every client has a unique path to the root. We will say that
In a problem with edge lengths, the actual contribution 4 client; passes throughodev if nodew lies oni’s path to
of an edge to the objective function is its length multiplied {he yoot. As paths of different clients converge towards the
by its unit cost/. - c.. Let us refer to this quantity as the 4o they might start sharing the same edges and passing
weighted cost of an edge, or simply its cost. We can sim- ,:q,gh the same nodes. Definbubto be a node that has
llarly define the (weighted) price of an edge to ke ¢.. at leastl unit of flow from clients passing through it. The
Because of the linear relationship to unit price and cost, the 4t price of every edge on the path from a hub to the root
weighted price of an edge is an upper bound on its actualis 1 Thus, once a client gets to a hub, the rest of its path
weighted cost and their ratio is bounded by the same con+, the root is already paid for. Létub(i) be the first hub

stantl —1/e. _ . on the path of a client to the root. We will say that client
Since costs and prices are related within a constant, we; g assignedo hub(i). In building a solution, if we were

see that the optimurostmaybecast tree has cost within @ giyen a set of hubs and an assignment of the clients to the
constant factor of the optimuprice maybecast tree. It fol- hubs, to obtain the rest of the solution we would need to
lows immediately that any algorithm that approximates the -,nnect all of the hubs up to the root at the minimum edge
minimum price tree to within a constant will also approxi- ~ost. Byt edges on the paths from hubs to the root have
mate the minimum cost tree to within a the same constantpriCe one, so the optimum “hub tree” is just a Steiner tree
timee/(e —1). on the hubs (which we can approximate via a Steiner tree

approximation algorithm).

3.2. A hub and spoke model o _
Let us now analyze the cost of assigning a client to a

What the grid graph example demonstrated was thathUb‘ Any gdge on the path of 10 hub(i) carries no more
than 1 unit of flow; otherwise we would have a hub sitting

sometimes instead of using a shortest path to the root, it i that path. Thi that unit ori f od
pays for clients to cluster together at some node and theneaAr ier-on that path. IS means that unit price of edge

share one path to the root. To get a better understanding of> ¢ = 2_icu, Pi» WhereU, is the set of clients using that

why this is the case, let us go back to our flow analogy. Sup- e?ge. Thus,hcll(;ant Cﬁgr',buJeSpittomar?S trt]ﬁ ufntlkt] p”C?h
pose each clienthas to seng; units of flow to the root via ot every such edge. (4) denote the length of the pa

some path. Once the total amount of flow from clients us- (distance) from client to hub(i). Then over all the edges

ing the same path reaches a certain value, adding more f|OV\?nllt? path to a hub, clientcontributeg; -h(i) to the overall
(from one more client) onto the path doesn't increase the SOUtION.

real unit cost (the probability of the edges on the path being  We can therefore decompose our problem into two parts:
active) by much. This is captured by our unit price function first, clustering clients at hubs, and second, connecting hubs
which uniformly charges 1 for every edge ongg ., pi, up at minimum cost. Of course, we do not know where the
the amount of flow on that edge, reaches hubs are, rather we have to create them. In this respect,



the problem is similar to the uncapacitated facility location tances between nodes. Let the demand of a cidep;.
problem in which, given costs for opening facilities and as- If we solve ther-gathering problem on this instance with
signing locations to them, one wants to open a set of fa-r = 1, the opened facilities can be thought of as hubs. Next
cilities and connect each location to an open facility while we will show that there existsagathering solution of cost
minimizing net cost [7]. There is no direct cost associated comparable to the cost of an optimum solution to our origi-
with opening a hub, however the Steiner tree parallel ap-nal problem.

plies only if there is a large number of clients assigned to  Ther-gathering problem also makes sense in the context
every hub. So how can we find a set of hubs, so that there isof clustering problems: ar-gathering solution attemps to

a hub not too far from each client but every hub receives adivide the clients into an arbitrary number of clusters (one

substantial amount of demand? per open facility) so as to minimize the average radius (dis-
tance from the cluster center) while forbidding any cluster
4. A gathering problem from have few items.

In the uncapacitated facility location problem [4, 5, 7, 9], 4.1. Solving ther-gathering problem

we are given a set of facilities’, a set of locationg”’, a _ o ]
cost f; for opening each facility € F, and for each pair We now describe an approximation algorithm for ihe
i € F,j € C, the coste;; of connecting locatiory to ggtherlng p_rpblem. F_orS|mpI|C|ty, we first consider the case
(opened) facilityi. The goal is to select a subset of facilities Without facility-opening costs, and assume that all lower
to open, and assign each location to an opened facility so adounds are the same value This is the problem we need
to minimize the total sum of the assignment costs and the!© Solve in our maybecast application. This simplified ver-
costs of opening facilities. There are a number of constant-Sion can be described as follows: given a set of potential
factor approximation algorithms for solving the uncapaci- facilities (indexed byi), a set of of clients (indexed bj),
tated facility location problem when the assignment costs €ach with a demand;, and a cost matrix;; satisfying the
satisfy the triangle inequality [4, 5, 7, 9]. The currently best triangle inequality, we wish to open a set of facilities, and
approximation guarantee, due to Charikar and Guha [4], is@SSign each client to an open facility, such that
1.728. In a demand-weighted version of the problem, we
are also given a non-negative demafydor each location
J, so that the cost of assignirigo a facility i is d;c;;.

Intuitively, facility costs are supposed to encourage usto 2. The total distance traveled by all the demand to its as-
use facility resources frugally and assign many clients to the signed facility is minimized.
same facility. However, it is still possible to have an optimal
solution in which a facility serves only very few clients. If More formally, we wish to set assignment variables,
we wanted to prevent opening a facility that serves too few wherez;; = 1 if j is assigned ta and0 otherwise, such
clients, instead of having a fixed cost associated with eachthat
facility, we could require that a facilitycan be opened only
if at least a certain number of clients get assigned tw in
the demand-weighted case, facilityets to serve at least
some minimgm required d_emand. . 2. We minimizeC' = 3, - ijci;d;.

Let us define an-gathering problem to be a special type J
of demand-weighted facility location problem. The goal is We present dicriterion approximatiorto this problem.
to open a subset of facilities and assign demands to them,
such that each opened facility has at leashits of demand ~ Theorem 4.1. LetC* be the optimum cost of a feasible so-
assigned to it, and the total assignment cost is minimized.lution to anr-gathering problem. In polynomial time, we
In our particular application, the cost of opening a facil- can find a solution to the problem, of cdsf such that
ity is zero if that facility is feasible. However, the prob-
lem and our solution generalize to include facility-opening
costs, and also to allow different lower bounds at different

1. At leastr units of demand are assigned to each open
facility

1. For everyzt, Zj x;; > r (facility ¢ is open)or
>_; i = 0 (facility ¢ is not open).

1. For everyi, E]. z;; > r/2 (facility ¢ is open)or
>_; @ij = 0 (facility ¢ is not open).

facilities. 2. C = O(C*)
We can formulate our problem of finding a set of hubs
close to all the clients as an instance of thgathering prob- That is, we can find a solution that gathers at least half

lem. Take the set of all nodes of the graph to be the set ofthe required demand at every open facility, and does so at
potential facilities, and the set of clients to be the set of cost within a constant factor of the optimum gathering cost.
locations. Set assignment costs to be the shortest path disFhere is a typical tradeoff: we can in fact come within—



e) of the required demand (nearer feasibility) at every open

facility if we are willing to worsen the approximation ratio.
To prove this theorem, given our gathering problem, we
define a related facility location problem and show that its
solution meets our requirements. To define the facility lo-
cation problem, we assignast f; to each facilityi. The
cost ofi is defined as twice the minimum cost of moving
units of demand from the clients to facility
More formally, letjy, jo, . .. , j, be the clients, ordered
in increasing distance from facility(that is,c;;, < c¢;j, <
---). Letk be minimum such that;, +d;, +---d;, >r.
For simplicity let us assume this sum is exactly equatte
if not, just split clientk into two smaller demands. Then the
cost

fi =2(cijydj, + -+ + cijdjy)-

Note that for any assignment that assigns at leastits of
demand ta, we must havij cijxijd; > fif2.

Let F denote the facility location problem with costs
inherited from the gathering probleg and with facility
COstsf;.

Lemma 4.2. The cost of an optimum solution 16 is at
most thrice that of.

Proof. Consider any solution t@. It opens certain facilities
and makes assignments;. The same solution is clearly
feasible forF; let us analyze its cost undét. The assign-
ment cost)  x;;c;;d; is the same for both problems; we

need only measure the added cost of opening the facilities

in F.

Consider some facility that was opened ig. By fea-
sibility of the solution forG, there are at least units of
demand incident oi. It follows that the total cost of ship-
ping thisdemandt@, 3 ; @;jc;;d; > fi/2. Thus, summing
over all open;, we have

Z fi<2 Z Zl‘zjcijdj,

i open i open

that is, the total cost of opening facilities is at most twice
the total assignment cost. But that total assignment cost i
the entire cost of, so the cost ofF is at most 3 times the
cost ofg. O

Lemma 4.3. Any solution taF can be converted into a so-
lution of no greater cost that assigns at leag® units of
demand to every open facility.

Proof. Suppose we have a solution fothat does not sat-

As a first step, convert the solution to one thabisally
optimal: assign every client to the nearest open facility.
Clearly this can only improve the cost.

Now suppose there is an open facilityith less than-/2
incident demand. Consider the nearest clieits. . , ji
that are used to defing. By definition, these clients in
total haved;, + dj, + --- + dj, = r units of demand, and
send at most /2 units toi, so at least/2 of this demand
must be assigned to other facilities. Let

1
¢ = —(djcijy +djpcijy + -+ djcig) = fif2r

be theaverage distancef these units of nearby demand. By
Markov's inequality, less than half of this nearby demand is
at distance exceedinge from i. But by assumption less
thanr/2 of these nearby demand units are assigned to
Thus, some clien§’ not assigned ta is at distance less
than 2¢ from 4. But by local optimality, thisj’ must be
assigned to a facility’ at distance less thale from j'. By

the triangle inequality, this facility is at distance less than
fromi.

So suppose that we close facilitytake all the demand
assigned ta, and assign it ta’ instead. By the triangle
inequality, this adds at modt to the assignment distance
of those units of demand; thus the total increase in assign-
ment cost is the amount of demand dess than/2) times
the added distance (at meki) for a total of less thagrc.
But now note that = f;/2r, meaning that the change in
assignment cost is less th@n
Thus, by closing a facility, we have savggin facility
cost, and paid less thghin assignment cost. We can repeat
this process until no facility remains with less thgi2 units
of incident demand. O

The conversion outlined in this lemma is clearly algo-
rithmic. This leads to the following result:

Corollary 4.4. Given ap-approximation algorithm for the
facility location problem, and given angathering prob-

lem, we can find a solution of cost at m@gt times the
optimum gathering cost that gathers at leagR units of

demand at every open facility.

Proof. Given the gathering probleg with costG, define

the related facility location problem as above, which has
cost at mos8G. Run thep-approximation algorithm to find

a solution of cost at mostpG. To that solution apply the
conversion that ensures that every facility has at leg3t
incident demand at no greater cost. O

Applying current approximation bounds for facility lo-

isfy the gathering requirement. We give a procedure thatCaltlon yields our initial theorem:

modifies the solution to a cheaper one by closing a facility. Corollary 4.5. There is a bicriterion approximation algo-
We repeat this procedure until the gathering requirement isrithm for ther-gathering problem that gives ary2-gather
satisfied. Clearly this will happen withimrepetitions. costing at most 5.184 times the optimiigathering.



Proof. Use the 1.728-approximation algorithm for facility MAYBECAST ALGORITHM
location [4]. U 1. LetF = V,C = S.. Forany pairi € F,j € C,
let ¢;; = shortest path distance betweeandj. For
4.2. Generalizations any clientj € S., letd; = p;. Setr = 1. Run our
bicriterion approximation algorithm on this instance of
Our approximation algorithm straightforwardly handles ther-gathering problem to obtain a feasible solution to
two generalizations (which are not needed for our applica- anr /2-gathering problem.
tion): 2. LetH C F be the set of facilities opened in Step| 1.
Build an approximately minimum cost Steiner tfEe
e We can tradeoff between the gathering cost and the connecting nodes iff to the rootr.
nearness to feasibility (gathering lower bounds). 3. For aclientj, its pathP; to the root consists of its path
. - . to the facility: to which it was assigned in Step 1 plus
e We can include an actual facility opening cgét the path from to the root in the tred’s.
e We can allow the lower bound of demand needed to 4. Ifthere are cycles i#®;, remove them.

open each facility to be a distinct valug

There is a tradeoff between the approximation factor and Figure 2. The Maybecast Algorithm.
the factor by which the lower bound on demand gets re-
laxed. By scaling our special facility cogt appropriately
we can demonstrate the following result. then build a Steiner tree on all of the facilities opened by
ther-gathering algorithm, thus connecting each client with
the root via its gathering point. In the last step we simplify
the paths of all clients, clearly without increasing the cost
of solution.

We analyze this algorithm’s performance in two steps.
First, we show that the derived gathering problem has an
optimum cost close to that of the maybecast optimum. Then
we show that, given a solution to the derived gathering prob-
lem, we can convert it to a maybecast solution of similar
cost. Combining these two arguments with our approxima-
tion algorithm for gathering shows that the maybecast algo-
rithm finds a good solution.

Corollary 4.6. There is a bicriterion approximation algo-
rithm for the r-gathering problem that gives are-gather
costing at mos%: - 1.728 times the optimum-gathering.

To handle nonzero facility costs, we simply add our spe-
cial facility cost f; (minumum cost to ship units of de-
mand toi) to the original facility opening cosf! to get the
facility opening costf] + f; in our derived facility loca-
tion problemZ. Our analysis still shows thak has cost
within a constant factor off. Furthermore, as in the sim-
pler problem, the added coftis enough to pay for closing
any facility with less than-/2 demand and rerouting to a
different open facility. Note that in fact, it suffices to set the
derived problem'’s facility cost to haax(f;, f); this might
improve performance in practice. _ . .

To handle distinct lower bounds, we note that our analy- . In this section we analyze the cost of the derived gather-
sis is essentially local to every vertex. If we defifygo be ing problem.
the minimum cost of shipping; units of demand to facil-  Theorem 5.1. Given an instanc& of the maybecast prob-
ity ¢, the entire analysis goes through unchanged. We endem with an optimal solution of cogd PT", there exists a
up with a constant factor approximation that places at leastsolution to the derived-gathering problems( = 1) of cost
r¢/2 units of demand on facility if it is open. O(OPT).

5.1. Cost of the derived gathering problem

. To prove this theorem, we will take an optimal maybe-
5. Gathering for maybecast cast tree for instanc&and construct an-gathering solution
using the structure of the tree. In the optimal maybecast so-
In this section, we use our gathering algorithm as a black lution, the path from each client eventually reaches a hub.
box for solving the maybecast problem. We apply the fol- By the definition of a hub, an ancestor of a hub is also a
lowing algorithm: hub, which means that the hubs form a subffgeof the
Our algorithm clusters clients into large enough groups maybecast tree (containing the root) which we will call the
and then connects up all the groups with the root. For clus-hub tree Demand from any one client moves on non-hub
tering purposes, we will think of a cliefas having; units edges until it reaches a hub, and then moves on the hub tree
of demand and take assignment costs to be equal to shortto the root.
est path distances. We solveagathering problem on this Consider the pric€* = O(OPT) of the optimum cost
instance using our bicriterion approximation algorithm and maybecast solution. Let us decompose the price paid for the



overall solution into the price of moving demand fromeach  Theorem 5.1 implies that the cost of an optimal
client to its first hub in the hub tree (along non-hub edges) gathering solution i®(OPT'). Ther/2-gathering solution
and the price of moving demand from the hubs to the root. obtained with our bicriterion approximation algorithm must
Along non-hub edges, the price function is linear: client then cosO(OPT) as well.

sending demang; along non-hub-edgecontributes, p; to
the price functiorg.. So if we defingi(¢) to be the distance
(underl,) from clients to the first hub on its path to the root,

Corollary 5.3. There-gathering solution < € < 1) pro-
duced by our bicriterion approximation algorithm costs at

then clienti contributesp; (i) in total to the price on non- most
hub edges. On the other hand, by definition edges in the 1.728 1+¢€
hub tree are carrying demand exceedingdlhus the price 1—1/e 1_¢ OPT

of each edge is just the length of that edge@p the price
of edges iy, is just the total length of hub-tree edges. We 5.2. Cost of the Steiner Tree
have thus argued that

The previous section showed that the cost of our gather-

Cr= Y pih(i)+Cj. ing solution isO(OPT). In this section, we show that the
clientsi cost of the Steiner tree we build on the gathering points is
alsoO(OPT).

We use this two-part decomposition to construct a solu-
tion to the gathering problem. In the first step of the solu- Theorem 5.4. The cost of the minimum Steiner tree on the
tion, we move the demand from each client to its first hub, gathering points i) (O PT).
exactly as in the optimum solution. This costs us exactly
the first term.>" p; (7). We then gather all this shifted de-
mand from the hubs into facilities, each holding at least
demand in total, at cogt};. This provides a solution to the
gathering problem whose cost is the sum of the two parts,
namely>" p;h(i) + C3. This is precisely the price of the
maybecast solution, which in turn is within a constant factor
of e/(e — 1) times the true cost of the maybecast solution.

That the first part costs p; (i) is immediate from the
definition of the (linear) gathering problem objective func-
tion. It remains to prove that we can gather the demand
from where it arrives at the hubs at c6gy .

Proof. Consider the following new maybecast instance,
based on our prior solution to theg'2-gathering problem
with » = 1. Move each client to the gathering point to
which it was assigned in thk/2-gathering solution. Since
each gathering point has at ledg®2 unit of demand, we
will refer to it as ahalf-huh

Let us construct a solution to this new maybecast in-
stance. We will first send all the demand back to its origi-
nal nodes (via shortest paths), and from there route them to
the root using an optimal solution to the original maybecast
problem at cosOPT. Notice that the price (which is an
upper bound on the cost) of sending demand to its original

Lemma 5.2. Given any tree with edge costs > 0, de- nodes is equal to the cost of gathering it, which is precisely
mandsd; > 0 on nodes, and total demand at leasthere  cost(r/2-gathering. Let us denote by) PT" the cost of an
exists a solution to the demand-weightegathering prob- ~ Optimum solution to this modified instance. Thus,

lem of cost no more than- C, whereC' is the total edge .

cost ofT ¢ ¢ g OPT' < cost(r/2-gathering + OPT = O(OPT)

As has been already demonstrated in Theorem 2.1, it is
actually suboptimal to send clients from the same node on
different paths to the root. In an optimal solution (to the
modified instance) all of the clients from a given node will
use the same path to the root. Because we gathered at least
1/2 unit of demand at each gathering point, each path will
have at least/2 unit of demand, so every edge on any path
will carry at leastl/2 unit of demand. So the unit cost of
each edge on the path from a half-hub to the root in this
optimal solution is at least

Proof. By induction on the size of the tree. Suppose first
thatthere is a leaf (degree-one node) with less thamits of
demand. Move this demand from the leaf to its parent along
edgee. Since we are moving less tharunits this costs at
mostrc.. Then we can delete edgeand the leaf. This
leaves a tree with total edge c@st- ¢, and demand which,
by induction, can be gathered at cos€' — c.). Thus, the
total gathering cost is at most, + r(C — ¢.) < rC as
desired.

Now suppose every leaf hasinits of demand. Take one
leaf and open a facility there. Assign all demand on the leaf — Y ienpi 1)2
to the facility. This has no cost. Then delete the leaf and its 1- H(l —-pi)>1—e Tienti > 1 1/2,
demand. Since all (unrooted) trees have at least two leaves,
the remaining tree still has demand greater than, again It follows that the cost of every edge we use is at least
by induction, it can be gathered at cost. O 1 — e~!/2 times its length, and that the cost of the optimum

ich



solution is at least — e—1/2 times the sum of the lengths of
edges used.

A Steiner Tree on the gathering points connects all the
half-hubs to the root while minimizing the total edge cost
(length). Hence(1l — e~'/?) - cost(Steinej is the lower
bound on thé PT’. Thus we have

= O(OPT)

cost(Steinej < OPT'/ (1 — 6_1/2)
O

We can use a known 1.55-approximation algorithm [8]
to build a Steiner tree on the set of facilities opened by our
bicriterion gathering algorithm. By the above theorem it is
guaranteed to cosk(OPT).

Corollary 5.5. The Steiner tree on the:-gathering points
obtained with our bicriterion approximation algorithm
costs at most

cost(re-gathering + OPT

1.
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Theorem 5.6. The MAYBECAST ALGORITHM Yields an
O(1)-approximation solution to the maybecast problem.

We can rebalance the tradeoff between the cost-ef
gathering solution and the cost of the Steiner tree built on
the corresponding gathering points. By setting the demand
relaxation factore = 0.357, we can obtain a solution to
the maybecast problem which is within a factor of 40.7 of
optimal.

Corollary 5.7. There is an approximation algorithm for the
maybecast problem that produces a solution of cost at most
41 times the optimum cost.

5.4. Alocal optimization

In our algorithm above, we set the path of every client to
go via the hub to which it was gathered in the derived gath-
ering problem. This can result in a solution which is not
a tree (paths can cross). We can fix this problem, without
making the solution worse, if after finding the Steiner tree
on gather points, we simply assign route each client, via a
shortest path, to the closest point in the steiner tree. Equiv-

Notice that we can decrease the cost of the Steiner treealently, we can imagine contracting the Steiner tree into the

by picking an appropriate demand relaxation faetor
5.3. Performance of the approximation algorithm

In this section, we show that our algorithm finds a con-
stant factor approximation to the optimum maybecast solu-
tion.

First let us verify that we don't increase the cost of the
solution by performing Step 4. Consider some edgad
the set of clientd/, using it to get to the root before Step 4.
Notice than when we simplify the clients’ paths in Step 4,
we don't add any clients te, but we might remove some.
This means that the cost etan only decrease after Step 4.
Thus, the cost of solutiof’ obtained before we simplified
the paths is an upper bound on the cost of the final solution.

To evaluate the performance of the algorithm, we mea-

root, and building a shortest path tree on what remains. This
will clearly result in a tree solution to the maybecast prob-
lem.

To see that the cost of our modified solution is no worse
than before, note that our analysis above assumes that every
edge in the Steiner tree is saturated, with unit price (and
cost) 1. Thus, no matter how we reroute the client paths,
we will never pay more than we thought on the Steiner tree
edges. As for the remaining edges, we bounded their unit
cost by the total demang{ p;) of paths through the edge,
thus bounding the total cost on those edges by the sum of
path lengths from each client to the Steiner tree. It follows
that minimizing the sum of path lengths to the Steiner tree
can only improve our solution, and that is precisely what
taking shortest paths to the Steiner tree does.

sure the price of the solution obtained. The price paid can be6. Conclusion

decomposed into two components: (i) the price of moving
demand from each client to its gathering point, and (ii) the

We have studied a particular routing problem in which

price of moving demand from all the gathering points to the certain global information is hard to gather, and developed
root. The first price component (i) is precisely the cost of a local-decision approximation algorithm that achieves re-
the gathering problem, which we already prove@ PT). sults within constant of optimum. Our solution is studying a
The second one is equal to the total price of flow on Steiner“concave cost” network design problem. Perhaps the tech-
tree edges, which is upper bounded by the total length of theniques used could be applied as well to more general cost

Steiner tree edges, i.e. the cost of the Steiner tree. We alfunctions or the design of more complex networks. In par-

ready showed this cost{3(OPT'). Thus, our total solution
costisO(OPT) + O(OPT) = O(OPT) as claimed.

We have thus shown that the price of the solufibis at
mostO(OPT). Since the price function is an upper bound
on the true cost, we have the following result.

ticular, it might lead to more powerful results for the buy at
bulk network design problem, or for general concave-cost
flow problems with capacities.

We might also ask whether our solution can get by
with less global information. At present we require global



knowledge of the set of clients and activation probabil- [8] G. Robins and A. Zelikovsky. Improved steiner tree ap-

ity p. Is it possible to define a path-based scheme which

works regardlessof p? Under such a model, all we are

requiring is that every equally sized subset of clients be
equally likely to activate—a plausible assumption for non-
geographically-dependentrequests. Even better would be td9]
define a scheme in which our path solution is always com-

petitive against the best possible solutionthe set of active

terminals But we suspect there are strong lower bounds for

this variant.

More generally, we might consider other problems in
which only part of the solution can be preplanned, while

the remainder must be generated quickly and locally.
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