
Global Min-cuts in RNC, and Other Rami�cations of a SimpleMin-Cut AlgorithmDavid R. Karger�Department of Computer ScienceStanford Universitykarger@cs.stanford.eduOctober 30, 1992Abstract This paper presents a new algorithm for�nding global min-cuts in weighted, undirected graphs.One of the strengths of the algorithm is its extremesimplicity. This randomized algorithm can be imple-mented as a strongly polynomial sequential algorithmwith running time ~O(mn2), even if space is restrictedto O(n), or can be parallelized as an RNC algorithmwhich runs in time O(log2 n) on a CRCW PRAM withmn2 logn processors. In addition to yielding the bestknown processor bounds on unweighted graphs, this al-gorithm provides the �rst proof that the min-cut prob-lem for weighted undirected graphs is in RNC. Thealgorithm does more than �nd a single min-cut; it �ndsall of them. The algorithm also yields numerous resultson network reliability, enumeration of cuts, multi-waycuts, and approximate min-cuts.1 IntroductionThis paper studies the min-cut problem. Given agraph with n vertices and m (possibly weighted) edges,we wish to partition the vertices into two non-emptysets S and T so as to minimize the number of edgescrossing from S to T (if the graph is weighted, wewish to minimize the total weight of crossing edges).Throughout this paper, the graph is assumed to beconnected, since otherwise the problem is trivial. Theproblem actually comes in two
avors: in the s-t min-cut problem, we require that the two speci�c vertices sand t be on opposite sides of the cut; in what will becalled the min-cut problem, or for emphasis the globalmin-cut problem, there is no such restriction.1.1 Previous Work. The oldest known way tocompute min-cuts is to use their well known duality withmax-
ows [FF56, FF62]. Computation of an s-t max-
ow allows the immediate determination of an s-t min-�Supported by a National Science Foundation GraduateFellowship.

cut. The best presently known sequential time boundfor max-
ow is O(mn log(n2=m)), found by Goldbergand Tarjan [GT88]. Global min-cuts can be computedby minimizingover s-tmax-
ows; Hao and Orlin [HO92]show how the max-
ow computations can be pipelinedso that together they take no more time than a singlemax-
ow computation; thus the global min-cut problemcan be solved in the same ~O(mn) running time.1Recently, progress has been made in special casesof the min-cut problem. On unweighted graphs, themin-cut problem is often known as the edge-connectivityproblem. Gabow [Gab91] shows how to �nd the edge-connectivity c of a graph in time O(cn log(n2=m)). Onweighted, undirected graphs, the algorithm of Nag-amochi and Ibaraki [NI92] computes the min-cut in timeO(mn+n2 logn). These algorithmsmake no use of max-
ow computations.Work has also been done on parallel solutions tothe min-cut problem. Goldschlager, Shaw, and Sta-ples [GSS82] showed that the s-t min-cut problem onweighted directed graphs is P -complete. This is alsotrue for the global min-cut problem (see section 4.2).In the special case of unweighted directed or undi-rected graphs, the matching algorithm of Karp, Upfaland Wigderson [KUW86], together with a reduction de-scribed by Mulmeley, Vazirani and Vazirani [MVV87],can be used to �nd s-t max-
ows and min-cuts inO(log2 n) time using mn3:5 processors. An alternativeapproach of Galil and Pan [GP88] uses n2M (n) pro-cessors, where M (n) is the processor cost for multiply-ing two matrices (presently about n2:37). In undirectedgraphs, �xing a vertex s and �nding s-t min-cuts forall vertices t identi�es a min-cut; this requires perform-ing n min-cut computations in parallel at a total costof mn4:5 or n2M (n) processors. Either algorithm canbe extended to weighted graphs by treating an edge ofweight w as a collection of w unweighted edges. How-1The notation ~O(f) denotes O(f polylogf)

min-cut bounds unweighted weightedundirected directed undirected directedsequential time cn log n2m mn + n2 logn mn log n2m[Gab91] [NI92] [GT88, HO92]processors previous mn4:5 or n2M (n) ? P-completeused in work [KUW86, MVV87, GP88] [GSS82]RNC new cn3 mn2Figure 1: Bounds For the Min-Cut Problemever, this makes the processor cost polynomial in thetotal weight of the edges, and therefore the algorithmis only in RNC when edge weights are represented inunary. Until now there has been no known RNC algo-rithm for the general weighted case. These results aresummarized in the Figure 1 (c denotes the value of themin-cut).1.2 New Results. This paper presents a new frame-work for the computation of global min-cuts. Thesurprisingly simple Contraction Algorithm described inSection 2 �nds global min-cuts in weighted undirectedgraphs without any use of max-
ow or s-t min-cut com-putations. In Section 3 we describe how to implementthe algorithm with a sequential running time ~O(mn2).No complex data structures are used. The algorithmis parallelized in section 4 to yield the �rst RNC al-gorithm for global min-cuts of weighted graphs. Ex-tensions to the algorithm, including a practical time-processor tradeo�, an approximation algorithm, and animproved construction of the cactus representation ofmin-cuts described by Naor and Vazirani in [NV91], aredescribed in Section 5Section 6 describes combinatorial rami�cations ofthe Contraction Algorithm. The algorithm yields the-orems which bound the number of distinct minimal orsmall cuts which a graph may have. These results are ininteresting counterpoint to work of Vazirani and Yan-nakakis [VY92] on enumeration of small cuts. In sec-tion 7, we show how this counting allows an accurateestimation of how likely a graph is to become discon-nected if its edges fail with certain probabilities. Thisis relevant to the practical problem of network reli-ability, which is studied in, for example, Colbourn'sbook [Col87]. It is also closely related to a result ofMargulis [Mar75], discussed in [Bol85], which proves theexistence of a threshold function for connectedness ingraphs.With slight modi�cations described in Section 8, theContraction Algorithm can be used to compute minimalmulti-way cuts. The sequential time bound improves onthe multi-way cut algorithm of [GH88], and the parallel

version shows that the minimal r-way cut problem isin RNC for any constant r. In contrast, it is shownin [DJP+92] that the multiway cut problem in whichk speci�ed vertices are required to be separated (i.e.,a generalization of the s-t min-cut problem) is NP-complete for any k > 2.2 The Contraction AlgorithmWe now present an abstract version of the ContractionAlgorithm. Although certain changes must be made fore�cient implementation, this version of the algorithmis particularly intuitive and easy to analyze.Assume initially that we are given a multigraphG(V;E) with n vertices and m edges. The ContractionAlgorithm uses one fundamental operation, contractionof graph vertices. To contract two vertices v1 and v2,replace them by a new vertex v, and let the set of edgesincident on v be the union of the sets of edges incidenton v1 and v2. We do not merge edges from v1 and v2which have the same other endpoint; instead, we give vmultiple instances of those edges. However, we removeedges which connect v1 and v2 to eliminate self loops.The Contraction Algorithm is described in Figure 2.repeat until two vertices remainchoose an edge at randomcontract its endpointsFigure 2: The Contraction AlgorithmWhen the Contraction Algorithm terminates, eachoriginal vertex has been contracted into one of the tworemaining \metavertices." This de�nes a cut of theoriginal graph in an obvious way.Theorem 2.1. A particular min-cut in G is pro-duced by the Contraction Algorithm with probability
(n�2).Proof. Fix attention on some speci�c min-cut of cedges (from now on, the term \min-cut edge" refers onlyto edges in this particular min-cut). First, observe thatif we never select a min-cut edge during the Contraction2

Algorithm, then the two metavertices we end up withmust de�ne the min-cut. To see this, consider twovertices on opposite sides of the min-cut. If theyend up in the same metavertex, then there must bea path between them consisting of edges which werecontracted. However, any path between them crossesthe min-cut, so a min-cut edge would have had to becontracted. This contradicts our assumption.Next observe that after each contraction, the min-cut of the new graph must still be at least c. This isbecause contracting vertices u and v simply restrictsattention to cuts of the original graph in which u and vare on the same side.Each contraction in the above loop reduces thenumber of vertices in the graph by one. Consider thecontraction during which the graph has r vertices. Sincethe contracted graph has a min-cut of at least c, itmust have minimum degree c, and thus at least rc=2edges. However, only c of these edges are in the min-cut.Thus, a randomly chosen edge is in the min-cut withprobability at most 2=r. The probability that we nevercontract a min-cut edge through all n � 2 contractionsis thus at least(1� 2n)(1� 2n� 1) � � � (1� 23) = �n2��1 =
(n�2):This bound is tight. In the graph consisting ofa cycle on n vertices, there are �n2� min-cuts, one foreach pair of edges in the graph. Each of the min-cutsis produced by the Contraction Algorithm with equalprobability, namely �n2��1.Corollary 2.1. If we perform O(n2 logn) inde-pendent contractions to two vertices, we �nd a min-cutwith high probability. In fact, with high probability we�nd every min-cut.An alternative interpretation of the ContractionAlgorithm is that we are randomly ranking the edgesand then constructing a minimum spanning tree of thegraph based on these ranks (we are in fact emulatingKruskal's minimum spanning tree algorithm [Kru56]).If we then remove the heaviest edge in the minimumspanning tree, the two components which result havean
(n�2) chance of de�ning a particular min-cut.3 Sequential ImplementationOur most interesting new results are in the parallel ver-sion of this algorithm; however, it is easier to explaincertain concepts by describing a sequential implemen-tation and then showing how to parallelize it. To showhow to implement the Contraction Algorithm, we needonly show how to implement a single trial, since it issimple to remember the best result which occurs during

the O(n2 logn) trials. We begin by presenting a sim-ple method for unweighted graphs, and then show howto improve the running time by working a little harder.We then extend to the case of graphs with polynomi-ally bounded edge weights, and �nally to arbitrarilyweighted graphs.3.1 Unweighted Graphs. A minor reformulationof the Contraction Algorithm is convenient. If we per-formed contractions one at a time, we would need to usecomplex data structures to update the adjacency listsof the graph. Instead, we simulate the performance ofmany contractions at once. We begin by generating arandom permutation of the edges. Imagine contractingedges in the order in which they appear in the permu-tation, until only two vertices remain. This is clearlyequivalent to the �rst formulation of the Contraction Al-gorithm. We can immediately say that with probability
(n�2), a random permutation will yield a contractionto two vertices which determine a particular min-cut.Consider any such permutation. It has a pre�x suchthat the set of edges in this pre�x induces two connectedcomponents which are the two sides of the min-cut.All we need to do is determine how long the pre�x is.Binary search solves this problem, because any pre�xwhich is too short will yield more than two connectedcomponents, and any pre�x which is too long will yieldonly one. The correct pre�x can therefore be determinedusing logm connected component computations, eachrequiring O(m) time. The total running time of thetrial is therefore O(m logm).We can improve this running time by taking betteradvantage of the connected component computations.Given the permutation, use O(m) time to identify theconnected components induced by the �rst m=2 edges.If only one connected component is induced, then wecan discard the last m=2 edges because the desiredpre�x ends before the middle edge. If not, then we cancontract the �rst m=2 edges all at once in O(m) timeby �nding connected components, and search for thecorrect pre�x in the remaining m=2 edges. Either way,in O(m) time, we have reduced the problem size tom=2.Thus we �nish inO(m)+O(m=2)+O(m=4)+� � � = O(m)time.The two methods described above both requireO(m) space. We can improve this bound to O(n)space if we are willing to sacri�ce some time. Theonly part of the algorithm which requires O(m) spaceis the generation of an edge permutation. If, instead,the edges are stored in read-only memory, we can avoidgenerating the permutation. We use the union-�nd datastructure of [AHU83] to identify sets of vertices whichhave been contracted together. We choose an edge at3

random, and apply a union operation to its endpoints'sets if they do not already belong to the same set.We continue until only two sets remain. We have ahigh probability of choosing every edge at least onceafter makingO(m logm) choices, and we will necessarilycontract the graph to two vertices some time before this.Each choice requires one �nd operation, and we will alsoperform a total of n�2 union operations. Therefore thetotal running time of a trial will be O(m logm). The useof path compression in the union-�nd data structureprovides no improvement in the running time, whichis dominated by the requirement that every edge besampled at least once.Corollary 3.1. With high probability, the Con-traction Algorithm �nds all min-cuts of an multigraphwith m edges and n vertices in time O(mn2 logn) andspace O(m), or in time O(mn2 log2 n) if space is re-stricted to be O(n).3.2 Weighted Graphs. It is easy to apply theContraction Algorithm to integer weighted graphs: justtreat an edge of weight w as a collection of w paralleledges. This might appear to cause the running timeto become dependent on the sum of the edge weights,but we show how to avoid this. We begin by assumingthat edge weights are integers with maximum valuepolynomial in the problem size, and then clear up afew details to make the algorithm strongly polynomial.Observe that the entire edge permutation is not nec-essary in the computation, since as soon as a multigraphedge is contracted, all the other edges with the sameendpoints vanish. In fact, all that matters is the earliestplace in the permutation that an edge with particularendpoints appears. This information su�ces to tell usin which order vertices of the graph are contracted: wecontract u and v before w and x precisely when the �rst(u; v) edge in the permutation precedes the �rst (w; x)edge in the permutation. Thus our goal is to generate anedge permutation whose distribution re
ects the orderof �rst appearance of endpoints in a uniform permu-tation of the corresponding multigraph edges. We canthen use the permutation to contract the graph in thesame fashion as was described for unweighted graphs.We present two separate methods for generating apermutation. While they may not be the best possiblesequential algorithms, they have the advantage of beingeasy to parallelize.3.2.1 Exponential Variates. The �rst method is todirectly model the weighted graph as a multigraph. Oneway we can generate a permutation of the multigraphedges is by assigning a uniform random score to eachedge and sorting according to score. In this case,

the �rst appearance of a multigraph edge with wcopies is determined by the minimum of w randomlychosen scores. Consider multiplying each edge by alarge constant weight k, so that an edge of weight wcorresponds to wk multigraph edges. This scales thevalue of the min-cut without changing its structure.Suppose we gave each multigraph edge a score chosenuniformly at random from the continuous interval [0; k].The probability distribution for the minimum score Xamong wk edges is thenPr[X > t] = (1� t=k)wk:If we now let k become arbitrarily large, the distributionconverges to one in which an edge of weight w receivesa score chosen from the exponential distributionPr[X > t] = e�wt:If we can generate an exponential random variable inO(1) time, then we can simulate a permutation inO(m) time (note that we do not actually have to sortbased on the scores: we can use median �nding to doa binary search of the edges in O(m) time, as wasdescribed in Section 3.1). If all we have is coin
ips,it is possible to use them to generate approximatelyexponential distributions in polylogarithmic time andintroduce a negligible error in the computation. Thistechnique will be described in the full paper.3.2.2 Iterated Sampling. Our second methodavoids the mathematical computations needed to gen-erate exponential variates if one has access only to coin
ips or uniform integer distributions. We repeatedlysimulate the uniform selection of a multigraph edge bychoosing from the graph edges with probabilities pro-portional to the edge weights; the order of selectionthen determines the order of �rst appearance of multi-graph edges. The following procedure can be used tochoose one edge. First, from edge weights w1; : : : ; wm;construct cumulative weights Wk = Pki=1wi. Thenchoose an integer r uniformly at random from 0; : : : ;Wmand use binary search to identify the edge ei such thatWi�1 < r < Wi.Once the cumulative weights are known, choosingan edge takes O(logn) time (based on the presentassumption that Wm is polynomial in n). Since it takeslinear time to recompute the cumulative distribution, itis undesirable to do this each time we wish to samplean edge. An alternative approach is to keep samplingfrom the original cumulative distribution, and ignoreedges if we sample them more than once. Unfortunately,to ensure that all edges have been sampled once, weexpect to need a number of samples equal to the sum of4

the edge weights. We solve this problem by combiningthe two approaches and recomputing the cumulativedistribution only occasionally. We use the followinglemma:Lemma 3.1. With high probability, (weighted) sam-pling m times from a set of at most m edges yields a setof edges whose total weight is more than 1=3 of the totalweight of the entire set of edges.Proof. If the outcome of the lemma does not occur,there must be some set of edges which contains 2=3 ofthe total weight, such that no edge in this set is sampled.The probability of this happening is 1=3m. Since thereare only 2m di�erent sets of edges, the probability thatthis happens with some set of edges is at most 2m=3m,which is negligible.We can therefore apply the procedure of Figure 3.A single iteration of this loop takes O(m logm) time.repeat until no edges remain� compute the cumulative weight measures.� extend the permutation with m samplesfrom the remaining edges.� remove edges which were sampled at leastonceFigure 3: Generating a PermutationIf the total weight of edges polynomial in n, thenLemma 3.1 shows that O(logn) iterations of the loopensure that the total remaining weight of unsamplededges is less than 1, i.e. no edges remain and we have�nished constructing a permutation.We remark that the O(n) space bound discussed forunweighted graphs can be achieved here as well. As be-fore, we use the union-�nd data structure of [AHU83] tocontract edges as we select them. Instead of maintaininga list of all unsampled edges, we maintain a thresholdX(t) such that any edge of weight exceeding X(t) has ahigh probability of being sampled within t trials. Aftertime t we sample only from among those edges whichhave weight less than this threshold.3.3 Strong Polynomiality. The exponential vari-able technique for generating permutations can be madestrongly polynomial by approximating the exponentialdistribution appropriately; however, we will focus on thesecond technique.Construction of the cumulative edge weights iseasily strongly polynomial. To quickly select an edgefrom the cumulative distribution, even if the edgeweights are large, let M = nO(1), generate s uniformlyat random from 0; : : : ;M , and choose the edge i such

that Wi�1 < Wms=M < Wi. We have only apolynomially small probability of having a di�erentresult than we would if we used exact arithmetic,since such an error is introduced only if Wms=M andWm(s + 1)=M specify di�erent edges.We also need to ensure that not too many iterationsof the permutation generating loop of Figure 3 areneeded. We use a very rough approximation to themin-cut to ensure that O(logn) iterations su�ce evenwhen the edge weights are large. Let W be the largestedge weight such that the set of edges of weight greaterthan or equal to W connects all of G. This is just theminimum weight of an edge in a maximum spanningtree of G, and can thus be identi�ed in O(m + n logn)time [FT86]. It follows that any cut of the graph mustcut an edge of weight at least W , so the min-cut hasweight at least W . It also follows from the de�nitionof W that there is a cut which does not cut any edgeof weight exceeding W . This means the min-cut hasweight less than n2W , since fewer than n2 edges arein the graph, and at worst all edges of weight at mostW are cut. This guarantees that no edge of weightexceeding n2W can possibly be in the min-cut. We cantherefore contract all such edges, without eliminatingany min-cut in the graph. Afterwards the total weightof edges in the graph is at most n4W .Since initially the total weight of edges was atmost n4W , Lemma 3.1 proves that the amount ofweight remaining unsampled after O(logn) iterations ofFigure 3 is less than W . It follows that the portion ofthe permutation which we have constructed at this pointmust su�ce to contract the graph to a single vertex,since otherwise we would have a cut of weight less thanW (it could cut only the unsampled edges), which isless than the min-cut. We can therefore ignore theremaining unsampled edges and use the permutationpre�x which we have constructed so far.Corollary 3.2. A single Contraction Algorithmtrial on weighted graphs can be run in strongly poly-nomial O(m log2 n) time, so the Contraction Algorithmcan be run in O(mn2 log3 n) time.4 Parallel Complexity of Min-cutThis section demonstrates a signi�cant di�erence inthe complexity of the min-cut problem on directedand undirected graphs. Our parallelization of theContraction Algorithm proves the the undirected min-cut problem is in RNC. On the other hand, we showthat the global min-cut problem on directed graphs isP-complete.4.1 Parallel Implementation. We now show howto parallelize the Contraction Algorithm to give an5

O(log2 n) time parallel algorithm which uses mn2 lognprocessors. As before, the only real question is how torun a single trial of the Contraction Algorithm, since itis simple to run O(n2 logn) trials in parallel and com-bine their results. We implement a trial as in the se-quential case, by generating a permutation of the edgesand contracting based on that permutation. RNC al-gorithms for connected components exist which runin O(logn) time on a CRCW PRAM [Gaz86] or inO(logn log logn) time on an EREW PRAM [KPN92],and use O(m) processors. There is therefore no dif-�culty in performing the binary search on connectedcomponents which was described in the sequential algo-rithm. Thus we need only show how a linear numberof processors can be used to generate an appropriatelydistributed permutation.In the case of an unweighted graph, generating apermutation is trivial. Each processor takes one edgeand assigns it a score chosen uniformly at random fromthe integers 1; : : : ; n7 (this large range guarantees thatwith high probability no two edges get the same score).We then sort the edges according to score in O(logn)time (using, e.g., Cole's algorithm [Col88]). All of thisrequires only m processors per trial. This yields theresult for unweighted graphs:Theorem 4.1. All min-cuts in an unweightedmultigraph can be found in O(log2 n) time usingmn2 logn CRCW processors.The bottleneck in the runtime is caused by thebinary search for connected components. If we in-crease the number of processors to m2n2 logn, wecan examine all pre�xes of each permutation in par-allel and achieve a running time of O(logn), even onan EREW PRAM. This matches the
(logn) EREWlower bound of [CDR86], and closely approaches the
(logn= log logn) CRCW lower bound of [Has86].It remains to generalize the algorithm to the caseof weighted graphs. We do this by parallelizing the se-quential methods described in Section 3. The reductionto small edge weights can be parallelized using, for ex-ample, the parallel maximum spanning tree algorithmof [AS87] and the connected components algorithms de-scribed above. Once edge weights are small, permuta-tion by assignment of exponentially distributed scores issimple to parallelize using a parallel sorting algorithm.It is also straightforward to parallelize a single itera-tion of the weighted sampling loop used in our secondmethod, by assigning one processor to perform each ofthe m selections described there.Theorem 4.2. The min-cut problem on arbitrarilyweighted graphs can be solved in RNC in O(log2 n) timeusing mn2 logn CRCW processors.

4.2 Comparison to Directed Graphs. The previ-ous result shows a fundamental distinction between themin-cut problems on directed and undirected graphs.The s-t min-cut problem on directed graphs was shownto be P-complete [GSS82]. A simple reduction showsthat the global min-cut problem is also P-complete fordirected graphs. To �nd a minimum s-t cut using aglobal min-cut algorithm, simply add, for each vertexv, directed edges of in�nite weight from t to v and fromv to s. The global min-cut in this modi�ed graph musthave s on the inside and t on the outside and thus cor-responds to the minimum s-t cut in the original graph.The min-cut problem is therefore in the fam-ily of problems, such as reachability [NSW92], whichpresently have dramatically di�erent di�culties on di-rected and undirected graphs.5 Extensions of the Algorithm5.1 Approximating the Min-cut. If we are look-ing only for a \small" cut, then it is possible to sig-ni�cantly reduce the amount of work required in thealgorithm.Theorem 5.1. With probability n�2=k, a singletrial of the Contraction Algorithm will yield a cut ofweight kc.Proof. We return to the unweighted multigraphdiscussion. We again �x our attention on a particularmin-cut. Suppose that at some point we have contractedto r vertices and have not yet seen a vertex of degree lessthan kc (if we have, than we have a corresponding cut ofthe desired size). Then the total number of edges in thegraph is at least kc=2. It follows that we pick a min-cutedge with probability 2=kr. Arguing as before, it followsthat our probability of success over n � 2 iterations isat least nYu=3(1� 2ku) = exp(nXi=3 ln(1� 2ki))� exp(� nXi=3 2ki)� e(�2 lnn=k)=
(n�2=k):Corollary 5.1. A cut within a factor of k ofthe min-cut can be found with high probability inO(mn2=k logn) time.Proof. Because of the above theorem, we needonly show that we can identify the smallest degreemetavertex which arises during the contraction process.6

Recall that the Contraction Algorithm can be simulatedby assigning random ranks and running a minimumspanning tree algorithm. Given the minimum spanningtree, it is relatively simple to identify the smallest vertexwhich arose from a contraction. Details are left for thefull paper.5.2 A Time-Processor Tradeo�. The ContractionAlgorithm may be e�ective in practice as a way toparallelize sequential min-cut algorithms. The keyobservation is that if we only contract the graph untilit has been reduced to s vertices, then a particularmin-cut survives with probability
((s=n)2) (this is asimple extension of the original proof of correctness).This contracted graph will have at most min(m; s2)edges. Assuming the min-cut survives, we can �nd itby running a sequential min-cut algorithm for a graphof size s. It follows that the Contraction Algorithmcan be used by p processors to accelerate any sequentialweighted graph algorithm by a factor of pp.5.3 Fewer Processors for Unweighted Graphs.In the case of unweighted graphs, we can reduce theprocessor cost from mn2 to n3c. This provides noimprovement in the worst case, since a graph withmin-cut c may have as few as nc=2 edges, but it doesimprove performance on dense graphs with small min-cuts. This improvement is achieved by transformingthe graph into one with ~O(nc) edges, and running theoriginal algorithm. We use the following lemma:Lemma 5.1. If each edge of a graph is marked inde-pendently with probability p, and connected componentsinduced by the marked edges are contracted, then withhigh probability the number of edges of the contractedgraph is O(n lnn=p).Proof. The number of edges in the contracted graphis just the number of edges crossing between two dif-ferent connected components induced by the markededges. The number of di�erent arrangements of con-nected components is certainly no more than the num-ber of ways to partition the set of n vertices into at mostn groups, namely nn. For any given partition which cutsk edges, the probability that no crossing edge is chosenis (1 � p)k � e�kp. The probability that k edges arecut in the partition resulting from the connected com-ponent construction is just the probability that for somepartition with at least k crossing edges, no one of thesek edges is chosen. This is at most nne�kp = en lnn�kp,which is negligible when kp =
(n lnn).We apply this lemma to our problem by lettingthe probability p in the lemma be 1=c. If we markedges and contract components which are connectedby marked edges, then any particular min-cut has a

constant probability of having none of its edges chosen.If this happens, then this min-cut will still be a min-cut in the contracted graph. It will happen with highprobability after only O(logn) trials. In each trial, thelemma proves that the contracted graph will contain~O(nc) edges. We then apply the Contraction algorithm,using ~O(n2) trials on a graph of ~O(nc) edges, yieldinga total processor cost of ~O(n3c).5.4 Cactus Representation For Min-Cuts. Theset of all min-cuts in a graph has a simple and compactrepresentation known as the cactus representation. Thebest presently known sequential algorithmfor construct-ing the cactus ([NK92]) runs in time O(mn). Naor andVazirani [NV91] have shown how to construct this cac-tus representation inRNC when edge weights are repre-sented in unary. The processor cost for their algorithmis mn4:5. Both the processor cost and the restriction tounary edge weights stem from the same source, namelythe need for an algorithm to compute individual min-cuts in RNC. They use the algorithm of [KUW86]. Ifwe instead use the Contraction Algorithm, both of theseproblems are eliminated. We therefore deduce:Theorem 5.2. The cactus representation of an ar-bitrarily weighted graph can be computed in RNC usingmn2 logn processors.6 Combinatorial Rami�cationsWe now use the Contraction Algorithm to prove severalinteresting facts about the combinatorial structure ofcuts in a graph. In particular, we show bounds onthe number of small cuts in a graph. Vazirani andYannakakis [VY92] perform a similar investigation withdi�erent results.Theorem 6.1. The number of min-cuts in an ar-bitrarily weighted graph is at most �n2�.Proof. The Contraction Algorithm can be viewedas a procedure for randomly generating cuts. Weproved that any particular min-cut is generated withprobability at least p = �n2��1. It follows that there canbe at most 1=p min-cuts.We can perform a similar analysis of larger cuts:Theorem 6.2. For k half an integer, the numberof cuts of weight at most k times the graph min-cut isat most 22k�1� n2k�, which is less than n2k.Proof. We consider the unweighted case; the exten-sion to weights goes as before. Let k be half an integer,and c the min-cut, and consider some cut of weight atmost kc. Suppose we run the Contraction Algorithm.If with r vertices remaining we choose a random edge,then since the number of edges is at least cr=2, we takean edge from the min-cut with probability at most 2k=r.7

If we do this until r = 2k, then the probability that thecut survives is(1� 2kn)(1� 2k(n� 1)) � � � (1� 2k(2k + 1)) = � n2k��1We can again use the algorithm to generate a randomcut, although we must now add an extra step. Sincewe stop before the number of vertices reaches 2, westill have to �nish selecting a cut. Do so by randomlypartitioning the remaining vertices into two groups.Since there are less than 22k�1 partitions, it follows thatthe probability of a particular cut being chosen is atleast 21�2k� n2k��1:When k > n=2 we can apply the obvious upperbound of 2n�1 to the number of cuts of this size.Corollary 6.1. For arbitrary real values of k, thenumber of cuts of size less than k times the min-cut isO(n2k).Proof. Full Paper.Vazirani and Yannakakis [VY92] derive boundsbased on the rank of a cut relative to the others; weinstead derive bounds based on the value of a cutrelative to the others. Thus neither bound dominatesthe other.Corollary 6.2. The problem of enumerating allcuts within any constant factor of the min-cut is inRNC.Consider the complete n-vertex graph in the contextof these results. The min-cut there has value n�1. Anyset of k vertices de�nes a cut of about kn edges. Thusthe number of cuts of size about kn is �nk�, a result whichis strikingly close to the one we have derived. The cyclegraph shows an even closer match for the case c = 2and k an integer. Such a graph has � n2k� cuts of size 2k,since every choice of 2k edges de�nes such a cut.7 Network ReliabilityFrom the cut counting theorem we can deduce a usefulfact about the ability of graphs with large min-cutsto resist being separated. In [Col87], the relationshipbetween the min-cut and graph reliability is investigatedin great detail; however, this result is of a di�erent
avor:Theorem 7.1. If each edge of a graph with min-cut c is removed with probability p = n�a=c, thenthe probability that the graph becomes disconnected isO(n2pc=(a� 2)).Proof. In order for the graph to be disconnected,some cut must have all its edges eliminated. Wetherefore bound the probability that all the edges in anycut are eliminated. A cut of weight �c has probability

at most p�c of having all of its edges eliminated. Letf(�) be the number of cuts of weight �c. Recall thatfor some constant �,F (�) = X�<� f(�) < �n2�:Let C denote the set of all cuts. The probability ofdisconnection is at mostXC2CPr[all edges of C are eliminated] =X� f(�)p�c:Since p�c is decreasing with �, a perturbation argumentshows that to maximize the sum, it is desirable to haveas much of the mass of f as possible at small valuesof �. In other words, we want as many small cuts aspossible, so F (�) should be maximized at every valueof � (subject to the constraints). If we remove therestriction that f be discrete and integer valued, thenwe can take f(1) = �n2 and F (�) = �n2� for � > 1.Then the sum is bounded by�n2pc + Z 11 (@@��n2�)p�c d� = �n2pc + �n2pc=(a� 2):Note that for large c, n�a=c � 1 � a lnn=c. Wehave thus shown that if we kill edges with probability1 � 3 lnn=c, the graph is disconnected with probabilityO(1=n). On the other hand, if we kill edges withprobability 1�1=c, then the graph is disconnected withconstant probability.Consider the complete graph. Choosing to kill edgeswith probability 1� �(lnn=n) corresponds to choosinga random graph from Gn;p with p = �(lnn=n). Itis well known [Bol85] that p = �(lnn=n) is preciselythe threshold at which the complete graph becomesconnected with high probability. This result is extendedby Margulis [Mar75], who shows that every graph has aconnectivity threshold; however, this paper appears tobe the �rst to explicitly describe the threshold function.Corollary 7.1. In a weighted graph, if each edgeof weight w fails with probability n�2(1+�)w=c, then thegraph remains connected with probability 1�O(n��=�).Proof. Apply the above theorem to the multigraphcorresponding to the weighted graph.This gives a method for analyzing the reliability ofa given network.Corollary 7.2. Suppose in an n-vertex networkeach edge e has failure probability pe. Assign to edgee a weight � logn pe. The network failure probability isO(n2�c), where c is the min-cut of the weighted graph.Proof. Network edge e fails with probability pe =n�we = n(�cwe)=c, which precisely simulates theweighted failure criteria in the previous corollary.8

We use the following lemma to prove the nextcorollary:Lemma 7.1. If (A;B) is a min-cut of weight c, thenthe subgraphs induced by the vertex sets A and B eachhave min-cut at least c=2.Proof. Full Paper.Corollary 7.3. If all edges of a graph are killedwith probability (n logn)�4=c, then with probability
((n logn)�4), the resulting graph has two connectedcomponents, each of which is one side of a min-cut.Consider a graph G with min-cut c, and consider thetwo subgraphs A and B induced by the two sides of themin-cut. By Lemma 7.1, each subgraph has min-cut atleast c=2. Killing edges with probability (n logn)�4=c =(n logn)�2=(c=2) ensures that with constant probabilityA and B are each connected. Independent of this,with probability (n logn)�4, all edges of the min-cutare killed.8 Multi-way CutsWith a small change, the Contraction Algorithm canbe used to �nd a minimum weight r-way cut, whichpartitions the graph into r pieces rather than 2. Theanalysis need be only slightly changed.Theorem 8.1. Stopping the Contraction Algo-rithm when r vertices remain yields a particular min-imum r-way cut with probability at leastr� nr � 1��1�n� 1r � 1��1:Proof. As before, the key to the analysis is bound-ing the probability p that a randomly selected graphedge is from a particular minimal r-cut. Suppose wechoose r�1 vertices uniformly at random, and considerthe r-cut de�ned by taking each of the vertices as onemember of the cut and all the other vertices as the lastmember. Let f be the number of edges cut by this ran-dom partition, and m the number of graphs edges. Thenumber of edges we expect to cut isE[f] = [1� (1� r � 1n)(1� r � 1n� 1)]m;since the quantify in brackets is just the probability thata single edge is cut. Since f can be no less than the valueof the minimal r-cut, E[f] must also be no less than themin-cut. We can therefore deduce that the probabilitythat a particular minimum r-cut survives the reductionprocess until there are r vertices remaining is at leastnYu=r+1(1� r � 1u)(1� r � 1u� 1)

= nYu=r+1(1� r � 1u) nYu=r+1(1� r � 1u� 1)= r� nr � 1��1�n� 1r � 1��1:This analysis yields a simple ~O(mn2r�1) (sequen-tial time or parallel processor) algorithm for �ndinga minimal r-way cut. This is a signi�cant improve-ment on the previously best known sequential result ofO(nr2�r+11=2) reported in [GH88]. As before, our algo-rithm in fact �nds all the minimal r-way cuts.Corollary 8.1. The number of minimum r-cutsof a graph is no more than 1r � nr�1��n�1r�1�, which isO(n2(r�1)).Corollary 8.2. The number of r-cuts within afactor of k of the optimum is O(n2k(r�1)):Corollary 8.3. Enumerating all the r-way cutswithin any constant factor of the optimum is in RNCfor any constant r.9 Open QuestionsThe min-cut problem has long been known to be P-complete. However, the reduction of [GSS82] showedthis to be true only for directed graphs. This papershows that for undirected graphs the situation is entirelydi�erent, and that much remains to be done in this area.In particular, we have shown that the min-cut problemfor undirected graphs is in RNC. This immediatelysuggests that a similar result may be possible for thes-t min-cut problem on undirected graphs.Questions are also raised regarding the closely re-lated problem of max-
ow. Unlike many min-cut al-gorithms, the Contraction Algorithm makes no use ofmax-
ow computations. Is this an accident, or is themax-
ow problem not parallelizable? Is it possible touse a min-cut algorithm in a non-trivial way as a com-ponent of a max-
ow algorithm? If not, in what sense isthe min-cut problem fundamentally easier than that ofmax-
ow? In particular, what is the complexity (RNC?P-complete?) of �nding a max-
ow corresponding to aglobal min-cut?The Contraction Algorithm uses a very simple ruleto �nd min-cuts in a graph. Further analysis of theContraction Algorithm may suggest more intelligentschemes for choosing edges. The goal, of course,would be to increase the success probability of thealgorithm so as to decrease the number of trials needed.Another signi�cant accomplishment would be to �nd adeterministic edge contraction rule which places min-cutin NC.9

10 AcknowledgementMany thanks to Serge Plotkin, who has given a greatdeal of his time and asked numerous helpful questionsrelated to this research. Thanks also to Daphne Kollerwho suggested numerous clari�cations of the exposi-tion.References[AHU83] Alfred V. Aho, John E. Hopcroft, and Je�rey D.Ullman. Data Structures and Algorithms. AddisonWesley, 1983.[AS87] Baruch Awerbuch and Y. Shiloach. \New connec-tivity and msf algorithms for shu�e-exchange net-work and pram". IEEE Transactions on Computers,36(10):1258{1263, October 1987.[Bol85] Bela Bollobas. Random Graphs. Harcourt BraceJanovich, 1985.[CDR86] S. Cook, Cynthia Dwork, and R. Reischuk. \Up-per and lower bounds for parallel random access ma-chines without simultaneous writes". SIAM Journalon Computing, February 1986.[Col87] Charles J. Colbourn. The Combinatorics of Net-work Reliability, volume 4 of The International Seriesof Monographs on Computer Science. Oxford Univer-sity Press, 1987.[Col88] R. Cole. \Parallel merge-sort". SIAM Journal ofComputing, 17(4):770{785, August 1988.[DJP+92] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou,P. D. Seymour, and M. Yannakakis. \The complexityof multiway cuts". In Proceedings of the 24th ACMSymposium on Theory of Computing, pages 241{251.ACM Press, May 1992.[FF56] L. R. Ford, Jr. and D. R. Fulkerson. MaximalFlow Through a Network. Canadian Journal of Math.,8:399{404, 1956.[FF62] L. R. Ford, Jr. and D. R. Fulkerson. Flows inNetworks. Princeton Univ. Press, Princeton, NJ, 1962.[FT86] M. L. Fredman and R. E. Tarjan. \Fibonacciheaps and their uses in improved network optimizationalgorithms". Journal of the ACM, 36:596{615, 1986.[Gab91] Harold N. Gabow. \A matroid approach to �ndingedge connectivity and packing arborescences". InProceedings of the 23rd Annual Symposium on Theoryof Computing. ACM Press, May 1991.[Gaz86] H. Gazit. \An optimal randomized parallel algo-rithm for �nding connected components in a graph".In Proceedings of the 27th Annual Symposium on Foun-dations of Computer Science. ACM Press, 1986.[GH88] Oliver Goldschmidt and Dorit Hochbaum. \Poly-nomial algorithm for the k-cut problem". In Proceed-ings of the 29th Annual Symposum on the Foundationsof Computer Science, pages 444{451. IEEE ComputerSociety Press, 1988.[GP88] Zvi Galil and Victor Pan. \Improved processorbounds for combinatorial problems in RNC". Com-binatorica, 8:189{200, 1988.[GSS82] L. M. Goldschlager, R. A. Shaw, and J. Staples.

\The maximum
ow problem is logspace complete forP". Theoretical Computer Science, 21:105{111, 1982.[GT88] Andrew V. Goldberg and Robert Endre Tarjan. \Anew approach to the maximum
ow problem. Journalof the ACM, 35:921{940, 1988.[Has86] Johann Hastad. \Improved lower bounds for smalldepth circuits. In Proceedings of the 18th Annual ACMSymposium on Theory of Computing, pages 6{20. ACMPress, 1986.[HO92] J. Hao and J. B. Orlin. \A faster algorithm for�nding the minimum cut in a graph". In Proceedingsof the 3rd Annual Symposium on Discrete Algorithms,pages 165{174, 1992.[KPN92] David Karger, Michal Parnas, and Noam Nissan.\Fast connected components algorithms for the EREWPRAM". In Proceedings of the 4th Annual ACM-SIAMSymposium on Parallel Algorithms and Architectures,pages 562{572, 1992.[Kru56] J. B. Kruskal, Jr. \On the shortest spanningsubtree of a graph and the traveling salesman problem.Proceedings of the American Mathematical Society,7(1):48{50, 1956.[KUW86] Richard M. Karp, Eli Upfal, and Avi Wigderson.\Constructing a perfect matching is in random NC.Combinatorica, 6(1):35{48, 1986.[Mar75] G. A. Margulis. \Probabilistic characteristics ofgraphs with large connectivity (translated from rus-sian)". Problems in Information Transmission, 9:325{332, 1975.[MVV87] Ketan Mulmuley, Umesh V. Vazirani, and Vi-jay V. Vazirani. \Matching is as easy as matrix in-version". Combinatorica, 7(1):105{113, 1987.[NI92] Hiroshi Nagamochi and Toshihde Ibaraki. \Com-puting edge connectivity in multigraphs and capaci-tated graphs". SIAM Journal of Discrete Mathemat-ics, 5(1):54{66, February 1992.[NK92] Hiroshi Nagamochi and Tiko Kameda. \An e�cientconstruction of cactus representation for minimum cutsin undirected networks". Manuscript, 1992.[NSW92] Noam Nissan, Endre Szemeredi, and Avi Wigder-son. \Undirected connectivity in o(log1:5n) space". InProceedings of the 33rd Annual Symposium on Foun-dations of Computer Science, pages 24{29. IEEE Com-puter Society Press, October 1992.[NV91] Dalit Naor and Vijay V. Vazirani. \Representingand enumerating edge connectivity cuts in RNC". InF. Dehne, J. R. Sack, and N. Santoro, editors, Pro-ceedings of the 2nd Workshop on Algorithms and DataStructures, volume 519 of Lecture Notes in ComputerScience, pages 273{285. Springer-Verlag, August 1991.[VY92] Vijay V. Vazirani and Mihalis Yannakakis. \Subop-timal cuts: Their enumeration, weight, and number".In The 19th International Colloquium on Automata,Languages and Programming, volume 623 of LectureNotes in Computer Science, pages 366{377. Springer-Verlag, 1992.10

