Global Min-cuts in RAC, and Other Ramifications of a Simple
Min-Cut Algorithm

David R. Karger*
Department of Computer Science
Stanford University
karger@cs.stanford.edu

October 30, 1992

Abstract This paper presents a new algorithm for
finding global min-cuts in weighted, undirected graphs.
One of the strengths of the algorithm is its extreme
simplicity. This randomized algorithm can be imple-
mented as a strongly polynomial sequential algorithm
with running time O(mnz), even 1f space is restricted
to O(n), or can be parallelized as an RANC algorithm
which runs in time O(log?n) on a CRCW PRAM with
mn?logn processors. In addition to yielding the best
known processor bounds on unweighted graphs, this al-
gorithm provides the first proof that the min-cut prob-
lem for weighted undirected graphs is in RAC. The
algorithm does more than find a single min-cut; it finds
all of them. The algorithm also yields numerous results
on network reliability, enumeration of cuts, multi-way
cuts, and approximate min-cuts.

1 Introduction

This paper studies the min-cut problem. Given a
graph with n vertices and m (possibly weighted) edges,
we wish to partition the vertices into two non-empty
sets S and T so as to minimize the number of edges
crossing from S to T (if the graph is weighted, we
wish to minimize the total weight of crossing edges).
Throughout this paper, the graph 1s assumed to be
connected, since otherwise the problem is trivial. The
problem actually comes in two flavors: in the s-t min-
cut problem, we require that the two specific vertices s
and t be on opposite sides of the cut; in what will be
called the min-cut problem, or for emphasis the global
min-cut problem, there is no such restriction.

1.1 Previous Work. The oldest known way to
compute min-cuts is to use their well known duality with
max-flows [FF56, FF62]. Computation of an s-t max-
flow allows the immediate determination of an s-¢ min-

Supported by a National Science Foundation Graduate
Fellowship.

cut. The best presently known sequential time bound
for max-flow is O(mnlog(n?/m)), found by Goldberg
and Tarjan [GT88]. Global min-cuts can be computed
by minimizingover s-t max-flows; Hao and Orlin [HO92]
show how the max-flow computations can be pipelined
so that together they take no more time than a single
max-flow computation; thus the global min-cut problem
can be solved in the same O(mn) running time.!

Recently, progress has been made in special cases
of the min-cut problem. On unweighted graphs, the
min-cut problem is often known as the edge-connectivity
problem. Gabow [Gab91] shows how to find the edge-
connectivity ¢ of a graph in time O(cnlog(n?/m)). On
weighted, undirected graphs, the algorithm of Nag-
amochi and Tbaraki [N192] computes the min-cut in time
O(mn+n?logn). These algorithms make no use of max-
flow computations.

Work has also been done on parallel solutions to
the min-cut problem. Goldschlager, Shaw, and Sta-
ples [GSS82] showed that the s-t min-cut problem on
weighted directed graphs is P-complete. This is also
true for the global min-cut problem (see section 4.2).
In the special case of unweighted directed or undi-
rected graphs, the matching algorithm of Karp, Upfal
and Wigderson [KUWS6], together with a reduction de-
scribed by Mulmeley, Vazirani and Vazirani [MVV87],
can be used to find s-t max-flows and min-cuts in
O(log2 n) time using mn35 processors. An alternative
approach of Galil and Pan [GP88] uses n?M(n) pro-
cessors, where M (n) is the processor cost for multiply-
ing two matrices (presently about n2-37). In undirected
graphs, fixing a vertex s and finding s-¢ min-cuts for
all vertices t identifies a min-cut; this requires perform-
ing n min-cut computations in parallel at a total cost
of mn*5 or n?M (n) processors. Either algorithm can
be extended to weighted graphs by treating an edge of
weight w as a collection of w unweighted edges. How-

IThe notation (j(f) denotes O(f polylog f)

min-cut bounds unweighted weighted
undirected | directed undirected directed
sequential time enlog 7n—2 mn + n?logn mn log 7n—2
[Gab91] [NI92] [GT88, HO92]
processors | previous mn*® or n?M (n) ? P-complete
used in work [KUWS86, MVV87, GP88] [GSS82)
RNC new en3 | mn?

Figure 1: Bounds For the Min-Cut Problem

ever, this makes the processor cost polynomial in the
total weight of the edges, and therefore the algorithm
is only in RAC when edge weights are represented in
unary. Until now there has been no known RNC algo-
rithm for the general weighted case. These results are
summarized in the Figure 1 (¢ denotes the value of the
min-cut).

1.2 New Results. This paper presents a new frame-
work for the computation of global min-cuts. The
surprisingly simple Contraction Algorithm described in
Section 2 finds global min-cuts in weighted undirected
graphs without any use of max-flow or s-f min-cut com-
putations. In Section 3 we describe how to implement
the algorithm with a sequential running time O(mn?).
No complex data structures are used. The algorithm
is parallelized in section 4 to yield the first RAC al-
gorithm for global min-cuts of weighted graphs. Ex-
tensions to the algorithm, including a practical time-
processor tradeoff, an approximation algorithm, and an
improved construction of the cactus representation of
min-cuts described by Naor and Vazirani in [NV91], are
described in Section b

Section 6 describes combinatorial ramifications of
the Contraction Algorithm. The algorithm yields the-
orems which bound the number of distinct minimal or
small cuts which a graph may have. These results are in
interesting counterpoint to work of Vazirani and Yan-
nakakis [VY92] on enumeration of small cuts. In sec-
tion 7, we show how this counting allows an accurate
estimation of how likely a graph is to become discon-
nected if its edges fail with certain probabilities. This
is relevant to the practical problem of network reli-
ability, which is studied in, for example, Colbourn’s
book [Col87]. Tt is also closely related to a result of
Margulis [Mar75], discussed in [Bol85], which proves the
existence of a threshold function for connectedness in
graphs.

With slight modifications described in Section 8, the
Contraction Algorithm can be used to compute minimal
multi-way cuts. The sequential time bound improves on
the multi-way cut algorithm of [GH88], and the parallel

version shows that the minimal r-way cut problem is
in RNC for any constant . In contrast, it is shown
in [DJP*92] that the multiway cut problem in which
k specified vertices are required to be separated (i.e.,
a generalization of the s-t min-cut problem) is NP-
complete for any k > 2.

2 The Contraction Algorithm

We now present an abstract version of the Contraction
Algorithm. Although certain changes must be made for
efficient implementation, this version of the algorithm
is particularly intuitive and easy to analyze.

Assume initially that we are given a multigraph
G(V, E) with n vertices and m edges. The Contraction
Algorithm uses one fundamental operation, contraction
of graph vertices. To contract two vertices v; and v,
replace them by a new vertex v, and let the set of edges
incident on v be the union of the sets of edges incident
on vy and vs. We do not merge edges from v; and s
which have the same other endpoint; instead, we give v
multiple instances of those edges. However, we remove
edges which connect v; and vs to eliminate self loops.
The Contraction Algorithm is described in Figure 2.

repeat until two vertices remain
choose an edge at random

contract its endpoints

Figure 2: The Contraction Algorithm

When the Contraction Algorithm terminates, each
original vertex has been contracted into one of the two
remaining “metavertices.” This defines a cut of the
original graph in an obvious way.

THEOREM 2.1. A particular min-cut in G is pro-
duced by the Contraction Algorithm with probability
Q(n~?).

Proof. Fix attention on some specific min-cut of ¢
edges (from now on, the term “min-cut edge” refers only
to edges in this particular min-cut). First, observe that
if we never select a min-cut edge during the Contraction

Algorithm, then the two metavertices we end up with
must define the min-cut. To see this, consider two
vertices on opposite sides of the min-cut. If they
end up in the same metavertex, then there must be
a path between them consisting of edges which were
contracted. However, any path between them crosses
the min-cut, so a min-cut edge would have had to be
contracted. This contradicts our assumption.

Next observe that after each contraction, the min-
cut of the new graph must still be at least ¢. This is
because contracting vertices u and v simply restricts
attention to cuts of the original graph in which u and v
are on the same side.

FEach contraction in the above loop reduces the
number of vertices in the graph by one. Consider the
contraction during which the graph has r vertices. Since
the contracted graph has a min-cut of at least ¢, it
must have minimum degree ¢, and thus at least rc/2
edges. However, only ¢ of these edges are in the min-cut.
Thus, a randomly chosen edge is in the min-cut with
probability at most 2/r. The probability that we never
contract a min-cut edge through all n — 2 contractions
is thus at least

(1_2)(1_ 2),..(1_§): (Z)_lzﬁ(n‘z).

n n—1

This bound is tight. In the graph consisting of
a cycle on n vertices, there are (g) min-cuts, one for
each pair of edges in the graph. Each of the min-cuts
is produced by the Contraction Algorithm with equal
probability, namely (g)_l.

COROLLARY 2.1. If we perform O(n?logn) inde-
pendent contractions to two vertices, we find a min-cut
with high probability. In fact, with high probability we
find every min-cut.

An alternative interpretation of the Contraction
Algorithm is that we are randomly ranking the edges
and then constructing a minimum spanning tree of the
graph based on these ranks (we are in fact emulating
Kruskal’s minimum spanning tree algorithm [Krub6]).
If we then remove the heaviest edge in the minimum
spanning tree, the two components which result have
an Q(n~?) chance of defining a particular min-cut.

3 Sequential Implementation

Our most interesting new results are in the parallel ver-
sion of this algorithm; however, it is easier to explain
certain concepts by describing a sequential implemen-
tation and then showing how to parallelize it. To show
how to implement the Contraction Algorithm, we need
only show how to implement a single trial, since it is
simple to remember the best result which occurs during

the O(n?logn) trials. We begin by presenting a sim-
ple method for unweighted graphs, and then show how
to improve the running time by working a little harder.
We then extend to the case of graphs with polynomi-
ally bounded edge weights, and finally to arbitrarily
weighted graphs.

3.1 Unweighted Graphs. A minor reformulation
of the Contraction Algorithm is convenient. If we per-
formed contractions one at a time, we would need to use
complex data structures to update the adjacency lists
of the graph. Instead, we simulate the performance of
many contractions at once. We begin by generating a
random permutation of the edges. Imagine contracting
edges in the order in which they appear in the permu-
tation, until only two vertices remain. This is clearly
equivalent to the first formulation of the Contraction Al-
gorithm. We can immediately say that with probability
Q(n=?), a random permutation will yield a contraction
to two vertices which determine a particular min-cut.

Consider any such permutation. It has a prefix such
that the set of edges in this prefix induces two connected
components which are the two sides of the min-cut.
All we need to do is determine how long the prefix is.
Binary search solves this problem, because any prefix
which 1s too short will yield more than two connected
components, and any prefix which is too long will yield
only one. The correct prefix can therefore be determined
using logm connected component computations, each
requiring O(m) time. The total running time of the
trial is therefore O(mlogm).

We can improve this running time by taking better
advantage of the connected component computations.
Given the permutation, use O(m) time to identify the
connected components induced by the first m/2 edges.
If only one connected component is induced, then we
can discard the last m/2 edges because the desired
prefix ends before the middle edge. If not, then we can
contract the first m/2 edges all at once in O(m) time
by finding connected components, and search for the
correct prefix in the remaining m/2 edges. Either way,
in O(m) time, we have reduced the problem size to m/2.
Thus we finish in O(m)4+0(m/2)+0(m/4)+--- = O(m)
time.

The two methods described above both require
O(m) space. We can improve this bound to O(n)
space if we are willing to sacrifice some time. The
only part of the algorithm which requires O(m) space
is the generation of an edge permutation. If, instead,
the edges are stored in read-only memory, we can avoid
generating the permutation. We use the union-find data
structure of [AHUS83] to identify sets of vertices which
have been contracted together. We choose an edge at

random, and apply a union operation to its endpoints’
sets if they do not already belong to the same set.
We continue until only two sets remain. We have a
high probability of choosing every edge at least once
after making O(m log m) choices, and we will necessarily
contract the graph to two vertices some time before this.
Each choice requires one find operation, and we will also
perform a total of n—2 union operations. Therefore the
total running time of a trial will be O(mlogm). The use
of path compression in the union-find data structure
provides no improvement in the running time, which
is dominated by the requirement that every edge be
sampled at least once.

COROLLARY 3.1. With high probability, the Con-
traction Algorithm finds all min-cuts of an multigraph
with m edges and n vertices in time O(mn?logn) and
space O(m), or in time O(mnzlog2 n) if space is re-
stricted to be O(n).

3.2 Weighted Graphs. It is easy to apply the
Contraction Algorithm to integer weighted graphs: just
treat an edge of weight w as a collection of w parallel
edges. This might appear to cause the running time
to become dependent on the sum of the edge weights,
but we show how to avoid this. We begin by assuming
that edge weights are integers with maximum value
polynomial in the problem size, and then clear up a
few details to make the algorithm strongly polynomial.

Observe that the entire edge permutation is not nec-
essary in the computation, since as soon as a multigraph
edge is contracted, all the other edges with the same
endpoints vanish. In fact, all that matters is the earliest
place in the permutation that an edge with particular
endpoints appears. This information suffices to tell us
in which order vertices of the graph are contracted: we
contract u and v before w and x precisely when the first
(u,v) edge in the permutation precedes the first (w, z)
edge in the permutation. Thus our goal is to generate an
edge permutation whose distribution reflects the order
of first appearance of endpoints in a uniform permu-
tation of the corresponding multigraph edges. We can
then use the permutation to contract the graph in the
same fashion as was described for unweighted graphs.

We present two separate methods for generating a
permutation. While they may not be the best possible
sequential algorithms, they have the advantage of being
easy to parallelize.

3.2.1 Exponential Variates. The first method is to
directly model the weighted graph as a multigraph. One
way we can generate a permutation of the multigraph
edges is by assigning a uniform random score to each
edge and sorting according to score. In this case,

the first appearance of a multigraph edge with w
copies 1s determined by the minimum of w randomly
chosen scores. Consider multiplying each edge by a
large constant weight k, so that an edge of weight w
corresponds to wk multigraph edges. This scales the
value of the min-cut without changing its structure.
Suppose we gave each multigraph edge a score chosen
uniformly at random from the continuous interval [0, k].
The probability distribution for the minimum score X
among wk edges is then

Pr[X > t] = (1 —t/k)“k.

If we now let k become arbitrarily large, the distribution
converges to one in which an edge of weight w receives
a score chosen from the exponential distribution

Pr[X > t] = 7 ¥

If we can generate an exponential random variable in
O(1) time, then we can simulate a permutation in
O(m) time (note that we do not actually have to sort
based on the scores: we can use median finding to do
a binary search of the edges in O(m) time, as was
described in Section 3.1). If all we have is coin flips,
it is possible to use them to generate approximately
exponential distributions in polylogarithmic time and
introduce a negligible error in the computation. This
technique will be described in the full paper.

3.2.2 Iterated Sampling. Our second method
avoids the mathematical computations needed to gen-
erate exponential variates if one has access only to coin
flips or uniform integer distributions. We repeatedly
simulate the uniform selection of a multigraph edge by
choosing from the graph edges with probabilities pro-
portional to the edge weights; the order of selection
then determines the order of first appearance of multi-
graph edges. The following procedure can be used to

choose one edge. First, from edge weights wq, ... wp,
construct cumulative weights Wy = Zle w;. Then
choose an integer r uniformly at random from 0, . . ., W,

and use binary search to identify the edge e; such that
Wi <r < W;.

Once the cumulative weights are known, choosing
an edge takes O(logn) time (based on the present
assumption that W, is polynomial in n). Since it takes
linear time to recompute the cumulative distribution, it
1s undesirable to do this each time we wish to sample
an edge. An alternative approach is to keep sampling
from the original cumulative distribution, and ignore
edges if we sample them more than once. Unfortunately,
to ensure that all edges have been sampled once, we
expect to need a number of samples equal to the sum of

the edge weights. We solve this problem by combining
the two approaches and recomputing the cumulative
distribution only occasionally. We use the following
lemma:

LEMMA 3.1. With high probability, (weighted) sam-
pling m times from a set of at most m edges yields a set
of edges whose total weight is more than 1/3 of the total
weight of the entire set of edges.

Proof. If the outcome of the lemma does not occur,
there must be some set of edges which contains 2/3 of
the total weight, such that no edge in this set 1s sampled.
The probability of this happening is 1/3™. Since there
are only 2 different sets of edges, the probability that
this happens with some set of edges is at most 2™ /3™
which is negligible.

We can therefore apply the procedure of Figure 3.
A single iteration of this loop takes O(mlogm) time.

repeat until no edges remain
e compute the cumulative weight measures.

e extend the permutation with m samples
from the remaining edges.

e remove edges which were sampled at least
once

Figure 3: Generating a Permutation

If the total weight of edges polynomial in n, then
Lemma 3.1 shows that O(logn) iterations of the loop
ensure that the total remaining weight of unsampled
edges is less than 1, ¢.e. no edges remain and we have
finished constructing a permutation.

We remark that the O(n) space bound discussed for
unweighted graphs can be achieved here as well. As be-
fore, we use the union-find data structure of [AHUS83] to
contract edges as we select them. Instead of maintaining
a list of all unsampled edges, we maintain a threshold
X (¢) such that any edge of weight exceeding X (¢) has a
high probability of being sampled within ¢ trials. After
time ¢ we sample only from among those edges which
have weight less than this threshold.

3.3 Strong Polynomiality. The exponential vari-
able technique for generating permutations can be made
strongly polynomial by approximating the exponential
distribution appropriately; however, we will focus on the
second technique.

Construction of the cumulative edge weights is
easily strongly polynomial. To quickly select an edge
from the cumulative distribution, even if the edge
weights are large, let M = n®() | generate s uniformly
at random from 0, ..., M, and choose the edge ¢ such

that W1 < Wpas/M < W,. We have only a
polynomially small probability of having a different
result than we would if we used exact arithmetic,
since such an error is introduced only if W, s/M and
Wi (s + 1)/ M specify different edges.

We also need to ensure that not too many iterations
of the permutation generating loop of Figure 3 are
needed. We use a very rough approximation to the
min-cut to ensure that O(logn) iterations suffice even
when the edge weights are large. Let W be the largest
edge weight such that the set of edges of weight greater
than or equal to W connects all of G. This is just the
minimum weight of an edge in a maximum spanning
tree of (¢, and can thus be identified in O(m + nlogn)
time [FT86]. Tt follows that any cut of the graph must
cut an edge of weight at least W, so the min-cut has
weight at least W. It also follows from the definition
of W that there is a cut which does not cut any edge
of weight exceeding W. This means the min-cut has
weight less than n2W, since fewer than n? edges are
in the graph, and at worst all edges of weight at most
W are cut. This guarantees that no edge of weight
exceeding n?W can possibly be in the min-cut. We can
therefore contract all such edges, without eliminating
any min-cut in the graph. Afterwards the total weight
of edges in the graph is at most n*W.

Since initially the total weight of edges was at
most n*W, Lemma 3.1 proves that the amount of
weight remaining unsampled after O(logn) iterations of
Figure 3 is less than W. It follows that the portion of
the permutation which we have constructed at this point
must suffice to contract the graph to a single vertex,
since otherwise we would have a cut of weight less than
W (it could cut only the unsampled edges), which is
less than the min-cut. We can therefore ignore the
remaining unsampled edges and use the permutation
prefix which we have constructed so far.

COROLLARY 3.2. A single Contraction Algorithm
trial on wewghted graphs can be run in strongly poly-
nomial O(mlog?n) time, so the Contraction Algorithm
can be run in O(mn?log® n) time.

4 Parallel Complexity of Min-cut

This section demonstrates a significant difference in
the complexity of the min-cut problem on directed
and undirected graphs. Our parallelization of the
Contraction Algorithm proves the the undirected min-
cut problem is in RA'C. On the other hand, we show
that the global min-cut problem on directed graphs is
P-complete.

4.1 Parallel Implementation. We now show how
to parallelize the Contraction Algorithm to give an

O(log® n) time parallel algorithm which uses mn?logn
processors. As before, the only real question is how to
run a single trial of the Contraction Algorithm, since it
is simple to run O(n?logn) trials in parallel and com-
bine their results. We implement a trial as in the se-
quential case, by generating a permutation of the edges
and contracting based on that permutation. RNC al-
gorithms for connected components exist which run
in O(logn) time on a CRCW PRAM [Gaz86] or in
O(lognloglogn) time on an EREW PRAM [KPN92],
and use O(m) processors. There is therefore no dif-
ficulty in performing the binary search on connected
components which was described in the sequential algo-
rithm. Thus we need only show how a linear number
of processors can be used to generate an appropriately
distributed permutation.

In the case of an unweighted graph, generating a
permutation is trivial. Each processor takes one edge
and assigns it a score chosen uniformly at random from
the integers 1,...,n" (this large range guarantees that
with high probability no two edges get the same score).
We then sort the edges according to score in O(logn)
time (using, e.g., Cole’s algorithm [Col88]). All of this
requires only m processors per trial. This yields the
result for unweighted graphs:

THEOREM 4.1. All min-cuts wn an unweighted
multigraph can be found in O(log2 n) time using
mn?logn CRCW processors.

The bottleneck in the runtime is caused by the
binary search for connected components. If we in-
crease the number of processors to mZnZlogn, we
can examine all prefixes of each permutation in par-
allel and achieve a running time of O(logn), even on
an EREW PRAM. This matches the Q(logn) EREW
lower bound of [CDR&6], and closely approaches the
Q(logn/loglogn) CRCW lower bound of [Has86].

It remains to generalize the algorithm to the case
of weighted graphs. We do this by parallelizing the se-
quential methods described in Section 3. The reduction
to small edge weights can be parallelized using, for ex-
ample, the parallel maximum spanning tree algorithm
of [AS87] and the connected components algorithms de-
scribed above. Once edge weights are small, permuta-
tion by assignment of exponentially distributed scores is
simple to parallelize using a parallel sorting algorithm.
It is also straightforward to parallelize a single itera-
tion of the weighted sampling loop used in our second
method, by assigning one processor to perform each of
the m selections described there.

THEOREM 4.2. The min-cut problem on arbitrarily
weighted graphs can be solved in RNC in O(log2 n) time
using mn?logn CRCW processors.

4.2 Comparison to Directed Graphs. The previ-
ous result shows a fundamental distinction between the
min-cut problems on directed and undirected graphs.
The s-t min-cut problem on directed graphs was shown
to be P-complete [GSS82]. A simple reduction shows
that the global min-cut problem is also P-complete for
directed graphs. To find a minimum s-{ cut using a
global min-cut algorithm, simply add, for each vertex
v, directed edges of infinite weight from ¢ to v and from
v to s. The global min-cut in this modified graph must
have s on the inside and ¢ on the outside and thus cor-
responds to the minimum s-¢ cut in the original graph.

The min-cut problem 1is therefore in the fam-
ily of problems, such as reachability [NSW92], which
presently have dramatically different difficulties on di-
rected and undirected graphs.

5 Extensions of the Algorithm

5.1 Approximating the Min-cut. If we are look-
ing only for a “small” cut, then it i1s possible to sig-
nificantly reduce the amount of work required in the
algorithm.

THEOREM 5.1. With probability n=2/%, a single
trial of the Contraction Algorithm will yield a cut of
weight ke.

Proof. We return to the unweighted multigraph
discussion. We again fix our attention on a particular
min-cut. Suppose that at some point we have contracted
to 7 vertices and have not yet seen a vertex of degree less
than k¢ (if we have, than we have a corresponding cut of
the desired size). Then the total number of edges in the
graph is at least ke¢/2. Tt follows that we pick a min-cut
edge with probability 2/kr. Arguing as before, it follows
that our probability of success over n — 2 iterations is
at least

2
@
>
=
|
T

COROLLARY b.1. A cut within a factor of k of
the min-cut can be found with high probability in
O(mn>/*logn) time.

Proof. Because of the above theorem, we need
only show that we can identify the smallest degree
metavertex which arises during the contraction process.

Recall that the Contraction Algorithm can be simulated
by assigning random ranks and running a minimum
spanning tree algorithm. Given the minimum spanning
tree, it is relatively simple to identify the smallest vertex
which arose from a contraction. Details are left for the
full paper.

5.2 A Time-Processor Tradeoff. The Contraction
Algorithm may be effective in practice as a way to
parallelize sequential min-cut algorithms. The key
observation is that if we only contract the graph until
it has been reduced to s vertices, then a particular
min-cut survives with probability Q((s/n)?) (this is a
simple extension of the original proof of correctness).
This contracted graph will have at most min(m, s?)
edges. Assuming the min-cut survives, we can find it
by running a sequential min-cut algorithm for a graph
of size s. It follows that the Contraction Algorithm
can be used by p processors to accelerate any sequential
weighted graph algorithm by a factor of |/p.

5.3 Fewer Processors for Unweighted Graphs.
In the case of unweighted graphs, we can reduce the
processor cost from mn? to n3c. This provides no
improvement in the worst case, since a graph with
min-cut ¢ may have as few as nc/2 edges, but it does
improve performance on dense graphs with small min-
cuts. This improvement is achieved by transforming
the graph into one with O(nec) edges, and running the
original algorithm. We use the following lemma:

LEMMA 5.1. If each edge of a graph 1s marked inde-
pendently with probability p, and connected components
winduced by the marked edges are contracted, then with
high probability the number of edges of the contracted
graph is O(nlnn/p).

Proof. The number of edges in the contracted graph
is just the number of edges crossing between two dif-
ferent connected components induced by the marked
edges. The number of different arrangements of con-
nected components is certainly no more than the num-
ber of ways to partition the set of n vertices into at most
n groups, namely n”. For any given partition which cuts
k edges, the probability that no crossing edge is chosen
is (1 — p)* &~ e7#?. The probability that k edges are
cut in the partition resulting from the connected com-
ponent construction is just the probability that for some
partition with at least &k crossing edges, no one of these
k edges is chosen. This is at most n"e™kP = ennn=Fkp
which is negligible when kp = Q(n lnn).

We apply this lemma to our problem by letting
the probability p in the lemma be 1/c. If we mark
edges and contract components which are connected
by marked edges, then any particular min-cut has a

7

constant probability of having none of its edges chosen.
If this happens, then this min-cut will still be a min-
cut in the contracted graph. It will happen with high
probability after only O(logn) trials. In each trial, the
lemma proves that the contracted graph will contain
O(nc) edges. We then apply the Contraction algorithm,
using O(n?) trials on a graph of O(nc) edges, yielding
a total processor cost of O(n?’c).

5.4 Cactus Representation For Min-Cuts. The
set of all min-cuts in a graph has a simple and compact
representation known as the cactus representation. The
best presently known sequential algorithm for construct-
ing the cactus ([NK92]) runs in time O(mn). Naor and
Vazirani [NV91] have shown how to construct this cac-
tus representation in RAC when edge weights are repre-
sented in unary. The processor cost for their algorithm
is mn®%. Both the processor cost and the restriction to
unary edge weights stem from the same source, namely
the need for an algorithm to compute individual min-
cuts in RAN'C. They use the algorithm of [KUWS86]. If
we instead use the Contraction Algorithm, both of these
problems are eliminated. We therefore deduce:

THEOREM 5.2. The cactus representation of an ar-
bitrarily weighted graph can be computed in RNC using
mn?logn processors.

6 Combinatorial Ramifications

We now use the Contraction Algorithm to prove several
interesting facts about the combinatorial structure of
cuts in a graph. In particular, we show bounds on
the number of small cuts in a graph. Vazirani and
Yannakakis [VY92] perform a similar investigation with
different results.

THEOREM 6.1. The number of min-cuts in an ar-
bitrarily weighted graph is at most (g)

Proof. The Contraction Algorithm can be viewed
We
proved that any particular min-cut is generated with
probability at least p = (")_1. It follows that there can

2
be at most 1/p min-cuts.

as a procedure for randomly generating cuts.

We can perform a similar analysis of larger cuts:
THEOREM 6.2. For k half an integer, the number
of cuts of weight at most k times the graph min-cut s

at most 22’“_1(272), which is less than n”*.

Proof. We consider the unweighted case; the exten-
sion to weights goes as before. Let & be half an integer,
and ¢ the min-cut, and consider some cut of weight at
most ke. Suppose we run the Contraction Algorithm.
If with r vertices remaining we choose a random edge,
then since the number of edges is at least ¢r/2, we take
an edge from the min-cut with probability at most 2k /r.

If we do this until » = 2k, then the probability that the

cut survives 1s
-1
B n

We can again use the algorithm to generate a random
cut, although we must now add an extra step. Since
we stop before the number of vertices reaches 2, we
still have to finish selecting a cut. Do so by randomly
partitioning the remaining vertices into two groups.
Since there are less than 2%~ partitions, it follows that
the probability of a particular cut being chosen is at

least, 212k (;k) -

When k& > n/2 we can apply the obvious upper
bound of 27! to the number of cuts of this size.

COROLLARY 6.1. For arbitrary real values of k, the
number of cuts of size less than k times the min-cut is
O(n?).

Proof. Full Paper.

Vazirani and Yannakakis [VY92] derive bounds
based on the rank of a cut relative to the others; we
instead derive bounds based on the wvalue of a cut

2k 2k 2k

(1—7)(1—m)“'(1—m)

relative to the others. Thus neither bound dominates

the other.

COROLLARY 6.2. The problem of enumerating all
cuts within any constant factor of the min-cut is n

RNC.

Consider the complete n-vertex graph in the context
of these results. The min-cut there has value n—1. Any
set of k vertices defines a cut of about kn edges. Thus
the number of cuts of size about kn is (Z), a result which
1s strikingly close to the one we have derived. The cycle
graph shows an even closer match for the case ¢ = 2
and k an integer. Such a graph has (;k) cuts of size 2k,

since every choice of 2k edges defines such a cut.

7 Network Reliability

From the cut counting theorem we can deduce a useful
fact about the ability of graphs with large min-cuts
to resist being separated. In [Col87], the relationship
between the min-cut and graph reliability is investigated
in great detail; however, this result is of a different
flavor:

THEOREM 7.1. If each edge of a graph with min-
cut ¢ is removed with probability p = n~%¢, then
the probability that the graph becomes disconnected is
O(n?p*/(a - 2)).

Proof. In order for the graph to be disconnected,
some cut must have all its edges eliminated. We
therefore bound the probability that all the edges in any
cut are eliminated. A cut of weight ac has probability

at most p*° of having all of its edges eliminated. Let

f(«) be the number of cuts of weight ac. Recall that
for some constant A,

F(B) = fla) < An?.
a<pB
Let C denote the set of all cuts.

disconnection is at most

Z Prlall edges of C' are eliminated] = Z Fla)p™e.
ceC o]

The probability of

Since p*© is decreasing with «, a perturbation argument
shows that to maximize the sum, it is desirable to have
as much of the mass of f as possible at small values
of a. In other words, we want as many small cuts as
possible, so F'(3) should be maximized at every value
of B (subject to the constraints). If we remove the
restriction that f be discrete and integer valued, then
we can take f(1) = An? and F(8) = A2 for g > 1.
Then the sum is bounded by

An?pt + / (a%/\nzo‘)po‘c da = An?p® + An?p/(a — 2).
1

Note that for large ¢, n=%¢ ~ 1 — alnn/c. We
have thus shown that if we kill edges with probability
1 —3Inn/c, the graph is disconnected with probability
O(1/n). On the other hand, if we kill edges with
probability 1 —1/e¢, then the graph is disconnected with
constant probability.

Consider the complete graph. Choosing to kill edges
with probability 1 — ©(Inn/n) corresponds to choosing
a random graph from G, , with p = O(lun/n). It
is well known [Bol85] that p = ©(Inn/n) is precisely
the threshold at which the complete graph becomes
connected with high probability. This result is extended
by Margulis [Mar75], who shows that every graph has a
connectivity threshold; however, this paper appears to
be the first to explicitly describe the threshold function.

COROLLARY 7.1. In a weighted graph, if each edge
of weight w fails with probability n=2(+9)w/c then the
graph remains connected with probability 1 — O(n=?%/4).

Proof. Apply the above theorem to the multigraph
corresponding to the weighted graph.

This gives a method for analyzing the reliability of
a given network.

COROLLARY 7.2. Suppose in an n-verter network
each edge e has failure probability p.. Assign to edge
e a weight —log,, p.. The network failure probability is
O(n?=°), where c is the min-cut of the weighted graph.

Proof. Network edge e fails with probability p. =

—We

n n(=cwe)/e which precisely simulates the

weighted failure criteria in the previous corollary.

We use the following lemma to prove the next
corollary:

LEMMA 7.1. If(A, B) is a min-cut of weight ¢, then
the subgraphs induced by the vertex sets A and B each
have min-cut at least c¢/2.

Proof. Full Paper.

COROLLARY 7.3. If all edges of a graph are killed
with probability (nlogn)=*¢, then with probability
Q((nlogn)=*), the resulting graph has two connected
components, each of which is one side of a min-cut.
Consider a graph G with min-cut ¢, and consider the
two subgraphs A and B induced by the two sides of the
min-cut. By Lemma 7.1, each subgraph has min-cut at
least ¢/2. Killing edges with probability (nlogn)=*/¢ =
(nlogn)=2/(¢/2) ensures that with constant probability
A and B are each connected. Independent of this,
with probability (nlogn)~*, all edges of the min-cut
are killed.

8 Multi-way Cuts

With a small change, the Contraction Algorithm can
be used to find a minimum weight r-way cut, which
partitions the graph into r pieces rather than 2. The
analysis need be only slightly changed.

THEOREM 8.1. Stopping the Contraction Algo-
rithm when r vertices remain yields a particular min-
wmum r-way cut with probability at least

() G
r .
r—1 r—1

Proof. As before, the key to the analysis is bound-
ing the probability p that a randomly selected graph
edge is from a particular minimal r-cut. Suppose we
choose r — 1 vertices uniformly at random, and consider
the r-cut defined by taking each of the vertices as one
member of the cut and all the other vertices as the last
member. Let f be the number of edges cut by this ran-

dom partition, and m the number of graphs edges. The
number of edges we expect to cut is

e R—

n n—1

Elfl=01-0-)m,

since the quantify in brackets is just the probability that
asingle edge is cut. Since f can be no less than the value
of the minimal r-cut, E[f] must also be no less than the
min-cut. We can therefore deduce that the probability
that a particular minimum r-cut survives the reduction
process until there are r vertices remaining is at least

r—1

u—1

)

u r—1 u r—1
= 1-— 1-—
IT ¢ —) IT ¢ —7)
u=r+1 u=r+1
n \ '/n—-1\""
= r .
r—1 r—1
This analysis yields a simple O(mnz’“_l) (sequen-
tial time or parallel processor) algorithm for finding
a minimal r-way cut. This is a significant improve-
ment on the previously best known sequential result of

O(n’“2_’“+11/2) reported in [GH88]. As before, our algo-
rithm in fact finds all the minimal r-way cuts.

COROLLARY 8.1. The number of minimum r-cuts
of a graph is no more than (")) (Z:ll), which is
O(nz(’"_l)).

COROLLARY 8.2. The number of r-cuts within a
factor of k of the optimum is O(n**("=1)).

COROLLARY 8.3. Enumerating all the r-way cuts
within any constant factor of the optimum is in RNC
for any constant r.

9 Open Questions

The min-cut problem has long been known to be P-
complete. However, the reduction of [GSS82] showed
this to be true only for directed graphs. This paper
shows that for undirected graphs the situation is entirely
different, and that much remains to be done in this area.
In particular, we have shown that the min-cut problem
for undirected graphs is in RANC. This immediately
suggests that a similar result may be possible for the
s-t min-cut problem on undirected graphs.

Questions are also raised regarding the closely re-
lated problem of max-flow. Unlike many min-cut al-
gorithms, the Contraction Algorithm makes no use of
max-flow computations. Is this an accident, or is the
max-flow problem not parallelizable? Is it possible to
use a min-cut algorithm in a non-trivial way as a com-
ponent of a max-flow algorithm? If not, in what sense is
the min-cut problem fundamentally easier than that of
max-flow? In particular, what is the complexity (RN C?
P-complete?) of finding a max-flow corresponding to a
global min-cut?

The Contraction Algorithm uses a very simple rule
to find min-cuts in a graph. Further analysis of the
Contraction Algorithm may suggest more intelligent
schemes for choosing edges. The goal, of course,
would be to increase the success probability of the
algorithm so as to decrease the number of trials needed.
Another significant accomplishment would be to find a
deterministic edge contraction rule which places min-cut

in NC.

10 Acknowledgement

Many thanks to Serge Plotkin, who has given a great
deal of his time and asked numerous helpful questions
related to this research. Thanks also to Daphne Koller
who suggested numerous clarifications of the exposi-
tion.

References

[AHU83] Alfred V. Aho, John E. Hopcroft, and Jeffrey D.
Ullman. Data Structures and Algorithms. Addison
Wesley, 1983.

[AS87] Baruch Awerbuch and Y. Shiloach.
tivity and msf algorithms for shuffle-exchange net-
work and pram”. IEFE Transactions on Computers,
36(10):1258-1263, October 1987.

[Bol85] Bela Bollobas. Random Graphs.
Janovich, 1985.

[CDR&6] S. Cook, Cynthia Dwork, and R. Reischuk. “Up-
per and lower bounds for parallel random access ma-
chines without simultaneous writes”. SIAM Journal

“New connec-

Harcourt Brace

on Computing, February 1986.

[Col87] Charles J. Colbourn. The Combinatorics of Net-
work Reliabelity, volume 4 of The International Series
of Monographs on Computer Science. Oxford Univer-
sity Press, 1987.

[Col88] R. Cole. “Parallel merge-sort”. SIAM Journal of
Computing, 17(4):770-785, August 1988.

[DJP*92] E.Dahlhaus, D. S. Johnson, C. H. Papadimitriou,
P. D. Seymour, and M. Yannakakis. “The complexity
of multiway cuts”. In Proceedings of the 24" ACM
Symposium on Theory of Computing, pages 241-251.
ACM Press, May 1992.

[FF56] L. R. Ford, Jr. and D. R. Fulkerson. Maximal
Flow Through a Network. Canadian Journal of Math.,
8:399-404, 1956.

[FF62] L. R. Ford, Jr. and D. R. Fulkerson. Flows in
Networks. Princeton Univ. Press, Princeton, NJ, 1962.

[FT8] M. L. Fredman and R. E. Tarjan.
heaps and their uses in improved network optimization
algorithms”. Journal of the ACM, 36:596-615, 1986.

[Gab91] Harold N. Gabow. “A matroid approach to finding
edge connectivity and packing arborescences”.
Proceedings of the 23" Annual Symposium on Theory
of Computing. ACM Press, May 1991.

[Gaz86] H. Gazit. “An optimal randomized parallel algo-
rithm for finding connected components in a graph”.
In Proceedings of the 27" Annual Symposium on Foun-
dations of Computer Science. ACM Press, 1986.

[GHS88] Oliver Goldschmidt and Dorit Hochbaum. “Poly-
nomial algorithm for the k-cut problem”. In Proceed-
ings of the 29'" Annual Symposum on the Foundations
of Computer Science, pages 444-451. IEEE Computer
Society Press, 1988.

[GP88] Zvi Galil and Victor Pan. “Improved processor
bounds for combinatorial problems in RAC”. Com-
binatorica, 8:189-200, 1988.

[GSS82] L. M. Goldschlager, R. A. Shaw, and J. Staples.

“Fibonacci

In

10

“The maximum flow problem is logspace complete for
P”. Theoretical Computer Science, 21:105-111, 1982.

[GT88] Andrew V. Goldberg and Robert Endre Tarjan. “A
new approach to the maximum flow problem. Journal
of the ACM, 35:921-940, 1988.

[Has86] Johann Hastad. “Improved lower bounds for small
depth circuits. In Proceedings of the 18" Annual ACM
Symposium on Theory of Computing, pages 6-20. ACM
Press, 1986.

[HO92] J. Hao and J. B. Orlin. “A faster algorithm for
finding the minimum cut in a graph”. In Proceedings
of the 3™ Annual Symposium on Discrete Algorithms,
pages 165-174, 1992.

[KPN92] David Karger, Michal Parnas, and Noam Nissan.
“Fast connected components algorithms for the EREW
PRAM?”. In Proceedings of the 4" Annual ACM-SIAM
Symposium on Parallel Algorithms and Architectures,
pages 562-572, 1992.

[Kru56] J. B. Kruskal, Jr. “On the shortest spanning
subtree of a graph and the traveling salesman problem.
Proceedings of the American Mathematical Society,
7(1):48-50, 1956.

[KUWS86] Richard M. Karp, Eli Upfal, and Avi Wigderson.
“Constructing a perfect matching is in random NC.
Combinatorica, 6(1):35-48, 1986.

[Mar75] G. A. Margulis.
graphs with large connectivity (translated from rus-
sian)”. Problems in Information Transmission, 9:325—
332, 1975.

[MVV87] Ketan Mulmuley, Umesh V. Vazirani, and Vi-
jay V. Vazirani. “Matching is as easy as matrix in-
version”. Combinatorica, 7(1):105-113, 1987.

[NT92] Hiroshi Nagamochi and Toshihde Tbaraki.
puting edge connectivity in multigraphs and capaci-
tated graphs”. SIAM Journal of Discrete Mathemat-
ics, 5(1):54-66, February 1992.

[NK92] Hiroshi Nagamochi and Tiko Kameda. “An efficient
construction of cactus representation for minimum cuts
in undirected networks”. Manuscript, 1992.

[NSW92] Noam Nissan, Endre Szemeredi, and Avi Wigder-
son. “Undirected connectivity in o(logl'5n) space”. In
Proceedings of the 33" Annual Symposium on Foun-
dations of Computer Science, pages 24-29. IEEE Com-
puter Society Press, October 1992.

[NVO91] Dalit Naor and Vijay V. Vazirani. “Representing
and enumerating edge connectivity cuts in RAC”. In
F. Dehne, J. R. Sack, and N. Santoro, editors, Pro-
ceedings of the 2% Workshop on Algorithms and Data
Structures, volume 519 of Lecture Notes in Computer
Science, pages 273-285. Springer-Verlag, August 1991.

[VY92] Vijay V. Vazirani and Mihalis Yannakakis. “Subop-
timal cuts: Their enumeration, weight, and number”.
In The 19" International Colloguium on Automata,
Languages and Programming, volume 623 of Lecture
Notes in Computer Science, pages 366-377. Springer-
Verlag, 1992.

“Probabilistic characteristics of

“Com-

