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and faster algorithms were found, the fastest being an algorithm of Gabow, Galil, andSpencer [10] (see also [11]), with a running time of O(m log �(m;n)) on a graph of nvertices and m edges. Here �(m;n) = minfi j log(i) n � m=ng.This and earlier algorithms used as a computational model the sequential unit-costrandom-access machine with the restriction that the only operations allowed on the edgeweights are binary comparisons. Fredman and Willard [9] considered a more powerful modelthat allows bit manipulation of the binary representations of the edge weights. In this modelthey were able to devise a linear-time algorithm. Still, the question of whether a linear-timealgorithm exists for the restricted random-access model remained open.A problem related to �nding minimum spanning trees is that of verifying that a givenspanning tree is minimum. Tarjan [22] gave a veri�cation algorithm running in O(m�(m;n))time, where � is a functional inverse of Ackerman's function. Later, Koml�os [19] showedthat a minimum spanning tree can be veri�ed in O(m) binary comparisons of edge weights,but with nonlinear overhead to decide which comparisons to make. Dixon, Rauch andTarjan [7] combined these algorithms with a table lookup technique to obtain an O(m)-time veri�cation algorithm. King [17] recently obtained a simpler O(m)-time veri�cationalgorithm that combines ideas of Bor�uvka, Koml�os, and Dixon, Rauch, and Tarjan.In this paper we describe a randomized algorithm for �nding a minimum spanning tree.It runs in O(m) time with high probability in the restricted random-access model. Thealgorithm is a modi�cation of one proposed by Karger [13, 15], who obtained a time boundof O(n logn + m). The O(m) time bound is due to Klein and Tarjan [18]. The presentpaper is a revision of [18] that includes a tightened high-probability complexity analysis.Section 2 presents the random-sampling result that is the key to the O(m) bound. Section3 presents our algorithm, and Section 4 contains its analysis. Section 5 includes some �nalremarks. This section ends with some preliminaries.1.1 PreliminariesOur algorithm actually solves the slightly more general problem of �nding a minimumspanning forest in a possibly disconnected graph. We assume that the input graph has noisolated vertices (vertices without incident edges).If edge weights are not distinct, we can make them distinct by numbering the edges andbreaking weight-ties according to the numbers. We therefore assume for simplicity thatall edge weights are distinct. This assumption ensures that the minimum spanning tree isunique. The following properties are also well-known and correspond respectively to thered rule and the blue rule in [23].Cycle property: For any cycle C in a graph, the heaviest edge in C does not appear inthe minimum spanning forest.Cut property: For any proper nonempty subset X of the vertices, the lightest edge withexactly one endpoint in X belongs to the minimum spanning forest.Unlike most algorithms for �nding a minimum spanning forest, our algorithm makes useof each property in a fundamental way. 2



2 A Sampling LemmaOur algorithm relies on a random-sampling step to discard edges that cannot be in theminimum spanning tree. The e�ectiveness of this step is shown by a lemma that we presentbelow. We need a little terminology. Let G be a graph with weighted edges. We denote byw(x; y) the weight of edge fx; yg. If F is a forest in G, we denote by F (x; y) the path (ifany) connecting x and y in F , and by wF (x; y) the maximum weight of an edge on F (x; y),with the convention that wF (x; y) =1 if x and y are not connected in F . We say an edgefx; yg is F -heavy if w(x; y) > wF (x; y), and F -light otherwise. Note that the edges of F areall F -light. For any forest F , no F -heavy edge can be in the minimum spanning forest ofG. This is a consequence of the cycle property. Given a forest F in G, the F -heavy edges ofG can be computed in time linear in the number of edges of G, using an adaptation of theveri�cation algorithm of Dixon, Rauch, and Tarjan (page 1188 in [7] describes the changesneeded in the algorithm) or of that of King.Lemma 1 Let H be a subgraph obtained from G by including each edge independently withprobability p, and let F be the minimum spanning forest of H. The expected number ofF -light edges in G is at most n=p where n is the number of vertices of G.Proof. We describe a way to construct the sample graph H and its minimum spanningtree F simultaneously. The computation is a variant of Kruskal's minimum spanning treealgorithm [20]. Begin with H and F empty. Process the edges in increasing order by weight.To process an edge e, �rst test whether both endpoints of e are in the same connectedcomponent of F . If so, e is F -heavy, because every edge currently in F is lighter than e.Next, ip a coin that has probability p of coming up heads. Include the edge e in H if andonly if the coin comes up heads. Finally, if e is in H and is F -light, add e to the forest F .The forest F produced by this computation is the forest that would be produced byKruskal's algorithm applied to the edges in H , and is therefore exactly the minimum span-ning forest of H . An edge e that is F -heavy when it is processed remains F -heavy untilthe end of the computation, since F never loses edges. Similarly, an edge e that is F -lightwhen processed remains F -light, since only edges heavier than e are added to F after e isprocessed. Our goal is to show that the number of F -light edges is probably small.When processing an edge e, we know whether e is F -heavy before ipping a coin for e.Suppose for purposes of exposition we ip a penny for e if e is F -heavy and a nickel if itis not. The penny-ips are irrelevant to our analysis; the corresponding edges are F -heavyregardless of whether or not they are included in H . We therefore consider only the nickel-ips and the corresponding edges. For each such edge, if the nickel comes up heads, theedge is placed in F . The size of F is at most n� 1. Thus at most n� 1 nickel-tosses havecome up heads by the end of the computation.Now imagine that we continue ipping nickels until n � 1 heads have occured, and letY be the total number of nickels ipped. Then Y is an upper bound on the number ofF -light edges. The distribution of Y is exactly the negative binomial distribution withparameters n � 1 and p [8]. The expectation of a random variable that has a negativebinomial distribution is (n� 1)=p [8]. It follows that the expected number of F -light edgesis at most (n� 1)=p.Remark. The above proof actually shows that the number of F -light edges is stochasticallydominated by a variable with a negative binomial distribution.3



Remark. Lemma 1 directly generalizes to matroids. See [15].3 The AlgorithmThe minimum spanning forest algorithm intermeshes steps of Bor�uvka's algorithm, calledBor�uvka steps, with random-sampling steps. Each Bor�uvka step reduces the number ofvertices by at least a factor of two; each random-sampling step discards enough edges toreduce the density (ratio of edges to vertices) to a �xed constant with high probability.The algorithm is recursive. It generates two subproblems, but with high probability thetotal size of these subproblems is at most a constant fraction less than one of the size of theoriginal problem. This fact is the basis for the probabilistic linear bound on the runningtime of the algorithm.We begin by describing a Bor�uvka step.Bor�uvka Step. For each vertex, select the minimum-weight edge incident to the vertex.Contract all the selected edges, replacing by a single vertex each connected componentde�ned by the selected edges and deleting all resulting isolated vertices, loops (edges bothof whose endpoints are the same), and all but the lowest-weight edge among each set ofmultiple edges.A Bor�uvka step reduces the number of vertices by at least a factor of two.Now we describe the minimum spanning forest algorithm. If the graph is empty, returnan empty forest. Otherwise, proceed as follows.Step 1. Apply two successive Bor�uvka steps to the graph, thereby reducing the number ofvertices by at least a factor of four.Step 2. In the contracted graph, choose a subgraphH by selecting each edge independentlywith probability 1/2. Apply the algorithm recursively toH , producing a minimum spanningforest F of H . Find all the F -heavy edges (both those in H and those not in H) and deletethem.Step 3. Apply the algorithm recursively to the remaining graph to compute a spanningforest F 0. Return those edges contracted in Step 1 together with the edges of F 0.We prove the correctness of the algorithm by induction. By the cut property, every edgecontracted during Step 1 is in the minimum spanning forest. Hence the remaining edges ofthe minimum spanning forest of the original graph form a minimum spanning forest of thecontracted graph. It remains to show that the recursive call in Step 3 �nds the minimumspanning forest of the contracted graph.By the cycle property, the edges deleted in Step 2 do not belong to the minimum spanningforest. By the inductive hypothesis, the minimum spanning forest of the remaining graphis correctly determined in the recursive call of Step 3.Remark. Our algorithm can be viewed as an instance of the generalized greedy algorithmpresented in [23], from which its correctness follows immediately.4



4 Analysis of the AlgorithmWe begin our analysis by making some observations about the worst-case behavior of thealgorithm. Then we show that the expected running time of the algorithm is linear, byapplying Lemma 1 and the linearity of expectations. Finally, we show that the algorithmruns in linear time with all but exponentially small probability, by developing a globalversion of the analysis in the proof of Lemma 1 and using a Cherno� bound [1, 4, 21].Consider a single invocation of the algorithm. The total time spent in Steps 1{3, ex-cluding the time spent on recursive subproblems, is linear in the number of edges: Step 1 isjust two steps of Bor�uvka's algorithm, which takes linear time using straightforward graph-algorithmic techniques, and Step 2 takes linear time using the modi�ed Dixon-Rauch-Tarjanveri�cation algorithm, as noted in Section 2. The total running time is thus bounded by aconstant factor times the total number of edges in the original problem and in all recursivesubproblems. Thus our objective is to estimate this total number of edges.Suppose the algorithm is initially applied to a graph with n vertices and m edges.Since the graph contains no isolated vertices, m � n=2. Each invocation of the algorithmgenerates at most two recursive subproblems. Consider the entire binary tree of recursivesubproblems. The root is the initial problem. For a particular problem, we call the �rstrecursive subproblem, occuring in Step 2, the left child of the parent problem, and thesecond recursive subproblem, occuring in Step 3, the right child. At depth d, the tree ofsubproblems has at most 2d nodes, each a problem on a graph of at most n=4d vertices. Thusthe depth of the tree is at most log4 n, and there are at mostP1d=0 2dn=4d =P1d=0 n=2d = 2nvertices total in the original problem and all subproblems.Theorem 1 The worst-case running time of the minimum-spanning-forest algorithm isO(minfn2; m logng), the same as the bound for Bor�uvka's algorithm.Proof.We estimate the worst-case total number of edges in two di�erent ways. First, sincethere are no multiple edges in any subproblem, a subproblem at depth d contains at most(n=4d)2=2 edges. Summing over all subproblems gives an O(n2) bound on the total numberof edges. Second, consider the left and right children of some parent problem. Suppose theparent problem is on a graph of v vertices. Every edge in the parent problem ends up inexactly one of the children (the left if it is selected in Step 2, the right if it is not), with theexception of the edges in the minimum spanning forest F of the sample graph H , whichend up in both subproblems, and the edges that are removed in Step 1, which end up inno subproblem. If v0 is the number of vertices in the graph after Step 1, then F containsv0�1 � v=4 edges. Since at least v=2 edges are removed in Step 1, the total number of edgesin the left and right subproblems is at most the number of edges in the parent problem.It follows that the total number of edges in all subproblems at any single recursive depthd is at most m. Since the number of di�erent depths is O(logn), the total number of edgesin all recursive subproblems is O(m logn).Theorem 2 The expected running time of the minimum spanning forest algorithm is O(m).Proof. Our analysis relies on a partition of the recursion tree into left paths. Each suchpath consists of either the root or a right child and all nodes reachable from this nodethrough a path of left children. Consider a parent problem on a graph of X edges, and letY be the number of edges in its left child. Since each edge in the parent problem is either5



removed in Step 1 or has a chance of 12 of being selected in Step 2, E[Y jX = k] � k=2. Itfollows by linearity of expectation that E[Y ] � E[X ]=2. That is, the expected number ofedges in a left subproblem is at most half the expected number of edges in its parent. Itfollows that, if the expected number of edges in a problem is k, then the sum of the expectednumbers of edges in every subproblem along the left path descending from the problem isat most P1i=0 k=2i = 2k.Thus the expected total number of edges is bounded by twice the sum of m and theexpected total number of edges in all right subproblems. By Lemma 1, the expected numberof edges in a right subproblem is at most twice the number of vertices in the subproblem.Since the total number of vertices in all right subproblems is at mostP1d=1 2d�1 n=4d = n=2,the expected number of edges in the original problem and all subproblems is at most 2m+n.Theorem 3 The minimum spanning forest algorithm runs in O(m) time with probability1� e�
(m).Proof.We obtain the high-probability result by applying a global version of the analysis inthe proof of Lemma 1. We �rst bound the total number of edges in all right subproblems.These are exactly the edges that are found to be F -light in Step 2 of the parent problems.Referring back to the proof of Lemma 1, let us consider the nickel-tosses corresponding tothese edges. Each nickel that comes up heads corresponds to an edge in a spanning forestin a right subproblem. The total number of edges in all such spanning forests in all rightsubproblems is at most the number of vertices in all such subproblems, which in turn is atmost n=2 as shown in the proof of Theorem 2. Thus n=2 is an upper bound on the totalnumber of heads in nickel-ips. The probability that there are more than 3m F -light edgesis at most the probability that fewer than n=2 heads occur in a sequence of 3m nickel-tosses.By a Cherno� bound [1, 4, 21], this probability is e�
(m) since m � n=2.We now consider the edges in left subproblems. The edges in a left subproblem areobtained from the parent problem by sampling; i.e., a coin is tossed for each edge in theparent problem not deleted in Step 1, and the edge is copied to the subproblem if the coincomes up heads and is not copied if the coin comes up tails. To put it another way, an edgein the root or in a right subproblem gives rise to a sequence of copies in left subproblems,each copy resulting from a coin-ip coming up heads. The sequence ends if a coin-ip comesup tails. The number of occurrences of tails is at most the number of sequences, which inturn is at most the number m0 of edges in the root problem and in all right subproblems.The total number of edges in all these sequences is equal to the total number of heads,which in turn is at most the total number of coin-tosses. Hence the probability that thisnumber of edges exceeds 3m0 is the probability that at most m0 tails occur in a sequence ofmore than 3m0 coin-tosses. Since m0 � m, this probability is e�
(m) by a Cherno� bound.Combining this with the previous high-probability bound of O(m) on m0, we �nd thatthe total number of edges in the original problem and in all subproblems is O(m) withprobability 1� e�
(m). 6



5 RemarksIn work with Richard Cole [5], Klein and Tarjan have adapted the randomized algorithm torun in parallel. The parallel algorithm does linear expected work and runs in O(logn 2log� n)expected time on a CRCW PRAM [16]. This is the �rst parallel algorithm for minimumspanning trees that does linear work. In contrast, Karger [13] gives an algorithm runningon an EREW PRAM that requires O(logn) time and m= logn + n1+� processors for anyconstant � > 0. Also, Cole and Vishkin [6] give an algorithm running on a CRCW PRAMthat requires O(logn) time on O((n+m) log logn= logn) processors.Among remaining open problems, we note especially the following three:1. Is there a deterministic linear-time minimum spanning tree algorithm in the restrictedrandom-access model?2. Can randomization or some other technique be used to simplify the linear-time veri-�cation algorithm?3. Can randomization be used fruitfully to solve other network optimization problems,such as the shortest-path problem? Randomization has already proved valuable insolving the maximum-ow [3] and minimum-cut [14] problems.AcknowledgmentsWe thank Rajeev Motwani, Satish Rao, and David Zuckerman for fruitful discussions.References[1] N. Alon and J. H. Spencer, The Probabilistic Method, John Wiley & Sons, Inc., NewYork, N. Y., 1992, p. 223.[2] O. Bor�uvka, \O jist�em probl�emu minim�aln�im, Pr�aca Moravsk�e P�r�irodov�edeck�eSpole�cnosti 3, 1926, pp. 37-58. (In Czech.)[3] J. Cheriyan, T. Hagerup, and K. Mehlhorn, \Can a maximum ow be computed inO(nm) time?", Proc. 17th International Colloquium on Automata, Languages, andProgramming, published as Lecture Notes in Computer Science, Vol. 443, Springer-Verlag, New York, 1990, pp. 235-248.[4] H. Cherno�, \A measure of the asymptotic e�ciency for tests of a hypothesis basedon the sum of observations," Annals of Mathematical Statistics, 23, 1952, pp. 493{509.[5] R. Cole, P. N. Klein, and R. E. Tarjan, \A linear-work parallel algorithm for �ndingminimum spanning trees," to appear in Proc., 6th Symposium on Parallel Algorithmsand Architectures, 1994.[6] R. Cole and U. Vishkin, \Approximate and exact parallel scheduling with applicationsto list, tree, and graph problems," Proc. 27th Annual IEEE Symp. on Foundations ofComputer Science, Computer Society Press, Los Alamitos, CA, 1986, pp. 478-491.7
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